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First-Order Theories

First-Order Theories
When reasoning in first-order logic (FOL), we use theories to add semantics to
function/predicate symbols.

Theory restricts the possible interpretations of formulae to those we are interested in.

Example
Is the following

φ : 1 + 1 = 2

a valid FOL formula? Why?
Validity: φ is valid iff I |= φ for all interpretations I.
There are interpretations for which the formula is not true
▶ e.g., I = {N, αI} s.t. αI(+) = {. . . , (1, 1) 7→ 3, . . .}

We wish to restrict possible interpretations of φ⇝ theories.
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Theories
Theory T is defined using

signature ΣT : a set of function and predicate symbols

▶ note that constants are special function symbols!
▶ ΣT -formula: a formula over ΣT

axioms AT : a set of closed FOL formulae over the vocabulary of ΣT

▶ often, we need an infinite number of axioms⇝ axiom schemata
▶ axiom schema — a template whose instantiations produce axioms
▶ can be seen as a program that generates axioms/checks whether a formula is an axiom
▶ axioms are used to restrict possible interpretations of formulae to interesting ones

We use FOL(T ) to denote FOL over ΣT with axioms from AT .

Fragment of a theory:

a syntactically restricted subset of formulae of the theory

e.g., the quantifier-free fragment, alternation-free fragment, existential fragment, fragments
restricting the number of quantifier alternations, . . .

we often show equiv. of (fragments of) theories with other formal models
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T -validity and T -satisfiability

T -validity and T -satisfiability:
T -interpretation: an interpretation I that satisfies all axioms of T :

I |= A for every A ∈ AT .

Two general goals:
1 generalization of similar concepts (e.g., group theory)
2 “logical pinpointing”: axiomatization of particular interpretations (e.g., Peano arithmetic)

A ΣT -formula φ is T -valid if it holds for every T -interpretation.
▶ we denote T -validity as T |= φ

A ΣT -formula φ is T -satisfiable if it holds for some T -interpretation
▶ SMT: satisfiability modulo theories
▶ SMT-solvers: programs “deciding” T -satisfiability of formulae

• i.e., deciding for decidable (fragments of) theories
• trying to decide for undecidable
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Interpretations

Indistinguishability:
A ground formula φ distinguishes two interpretations I1 and I2 if

I1 |= φ if and only if I2 ̸|= φ

e.g., density

I1 and I2 are indistinguishable if there is no FOL formula that distinguishes them:
▶ isomorphic models
▶ others (we’ll see later)
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Negation Completeness and Consistency
Negation Completeness:

A theory T is negation complete if for every closed ΣT -formula φ,

it holds that T ⊢ φ or T ⊢ ¬φ

(T ⊢ φ means “φ is provable in T ”).
▶ Can be seen as whether the axiomatization sufficiently restricts interpretations

• i.e., all models of T are indistuiguishable by any T -formula
▶ if T is negation complete and recursively axiomatizable, then T is decidable

Do not confuse with the completeness of proof systems!
▶ (A proof system S for FOL is complete if for every FOL formula φ such that |= φ, it holds

that ⊢S φ.)

Consistency:
A theory T is consistent if there is at least one T -interpretation.
Alternative definition: A theory is inconsistent if for every ΣT -formula φ it holds that
T ⊢ φ, otherwise it is consistent.
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Decidability

Decidability
a theory T is decidable if there is an algorithm that for every ΣT -formula φ terminates
with “yes” if T |= φ and with “no” if T ̸|= φ (and the algorithm always terminates).

FOL(∅), i.e. FOL without any theory, is undecidable
▶ the so-called Entscheidungsproblem
▶ proved by Alan Turing (by reduction from the Halting problem)

a fragment of T is decidable if it is decidable for each formula φ that obeys the
fragment’s syntactic restrictions.

quantifier-free fragment:
▶ validity/satisfiability in FOL are defined for ground formulae only
▶ satisfiability: when testing satisfiability, a quantifier-free formula is prefixed by existential

quantification of free variables
▶ validity: when testing validity, a quantifier-free formula is prefixed by universal

quantification of free variables
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Theory of Equality TE
Theory of Equality TE (with Uninterpreted Functions):

here, we consider it a part of FOL(∅) (i.e., it is used implicitly in the other theories)
Signature: ⟨F = {f, g, h, . . .},P = {p, q, r, . . .}⟩

Axioms:
1 ∀x(x = x) (reflexivity)
2 ∀x∀y(x = y → y = x) (symmetry)
3 ∀x∀y∀z((x = y ∧ y = z) → x = z) (transitivity)
4 for every function symbol f/n,

∀x∀y

((
n∧

i=1

xi = yi

)
→ f(x) = f(y)

)
(function congruence)

5 for every predicate symbol p/n,

∀x∀y

((
n∧

i=1

xi = yi

)
→ (p(x)↔ p(y))

)
(predicate congruence)

x denotes a list of variables x1, . . . , xn

Note that only the built-in predicate symbol =/2 is interpreted.
Note that [4] and [5] are axiom schemata.
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Note that only the built-in predicate symbol =/2 is interpreted.
Note that [4] and [5] are axiom schemata.
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Theory of Equality TE

undecidable: it allows all functions and predicates
▶ (any FOL formula can be encoded into TE)

the quantifier-free fragment is decidable
▶ using the congruence closure algorithm

Example
The formula

f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) ̸= a

is unsatisfiable.
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Intermission — Numbers
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Peano Arithmetic TPA

Peano Arithmetic TPA (first-order arithmetic):
Signature: ⟨F = {0/0, S/1,+/2, ·/2},P = ∅⟩

Axioms:
1 ∀x(¬(S(x) = 0)) (zero)
2 ∀x∀y(S(x) = S(y) → x = y) (injectivity of S)
3 for every ΣTPA -formula φ with precisely one free variable,(

φ(0) ∧ ∀x
(
φ(x)→ φ(S(x))

))
→ ∀xφ(x) (induction)

4 ∀x(x+ 0 = x) (plus zero)
5 ∀x∀y(x+ S(y) = S(x+ y)) (plus successor)
6 ∀x(x · 0 = 0) (times zero)
7 ∀x∀y(x · S(y) = (x · y) + x) (times successor)
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Peano Arithmetic TPA

Intended interpretations:
▶ standard meaning of the function and predicate symbols over N

Example (≤)
We can define inequality ≤ using the following equivalence:

x ≤ y
def⇔ ∃z(x+ z = y).

Example

∃x∃y∃z(x ̸= 0 ∧ y ̸= 0 ∧ z ̸= 0 ∧ (x · x) + (y · y) = (z · z))
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Peano Arithmetic TPA

undecidable

Theorem (Gödel’s First Incompleteness Theorem (Gödel 1931))
Every consistent recursive FOL theory that contains TPA is

negation incomplete.

Notes:
recursive theory: there is an algorithm that will, given a formula φ, decide whether φ
is an axiom of the theory
▶ all commonly considered theories are recursive

therefore, if TPA is consistent, there is a ΣTPA-formula φ such that

neither TPA ⊢ φ nor TPA ⊢ ¬φ

therefore, every sufficiently strong formal system (in particular, a system with
arithmetic) is either inconsistent or negation incomplete
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Peano Arithmetic TPA

Proof. (high-level idea).

Words over an alphabet Σ can be encoded as numbers in TPA.

Example
Let Σ = {a, b, c} and let # : Σ → N be injective, e.g.,
#(a) = 2,#(b) = 3,#(c) = 4. Then the number

2#(a) · 3#(b) · 5#(c) · 7#(b) · 11#(a) = 2,801,452,500

uniquely encodes the string “abcba”.

Therefore, any formula φ can also be encoded as a number.
▶ called its Gödel number G(φ) (we denote the inverse function as ⟨x⟩, i.e., φ = ⟨G(φ)⟩)

A proof P ⇝ also a number G(P ).
Application of proof rules⇝ manipulation with numbers.
Consider the formula α(x, y) that encodes the statement

α(x, y)
def⇔ ⟨x⟩ is a proof of the formula ⟨y⟩.
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Peano Arithmetic TPA

Proof. (cont.)

α(x, y)
def⇔ ⟨x⟩ is a proof of the formula ⟨y⟩.

Now, take the formula
Bew(y)

def⇔ ∃xα(x, y)
expressing “⟨y⟩ is a provable (beweisbar) formula” (⊢ ⟨y⟩)

Note that ⟨y⟩ is provable iff Bew(y) is provable.
Consider the following statement:

Gödel’s Statement

φ
def⇔ ¬Bew(G(φ))

“φ is true iff φ is unprovable.”

|= φ ⇒ ⊬ φ

|= ¬φ ⇒ ⊢ φ

Generalization of the “Liar’s paradox.” (diagonalization)
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Peano Arithmetic TPA

Gödel’s Completeness and (negation) Incompleteness Theorems:
Theorem (Gödel’s Completeness Theorem)
FOL with the semantic argument proof system is complete.

The theorem also holds for any other standard proof system:
▶ Hilbert system, natural deduction, . . .

Completeness: two different meanings, complete and negation complete
▶ G’s Completeness T.: a system S is complete if for any φ s.t. |= φ it holds that ⊢S φ.
▶ G’s (negation) Incompleteness T.: a theory T is negation complete if for any closed

ΣT -formula φ, either T ⊢ φ or T ⊢ ¬φ.

G’s Incompleteness T. says the following:
G’s Statement (GS) is neither provable nor disprovable in PA.

Therefore, by G’s Completeness T., there are models of PA where GS is true and
models where it is false.
⇝ there exist nonstandard models of Peano Arithmetic
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Presburger Arithmetic TN

Presburger Arithmetic TN:
Signature: ⟨F = {0/0, S/1,+/2},P = ∅⟩

Axioms (a subset of Peano arithmetic):
1 ∀x(¬(S(x) = 0)) (zero)
2 ∀x∀y(S(x) = S(y) → x = y) (injectivity of S)
3
(
φ(0) ∧ ∀x(φ(x)→ φ(S(x)))

)
→ ∀xφ(x) (induction)

4 ∀x(x+ 0 = x) (plus zero)
5 ∀x∀y(x+ S(y) = S(x+ y)) (plus successor)
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Presburger Arithmetic TN
intended interpretations:
▶ standard meaning of the function and predicate symbols over N

decidable [Presburger 1929] (negation complete)
decision procedures: e.g.
▶ quantifier elimination-based (lesson i+ 1 for current lesson number = i)
▶ automata-based (lesson i+ 2)

it is easy to extend to integers Z

Example
The following formula over Z

∀x∀z∃y(2x− y = 3z + 5)

can be written when using variables over N as

∀xp∀xn∀zp∀zn∃yp∃yn
(
2(xp − xn)− (yp − yn) = 3(zp − zn) + 5

)
.

Expressed in TN by moving negative terms to the other side:

∀xp∀xn∀zp∀zn∃yp∃yn(2xp + yn + 3zn = 3zp + 5 + 2xn + yp).
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Theory of Integers TZ

Theory of Integers TZ:
Signature:
⟨F = {. . . ,−2/0,−1/0, 0/0, 1/0, 2/0, . . . , (−2·)/1, (2·)/1, (3·)/1, . . . ,+/2,−/2},P = {</2}⟩

Every ΣTZ-formula can be reduced to ΣTN .
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Theory of Reals TR

Theory of Reals TR (elementary algebra):

Signature: ⟨F = {0/0, 1/0,+/2, ·/2,−/1},P = {≤/2}⟩

Axioms: the axioms are split into several groups

Axioms of an abelian group:
1 ∀x∀y∀z((x+ y) + z = x+ (y + z)) (+ associativity)
2 ∀x(x+ 0 = x) (+ identity)
3 ∀x(x+ (−x) = 0) (+ inverse)
4 ∀x∀y(x+ y = y + x) (+ commutativity)
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Theory of Reals TR

Additional axioms of a ring:
1 ∀x∀y∀z

(
(x · y) · z = x · (y · z)

)
(· associativity)

2 ∀x(x · 1 = x) (· right identity)
3 ∀x(1 · x = x) (· left identity)
4 ∀x∀y∀z

(
x · (y + z) = (x · y) + (x · z)

)
(· left distributivity over +)

5 ∀x∀y∀z
(
(x+ y) · z = (x · z) + (y · z)

)
(· right distributivity over +)

Additional axioms of a field:
1 ∀x∀y(x · y = y · x) (· commutativity)
2 0 ̸= 1 (separate identities)
3 ∀x

(
x ̸= 0 → ∃y(x · y = 1)

)
(· inverse)
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Theory of Reals TR

Axioms of a total order:
1 ∀x∀y((x ≤ y ∧ y ≤ x) → x = y) (antisymmetry)
2 ∀x∀y∀z

(
(x ≤ y ∧ y ≤ z) → x ≤ z

)
(transitivity)

3 ∀x∀y(x ≤ y ∨ y ≤ x) (totality)

Additional axioms of a real closed field:
1 ∀x∀y∀z(x ≤ y → x+ z ≤ y + z) (+ ordered)
2 ∀x∀y

(
(0 ≤ x ∧ 0 ≤ y) → 0 ≤ x · y

)
(· ordered)

3 ∀x∃y(x = y2 ∨ x = −y2) (square root)
4 for every odd integer n,

∀x∃y
(
yn + (x1 · yn−1) + · · ·+ (xn−1 · y) + xn = 0

)
(at least one root)

Lecture 3 First-Order Theories IAM’24 22 / 31



Theory of Reals TR

Axioms of a total order:
1 ∀x∀y((x ≤ y ∧ y ≤ x) → x = y) (antisymmetry)
2 ∀x∀y∀z

(
(x ≤ y ∧ y ≤ z) → x ≤ z

)
(transitivity)

3 ∀x∀y(x ≤ y ∨ y ≤ x) (totality)

Additional axioms of a real closed field:
1 ∀x∀y∀z(x ≤ y → x+ z ≤ y + z) (+ ordered)
2 ∀x∀y

(
(0 ≤ x ∧ 0 ≤ y) → 0 ≤ x · y

)
(· ordered)

3 ∀x∃y(x = y2 ∨ x = −y2) (square root)
4 for every odd integer n,

∀x∃y
(
yn + (x1 · yn−1) + · · ·+ (xn−1 · y) + xn = 0

)
(at least one root)

Lecture 3 First-Order Theories IAM’24 22 / 31



Theory of Reals TR

decidable [Tarski 1956]
▶ via quantifier elimination

Example
Can you find a quantifier-free formula TR-equivalent to the formula

∃x(ax2 + bx+ c = 0)?

Solution: the formula
b2 − 4ac ≥ 0.

Lecture 3 First-Order Theories IAM’24 23 / 31



Theory of Reals TR

decidable [Tarski 1956]
▶ via quantifier elimination

Example
Can you find a quantifier-free formula TR-equivalent to the formula

∃x(ax2 + bx+ c = 0)?

Solution: the formula
b2 − 4ac ≥ 0.

Lecture 3 First-Order Theories IAM’24 23 / 31



Theory of Reals TR

decidable [Tarski 1956]
▶ via quantifier elimination

Example
Can you find a quantifier-free formula TR-equivalent to the formula

∃x(ax2 + bx+ c = 0)?

Solution: the formula
b2 − 4ac ≥ 0.

Lecture 3 First-Order Theories IAM’24 23 / 31



Theory of Reals TR

decidable [Tarski 1956]
▶ via quantifier elimination

Example
Can you find a quantifier-free formula TR-equivalent to the formula

∃x(ax2 + bx+ c = 0)?

Solution: the formula
b2 − 4ac ≥ 0.

Lecture 3 First-Order Theories IAM’24 23 / 31



Theory of Rationals TQ
Theory of Rationals TQ:

Signature: ⟨F = {0/0, 1/0,+/2,−/1},P = {≤/2}⟩

Axioms:
1 ∀x∀y

(
(x ≤ y ∧ y ≤ x) → x = y

)
(antisymmetry)

2 ∀x∀y∀z
(
(x ≤ y ∧ y ≤ z) → x ≤ z

)
(transitivity)

3 ∀x∀y(x ≤ y ∨ y ≤ x) (totality)
4 ∀x∀y∀z

(
(x+ y) + z = x+ (y + z)

)
(+ associativity)

5 ∀x(x+ 0 = x) (+ identity)
6 ∀x(x+ (−x) = 0) (+ inverse)
7 ∀x∀y(x+ y = y + x) (+ commutativity)
8 ∀x∀y∀z(x ≤ y → x+ z ≤ y + z) (+ ordered)
9 for each positive integer n,

∀x(nx = 0 → x = 0) (torsion-free)

10 for each positive integer n,

∀x∃y(x = ny) (divisible)

where nx denotes
n︷ ︸︸ ︷

x+ · · ·+ x
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10 for each positive integer n,

∀x∃y(x = ny) (divisible)

where nx denotes
n︷ ︸︸ ︷

x+ · · ·+ x
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Theory of Rationals TQ
decidable
▶ via quantifier elimination

Example
The formula 1

2
x+

2

3
y ≥ 4

can be expressed as the ΣTZ-formula

3x+ 4y ≥ 24.

Example
The formula

∃x(x · x = 2)

is a valid formula of TR but is expressible in neither TQ nor TZ.

Example
The formula ∀x∀y

(
x < y → ∃z(x < z ∧ z < y)

)
is a valid formula of TR and TQ, but an invalid formula of TN and TZ.
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Theory of Lists TList
Theory of Lists TList:

Signature: ⟨F = {cons/2, car/1, cdr/1},P = {atom/1}⟩
▶ cons/2 is a function symbol called the constructor
▶ car/1 and cdr/1 are function symbols called left and right projector
▶ atom/1 is a unary predicate symbol

Axioms:
1 (reflexivity), (symmetry), and (transitivity) of TE
2 instantiations of the (function congruence) axiom scheme of TE :

∀x1∀x2∀y1∀y2
(
(x1 = x2 ∧ y1 = y2) → cons(x1, y1) = cons(x2, y2)

)
∀x∀y(x = y → car(x) = car(y))

∀x∀y(x = y → cdr(x) = cdr(y))

3 an instantiation of the (predicate congruence) axiom scheme of TE :

∀x∀y
(
x = y → (atom(x)↔ atom(y))

)
4 ∀x∀y(car(cons(x, y)) = x) (left projection)
5 ∀x∀y(cdr(cons(x, y)) = y) (right projection)
6 ∀x(¬atom(x) → cons(car(x), cdr(x)) = x) (construction)
7 ∀x∀y(¬atom(cons(x, y))) (atom)
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Theory of Lists TList

undecidable

Theory of Acyclic Lists T +
List:

▶ created by adding the following axiom schema:

∀x(car(x) ̸= x)

∀x(cdr(x) ̸= x)

∀x(car(car(x)) ̸= x)

∀x(car(cdr(x)) ̸= x)

. . .

▶ decidable

the quantifier-free fragment is decidable
a more general Theory of Recursive Data Structures available
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Theory of Arrays TA

Theory of Arrays TA:
Signature: ⟨F = {·[·]r/2, ·[·, ·]

w
/3},P = ∅⟩

▶ ·[·]r/2 is a function symbol called the read
▶ ·[·, ·]w/3 is a function symbol called the write

Axioms:
1 (reflexivity), (symmetry), and (transitivity) of TE
2 ∀a∀i∀j(i = j → a[i]r = a[j]r) (array congruence)
3 ∀a∀v∀i∀j

(
i = j → (a[i, v]w)[j]r = v

)
(read over write 1)

4 ∀a∀v∀i∀j
(
i ̸= j → (a[i, v]w)[j]r = a[j]r

)
(read over write 2)

Lecture 3 First-Order Theories IAM’24 28 / 31



Theory of Arrays TA

Theory of Arrays TA:
Signature: ⟨F = {·[·]r/2, ·[·, ·]

w
/3},P = ∅⟩

▶ ·[·]r/2 is a function symbol called the read
▶ ·[·, ·]w/3 is a function symbol called the write

Axioms:
1 (reflexivity), (symmetry), and (transitivity) of TE

2 ∀a∀i∀j(i = j → a[i]r = a[j]r) (array congruence)
3 ∀a∀v∀i∀j

(
i = j → (a[i, v]w)[j]r = v

)
(read over write 1)

4 ∀a∀v∀i∀j
(
i ̸= j → (a[i, v]w)[j]r = a[j]r

)
(read over write 2)

Lecture 3 First-Order Theories IAM’24 28 / 31



Theory of Arrays TA

Theory of Arrays TA:
Signature: ⟨F = {·[·]r/2, ·[·, ·]

w
/3},P = ∅⟩

▶ ·[·]r/2 is a function symbol called the read
▶ ·[·, ·]w/3 is a function symbol called the write

Axioms:
1 (reflexivity), (symmetry), and (transitivity) of TE
2 ∀a∀i∀j(i = j → a[i]r = a[j]r) (array congruence)

3 ∀a∀v∀i∀j
(
i = j → (a[i, v]w)[j]r = v

)
(read over write 1)

4 ∀a∀v∀i∀j
(
i ̸= j → (a[i, v]w)[j]r = a[j]r

)
(read over write 2)

Lecture 3 First-Order Theories IAM’24 28 / 31



Theory of Arrays TA

Theory of Arrays TA:
Signature: ⟨F = {·[·]r/2, ·[·, ·]

w
/3},P = ∅⟩

▶ ·[·]r/2 is a function symbol called the read
▶ ·[·, ·]w/3 is a function symbol called the write

Axioms:
1 (reflexivity), (symmetry), and (transitivity) of TE
2 ∀a∀i∀j(i = j → a[i]r = a[j]r) (array congruence)
3 ∀a∀v∀i∀j

(
i = j → (a[i, v]w)[j]r = v

)
(read over write 1)

4 ∀a∀v∀i∀j
(
i ̸= j → (a[i, v]w)[j]r = a[j]r

)
(read over write 2)

Lecture 3 First-Order Theories IAM’24 28 / 31



Theory of Arrays TA

Theory of Arrays TA:
Signature: ⟨F = {·[·]r/2, ·[·, ·]

w
/3},P = ∅⟩

▶ ·[·]r/2 is a function symbol called the read
▶ ·[·, ·]w/3 is a function symbol called the write

Axioms:
1 (reflexivity), (symmetry), and (transitivity) of TE
2 ∀a∀i∀j(i = j → a[i]r = a[j]r) (array congruence)
3 ∀a∀v∀i∀j

(
i = j → (a[i, v]w)[j]r = v

)
(read over write 1)

4 ∀a∀v∀i∀j
(
i ̸= j → (a[i, v]w)[j]r = a[j]r

)
(read over write 2)

Lecture 3 First-Order Theories IAM’24 28 / 31



Theory of Arrays TA

undecidable
▶ arbitrary functions can be encoded using multi-dimensional arrays

extended with the (extensionality) axiom, the quantifier-free fragment is decidable

∀a∀b
(
∀i(a[i]r = b[i]r) ↔ a = b

)
(extensionality)

Example
The formula

a[i]r = e → ∀j
(
(a[i, e]w)[j]r = a[j]r

)
is TA-valid.

Lecture 3 First-Order Theories IAM’24 29 / 31



Theory of Arrays TA

undecidable
▶ arbitrary functions can be encoded using multi-dimensional arrays

extended with the (extensionality) axiom, the quantifier-free fragment is decidable

∀a∀b
(
∀i(a[i]r = b[i]r) ↔ a = b

)
(extensionality)

Example
The formula

a[i]r = e → ∀j
(
(a[i, e]w)[j]r = a[j]r

)
is TA-valid.

Lecture 3 First-Order Theories IAM’24 29 / 31



Theory of Arrays TA

undecidable
▶ arbitrary functions can be encoded using multi-dimensional arrays

extended with the (extensionality) axiom, the quantifier-free fragment is decidable

∀a∀b
(
∀i(a[i]r = b[i]r) ↔ a = b

)
(extensionality)

Example
The formula

a[i]r = e → ∀j
(
(a[i, e]w)[j]r = a[j]r

)
is TA-valid.

Lecture 3 First-Order Theories IAM’24 29 / 31



References

[ A.R. Bradley and Z. Manna. The Calculus of Computation. ]

[ Douglas Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. ]
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