
Introduction

Complexity Theory

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Ondřej Lengál, Adam Rogalewicz

Computational Complexity

Computational complexity theory
classifies the inherent complexity of problems into classes based
on the amount of resources (time, space, . . .) they need,
• The problem of checking whether a Boolean formula is satisfiable is

solvable in nondeterministic polynomial time (SAT ∈ NP).
relates these classes to each other.
• All problems solvable in nondeterministic polynomial time are also

solvable in deterministic polynomial space (NP ⊆ PSPACE).

Complexity Theory (FIT VUT) Introduction 2 / 29

Relation to Decidability

Decidability
Is it possible to solve a given problem at all?
• Given a Turing machine M and an input x, does M terminate on x?

Complexity
Is it possible to solve a given problem with limited resources, i.e. is
there an algorithm that solves the problem using only the given
resources? (upper bound)
• For a directed graph G and nodes u and v, can we decide whether

there exists no path from u to v using only nondeterministic
logarithmic space?

What resources are necessary to solve a problem, i.e. there is
no algorithm that can use less resources to solve the problem?
(lower bound)
• Is it possible to evaluate whether a formula in Presburger arithmetic

is satisfiable with less than deterministic exponential time?

Complexity Theory (FIT VUT) Introduction 3 / 29

Types of Problems

Types of problems:
decision problems,
• Given a directed graph G and a pair of nodes u, v, is there a path

from u to v in G?
search problems,
• Given a directed graph G and a pair of nodes u, v, find a path from

u to v if it exists.
optimisation problems,
• Given a directed graph G and a pair of nodes u, v, find a path from

u to v of minimum length if it exists.
counting problems.
• Given a directed graph G and a pair of nodes u, v, how many paths

from u to v are in G?

Complexity Theory (FIT VUT) Introduction 4 / 29

Kolmogorov Complexity

Kolmogorov complexity (descriptive complexity):
is concerned about the length of an algorithm that solves the
given problem,
• Can the problem be solved by a Turing machine with 4 states?

it often holds that fast algorithms are long, and slow algorithms
are short their size.

Complexity Theory (FIT VUT) Introduction 5 / 29

Models of Computation

A model of computation:
defines the operations that can be used in a computation and their costs,
examples:
• a Turing machine,
• a random access machine (RAM),
• a parallel RAM (PRAM),
• a probabilistic Turing machine,
• circuits,
• a quantum computer, . . .

Complexity Theory (FIT VUT) Introduction 6 / 29

Cobham’s Thesis

Cobham’s Thesis
A problem can be feasibly computed on some computational device
only if it can be computed in the time polynomial to the length of the
input⇒ the class P.

Existence of an algorithm does not imply an efficient solution to
the problem.
Cobham’s thesis delimits the class of efficiently solvable problems.
Indeed, for problems not in P, practical algorithms often use
heuristics or find only an approximate solution.
There are many objections to Cobham’s thesis though, as it
asserts that all problems in P are easy and all problems not in P
are too hard, with neglecting the coefficients and other terms.

Complexity Theory (FIT VUT) Introduction 7 / 29

Turing Machine

Definition
A Turing Machine (TM) is a sextuple M = (Q,Σ, Γ, δ,q0,qF) where

Q is a finite non-empty set of states,
Σ is the (finite non-empty) input alphabet,
Γ is the (finite non-empty) tape alphabet, Σ ⊂ Γ, ∆ ∈ Γ \ Σ,

blank symbol

δ: (Q \ {qF})× Γ→ Q × (Γ] {L,R}) is a partial transition function,
q0 ∈ Q is the initial state,
qF ∈ Q is the final state.

Complexity Theory (FIT VUT) Introduction 8 / 29

Turing Machine

Definition
A configuration C of M is given by the current state of M, state of the
tape, and the position of tape head:

C ∈ Q × (γ∆ω | γ ∈ Γ∗)× N

Example: C = (q1,aabbcc∆ω,3).

Definition
The transition relation `M of M is the smallest binary relation on
configurations of M defined such that

(q1, γ, n) `M (q2, γ, n + 1) if δ(q1, γn) = (q2,R),
(q1, γ, n) `M (q2, γ, n − 1) if δ(q1, γn) = (q2,L) and n > 0,
(q1, αxβ,n) `M (q2, αyβ,n) if δ(q1, x) = (q2, y) where

x , y ∈ Γ, α ∈ Γn, β ∈ Γ∗{∆ω}.

Example: (q1,aabbcc∆ω,3) `M (q2,aabdcc∆ω,3) if δ(q1,b) = (q2,d).
Complexity Theory (FIT VUT) Introduction 9 / 29

Turing Machine

Definition
The language L(M) of M is the set of words over the input alphabet for
which there is a computation of M from the initial to the final state:

L(M) = {w ∈ Σ∗ | (q0,∆w∆ω,0) `∗M (qF , γ, n)}

where γ ∈ Γ∗{∆ω} and `∗M is the reflexive transitive closure of `M .

Definition
The function fM : Σ∗ → Σ∗ is computed by M iff

(fM(w) = w ′) ⇐⇒ (q0,∆w∆ω,0) `∗M (qF ,∆w ′∆ω,n)

for all w ,w ′ ∈ Σ∗ and some n ∈ N.

Complexity Theory (FIT VUT) Introduction 10 / 29

Time Complexity

Definition
The time complexity of the computation of the Turing Machine M on
the input w is the function tM : Σ∗ → N ∪ {∞} defined as
tM(w) = n ∈ N iff the computation of M on w halts in n steps,
tM(w) =∞ iff the computation of M on w does not halt.

Definition
The time complexity of the Turing Machine M is the function
TM : N→ N ∪ {∞} defined as

TM(n) = max{tM(w) | w ∈ Σn}.

Definition
Given a function f : N→ N we define the computational resource

DTIME(f (n)) = {L ⊆ Σ∗ | there is a TM M s.t. TM(n) ≤ f (n)} .

Complexity Theory (FIT VUT) Introduction 11 / 29

Space Complexity

Definition
Let C = (q, α∆ω,n), α ∈ Γ∗ \ (Γ∗{∆}),n ∈ N, be a configuration of the
Turing Machine M. The space complexity s(C) of the configuration C
is defined as s(C) = max{|α|,n}.

i.e. α does not end with ∆ · · ·∆

Definition
The space complexity of the computation of the Turing Machine M on
the input w is the function sM : Σ∗ → N ∪ {∞} defined as

sM(w) = max{sM(C) | (q0,∆w∆ω,0) `∗M C}.

where the maximum of an infinite set is∞.

Complexity Theory (FIT VUT) Introduction 12 / 29

Space Complexity

Definition
The space complexity of the Turing Machine M is the function
SM : N→ N ∪ {∞} defined as

SM(n) = max{sM(w) | w ∈ Σn}.

Definition
Given a function f : N→ N we define the computational resource

DSPACE(f (n)) = {L ⊆ Σ∗ | there is a TM M s.t. SM(n) ≤ f (n)} .

Complexity Theory (FIT VUT) Introduction 13 / 29

Non-deterministic Turing Machine

Definition
A Non-deterministic Turing Machine (NTM) is a sextuple
M = (Q,Σ, Γ, δ,q0,qF) where Q,Σ, Γ,q0, and qF are defined as for
Turing Machines and

δ : (Q \ {qF})× Γ→ 2Q×(Γ]{L,R}).

The configuration C, transition relation `M and language L(M) of M
are defined as for Turing Machines. Note that for w ∈ L(M) there may
be multiple computations of M on w , some of them may be rejecting or
not halting.

Complexity Theory (FIT VUT) Introduction 14 / 29

Time Complexity of NTMs

Definition
The time complexity of the Non-deterministic Turing Machine M is the
function TM : N→ N ∪ {∞} defined as

TM(n) = max{tM(w) | w ∈ Σn}
where tM is the maximum number of steps of a computation of M on w
(or∞ if the computation of M loops on w).

Definition
Given a function f : N→ N we define the computational resource

NTIME(f (n)) = {L ⊆ Σ∗ | there is a NTM M s.t. TM(n) ≤ f (n)} .

Note: If there is a word w ∈ Σ∗ such that there is a computation of M
on w that loops, then TM(|w |) =∞. However, if L(M) ∈ NTIME(f (n))
then there exists a NTM M ′ s.t. each computation of M on w ends in at
most f (|w |) steps.

Complexity Theory (FIT VUT) Introduction 15 / 29

Time Complexity of NTMs

Lemma
For all f : N→ N:

DTIME(f (n)) ⊆ NTIME(f (n)).

Proof. TM is a special case of a NTM.

Complexity Theory (FIT VUT) Introduction 16 / 29

Space Complexity of NTMs

Definition
The space complexity of the Non-deterministic Turing Machine M is
the function SM : N→ N ∪ {∞} defined as

SM(n) = max{sM(w) | w ∈ Σn}

where sM(w) = max{s(C) | (q0,∆w∆ω,0) `∗M C}.

Definition
Given a function f : N→ N we define the computational resource

NSPACE(f (n)) = {L ⊆ Σ∗ | there is a NTM M s.t. SM(n) ≤ f (n)} .

Complexity Theory (FIT VUT) Introduction 17 / 29

Linear Speedup

Lemma
Let L ∈ DTIME(f (n)). Then for each ε > 0 : L ∈ DTIME(ε ∗ f (n) + n).

Proof. By construction of TM over working alphabet Γ ∪ Γk for
a suitable constant k . Such a TM can perform k steps of the original
TM within finite number of steps.

Complexity Theory (FIT VUT) Introduction 18 / 29

Linear Space Compression

Lemma
Let L ∈ DSPACE(g(n)). Then for each ε > 0 : L ∈ DSPACE(ε ∗ g(n)).

Proof. By construction of TM over working alphabet Γ ∪ Γk for
a suitable constant k . Such a TM can perform k steps of the original
TM within finite number of steps.

Complexity Theory (FIT VUT) Introduction 19 / 29

Linear Speedup and Space Compression

Linear speedup and space compression work also for
nondeterministic complexity classes.
For each constant c > 0, the following equalities hold:
• DTIME(f (n)) = DTIME(c ∗ f (n) + n)
• NTIME(f (n)) = NTIME(c ∗ f (n) + n)
• DSPACE(f (n)) = DSPACE(c ∗ f (n))
• NSPACE(f (n)) = NSPACE(c ∗ f (n))

Complexity Theory (FIT VUT) Introduction 20 / 29

Big O Notion

To avoid problems related to linear speedup and space compression,
we define the functions O (big-O), Σ and Θ as follows:

Asymptotic upper bound
O(f (n)) = {g(n) ∈ F | ∃c ∈ R+ ∃n0 ∈ N ∀n ∈ N : n ≥ n0 ⇒ 0 ≤ g(n) ≤ c.f (n)}.

Asymptotic lower bound
Ω(f (n)) = {g(n) ∈ F | ∃c ∈ R+ ∃n0 ∈ N ∀n ∈ N : n ≥ n0 ⇒ 0 ≤ c.f (n) ≤ g(n)}.

Asymptotic both-side bound
Θ(f (n)) = {g(n) ∈ F | ∃c1, c2 ∈ R+ ∃n0 ∈ N ∀n ∈ N : n ≥ n0 ⇒ 0 ≤ c1.f (n) ≤ g(n) ≤
c2.f (n)}.

Complexity Theory (FIT VUT) Introduction 21 / 29

Big O Notion – Conventions

The following conventions are often used in literature:

f (n) = O(g(n)) iff f (n) ∈ O(g(n))
f (n) = Ω(g(n)) iff f (n) ∈ Ω(g(n))
f (n) = Θ(g(n)) iff f (n) ∈ Θ(g(n))

Complexity Theory (FIT VUT) Introduction 22 / 29

Equivalent definitions of DTIME, DSPACE, NTIME and
NSPACE

The following definitions are equivalent due to the linear speedup and
space compression.

The resource DTIME(f (n)) can be defined as:
DTIME(f (n)) = {L ⊆ Σ∗ | there is a TM M s.t. TM(n) ≤ f (n)}
as well as
DTIME(f (n)) = {L ⊆ Σ∗ | there is a TM M s.t. TM(n) ∈ O(f (n))}

The resource DSPACE(g(n)) can be defined as:
DSPACE(g(n)) = {L ⊆ Σ∗ | there is a TM M s.t. SM(n) ≤ g(n)}
as well as
DSPACE(g(n)) = {L ⊆ Σ∗ | there is a TM M s.t. SM(n) ∈ O(g(n))}

The equal principle can be used also in definitions of NTIME(f (n)) and
NSPACE(g(n)).

Complexity Theory (FIT VUT) Introduction 23 / 29

Multi-tape Turing Machine

Basic idea
Instead of a single infinite tape, a Multi-tape Turing Machine M uses
several of them (together with a tape head for each tape).

In each step, M performs a write/move on all tapes at once.
The time complexity is, as for single-tape Turing Machines, the
number of steps.
The space complexity is extended by taking the sum of space
complexities of configurations of all the tapes.

Complexity Theory (FIT VUT) Introduction 24 / 29

Multi-tape Turing Machine (2)

Lemma
Let M be a multi-tape TM recognizing a language L = L(M) with time
complexity f (n). Then there exists a (single-tape) TM M ′ such that
L = L(M) = L(M ′) and M ′ recognizes L with time complexity f (n)2.

Lemma
Let M be a multi-tape TM recognizing a language L = L(M) with space
complexity g(n). Then there exists a (single-tape) TM M ′ such that
L = L(M) = L(M ′) and M ′ recognizes L with space complexity g(n).

Proof. By construction of TM over working alphabet Γ ∪ Γ2.

Complexity Theory (FIT VUT) Introduction 25 / 29

Multi-tape Turing Machine (3)

Lemma
Let M be a multi-tape TM recognizing a language L = L(M) with time
complexity f (n). Then there exists a 2-tape TM M ′ such that
L = L(M) = L(M ′) and M ′ recognizes L with time complexity
O(f (n) ∗ log(f (n))).

Complexity Theory (FIT VUT) Introduction 26 / 29

Turing Machine with Input and Output Tape

Turing Machine with Input and Output Tape:
a variant of a Multi-tape Turing Machine:
• the input tape is read-only,
• the output tape is write-only,
• there are also read/write work tapes,
• the time complexity is the number of steps,
• the space complexity is the sum of space complexities of

configurations of all the tapes except the input and output.

Complexity Theory (FIT VUT) Introduction 27 / 29

Constructible Functions

For a language L ∈ DTIME(f (n)) (or NTIME(f (n))), we would like
all computations of a TM M accepting L halt in the order of f (n)
steps (i.e. in k · f (n) steps for some k ∈ N).
This can be done by computing f (|w |) (where w is the input) first
and then simulating the computation of M, in each step checking
that the simulated computation has not exceeded f (|w |) steps.
For this we need to be able to compute f (|w |) in the available time!
And similarly for DSPACE (NSPACE) and used memory cells.

⇒ constructible functions

Complexity Theory (FIT VUT) Introduction 28 / 29

Constructible Functions
Definition
Let f be a function f : N→ N. f is time constructible iff there is a Turing
Machine Mf that for every input of length n outputs the binary
representation of f (n) in at most n + k · f (n) steps for some k ∈ N.

Definition
Let f be a function f : N→ N. f is space constructible iff there is a
Turing Machine Mf with input and output tape that for an input of length
n outputs the binary representation of f (n) while using at most k · f (n)
cells on its work tapes.

Example
f (n) = c, f (n) = n, f (n) = log(n) are time and space constructible.
a function that is neither time nor space constructible:

f (n) =
{

n2 if 1n is an encoding of a TM that halts on all inputs,
n3 otherwise.

Complexity Theory (FIT VUT) Introduction 29 / 29

