Symbolic Execution

Ondfej Lengal
SAV'23, FIT VUT v Brng&

25 October 2023

Ondrej Lengal (SAV'23, FIT VUT v Brné) Symbolic Execution

Manual Testing

m users try input vectors, trying to break a program
B pros:
» complete: a failing input vector can be “easily” executed
® not always easy: concurrency, nondeterministic memory layout, etc.
» can be directed to some corner cases

B COons:
» unsound: problematic coverage of unexpected corner cases
> expensive (testers needed)

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023

2/23

Random Testing

m generate a lot of random vectors and feed them into a program
B pros:

P can easily create many inputs
m cons:

» difficult to cover corner cases
> many inputs can exercise the same paths through the program

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution

25 October 2023

3/23

Random Testing

m generate a lot of random vectors and feed them into a program
B pros:

P can easily create many inputs
m cons:

» difficult to cover corner cases
> many inputs can exercise the same paths through the program

m e.g. QuickCheck for Haskell:

prop_RevRev xs = reverse (reverse xs) == xs

Main> quickCheck prop_RevRev
0K, passed 100 tests.

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 3/23

Random Testing — Example

char input[10];

read(fd, input, 10);

int counter = 0;

for (size_t i = 0; i < 10, ++i) {

if (input[i] == 'B') {
++counter;
}
}
assert(counter !'= 10);

Ondrej Lengal (SAV'23, FIT VUT v Brné) Symbolic Execution

Random Testing — Example

char input[10];

read(fd, input, 10);

int counter = 0;

for (size_t i = 0; i < 10, ++i) {

if (input[i] == 'B') {
++counter;
}
}
assert(counter !'= 10);

m difficult to hit the assertion failure:
> there needs to be exactly 10 B's read into input
> all possible values of input: 28°
» P(counter == 10) = 0.000000000000000000000000827 (for uniform distribution)

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 4/23

Static Analysis

Data flow analysis, abstract interpretation, .. .:

B pros:
» can analyze all possible runs of programs
> sold by companies (AbsInt, Coverity, GrammaTech, etc.)
> easy to use (with a catch)
m cons:
> often unsound (in practice)

» abstraction ~~ false positives (incomplete)
® it can take a lot of effort to sieve through them

> does not provide concrete failing input vectors

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 5/23

Static Analysis — Example

char input[10];

read(fd, input, 10);

int counter = 0;

for (size_t i = 0; i < 10, ++i) {

if (input[i] == 'B') {
++counter;
}
}
assert(counter != 10);

m e.g., abstract interpretation might just say that assert is reachable
m developer needs to assess whether it is true

m abstraction of static analysis can be different than the one used by developer

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution

25 October 2023 6/23

Symbolic Execution — A middle ground

m Testing: works, but each test tries only one possible execution
> we hope that test cases generalize (no guarantees)

assert (£f(2) == 21);
assert (£(3) == 42);
assert (f(4) == 63);

m Symbolic Execution: generalizes random testing
> allows one to assign unknown symbolic values to variables, e.g., y = «
> tests may then cover all possible values of the symbolic value

assert (f(y) == 21x(y-1));
> if an execution path depends on a symbolic value, fork execution

int f(int x) {
return (x > 0)? 21*(x-1) : 13;
}

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 7/23

Symbolic Execution

m can be seen as an execution of a program in a mixed symbolic domain
m similar to abstract interpretation (but with significant differences)

Standard execution semantics:

m in every step, all variables and allocated memory cells have concrete values
P concrete state: configuration of a program

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 8/23

Symbolic Execution

m can be seen as an execution of a program in a mixed symbolic domain
m similar to abstract interpretation (but with significant differences)

Standard execution semantics:

m in every step, all variables and allocated memory cells have concrete values
> concrete state: configuration of a program

Symbolic execution semantics:

m variables and allocated memory cells can also have symbolic values

> eg.,a, 2-6+3, v+ "Hello World", ...

» symbolic values are usually introduced to represent inputs of the program
m operators need to be extended to be able to work with symbolic values

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 8/23

Symbolic Execution (cntd.)

m symbolic state is a triple st = (line, store, pc) where:

» line € N denotes a program line

> store : Mem — Sym represents (symbolic) values of variables and allocated memory cells
® Mem: the set of memory locations
® Sym: the set of symbolic values (it also contains all concrete values)
® (— denotes partial function)

> pc: path condition, a formula of first-order logic (over some suitable theory T that represents program

operations and tests) that accumulates conditions that needed to hold to reach st

® initially set to true
® extended when execution is forked: more formulae are appended using conjunction A

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 9/23

Extending path condition

Let ¢ be a formula obtained by substituting (symbolic) values of variables into a test
m eg. if store={x— a,y— 2-sinpf,...}, and there is a test
if (3 * x > log(y)) {
stmtl;
else {
stmt2;

}

we obtain for the if branch

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 10/23

Extending path condition

Let ¢ be a formula obtained by substituting (symbolic) values of variables into a test
m eg. if store={x— a,y— 2-sinpf,...}, and there is a test
if (3 * x > log(y)) {
stmtl;
else {
stmt2;

}
we obtain for the if branch ¢: 3 -« > log(2 - sin §)

25 October 2023 10/23

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution

Extending path condition (cntd.)

m ¢ is a formula representing a test in a program (e.g. inside an if statement)
m suppose pc is T-satisfiable, then at most one of the following can hold:
pc =1 ¢ (the then branch)
pc =1 —p (the else branch)
where =1 denotes logical consequence wrt. theory T
> i.e., whether all T-models of pc are also T-models of ¢ (or =)

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution

25 October 2023

11/23

Extending path condition (cntd.)

m ¢ is a formula representing a test in a program (e.g. inside an if statement)
m suppose pc is T-satisfiable, then at most one of the following can hold:
pc =1 ¢ (the then branch)
pc =1 ¢ (the else branch)
where =1 denotes logical consequence wrt. theory T
> i.e., whether all T-models of pc are also T-models of ¢ (or =)
m if one of the logical consequences holds, no forking and extension of pc is required
» only one branch is feasible
m when neither of the consequences holds, we speak about forking execution:

> the execution forks because both branches are feasible; pc is then extended as:
pc’ :=pc A (for the then branch)
pc’ := pc A —p (for the else branch)

m logical consequence is checked using an SMT Solver

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 11/23

Example of symbolic execution

int power(x, y) | Hne| Xl yl Z |j |pc
{

1: int z = 1;

2: int j = 1;

3: while (y - j >= 0)

{
4 Z *= X
5: ++3;

}
6: return z
}

Ondrej Lengal (SAV'23, FIT VUT v Brné) Symbolic Execution

Symbolic execution — high level algorithm

symState := (line: 0, store: (), pc: true) // initial symbolic state
workSet := {symState}
while workSet # ():

™

w

o st = workSet.get AndRemove () // many ways to implement

5 st’ := symbolically execute from st until a fork to I; and Il with condition ¢, or EXIT,
6 while checking for errors and modifying store accordingly

7| if st'.line == EXIT: continue

s| workSet.add ((line: Iy, store: st'.store, pc: st'.pcA))
of workSet.add((line: ly, store: st'.store, pc: st'.pc A\ —p))

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 13/23

Symbolic execution tree

paths taken in a symbolic execution can be expressed using a symbolic execution tree

m control points of the program are nodes

m statements are edges

m tests that are not logical conseq. of the pc for the branch above them have two outgoing edges:
» true (for then)
> false (for else)

properties of the tree:

m for every terminal leaf L, there are concrete (non-symbolic) inputs that can navigate execution to L
P> a terminal leaf corresponds to a finished path
m every two terminal nodes have distinct path conditions, i.e., pc; A pey is T-UNSAT

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 14 /23

Symbolic execution for verification

program verification:

m every assume () (in function contracts) will update pc’ := pc A ¢
m every assert (y) will test whether pc =1 ¢, if not: report error

m during execution of a program (or in preprocessing), more statements are added, e.g.:

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution

25 October 2023

15/23

Symbolic execution for verification

program verification:

m every assume () (in function contracts) will update pc’ := pc A ¢
m every assert (y) will test whether pc =1 ¢, if not: report error
m during execution of a program (or in preprocessing), more statements are added, e.g.:
> for a fixed-size array a of size N, every access a[x] where x has a symbolic value changes:
assert(x < N && x >= 0);
alx] = y; -=> alx] = y;

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 15/23

Symbolic execution for verification

program verification:

m every assume () (in function contracts) will update pc’ := pc A ¢
m every assert (y) will test whether pc =1 ¢, if not: report error
m during execution of a program (or in preprocessing), more statements are added, e.g.:
> for a fixed-size array a of size N, every access a[x] where x has a symbolic value changes:
assert(x < N && x >= 0);

alx] = y; -=> alx] = y;
> every integer division is checked for zero-division:
assert(x != 0);
y =42/ x; -—> y = 42 / x;

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 15/23

Symbolic execution for verification

program verification:

m every assume () (in function contracts) will update pc’ := pc A
m every assert (y) will test whether pc =1 ¢, if not: report error
m during execution of a program (or in preprocessing), more statements are added, e.g.:
> for a fixed-size array a of size N, every access a[x] where x has a symbolic value changes:
assert(x < N && x >= 0);

alx] = y; -=> alx] = y;
> every integer division is checked for zero-division:
assert(x != 0);
y =42 / x; -—> y = 42 / x;
> pointer accesses are checked for nullptr:
assert(x != nullptr);
y = *X; -——> y = *X;
(checking for dereference of undefined memory locations is more difficult)
> etc.

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 15/23

Search strategies

given by the implementation of workSet.get And Remove ()
m if stack: DFS

> can easily get stuck in some part of the program

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 16/23

Search strategies

given by the implementation of workSet.get And Remove ()
m if stack: DFS

> can easily get stuck in some part of the program
m if queue: BFS
> usually better, but still not guided by any higher-level knowledge

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 16/23

Search strategies

given by the implementation of workSet.get And Remove ()
m if stack: DFS

> can easily get stuck in some part of the program
m if queue: BFS
> usually better, but still not guided by any higher-level knowledge
® more complex strategies:
> try to steer the search (using priorities) towards assertion failures
> reasoning on the control flow graph (CFG) of the program

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 16/23

Search strategies

given by the implementation of workSet.get And Remove ()
m if stack: DFS

> can easily get stuck in some part of the program
m if queue: BFS
> usually better, but still not guided by any higher-level knowledge
more complex strategies:
> try to steer the search (using priorities) towards assertion failures
> reasoning on the control flow graph (CFG) of the program
m randomness: we don't know which paths to take... why not pick them randomly?
pick next path uniformly at random
randomly restart search if nothing interesting found for a while
when choosing between two paths with the same priority, flip a coin

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 16/23

Search strategies

m coverage-guided heuristics:
> try to visit statements not seen before
> increments statement’s score when hit
» pick a statement with lowest score
» can be difficult to find how to get to a statement

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 17/23

Search strategies

m coverage-guided heuristics:
> try to visit statements not seen before
> increments statement’s score when hit
» pick a statement with lowest score

» can be difficult to find how to get to a statement (undecidable)

Ondrej Lengél (SAV'23, FIT VUT v Brng)

Symbolic Execution

25 October 2023

17/23

Search strategies

m coverage-guided heuristics:
> try to visit statements not seen before
> increments statement’s score when hit
» pick a statement with lowest score
> can be difficult to find how to get to a statement (undecidable)
m generational search (hybrid of BFS + coverage-guided):
» GEN 0: pick one program path at random, run to completion
> GEN n + 1: take pc from GEN n and negate one branch condition, repeat
» modification: negate all branch conditions, get several paths
> often used with concolic execution

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 17 /23

Search strategies

m coverage-guided heuristics:
> try to visit statements not seen before
> increments statement’s score when hit
» pick a statement with lowest score
> can be difficult to find how to get to a statement (undecidable)
m generational search (hybrid of BFS + coverage-guided):
» GEN 0: pick one program path at random, run to completion
> GEN n + 1: take pc from GEN n and negate one branch condition, repeat
» modification: negate all branch conditions, get several paths
> often used with concolic execution
m combined search:
» run multiple searches at once

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 17 /23

Issues

m we need to test logical consequence pc =1 between path conditions and tests

» reasoning in some theories is still challenging for SMT solvers
® e.g., arithmetic over natural numbers, string variables w/ operations, ...

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 18/23

Issues

m we need to test logical consequence pc =1 between path conditions and tests
» reasoning in some theories is still challenging for SMT solvers
® e.g., arithmetic over natural numbers, string variables w/ operations, ...
m fixed-size/precision integer and floating-point variables in concrete execution:
> are often represented using “ideal” symbolic values from N or R
» more faithful representation uses theory of bit-vectors

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 18/23

Issues

m we need to test logical consequence pc =1 between path conditions and tests
> reasoning in some theories is still challenging for SMT solvers
® e.g., arithmetic over natural numbers, string variables w/ operations, ...
m fixed-size/precision integer and floating-point variables in concrete execution:
> are often represented using “ideal” symbolic values from N or R
» more faithful representation uses theory of bit-vectors
m problems modelling memory:
» checking for invalid memory accesses a[x] where
® ais an array and
® x has a symbolic value
> unsatisfactory solution:
® JTE(v(x) = 1,v(a[1]), ITE(v(x) = 2,v(a[2]),...))
> theory of arrays

» even more problems with dynamic data structures
® model the whole memory as a big array? ... does not scale

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 18/23

Issues

m path explosion:
» when symbolic execution keeps forking
> e.g. on cycles without a fixed number of iterations
> cf. bounded model checking (BMC)

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 19/23

Issues

m path explosion:
» when symbolic execution keeps forking
> e.g. on cycles without a fixed number of iterations
> cf. bounded model checking (BMC)
® imprecision: reasons
» pointer manipulation
» SMT solver limitations
> complex arithmetic operations (hashing, encryption, etc.)
> system/library calls (e.g. 1ibc):
® can contain native code
® very complicated (e.g. call of malloc)
® using a simpler version can be advantageous (e.g., newlib, a version of libc for embedded systems)
® need to make a model (a lot of work)

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 19/23

Concolic testing

m concolic = concrete + symbolic
m program is executed at the same time on symbolic and concrete inputs
> program is given concrete inputs I, which are shadowed by symbolic values
® the symbolic values generalize the concrete inputs
» execution of the program is instrumented: computation of path condition
> when a path terminates
® choose a decision point d in its path condition pc = p Ad A Y
® obtain a new path condition prefix pc’ = ¢ A —d
® generate new inputs I’ = pc’
® re-run the program with I’ as its inputs
m for system calls, use the concrete value
» symbolic-ness is lost at such calls

m no need to call SMT solver at conditions

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 20/23

Tools

= KLEE: symbolic execution of LLVM bitcode paste -d\\ abcdefghijklmnopgrstuvwxyz
m Pex: symbolic execution for .NET pr -e t2.txt
.) t -r t3.tx tx
m CREST: concoll'c testing of C programs mizir - atbt £3. txt
m SAGE: targets file parsers (e.g., .doc, .jpeg) mkfifo -Z a b
» used daily in Microsoft Win, Office, ... mknod -Z a b p
» found 100s of bugs in 100s of apps md5sum -c tl.txt

ptx -F\\ abcdefghijklmnopgrstuvwxyz
ptx x t4.txt

seq -f %0 1

tl.axt: "\t \tMD5 ("

2.xt: "\b\b\b\b\b\b\b\t"

3.axt: "\n"

t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

Ondrej Lengél (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 21/23

Tools

Mergepoint: static analysis + SE
Otter: symbolic execution for C
> provide a line number
> Otter will try to get there
Symbiotic: symbiosis of several approaches:
program instrumentation (adding monitors for various properties)
static program slicing (removing statements that are irrelevant to the property)
symbolic execution based on KLEE
PyEx: symbolic execution of Python programs

Ondrej Lengal (SAV'23, FIT VUT v Brng) Symbolic Execution 25 October 2023 22/23

Used materials from

m Jan Strejcek, Masaryk University
m Michael Hicks, University of Maryland

Ondrej Lengal (SAV'23, FIT VUT v Brné) Symbolic Execution

