Lecture 3 — First-Order Theories

Ondřej Lengál

Faculty of Information Technology Brno University of Technology

IAM'24

First-Order Theories

■ When reasoning in first-order logic (FOL), we use theories to add semantics to function/predicate symbols.

First-Order Theories

- When reasoning in first-order logic (FOL), we use theories to add semantics to function/predicate symbols.
- Theory restricts the possible interpretations of formulae to those we are interested in.

First-Order Theories

- When reasoning in first-order logic (FOL), we use theories to add semantics to function/predicate symbols.
- Theory restricts the possible interpretations of formulae to those we are interested in.

Example

Is the following

$$\varphi : 1 + 1 = 2$$

a valid FOL formula?

First-Order Theories

- When reasoning in first-order logic (FOL), we use theories to add semantics to function/predicate symbols.
- Theory restricts the possible interpretations of formulae to those we are interested in.

Example

Is the following

$$\varphi: 1+1=2$$

a valid FOL formula? Why?

First-Order Theories

- When reasoning in first-order logic (FOL), we use theories to add semantics to function/predicate symbols.
- Theory restricts the possible interpretations of formulae to those we are interested in.

Example

Is the following

$$\varphi: 1+1=2$$

a valid FOL formula? Why?

■ Validity: φ is valid iff $I \models \varphi$ for all interpretations I.

First-Order Theories

- When reasoning in first-order logic (FOL), we use theories to add semantics to function/predicate symbols.
- Theory restricts the possible interpretations of formulae to those we are interested in.

Example

Is the following

$$\varphi: 1+1=2$$

a valid FOL formula? Why?

- Validity: φ is valid iff $I \models \varphi$ for all interpretations I.
- There are interpretations for which the formula is not true

First-Order Theories

- When reasoning in first-order logic (FOL), we use theories to add semantics to function/predicate symbols.
- Theory restricts the possible interpretations of formulae to those we are interested in.

Example

Is the following

$$\varphi: 1+1=2$$

a valid FOL formula? Why?

- Validity: φ is valid iff $I \models \varphi$ for all interpretations I.
- There are interpretations for which the formula is not true

• e.g.,
$$I = {\mathbb{N}, \alpha_I}$$
 s.t. $\alpha_I(+) = {\dots, (1,1) \mapsto 3, \dots}$

First-Order Theories

- When reasoning in first-order logic (FOL), we use theories to add semantics to function/predicate symbols.
- Theory restricts the possible interpretations of formulae to those we are interested in.

Example

Is the following

$$\varphi: 1+1=2$$

a valid FOL formula? Why?

- Validity: φ is valid iff $I \models \varphi$ for all interpretations I.
- There are interpretations for which the formula is not true

• e.g.,
$$I = {\mathbb{N}, \alpha_I}$$
 s.t. $\alpha_I(+) = {\dots, (1,1) \mapsto 3, \dots}$

■ We wish to restrict possible interpretations of $\varphi \leadsto$ theories.

- **signature** Σ_T : a set of function and predicate symbols
 - note that constants are special function symbols!
 - ightharpoonup $\Sigma_{\mathcal{T}}$ -formula: a formula over $\Sigma_{\mathcal{T}}$

- **signature** Σ_T : a set of function and predicate symbols
 - note that constants are special function symbols!
 - $ightharpoonup \Sigma_{\mathcal{T}}$ -formula: a formula over $\Sigma_{\mathcal{T}}$
- **axioms** A_T : a set of *closed* FOL formulae over the vocabulary of Σ_T
 - ▶ often, we need an infinite number of axioms ~ axiom schemata
 - axiom schema a template whose instantiations produce axioms
 - can be seen as a program that generates axioms/checks whether a formula is an axiom

- **signature** Σ_T : a set of function and predicate symbols
 - note that constants are special function symbols!
 - $ightharpoonup \Sigma_{\mathcal{T}}$ -formula: a formula over $\Sigma_{\mathcal{T}}$
- **axioms** A_T : a set of *closed* FOL formulae over the vocabulary of Σ_T
 - ▶ often, we need an infinite number of axioms ~ axiom schemata
 - axiom schema a template whose instantiations produce axioms
 - can be seen as a program that generates axioms/checks whether a formula is an axiom
 - axioms are used to restrict possible interpretations of formulae to interesting ones

- **signature** Σ_T : a set of function and predicate symbols
 - note that constants are special function symbols!
 - $ightharpoonup \Sigma_{\mathcal{T}}$ -formula: a formula over $\Sigma_{\mathcal{T}}$
- **axioms** A_T : a set of *closed* FOL formulae over the vocabulary of Σ_T
 - ▶ often, we need an infinite number of axioms ~ axiom schemata
 - axiom schema a template whose instantiations produce axioms
 - can be seen as a program that generates axioms/checks whether a formula is an axiom
 - axioms are used to restrict possible interpretations of formulae to interesting ones
- We use **FOL**(\mathcal{T}) to denote FOL over $\Sigma_{\mathcal{T}}$ with axioms from $\mathcal{A}_{\mathcal{T}}$.

Theory \mathcal{T} is defined using

- **signature** Σ_T : a set of function and predicate symbols
 - note that constants are special function symbols!
 - $ightharpoonup \Sigma_{\mathcal{T}}$ -formula: a formula over $\Sigma_{\mathcal{T}}$
- **axioms** A_T : a set of *closed* FOL formulae over the vocabulary of Σ_T
 - ▶ often, we need an infinite number of axioms ~ axiom schemata
 - axiom schema a template whose instantiations produce axioms
 - can be seen as a program that generates axioms/checks whether a formula is an axiom
 - axioms are used to restrict possible interpretations of formulae to interesting ones
- We use **FOL**(\mathcal{T}) to denote FOL over $\Sigma_{\mathcal{T}}$ with axioms from $\mathcal{A}_{\mathcal{T}}$.

Fragment of a theory:

a syntactically restricted subset of formulae of the theory

Theory \mathcal{T} is defined using

- **signature** Σ_T : a set of function and predicate symbols
 - note that constants are special function symbols!
 - $ightharpoonup \Sigma_{\mathcal{T}}$ -formula: a formula over $\Sigma_{\mathcal{T}}$
- **axioms** A_T : a set of *closed* FOL formulae over the vocabulary of Σ_T
 - ▶ often, we need an infinite number of axioms ~ axiom schemata
 - axiom schema a template whose instantiations produce axioms
 - can be seen as a program that generates axioms/checks whether a formula is an axiom
 - axioms are used to restrict possible interpretations of formulae to interesting ones
- We use **FOL**(\mathcal{T}) to denote FOL over $\Sigma_{\mathcal{T}}$ with axioms from $\mathcal{A}_{\mathcal{T}}$.

Fragment of a theory:

- a syntactically restricted subset of formulae of the theory
- e.g., the quantifier-free fragment, alternation-free fragment, existential fragment, fragments restricting the number of quantifier alternations, . . .

Theory \mathcal{T} is defined using

- **signature** Σ_T : a set of function and predicate symbols
 - note that constants are special function symbols!
 - $ightharpoonup \Sigma_{\mathcal{T}}$ -formula: a formula over $\Sigma_{\mathcal{T}}$
- **axioms** A_T : a set of *closed* FOL formulae over the vocabulary of Σ_T
 - ▶ often, we need an infinite number of axioms ~ axiom schemata
 - axiom schema a template whose instantiations produce axioms
 - can be seen as a program that generates axioms/checks whether a formula is an axiom
 - axioms are used to restrict possible interpretations of formulae to interesting ones
- We use **FOL**(\mathcal{T}) to denote FOL over $\Sigma_{\mathcal{T}}$ with axioms from $\mathcal{A}_{\mathcal{T}}$.

Fragment of a theory:

- a syntactically restricted subset of formulae of the theory
- e.g., the quantifier-free fragment, alternation-free fragment, existential fragment, fragments restricting the number of quantifier alternations, . . .
- we often show equiv. of (fragments of) theories with other formal models

\mathcal{T} -validity and \mathcal{T} -satisfiability:

■ \mathcal{T} -interpretation: an interpretation I that satisfies all axioms of \mathcal{T} :

$$I \models A$$
 for every $A \in \mathcal{A}_{\mathcal{T}}$.

\mathcal{T} -validity and \mathcal{T} -satisfiability:

 \blacksquare \mathcal{T} -interpretation: an interpretation I that satisfies all axioms of \mathcal{T} :

$$I \models A$$
 for every $A \in \mathcal{A}_{\mathcal{T}}$.

Two general goals:

1 generalization of similar concepts (e.g., group theory)

\mathcal{T} -validity and \mathcal{T} -satisfiability:

 \blacksquare \mathcal{T} -interpretation: an interpretation I that satisfies all axioms of \mathcal{T} :

$$I \models A$$
 for every $A \in \mathcal{A}_{\mathcal{T}}$.

Two general goals:

- 1 generalization of similar concepts (e.g., group theory)
- 2 "logical pinpointing": axiomatization of particular interpretations (e.g., Peano arithmetic)

\mathcal{T} -validity and \mathcal{T} -satisfiability:

 \blacksquare \mathcal{T} -interpretation: an interpretation I that satisfies all axioms of \mathcal{T} :

$$I \models A$$
 for every $A \in \mathcal{A}_{\mathcal{T}}$.

Two general goals:

- 1 generalization of similar concepts (e.g., group theory)
- 2 "logical pinpointing": axiomatization of particular interpretations (e.g., Peano arithmetic)
- A $\Sigma_{\mathcal{T}}$ -formula φ is \mathcal{T} -valid if it holds for every \mathcal{T} -interpretation.
 - we denote \mathcal{T} -validity as $\mathcal{T} \models \varphi$

\mathcal{T} -validity and \mathcal{T} -satisfiability:

■ \mathcal{T} -interpretation: an interpretation I that satisfies all axioms of \mathcal{T} :

$$I \models A$$
 for every $A \in \mathcal{A}_{\mathcal{T}}$.

Two general goals:

- 1 generalization of similar concepts (e.g., group theory)
- 2 "logical pinpointing": axiomatization of particular interpretations (e.g., Peano arithmetic)
- A Σ_T -formula φ is T-valid if it holds for every T-interpretation.
 - we denote \mathcal{T} -validity as $\mathcal{T} \models \varphi$
- \blacksquare A $\Sigma_{\mathcal{T}}$ -formula φ is \mathcal{T} -satisfiable if it holds for some \mathcal{T} -interpretation
 - SMT: satisfiability modulo theories
 - ► SMT-solvers: programs "deciding" *T*-satisfiability of formulae
 - i.e., deciding for decidable (fragments of) theories
 - trying to decide for undecidable

Interpretations

Indistinguishability:

 \blacksquare A ground formula φ distinguishes two interpretations I_1 and I_2 if

$$I_1 \models \varphi$$
 if and only if $I_2 \not\models \varphi$

e.g., density

Interpretations

Indistinguishability:

lacksquare A ground formula φ distinguishes two interpretations I_1 and I_2 if

$$I_1 \models \varphi$$
 if and only if $I_2 \not\models \varphi$

e.g., density

- \blacksquare I_1 and I_2 are indistinguishable if there is no FOL formula that distinguishes them:
 - isomorphic models
 - others (we'll see later)

Negation Completeness:

■ A theory \mathcal{T} is negation complete if for every *closed* $\Sigma_{\mathcal{T}}$ -formula φ ,

it holds that
$$\mathcal{T} \vdash \varphi$$
 or $\mathcal{T} \vdash \neg \varphi$

 $(\mathcal{T} \vdash \varphi \text{ means "} \varphi \text{ is provable in } \mathcal{T}$ ").

- Can be seen as whether the axiomatization sufficiently restricts interpretations
 - ullet i.e., all models of ${\mathcal T}$ are indistuiguishable by any ${\mathcal T}$ -formula
- \triangleright if \mathcal{T} is negation complete and *recursively axiomatizable*, then \mathcal{T} is decidable

Negation Completeness:

■ A theory \mathcal{T} is negation complete if for every *closed* $\Sigma_{\mathcal{T}}$ -formula φ ,

it holds that
$$\mathcal{T} \vdash \varphi$$
 or $\mathcal{T} \vdash \neg \varphi$

 $(\mathcal{T} \vdash \varphi \text{ means "} \varphi \text{ is provable in } \mathcal{T}$ ").

- Can be seen as whether the axiomatization sufficiently restricts interpretations
 - ullet i.e., all models of ${\mathcal T}$ are indistuiguishable by any ${\mathcal T}$ -formula
- \triangleright if \mathcal{T} is negation complete and *recursively axiomatizable*, then \mathcal{T} is decidable
- Do not confuse with the completeness of *proof systems*!
 - (A proof system S for FOL is *complete* if for every FOL formula φ such that $\models \varphi$, it holds that $\vdash_S \varphi$.)

Negation Completeness:

■ A theory \mathcal{T} is negation complete if for every *closed* $\Sigma_{\mathcal{T}}$ -formula φ ,

it holds that
$$\mathcal{T} \vdash \varphi$$
 or $\mathcal{T} \vdash \neg \varphi$

 $(\mathcal{T} \vdash \varphi \text{ means "} \varphi \text{ is provable in } \mathcal{T}$ ").

- Can be seen as whether the axiomatization sufficiently restricts interpretations
 - ullet i.e., all models of ${\mathcal T}$ are indistuiguishable by any ${\mathcal T}$ -formula
- ightharpoonup if \mathcal{T} is negation complete and *recursively axiomatizable*, then \mathcal{T} is decidable
- Do not confuse with the completeness of *proof systems*!
 - (A proof system S for FOL is *complete* if for every FOL formula φ such that $\models \varphi$, it holds that $\vdash_S \varphi$.)

Consistency:

lacktriangle A theory $\mathcal T$ is consistent if there is at least one $\mathcal T$ -interpretation.

Negation Completeness:

■ A theory \mathcal{T} is negation complete if for every *closed* $\Sigma_{\mathcal{T}}$ -formula φ ,

it holds that
$$\mathcal{T} \vdash \varphi$$
 or $\mathcal{T} \vdash \neg \varphi$

 $(\mathcal{T} \vdash \varphi \text{ means "} \varphi \text{ is provable in } \mathcal{T}$ ").

- Can be seen as whether the axiomatization sufficiently restricts interpretations
 - ullet i.e., all models of ${\mathcal T}$ are indistuiguishable by any ${\mathcal T}$ -formula
- ightharpoonup if \mathcal{T} is negation complete and *recursively axiomatizable*, then \mathcal{T} is decidable
- Do not confuse with the completeness of *proof systems*!
 - (A proof system S for FOL is *complete* if for every FOL formula φ such that $\models \varphi$, it holds that $\vdash_S \varphi$.)

Consistency:

- lacktriangle A theory $\mathcal T$ is consistent if there is at least one $\mathcal T$ -interpretation.
- Alternative definition: A theory is inconsistent if for every $\Sigma_{\mathcal{T}}$ -formula φ it holds that $\mathcal{T} \vdash \varphi$, otherwise it is consistent.

Decidability

■ a **theory** \mathcal{T} is decidable if there is an algorithm that for every $\Sigma_{\mathcal{T}}$ -formula φ terminates with "**yes**" if $\mathcal{T} \models \varphi$ and with "**no**" if $\mathcal{T} \not\models \varphi$ (and the algorithm always terminates).

- a **theory** \mathcal{T} is decidable if there is an algorithm that for every $\Sigma_{\mathcal{T}}$ -formula φ terminates with "**yes**" if $\mathcal{T} \models \varphi$ and with "**no**" if $\mathcal{T} \not\models \varphi$ (and the algorithm always terminates).
- FOL(\emptyset), i.e. FOL without any theory, is **undecidable**
 - the so-called Entscheidungsproblem
 - proved by Alan Turing (by reduction from the Halting problem)

- a **theory** \mathcal{T} is decidable if there is an algorithm that for every $\Sigma_{\mathcal{T}}$ -formula φ terminates with "**yes**" if $\mathcal{T} \models \varphi$ and with "**no**" if $\mathcal{T} \not\models \varphi$ (and the algorithm always terminates).
- FOL(∅), i.e. FOL without any theory, is **undecidable**
 - the so-called Entscheidungsproblem
 - proved by Alan Turing (by reduction from the Halting problem)
- **a fragment** of \mathcal{T} is decidable if it is decidable for each formula φ that obeys the fragment's syntactic restrictions.

- a **theory** \mathcal{T} is decidable if there is an algorithm that for every $\Sigma_{\mathcal{T}}$ -formula φ terminates with "**yes**" if $\mathcal{T} \models \varphi$ and with "**no**" if $\mathcal{T} \not\models \varphi$ (and the algorithm always terminates).
- FOL(\emptyset), i.e. FOL without any theory, is **undecidable**
 - the so-called Entscheidungsproblem
 - proved by Alan Turing (by reduction from the Halting problem)
- **a fragment** of \mathcal{T} is decidable if it is decidable for each formula φ that obeys the fragment's syntactic restrictions.
- quantifier-free fragment:
 - validity/satisfiability in FOL are defined for ground formulae only

- a **theory** \mathcal{T} is decidable if there is an algorithm that for every $\Sigma_{\mathcal{T}}$ -formula φ terminates with "**yes**" if $\mathcal{T} \models \varphi$ and with "**no**" if $\mathcal{T} \not\models \varphi$ (and the algorithm always terminates).
- FOL(\emptyset), i.e. FOL without any theory, is **undecidable**
 - the so-called Entscheidungsproblem
 - proved by Alan Turing (by reduction from the Halting problem)
- **a fragment** of \mathcal{T} is decidable if it is decidable for each formula φ that obeys the fragment's syntactic restrictions.
- quantifier-free fragment:
 - validity/satisfiability in FOL are defined for ground formulae only
 - satisfiability: when testing satisfiability, a quantifier-free formula is prefixed by existential quantification of free variables

- a **theory** \mathcal{T} is decidable if there is an algorithm that for every $\Sigma_{\mathcal{T}}$ -formula φ terminates with "**yes**" if $\mathcal{T} \models \varphi$ and with "**no**" if $\mathcal{T} \not\models \varphi$ (and the algorithm always terminates).
- FOL(∅), i.e. FOL without any theory, is **undecidable**
 - the so-called Entscheidungsproblem
 - proved by Alan Turing (by reduction from the Halting problem)
- **a fragment** of \mathcal{T} is decidable if it is decidable for each formula φ that obeys the fragment's syntactic restrictions.
- quantifier-free fragment:
 - validity/satisfiability in FOL are defined for ground formulae only
 - satisfiability: when testing satisfiability, a quantifier-free formula is prefixed by existential quantification of free variables
 - validity: when testing validity, a quantifier-free formula is prefixed by universal quantification of free variables

Theory of Equality \mathcal{T}_E

Theory of Equality \mathcal{T}_E (with Uninterpreted Functions):

- \blacksquare here, we consider it a part of FOL(\emptyset) (i.e., it is used implicitly in the other theories)
- Signature: $\langle \mathcal{F} = \{f, g, h, \ldots\}, \mathcal{P} = \{p, q, r, \ldots\} \rangle$

Theory of Equality \mathcal{T}_E

Theory of Equality \mathcal{T}_E (with Uninterpreted Functions):

- \blacksquare here, we consider it a part of FOL(\emptyset) (i.e., it is used implicitly in the other theories)
- Signature: $\langle \mathcal{F} = \{f, q, h, \ldots\}, \mathcal{P} = \{p, q, r, \ldots\} \rangle$
- Axioms:

$$\forall x(x=x)$$

$$\forall x \forall y (x = y \rightarrow y = x)$$

$$\exists \forall x \forall y \forall z ((x = y \land y = z) \rightarrow x = z)$$

(transitivity)

Theory of Equality \mathcal{T}_E (with Uninterpreted Functions):

- \blacksquare here, we consider it a part of FOL(\emptyset) (i.e., it is used implicitly in the other theories)
- Signature: $\langle \mathcal{F} = \{f, g, h, \ldots\}, \mathcal{P} = \{p, q, r, \ldots\} \rangle$
- Axioms:
 - $\forall x(x=x)$
 - $\begin{array}{cccc}
 & \forall x \forall y (x = y) & \rightarrow & y = x
 \end{array}$
 - $\exists \forall x \forall y \forall z ((x = y \land y = z) \rightarrow x = z)$
 - 4 for every function symbol $f_{/n}$,

$$\forall \overline{x} \forall \overline{y} \left(\left(\bigwedge_{i=1}^{n} x_i = y_i \right) \quad \to \quad f(\overline{x}) = f(\overline{y}) \right)$$

(reflexivity)

(symmetry)

(transitivity)

(function congruence)

Theory of Equality \mathcal{T}_E (with Uninterpreted Functions):

- \blacksquare here, we consider it a part of FOL(\emptyset) (i.e., it is used implicitly in the other theories)
- Signature: $\langle \mathcal{F} = \{f, g, h, \ldots\}, \mathcal{P} = \{p, q, r, \ldots\} \rangle$
- Axioms:
 - 1 $\forall x(x=x)$ (reflexivity) 2 $\forall x \forall y(x=y \rightarrow y=x)$ (symmetry) 3 $\forall x \forall y \forall z ((x=y \land y=z) \rightarrow x=z)$ (transitivity)
 - 4 for every function symbol $f_{/n}$,

$$\forall \overline{x} \forall \overline{y} \left(\left(\bigwedge_{i=1}^n x_i = y_i \right) \quad \rightarrow \quad f(\overline{x}) = f(\overline{y}) \right) \tag{function congruence}$$

5 for every predicate symbol $p_{/n}$,

$$\forall \overline{x} \forall \overline{y} \left(\left(\bigwedge_{i=1}^n x_i = y_i \right) \quad \rightarrow \quad (p(\overline{x}) \leftrightarrow p(\overline{y})) \right) \qquad \qquad \text{(predicate congruence)}$$

 \overline{x} denotes a list of variables x_1, \ldots, x_n

Theory of Equality \mathcal{T}_E (with Uninterpreted Functions):

- \blacksquare here, we consider it a part of FOL(\emptyset) (i.e., it is used implicitly in the other theories)
- Signature: $\langle \mathcal{F} = \{f, g, h, \ldots\}, \mathcal{P} = \{p, q, r, \ldots\} \rangle$
- Axioms:
 - 1 $\forall x(x=x)$ (reflexivity) 2 $\forall x \forall y (x=y \rightarrow y=x)$ (symmetry) 3 $\forall x \forall y \forall z ((x=y \land y=z) \rightarrow x=z)$ (transitivity)
 - 4 for every function symbol $f_{/n}$,

$$\forall \overline{x} \forall \overline{y} \left(\left(\bigwedge_{i=1}^n x_i = y_i \right) \quad \rightarrow \quad f(\overline{x}) = f(\overline{y}) \right) \tag{function congruence}$$

(predicate congruence)

5 for every predicate symbol $p_{/n}$,

$$\forall \overline{x} \forall \overline{y} \left(\left(\bigwedge_{i=1}^{n} x_i = y_i \right) \rightarrow (p(\overline{x}) \leftrightarrow p(\overline{y})) \right)$$

 \overline{x} denotes a list of variables x_1, \ldots, x_n

■ Note that only the built-in predicate symbol $=_{/2}$ is interpreted.

Theory of Equality \mathcal{T}_E (with Uninterpreted Functions):

- \blacksquare here, we consider it a part of FOL(\emptyset) (i.e., it is used implicitly in the other theories)
- Signature: $\langle \mathcal{F} = \{f, g, h, \ldots\}, \mathcal{P} = \{p, q, r, \ldots\} \rangle$
- Axioms:
 - 1 $\forall x(x=x)$ (reflexivity) 2 $\forall x \forall y(x=y \rightarrow y=x)$ (symmetry) 3 $\forall x \forall y \forall z ((x=y \land y=z) \rightarrow x=z)$ (transitivity)
 - 4 for every function symbol $f_{/n}$,

$$\forall \overline{x} \forall \overline{y} \left(\left(\bigwedge_{i=1}^n x_i = y_i \right) \quad \rightarrow \quad f(\overline{x}) = f(\overline{y}) \right) \tag{function congruence}$$

5 for every predicate symbol $p_{/n}$,

$$\forall \overline{x} \forall \overline{y} \left(\left(\bigwedge_{i=1}^{n} x_i = y_i \right) \rightarrow (p(\overline{x}) \leftrightarrow p(\overline{y})) \right)$$

(predicate congruence)

- \overline{x} denotes a list of variables x_1, \ldots, x_n
- Note that only the built-in predicate symbol $=_{/2}$ is interpreted.
- Note that [4] and [5] are axiom schemata.

- **undecidable**: it allows all functions and predicates
 - (any FOL formula can be encoded into \mathcal{T}_E)

- **undecidable**: it allows all functions and predicates
 - \blacktriangleright (any FOL formula can be encoded into \mathcal{T}_E)
- the quantifier-free fragment is decidable
 - using the congruence closure algorithm

- **undecidable**: it allows all functions and predicates
 - (any FOL formula can be encoded into \mathcal{T}_E)
- the quantifier-free fragment is decidable
 - ▶ using the congruence closure algorithm

Example

The formula

$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

is unsatisfiable.

Intermission — Numbers

Peano Arithmetic \mathcal{T}_{PA} (first-order arithmetic):

■ Signature: $\langle \mathcal{F} = \{0_{0}, S_{1}, +_{2}, \cdot_{2}\}, \mathcal{P} = \emptyset \rangle$

Peano Arithmetic \mathcal{T}_{PA} (first-order arithmetic):

- Signature: $\langle \mathcal{F} = \{0_{0}, S_{1}, +_{2}, \cdot_{2}\}, \mathcal{P} = \emptyset \rangle$
- Axioms:

 - $\forall x \forall y (S(x) = S(y) \rightarrow x = y)$

(zero) (injectivity of S)

Peano Arithmetic \mathcal{T}_{PA} (first-order arithmetic):

- Signature: $\langle \mathcal{F} = \{0_{0}, S_{1}, +_{2}, \cdot_{2}\}, \mathcal{P} = \emptyset \rangle$
- Axioms:

 - 3 for every $\Sigma_{\mathcal{T}_{Pa}}$ -formula φ with precisely one free variable,

$$\Big(\varphi(0) \wedge \forall x \big(\varphi(x) \to \varphi(S(x))\big)\Big) \quad \to \quad \forall x \, \varphi(x) \tag{induction}$$

(zero)

(injectivity of S)

Peano Arithmetic \mathcal{T}_{PA} (first-order arithmetic):

- Signature: $\langle \mathcal{F} = \{0_{0}, S_{1}, +_{2}, \cdot_{2}\}, \mathcal{P} = \emptyset \rangle$
- Axioms:
 - 1 $\forall x(\neg(S(x)=0))$
 - $2 \forall x \forall y (S(x) = S(y) \rightarrow x = y)$
 - 3 for every $\Sigma_{\mathcal{T}_{Pa}}$ -formula φ with precisely one free variable,

$$\Big(\varphi(0) \wedge \forall x \big(\varphi(x) \to \varphi(S(x))\big)\Big) \quad \to \quad \forall x \, \varphi(x)$$

- $4 \quad \forall x(x+0=x)$
- $5 \forall x \forall y (x + S(y) = S(x + y))$

(zero)

(injectivity of S)

(induction)

(plus zero)

(plus successor)

Peano Arithmetic \mathcal{T}_{PA} (first-order arithmetic):

- Signature: $\langle \mathcal{F} = \{0_{0}, S_{1}, +_{2}, \cdot_{2}\}, \mathcal{P} = \emptyset \rangle$
- Axioms:
 - 1 $\forall x(\neg(S(x)=0))$
 - $\forall x \forall y (S(x) = S(y) \rightarrow x = y)$
 - 3 for every $\Sigma_{\mathcal{T}_{Pa}}$ -formula φ with precisely one free variable,

$$\Big(\varphi(0) \wedge \forall x \big(\varphi(x) \to \varphi(S(x))\big)\Big) \quad \to \quad \forall x \, \varphi(x)$$

- $4 \quad \forall x(x+0=x)$
- $5 \forall x \forall y (x + S(y) = S(x + y))$
- $6 \quad \forall x(x \cdot 0 = 0)$
- $7 \forall x \forall y (x \cdot S(y) = (x \cdot y) + x)$

(zero)

(injectivity of S)

(induction)

(plus zero)

(plus successor)

(times zero)

(times successor)

- Intended interpretations:
 - \blacktriangleright standard meaning of the function and predicate symbols over $\mathbb N$

- Intended interpretations:
 - ightharpoonup standard meaning of the function and predicate symbols over $\mathbb N$

Example (\leq)

We can define inequality \leq using the following equivalence:

$$x \le y \qquad \stackrel{\mathsf{def}}{\Leftrightarrow} \qquad \exists z(x+z=y).$$

- Intended interpretations:
 - lacktriangle standard meaning of the function and predicate symbols over $\mathbb N$

Example (≤)

We can define inequality \leq using the following equivalence:

$$x \le y$$
 $\stackrel{\mathsf{def}}{\Leftrightarrow}$ $\exists z(x+z=y).$

Example

$$\exists x \exists y \exists z (x \neq 0 \land y \neq 0 \land z \neq 0 \land (x \cdot x) + (y \cdot y) = (z \cdot z))$$

undecidable

undecidable

Theorem (Gödel's First Incompleteness Theorem (Gödel 1931))

Every consistent recursive FOL theory that contains \mathcal{T}_{PA} is negation incomplete.

undecidable

Theorem (Gödel's First Incompleteness Theorem (Gödel 1931))

Every consistent recursive FOL theory that contains \mathcal{T}_{PA} is negation incomplete.

Notes:

- **recursive** theory: there is an algorithm that will, given a formula φ , decide whether φ is an axiom of the theory
 - all commonly considered theories are recursive

undecidable

Theorem (Gödel's First Incompleteness Theorem (Gödel 1931))

Every consistent recursive FOL theory that contains T_{PA} is negation incomplete.

Notes:

- recursive theory: there is an algorithm that will, given a formula φ , decide whether φ is an axiom of the theory
 - all commonly considered theories are recursive
- therefore, if \mathcal{T}_{PA} is consistent, there is a $\Sigma_{\mathcal{T}_{PA}}$ -formula φ such that

neither
$$\mathcal{T}_{PA} \vdash \varphi$$
 nor $\mathcal{T}_{PA} \vdash \neg \varphi$

undecidable

Theorem (Gödel's First Incompleteness Theorem (Gödel 1931))

Every consistent recursive FOL theory that contains \mathcal{T}_{PA} is negation incomplete.

Notes:

- recursive theory: there is an algorithm that will, given a formula φ , decide whether φ is an axiom of the theory
 - all commonly considered theories are recursive
- therefore, if \mathcal{T}_{PA} is consistent, there is a $\Sigma_{\mathcal{T}_{PA}}$ -formula φ such that

neither
$$\mathcal{T}_{PA} \vdash \varphi$$
 nor $\mathcal{T}_{PA} \vdash \neg \varphi$

therefore, every sufficiently strong formal system (in particular, a system with arithmetic) is either inconsistent or negation incomplete

Proof. (high-level idea).

Proof. (high-level idea).

■ Words over an alphabet Σ can be encoded as numbers in $\mathcal{T}_{\mathsf{PA}}$.

Proof. (high-level idea).

■ Words over an alphabet Σ can be encoded as numbers in \mathcal{T}_{PA} .

Example

Let $\Sigma = \{a,b,c\}$ and let $\#: \Sigma \to \mathbb{N}$ be injective, e.g., #(a) = 2, #(b) = 3, #(c) = 4. Then the number $2^{\#(a)} \cdot 3^{\#(b)} \cdot 5^{\#(c)} \cdot 7^{\#(b)} \cdot 11^{\#(a)} = 2,801,452,500$ uniquely encodes the string "abcba".

Proof. (high-level idea).

■ Words over an alphabet Σ can be encoded as numbers in \mathcal{T}_{PA} .

Example

Let $\Sigma = \{a,b,c\}$ and let $\#: \Sigma \to \mathbb{N}$ be injective, e.g., #(a) = 2, #(b) = 3, #(c) = 4. Then the number $2^{\#(a)} \cdot 3^{\#(b)} \cdot 5^{\#(c)} \cdot 7^{\#(b)} \cdot 11^{\#(a)} = 2,801,452,500$ uniquely encodes the string "abcba".

- Therefore, any formula φ can also be encoded as a number.
 - ightharpoonup called its Gödel number $\mathcal{G}(\varphi)$ (we denote the inverse function as $\langle x \rangle$, i.e., $\varphi = \langle \mathcal{G}(\varphi) \rangle$)

Proof. (high-level idea).

■ Words over an alphabet Σ can be encoded as numbers in \mathcal{T}_{PA} .

Example

Let
$$\Sigma = \{a,b,c\}$$
 and let $\#: \Sigma \to \mathbb{N}$ be injective, e.g., $\#(a) = 2, \#(b) = 3, \#(c) = 4$. Then the number $2^{\#(a)} \cdot 3^{\#(b)} \cdot 5^{\#(c)} \cdot 7^{\#(b)} \cdot 11^{\#(a)} = 2,801,452,500$ uniquely encodes the string " $abcba$ ".

- Therefore, any formula φ can also be encoded as a number.
 - lacktriangle called its Gödel number $\mathcal{G}(\varphi)$ (we denote the inverse function as $\langle x \rangle$, i.e., $\varphi = \langle \mathcal{G}(\varphi) \rangle$)
- A proof $P \rightsquigarrow$ also a number $\mathcal{G}(P)$.

Proof. (high-level idea).

■ Words over an alphabet Σ can be encoded as numbers in \mathcal{T}_{PA} .

Example

Let
$$\Sigma = \{a,b,c\}$$
 and let $\#: \Sigma \to \mathbb{N}$ be injective, e.g., $\#(a) = 2, \#(b) = 3, \#(c) = 4$. Then the number $2^{\#(a)} \cdot 3^{\#(b)} \cdot 5^{\#(c)} \cdot 7^{\#(b)} \cdot 11^{\#(a)} = 2,801,452,500$ uniquely encodes the string " $abcba$ ".

- Therefore, any formula φ can also be encoded as a number.
 - ightharpoonup called its Gödel number $\mathcal{G}(\varphi)$ (we denote the inverse function as $\langle x \rangle$, i.e., $\varphi = \langle \mathcal{G}(\varphi) \rangle$)
- A proof $P \rightsquigarrow$ also a number $\mathcal{G}(P)$.
- Application of proof rules ~ manipulation with numbers.

Proof. (high-level idea).

■ Words over an alphabet Σ can be encoded as numbers in \mathcal{T}_{PA} .

Example

Let $\Sigma = \{a,b,c\}$ and let $\#: \Sigma \to \mathbb{N}$ be injective, e.g., #(a) = 2, #(b) = 3, #(c) = 4. Then the number $2^{\#(a)} \cdot 3^{\#(b)} \cdot 5^{\#(c)} \cdot 7^{\#(b)} \cdot 11^{\#(a)} = 2,801,452,500$ uniquely encodes the string "abcba".

- Therefore, any formula φ can also be encoded as a number.
 - ightharpoonup called its Gödel number $\mathcal{G}(\varphi)$ (we denote the inverse function as $\langle x \rangle$, i.e., $\varphi = \langle \mathcal{G}(\varphi) \rangle$)
- A proof $P \rightsquigarrow$ also a number $\mathcal{G}(P)$.
- Application of proof rules ~ manipulation with numbers.
- lacktriangle Consider the formula $\alpha(x,y)$ that encodes the statement

 $\alpha(x,y) \stackrel{\mathsf{def}}{\Leftrightarrow} \langle x \rangle$ is a proof of the formula $\langle y \rangle$.

Proof. (cont.)

$$\alpha(x,y) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \langle x \rangle \text{ is a proof of the formula } \langle y \rangle.$$

Now, take the formula

$$Bew(y) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \exists x \, \alpha(x,y)$$

expressing " $\langle y \rangle$ is a provable *(beweisbar)* formula" ($\vdash \langle y \rangle$)

Proof. (cont.)

 $\alpha(x,y) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \langle x \rangle \text{ is a proof of the formula } \langle y \rangle.$

- Now, take the formula $Bew(y) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \exists x \, \alpha(x,y) \\ \text{expressing "}\langle y \rangle \text{ is a provable (beweisbar) formula" (}\vdash \langle y \rangle \text{)}$
- Note that $\langle y \rangle$ is provable iff Bew(y) is provable.

Proof. (cont.)

$$\alpha(x,y) \stackrel{\mathsf{def}}{\Leftrightarrow} \langle x \rangle$$
 is a proof of the formula $\langle y \rangle$.

Now, take the formula

$$Bew(y) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \exists x \, \alpha(x,y)$$

expressing " $\langle y \rangle$ is a provable *(beweisbar)* formula" ($\vdash \langle y \rangle$)

- Note that $\langle y \rangle$ is provable iff Bew(y) is provable.
- Consider the following statement:

Gödel's Statement

$$\varphi \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \neg Bew(\mathcal{G}(\varphi))$$

Proof. (cont.)

$$\alpha(x,y) \stackrel{\mathsf{def}}{\Leftrightarrow} \langle x \rangle$$
 is a proof of the formula $\langle y \rangle$.

Now, take the formula

$$Bew(y) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \exists x \, \alpha(x,y)$$

expressing " $\langle y \rangle$ is a provable *(beweisbar)* formula" ($\vdash \langle y \rangle$)

- Note that $\langle y \rangle$ is provable iff Bew(y) is provable.
- Consider the following statement:

Gödel's Statement

$$\varphi \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \neg Bew(\mathcal{G}(\varphi))$$

" φ is true iff φ is unprovable."

Proof. (cont.)

$$\alpha(x,y) \stackrel{\mathsf{def}}{\Leftrightarrow} \langle x \rangle$$
 is a proof of the formula $\langle y \rangle$.

- Note that $\langle y \rangle$ is provable iff Bew(y) is provable.
- Consider the following statement:

Gödel's Statement

$$\varphi \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \neg Bew(\mathcal{G}(\varphi))$$

" φ is true iff φ is unprovable."

Proof. (cont.)

 $\alpha(x,y) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \langle x \rangle \text{ is a proof of the formula } \langle y \rangle.$

- Note that $\langle y \rangle$ is provable iff Bew(y) is provable.
- Consider the following statement:

Gödel's Statement

$$\varphi \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \neg Bew(\mathcal{G}(\varphi))$$

" φ is true iff φ is unprovable."

Generalization of the "Liar's paradox." (diagonalization)

Gödel's Completeness and (negation) Incompleteness Theorems:

Theorem (Gödel's Completeness Theorem)

FOL with the semantic argument proof system is complete.

Gödel's Completeness and (negation) Incompleteness Theorems:

Theorem (Gödel's Completeness Theorem)

FOL with the semantic argument proof system is complete.

- The theorem also holds for any other *standard* proof system:
 - ► Hilbert system, natural deduction, ...

Gödel's Completeness and (negation) Incompleteness Theorems:

Theorem (Gödel's Completeness Theorem)

FOL with the semantic argument proof system is complete.

- The theorem also holds for any other *standard* proof system:
 - ► Hilbert system, natural deduction, ...
- Completeness: two different meanings, complete and negation complete
 - ▶ G's Completeness T.: a system S is complete if for any φ s.t. $\models \varphi$ it holds that $\vdash_S \varphi$.
 - ▶ G's (negation) Incompleteness T.: a theory \mathcal{T} is negation complete if for any *closed* $\Sigma_{\mathcal{T}}$ -formula φ , either $\mathcal{T} \vdash \varphi$ or $\mathcal{T} \vdash \neg \varphi$.

Gödel's Completeness and (negation) Incompleteness Theorems:

Theorem (Gödel's Completeness Theorem)

FOL with the semantic argument proof system is complete.

- The theorem also holds for any other *standard* proof system:
 - ► Hilbert system, natural deduction, ...
- Completeness: two different meanings, complete and negation complete
 - ▶ G's Completeness T.: a system S is complete if for any φ s.t. $\models \varphi$ it holds that $\vdash_S \varphi$.
 - ▶ G's (negation) Incompleteness T.: a theory \mathcal{T} is negation complete if for any *closed* $\Sigma_{\mathcal{T}}$ -formula φ , either $\mathcal{T} \vdash \varphi$ or $\mathcal{T} \vdash \neg \varphi$.
- G's Incompleteness T. says the following:

G's Statement (GS) is neither provable nor disprovable in PA.

Gödel's Completeness and (negation) Incompleteness Theorems:

Theorem (Gödel's Completeness Theorem)

FOL with the semantic argument proof system is complete.

- The theorem also holds for any other *standard* proof system:
 - ► Hilbert system, natural deduction, ...
- Completeness: two different meanings, complete and negation complete
 - ▶ G's Completeness T.: a system S is complete if for any φ s.t. $\models \varphi$ it holds that $\vdash_S \varphi$.
 - ▶ G's (negation) Incompleteness T.: a theory \mathcal{T} is negation complete if for any *closed* $\Sigma_{\mathcal{T}}$ -formula φ , either $\mathcal{T} \vdash \varphi$ or $\mathcal{T} \vdash \neg \varphi$.
- G's Incompleteness T. says the following:
 - G's Statement (GS) is neither provable nor disprovable in PA.
- Therefore, by G's Completeness T., there are models of PA where GS is true and models where it is false.

Gödel's Completeness and (negation) Incompleteness Theorems:

Theorem (Gödel's Completeness Theorem)

FOL with the semantic argument proof system is complete.

- The theorem also holds for any other *standard* proof system:
 - ► Hilbert system, natural deduction, ...
- Completeness: two different meanings, complete and negation complete
 - ▶ G's Completeness T.: a system S is complete if for any φ s.t. $\models \varphi$ it holds that $\vdash_S \varphi$.
 - ▶ G's (negation) Incompleteness T.: a theory \mathcal{T} is negation complete if for any *closed* $\Sigma_{\mathcal{T}}$ -formula φ , either $\mathcal{T} \vdash \varphi$ or $\mathcal{T} \vdash \neg \varphi$.
- G's Incompleteness T. says the following:
 - G's Statement (GS) is neither provable nor disprovable in PA.
- Therefore, by G's Completeness T., there are models of PA where GS is true and models where it is false.
- there exist nonstandard models of Peano Arithmetic

Presburger Arithmetic $\mathcal{T}_{\mathbb{N}}$:

■ Signature: $\langle \mathcal{F} = \{0_{/0}, S_{/1}, +_{/2}\}, \mathcal{P} = \emptyset \rangle$

- Signature: $\langle \mathcal{F} = \{0_{0}, S_{1}, +_{2}\}, \mathcal{P} = \emptyset \rangle$
- Axioms (a subset of Peano arithmetic):

$$\forall x \forall y (S(x) = S(y) \rightarrow x = y)$$

$$(\varphi(0) \land \forall x (\varphi(x) \to \varphi(S(x)))) \to \forall x \varphi(x)$$

$$4 \quad \forall x(x+0=x)$$

$$5 \forall x \forall y (x + S(y) = S(x + y))$$

```
(zero)
(injectivity of S)
(induction)
(plus zero)
(plus successor)
```

- intended interpretations:
 - \blacktriangleright standard meaning of the function and predicate symbols over $\mathbb N$

- intended interpretations:
 - lacktriangle standard meaning of the function and predicate symbols over $\mathbb N$
- **decidable** [Presburger 1929] (negation complete)

- intended interpretations:
 - standard meaning of the function and predicate symbols over N
- **decidable** [Presburger 1929] (negation complete)
- decision procedures: e.g.
 - ightharpoonup quantifier elimination-based (lesson i+1 for current lesson number =i)
 - ightharpoonup automata-based (lesson i+2)

- intended interpretations:
 - ightharpoonup standard meaning of the function and predicate symbols over $\mathbb N$
- **decidable** [Presburger 1929] (negation complete)
- decision procedures: e.g.
 - ightharpoonup quantifier elimination-based (lesson i+1 for current lesson number =i)
 - ightharpoonup automata-based (lesson i+2)
- \blacksquare it is easy to extend to integers $\mathbb Z$

- intended interpretations:
 - ightharpoonup standard meaning of the function and predicate symbols over $\mathbb N$
- decidable [Presburger 1929] (negation complete)
- decision procedures: e.g.
 - ightharpoonup quantifier elimination-based (lesson i+1 for current lesson number =i)
 - ightharpoonup automata-based (lesson i+2)
- lacksquare it is easy to extend to integers $\mathbb Z$

Example

The following formula over \mathbb{Z}

$$\forall x \forall z \exists y (2x - y = 3z + 5)$$

- intended interpretations:
 - lacktriangle standard meaning of the function and predicate symbols over $\mathbb N$
- decidable [Presburger 1929] (negation complete)
- decision procedures: e.g.
 - ightharpoonup quantifier elimination-based (lesson i+1 for current lesson number =i)
 - ightharpoonup automata-based (lesson i+2)
- lacksquare it is easy to extend to integers $\mathbb Z$

Example

The following formula over $\ensuremath{\mathbb{Z}}$

$$\forall x \forall z \exists y (2x - y = 3z + 5)$$

can be written when using variables over $\mathbb N$ as

$$\forall x_p \forall x_n \forall z_p \forall z_n \exists y_p \exists y_n (2(x_p - x_n) - (y_p - y_n) = 3(z_p - z_n) + 5).$$

- intended interpretations:
 - lacktriangle standard meaning of the function and predicate symbols over $\mathbb N$
- decidable [Presburger 1929] (negation complete)
- decision procedures: e.g.
 - ightharpoonup quantifier elimination-based (lesson i+1 for current lesson number =i)
 - ightharpoonup automata-based (lesson i+2)
- lacksquare it is easy to extend to integers $\mathbb Z$

Example

The following formula over \mathbb{Z}

$$\forall x \forall z \exists y (2x - y = 3z + 5)$$

can be written when using variables over $\mathbb N$ as

$$\forall x_p \forall x_n \forall z_p \forall z_n \exists y_p \exists y_n \big(2(x_p - x_n) - (y_p - y_n) = 3(z_p - z_n) + 5 \big).$$

Expressed in $\mathcal{T}_{\mathbb{N}}$ by moving negative terms to the other side:

$$\forall x_p \forall x_n \forall z_p \forall z_n \exists y_p \exists y_n (2x_p + y_n + 3z_n = 3z_p + 5 + 2x_n + y_p).$$

Theory of Integers $\mathcal{T}_{\mathbb{Z}}$

Theory of Integers $\mathcal{T}_{\mathbb{Z}}$:

■ Signature:

$$\langle \mathcal{F} = \{\dots, -2_{/0}, -1_{/0}, 0_{/0}, 1_{/0}, 2_{/0}, \dots, (-2 \cdot)_{/1}, (2 \cdot)_{/1}, (3 \cdot)_{/1}, \dots, +_{/2}, -_{/2}\}, \mathcal{P} = \{<_{/2}\}\rangle$$

Theory of Integers $\mathcal{T}_{\mathbb{Z}}$

Theory of Integers $\mathcal{T}_{\mathbb{Z}}$:

■ Signature:

$$\langle \mathcal{F} = \{\dots, -2_{/0}, -1_{/0}, 0_{/0}, 1_{/0}, 2_{/0}, \dots, (-2 \cdot)_{/1}, (2 \cdot)_{/1}, (3 \cdot)_{/1}, \dots, +_{/2}, -_{/2}\}, \mathcal{P} = \{<_{/2}\} \rangle$$

■ Every $\Sigma_{\mathcal{T}_{\mathbb{Z}}}$ -formula can be reduced to $\Sigma_{\mathcal{T}_{\mathbb{N}}}$.

■ Signature:
$$\langle \mathcal{F} = \{0_{/0}, 1_{/0}, +_{/2}, \cdot_{/2}, -_{/1}\}, \mathcal{P} = \{\leq_{/2}\}\rangle$$

- Signature: $\langle \mathcal{F} = \{0_{/0}, 1_{/0}, +_{/2}, \cdot_{/2}, -_{/1}\}, \mathcal{P} = \{\leq_{/2}\}\rangle$
- Axioms: the axioms are split into several groups

- Signature: $\langle \mathcal{F} = \{0/0, 1/0, +/2, \cdot/2, -/1\}, \mathcal{P} = \{\le/2\} \rangle$
- Axioms: the axioms are split into several groups
- Axioms of an abelian group:

- Signature: $\langle \mathcal{F} = \{0_{/0}, 1_{/0}, +_{/2}, \cdot_{/2}, -_{/1}\}, \mathcal{P} = \{\leq_{/2}\}\rangle$
- Axioms: the axioms are split into several groups
- Axioms of an abelian group:

 - $\exists \ \forall x(x + (-x) = 0)$
 - $4 \quad \forall x \forall y (x+y=y+x)$

```
(+ associativity)
(+ identity)
(+ inverse)
(+ commutativity)
```

Additional axioms of a ring:

- $\forall x(x \cdot 1 = x)$
- $\forall x (1 \cdot x = x)$
- $5 \forall x \forall y \forall z ((x+y) \cdot z = (x \cdot z) + (y \cdot z))$

```
(· associativity)
(· right identity)
(· left identity)
(· left distributivity over +)
(· right distributivity over +)
```

Additional axioms of a ring:

$$\forall x(x \cdot 1 = x)$$

$$\exists \forall x (1 \cdot x = x)$$

$$\forall x \forall y \forall z ((x+y) \cdot z = (x \cdot z) + (y \cdot z))$$

Additional axioms of a field:

1
$$\forall x \forall y (x \cdot y = y \cdot x)$$

2
$$0 \neq 1$$

$$\exists \forall x (x \neq 0 \rightarrow \exists y (x \cdot y = 1))$$

```
( · associativity)
( · right identity)
( · left identity)
( · left distributivity over +)
( · right distributivity over +)
```

```
(· commutativity)
(separate identities)
(· inverse)
```

Axioms of a total order:

- $\exists \forall x \forall y (x \leq y \lor y \leq x)$

(antisymmetry) (transitivity) (totality)

Axioms of a total order:

$$1 \quad \forall x \forall y ((x \le y \land y \le x) \quad \to \quad x = y)$$

$$2 \forall x \forall y \forall z ((x \le y \land y \le z) \rightarrow x \le z)$$

$$\exists \forall x \forall y (x \leq y \lor y \leq x)$$

(antisymmetry) (transitivity) (totality)

Additional axioms of a real closed field:

$$\forall x \forall y ((0 \le x \land 0 \le y) \quad \to \quad 0 \le x \cdot y)$$

$$\exists \forall x \exists y (x = y^2 \lor x = -y^2)$$

4 for every odd integer n,

$$\forall \overline{x} \exists y (y^n + (x_1 \cdot y^{n-1}) + \dots + (x_{n-1} \cdot y) + x_n = 0)$$

(+ ordered) (· ordered) (square root)

(at least one root)

- decidable [Tarski 1956]
 - ▶ via quantifier elimination

- decidable [Tarski 1956]
 - via quantifier elimination

Example

Can you find a quantifier-free formula $\mathcal{T}_{\mathbb{R}}$ -equivalent to the formula

$$\exists x(ax^2 + bx + c = 0)?$$

- decidable [Tarski 1956]
 - via quantifier elimination

Example

Can you find a quantifier-free formula $\mathcal{T}_{\mathbb{R}}$ -equivalent to the formula

$$\exists x(ax^2 + bx + c = 0)?$$

- decidable [Tarski 1956]
 - via quantifier elimination

Example

Can you find a quantifier-free formula $\mathcal{T}_{\mathbb{R}}$ -equivalent to the formula

$$\exists x(ax^2 + bx + c = 0)?$$

Solution: the formula

$$b^2 - 4ac \ge 0.$$

Theory of Rationals $\mathcal{T}_{\mathbb{O}}$:

■ Signature: $\langle \mathcal{F} = \{0_{/0}, 1_{/0}, +_{/2}, -_{/1}\}, \mathcal{P} = \{\leq_{/2}\}\rangle$

Theory of Rationals $\mathcal{T}_{\mathbb{Q}}$:

- Signature: $\langle \mathcal{F} = \{0_{/0}, 1_{/0}, +_{/2}, -_{/1}\}, \mathcal{P} = \{\leq_{/2}\}\rangle$
- Axioms:

 - $\forall x \forall y \forall z \big((x \le y \land y \le z) \quad \rightarrow \quad x \le z \big)$
 - $\exists \forall x \forall y (x \leq y \lor y \leq x)$

(antisymmetry) (transitivity) (totality)

Theory of Rationals $\mathcal{T}_{\mathbb{O}}$:

- Signature: $\langle \mathcal{F} = \{0_{0}, 1_{0}, +_{2}, -_{1}\}, \mathcal{P} = \{\leq_{2}\}\rangle$
- Axioms:

 - $2 \forall x \forall y \forall z ((x \le y \land y \le z) \rightarrow x \le z)$
 - $\exists \forall x \forall y (x \leq y \lor y \leq x)$
 - $4 \forall x \forall y \forall z ((x+y) + z = x + (y+z))$
 - $\forall x(x+0=x)$
 - 6 $\forall x(x + (-x) = 0)$

```
(antisymmetry)
(transitivity)
(totality)
(+ associativity)
(+ identity)
(+ inverse)
```

Theory of Rationals $\mathcal{T}_{\mathbb{O}}$:

- Signature: $\langle \mathcal{F} = \{0_{/0}, 1_{/0}, +_{/2}, -_{/1}\}, \mathcal{P} = \{\leq_{/2}\}\rangle$
- Axioms:

 - $\exists \forall x \forall y (x \leq y \lor y \leq x)$
 - $\forall x \forall y \forall z ((x+y)+z=x+(y+z))$
 - $\forall x(x+0=x)$
 - 6 $\forall x(x + (-x) = 0)$
 - $\forall x \forall y (x + y = y + x)$
 - 8 $\forall x \forall y \forall z (x \leq y \rightarrow x + z \leq y + z)$

```
(antisymmetry)
    (transitivity)
    (totality)
    (+ associativity)
    (+ identity)
    (+ inverse)
(+ commutativity)
    (+ ordered)
```

Theory of Rationals $\mathcal{T}_{\mathbb{O}}$:

- Signature: $\langle \mathcal{F} = \{0_{/0}, 1_{/0}, +_{/2}, -_{/1}\}, \mathcal{P} = \{\leq_{/2}\}\rangle$
- Axioms:

 - $\exists \forall x \forall y (x \leq y \lor y \leq x)$
 - $4 \forall x \forall y \forall z ((x+y) + z = x + (y+z))$
 - $\forall x(x+0=x)$
 - 6 $\forall x(x + (-x) = 0)$
 - $\forall x \forall y (x + y = y + x)$
 - $\forall x \forall y \forall z (x \leq y) \rightarrow x + z \leq y + z$
 - $\overline{\mathbf{9}}$ for each positive integer n,

$$\forall x (nx = 0 \rightarrow x = 0)$$

```
(antisymmetry)
(transitivity)
(totality)
(+ associativity)
(+ identity)
(+ inverse)
(+ commutativity)
(+ ordered)
```

(torsion-free)

Lecture 3 First-Order Theories IAM'24 24/31

Theory of Rationals $\mathcal{T}_{\mathbb{Q}}$:

- Signature: $\langle \mathcal{F} = \{0_{/0}, 1_{/0}, +_{/2}, -_{/1}\}, \mathcal{P} = \{\leq_{/2}\}\rangle$
- Axioms:
 - $1 \forall x \forall y ((x \le y \land y \le x) \rightarrow x = y)$
 - $2 \forall x \forall y \forall z ((x \leq y \land y \leq z) \rightarrow x \leq z)$
 - $\exists \ \forall x \forall y (x \le y \lor y \le x)$
 - $4 \quad \forall x \forall y \forall z ((x+y) + z = x + (y+z))$
 - $\forall x(x+0=x)$
 - 6 $\forall x(x + (-x) = 0)$
 - $\forall x \forall y (x+y=y+x)$
 - 8 $\forall x \forall y \forall z (x \leq y \rightarrow x + z \leq y + z)$
 - 9 for each positive integer n,

$$\forall x (nx = 0 \rightarrow x = 0)$$

10 for each positive integer n,

$$\forall x \exists y (x = ny)$$

(divisible)

where
$$nx$$
 denotes $\underbrace{x + \cdots + x}^{n}$

(antisymmetry) (transitivity) (totality)

(+ associativity)
 (+ identity)

(+ inverse)

(+ commutativity) (+ ordered)

(torsion-free)

decidable

via quantifier elimination

decidable

via quantifier elimination

Example

The formula

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

can be expressed as the $\Sigma_{\mathcal{T}_{\mathbb{Z}}}$ -formula

decidable

via quantifier elimination

Example

The formula

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

can be expressed as the $\Sigma_{\mathcal{T}_{\mathbb{Z}}}\text{-formula}$

$$3x + 4y \ge 24.$$

Theory of Rationals $\mathcal{T}_{\mathbb{Q}}$

decidable

via quantifier elimination

Example

The formula

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

can be expressed as the $\Sigma_{\mathcal{T}_{\mathbb{Z}}}\text{-formula}$

$$3x + 4y \ge 24.$$

Example

The formula

$$\exists x (x \cdot x = 2)$$

is a valid formula of $\mathcal{T}_\mathbb{R}$ but is expressible in neither $\mathcal{T}_\mathbb{Q}$ nor $\mathcal{T}_\mathbb{Z}$.

Theory of Rationals $\mathcal{T}_{\mathbb{Q}}$

decidable

via quantifier elimination

Example

The formula

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

can be expressed as the $\Sigma_{\mathcal{T}_{z}}$ -formula

$$3x + 4y \ge 24.$$

Example

The formula

$$\exists x (x \cdot x = 2)$$

is a valid formula of $\mathcal{T}_{\mathbb{R}}$ but is expressible in neither $\mathcal{T}_{\mathbb{Q}}$ nor $\mathcal{T}_{\mathbb{Z}}$.

Example

The formula

$$\forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$$

is a valid formula of $\mathcal{T}_{\mathbb{R}}$ and $\mathcal{T}_{\mathbb{Q}}$, but an invalid formula of $\mathcal{T}_{\mathbb{N}}$ and $\mathcal{T}_{\mathbb{Z}}$.

Theory of Lists \mathcal{T}_{List} :

- Signature: $\langle \mathcal{F} = \{ \mathsf{cons}_{/2}, \mathsf{car}_{/1}, \mathsf{cdr}_{/1} \}, \mathcal{P} = \{ \mathsf{atom}_{/1} \} \rangle$
 - cons_{/2} is a function symbol called the constructor
 - car/1 and cdr/1 are function symbols called left and right projector
 - ► atom_{/1} is a unary predicate symbol

Theory of Lists \mathcal{T}_{List} :

- Signature: $\langle \mathcal{F} = \{ \mathsf{cons}_{/2}, \mathsf{car}_{/1}, \mathsf{cdr}_{/1} \}, \mathcal{P} = \{ \mathsf{atom}_{/1} \} \rangle$
 - cons_{/2} is a function symbol called the constructor
 - ► car/1 and cdr/1 are function symbols called left and right projector
 - ▶ atom_{/1} is a unary predicate symbol
- Axioms:
 - 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E

Theory of Lists \mathcal{T}_{List} :

- Signature: $\langle \mathcal{F} = \{ \mathsf{cons}_{/2}, \mathsf{car}_{/1}, \mathsf{cdr}_{/1} \}, \mathcal{P} = \{ \mathsf{atom}_{/1} \} \rangle$
 - cons_{/2} is a function symbol called the constructor
 - car/1 and cdr/1 are function symbols called left and right projector
 - ▶ atom/1 is a unary predicate symbol
- Axioms:
 - 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E
 - 2 instantiations of the (function congruence) axiom scheme of \mathcal{T}_E :

$$\begin{split} \forall x_1 \forall x_2 \forall y_1 \forall y_2 \big((x_1 = x_2 \wedge y_1 = y_2) &\rightarrow & \operatorname{cons}(x_1, y_1) = \operatorname{cons}(x_2, y_2) \big) \\ \forall x \forall y (x = y &\rightarrow & \operatorname{car}(x) = \operatorname{car}(y)) \\ \forall x \forall y (x = y &\rightarrow & \operatorname{cdr}(x) = \operatorname{cdr}(y)) \end{split}$$

Theory of Lists \mathcal{T}_{List} :

- Signature: $\langle \mathcal{F} = \{ \mathsf{cons}_{/2}, \mathsf{car}_{/1}, \mathsf{cdr}_{/1} \}, \mathcal{P} = \{ \mathsf{atom}_{/1} \} \rangle$
 - cons_{/2} is a function symbol called the constructor
 - car/1 and cdr/1 are function symbols called left and right projector
 - atom/1 is a unary predicate symbol

Axioms:

- 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E
- 2 instantiations of the (function congruence) axiom scheme of \mathcal{T}_E :

$$\begin{split} \forall x_1 \forall x_2 \forall y_1 \forall y_2 \big((x_1 = x_2 \wedge y_1 = y_2) &\rightarrow & \mathsf{cons}(x_1, y_1) = \mathsf{cons}(x_2, y_2) \big) \\ \forall x \forall y (x = y &\rightarrow & \mathsf{car}(x) = \mathsf{car}(y)) \\ \forall x \forall y (x = y &\rightarrow & \mathsf{cdr}(x) = \mathsf{cdr}(y)) \end{split}$$

3 an instantiation of the (predicate congruence) axiom scheme of \mathcal{T}_E :

$$\forall x \forall y \big(x = y \quad \rightarrow \quad (\mathsf{atom}(x) \leftrightarrow \mathsf{atom}(y)) \big)$$

Theory of Lists \mathcal{T}_{List} :

- Signature: $\langle \mathcal{F} = \{ \mathsf{cons}_{/2}, \mathsf{car}_{/1}, \mathsf{cdr}_{/1} \}, \mathcal{P} = \{ \mathsf{atom}_{/1} \} \rangle$
 - cons_{/2} is a function symbol called the constructor
 - car/1 and cdr/1 are function symbols called left and right projector
 - atom_{/1} is a unary predicate symbol

Axioms:

- 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E
- 2 instantiations of the (function congruence) axiom scheme of \mathcal{T}_E :

$$\forall x_1 \forall x_2 \forall y_1 \forall y_2 \big((x_1 = x_2 \land y_1 = y_2) \quad \rightarrow \quad \cos(x_1, y_1) = \cos(x_2, y_2) \big)$$

$$\forall x \forall y (x = y \quad \rightarrow \quad \operatorname{car}(x) = \operatorname{car}(y))$$

$$\forall x \forall y (x = y \quad \rightarrow \quad \operatorname{cdr}(x) = \operatorname{cdr}(y))$$

3 an instantiation of the (predicate congruence) axiom scheme of \mathcal{T}_E :

$$\forall x \forall y \big(x = y \quad \rightarrow \quad (\mathsf{atom}(x) \leftrightarrow \mathsf{atom}(y)) \big)$$

4
$$\forall x \forall y (\mathsf{car}(\mathsf{cons}(x,y)) = x)$$

(left projection)

$$\forall x \forall y (\mathsf{cdr}(\mathsf{cons}(x,y)) = y)$$

(right projection)

Theory of Lists \mathcal{T}_{List} :

- Signature: $\langle \mathcal{F} = \{ \mathsf{cons}_{/2}, \mathsf{car}_{/1}, \mathsf{cdr}_{/1} \}, \mathcal{P} = \{ \mathsf{atom}_{/1} \} \rangle$
 - cons_{/2} is a function symbol called the constructor
 - car/1 and cdr/1 are function symbols called left and right projector
 - atom_{/1} is a unary predicate symbol

Axioms:

- 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E
- 2 instantiations of the (function congruence) axiom scheme of \mathcal{T}_E :

$$\forall x_1 \forall x_2 \forall y_1 \forall y_2 \big((x_1 = x_2 \land y_1 = y_2) \quad \rightarrow \quad \cos(x_1, y_1) = \cos(x_2, y_2) \big)$$

$$\forall x \forall y (x = y \quad \rightarrow \quad \operatorname{car}(x) = \operatorname{car}(y))$$

$$\forall x \forall y (x = y \quad \rightarrow \quad \operatorname{cdr}(x) = \operatorname{cdr}(y))$$

3 an instantiation of the (predicate congruence) axiom scheme of \mathcal{T}_E :

$$\forall x \forall y \big(x = y \quad \rightarrow \quad (\mathsf{atom}(x) \leftrightarrow \mathsf{atom}(y)) \big)$$

- 4 $\forall x \forall y (\mathsf{car}(\mathsf{cons}(x,y)) = x)$
- $5 \forall x \forall y (\mathsf{cdr}(\mathsf{cons}(x,y)) = y)$
- 6 $\forall x(\neg \mathsf{atom}(x)) \rightarrow \mathsf{cons}(\mathsf{car}(x), \mathsf{cdr}(x)) = x$

(left projection)

(right projection)

Theory of Lists \mathcal{T}_{List} :

- Signature: $\langle \mathcal{F} = \{ \mathsf{cons}_{/2}, \mathsf{car}_{/1}, \mathsf{cdr}_{/1} \}, \mathcal{P} = \{ \mathsf{atom}_{/1} \} \rangle$
 - cons_{/2} is a function symbol called the constructor
 - car_{/1} and cdr_{/1} are function symbols called left and right projector
 - atom_{/1} is a unary predicate symbol

Axioms:

- 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E
- 2 instantiations of the (function congruence) axiom scheme of \mathcal{T}_E :

$$\forall x_1 \forall x_2 \forall y_1 \forall y_2 \big((x_1 = x_2 \land y_1 = y_2) \quad \rightarrow \quad \cos(x_1, y_1) = \cos(x_2, y_2) \big)$$

$$\forall x \forall y (x = y \quad \rightarrow \quad \operatorname{car}(x) = \operatorname{car}(y))$$

$$\forall x \forall y (x = y \quad \rightarrow \quad \operatorname{cdr}(x) = \operatorname{cdr}(y))$$

3 an instantiation of the (predicate congruence) axiom scheme of \mathcal{T}_E :

$$\forall x \forall y \big(x = y \quad \rightarrow \quad (\mathsf{atom}(x) \leftrightarrow \mathsf{atom}(y)) \big)$$

- 4 $\forall x \forall y (\mathsf{car}(\mathsf{cons}(x,y)) = x)$
- $\forall x \forall y (\mathsf{cdr}(\mathsf{cons}(x,y)) = y)$
- 6 $\forall x(\neg \mathsf{atom}(x) \to \mathsf{cons}(\mathsf{car}(x), \mathsf{cdr}(x)) = x)$
- $\forall x \forall y (\neg \mathsf{atom}(\mathsf{cons}(x,y)))$

(left projection)

(right projection) (construction)

(atom)

undecidable

- undecidable
- Theory of Acyclic Lists $\mathcal{T}_{\text{List}}^+$:
 - created by adding the following axiom schema:

$$\forall x(\mathsf{car}(x) \neq x) \\ \forall x(\mathsf{cdr}(x) \neq x) \\ \forall x(\mathsf{car}(\mathsf{car}(x)) \neq x) \\ \forall x(\mathsf{car}(\mathsf{cdr}(x)) \neq x) \\ \cdots$$

- undecidable
- Theory of Acyclic Lists $\mathcal{T}_{\text{List}}^+$:
 - created by adding the following axiom schema:

$$\forall x(\mathsf{car}(x) \neq x)$$
$$\forall x(\mathsf{cdr}(x) \neq x)$$
$$\forall x(\mathsf{car}(\mathsf{car}(x)) \neq x)$$
$$\forall x(\mathsf{car}(\mathsf{cdr}(x)) \neq x)$$

decidable

- undecidable
- Theory of Acyclic Lists $\mathcal{T}_{\text{List}}^+$:
 - created by adding the following axiom schema:

$$\forall x(\mathsf{car}(x) \neq x)$$

$$\forall x(\mathsf{cdr}(x) \neq x)$$

$$\forall x(\mathsf{car}(\mathsf{car}(x)) \neq x)$$

$$\forall x(\mathsf{car}(\mathsf{cdr}(x)) \neq x)$$

- decidable
- the quantifier-free fragment is decidable

- undecidable
- Theory of Acyclic Lists $\mathcal{T}_{\text{List}}^+$:
 - created by adding the following axiom schema:

$$\forall x(\mathsf{car}(x) \neq x)$$
$$\forall x(\mathsf{cdr}(x) \neq x)$$
$$\forall x(\mathsf{car}(\mathsf{car}(x)) \neq x)$$
$$\forall x(\mathsf{car}(\mathsf{cdr}(x)) \neq x)$$

- decidable
- the quantifier-free fragment is decidable
- a more general Theory of Recursive Data Structures available

Theory of Arrays \mathcal{T}_A :

- Signature: $\langle \mathcal{F} = \{\cdot[\cdot]_{/2}^r, \cdot[\cdot,\cdot]_{/3}^w\}, \mathcal{P} = \emptyset \rangle$
 - $ightharpoonup \cdot [\cdot]_{/2}^r$ is a function symbol called the read
 - $ightharpoonup \cdot [\cdot, \cdot]_{/3}^w$ is a function symbol called the write

Theory of Arrays \mathcal{T}_A :

- Signature: $\langle \mathcal{F} = \{\cdot [\cdot]_{/2}^r, \cdot [\cdot, \cdot]_{/3}^w\}, \mathcal{P} = \emptyset \rangle$
 - $ightharpoonup \cdot [\cdot]_{/2}^r$ is a function symbol called the read
 - $ightharpoonup \cdot [\cdot, \cdot]_{/3}^{w}$ is a function symbol called the write
- Axioms:
 - 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E

Theory of Arrays \mathcal{T}_A :

- Signature: $\langle \mathcal{F} = \{\cdot[\cdot]_{/2}^r, \cdot[\cdot,\cdot]_{/3}^w\}, \mathcal{P} = \emptyset \rangle$
 - $ightharpoonup \cdot [\cdot]_{/2}^r$ is a function symbol called the read
 - $ightharpoonup \cdot [\cdot,\cdot]_{/3}^w$ is a function symbol called the write

■ Axioms:

1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E

$$2 \forall a \forall i \forall j (i = j) \rightarrow a[i]^r = a[j]^r)$$

(array congruence)

Theory of Arrays \mathcal{T}_A :

- Signature: $\langle \mathcal{F} = \{\cdot [\cdot]_{/2}^r, \cdot [\cdot, \cdot]_{/3}^w\}, \mathcal{P} = \emptyset \rangle$
 - $ightharpoonup \cdot [\cdot]_{/2}^r$ is a function symbol called the read
 - $ightharpoonup \cdot [\cdot, \cdot]_{/3}^{w}$ is a function symbol called the write

Axioms:

- f 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E
- $2 \forall a \forall i \forall j (i = j \rightarrow a[i]^r = a[j]^r)$
- $\exists \forall a \forall v \forall i \forall j (i = j \rightarrow (a[i, v]^w)[j]^r = v)$

(array congruence) (read over write 1)

Theory of Arrays \mathcal{T}_A :

- Signature: $\langle \mathcal{F} = \{\cdot [\cdot]_{/2}^r, \cdot [\cdot, \cdot]_{/3}^w\}, \mathcal{P} = \emptyset \rangle$
 - $ightharpoonup \cdot [\cdot]_{/2}^r$ is a function symbol called the read
 - $ightharpoonup \cdot [\cdot, \cdot]_{/3}^{w}$ is a function symbol called the write

Axioms:

- f 1 (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_E
- $\exists \forall a \forall v \forall i \forall j (i = j \rightarrow (a[i, v]^w)[j]^r = v)$
- $4 \forall a \forall v \forall i \forall j (i \neq j \rightarrow (a[i,v]^w)[j]^r = a[j]^r)$

(array congruence) (read over write 1) (read over write 2)

undecidable

arbitrary functions can be encoded using multi-dimensional arrays

undecidable

- arbitrary functions can be encoded using multi-dimensional arrays
- extended with the (extensionality) axiom, the quantifier-free fragment is decidable

$$\forall a \forall b \big(\forall i (a[i]^r = b[i]^r \big) \quad \leftrightarrow \quad a = b \big)$$
 (extensionality)

- undecidable
 - arbitrary functions can be encoded using multi-dimensional arrays
- extended with the (extensionality) axiom, the quantifier-free fragment is decidable

$$\forall a \forall b \big(\forall i (a[i]^r = b[i]^r \big) \quad \leftrightarrow \quad a = b \big)$$
 (extensionality)

Example

The formula

$$a[i]^r = e \quad \rightarrow \quad \forall j \left((a[i, e]^w)[j]^r = a[j]^r \right)$$

is \mathcal{T}_A -valid.

References

```
[ A.R. Bradley and Z. Manna. The Calculus of Computation. ][ Douglas Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. ][ Vojtěch Kolman. Filosofie čísla. ]
```

