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First-Order Logic (FOL)

m also called (first-order) predicate logic, predicate calculus, ...
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First-Order Logic
First-Order Logic (FOL)
m also called (first-order) predicate logic, predicate calculus, ...

m generalizes propositional logic by
> interpreting (“looking inside”) propositions
> talks about elements of a universe—denoted by terms formed from variables, constants,
and functions

® eg., b, f(x,2), 36 4 2 - 3, fatherOf (motherOf (x)), head("abc™), sin(y), ...
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First-Order Logic
First-Order Logic (FOL)
m also called (first-order) predicate logic, predicate calculus, ...

m generalizes propositional logic by
> interpreting (“looking inside”) propositions
> talks about elements of a universe—denoted by terms formed from variables, constants,
and functions

® eg., b5, f(x,2),36 4+ 23, fatherOf (motherOf (z)), head("abc"), sin(y), ...

> propositions are substituted with predicates over terms
® eg., x =y, even(x), p(z,y, 2), isFatherOf (z,y), ...
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First-Order Logic
First-Order Logic (FOL)
m also called (first-order) predicate logic, predicate calculus, ...

m generalizes propositional logic by
> interpreting (“looking inside”) propositions
> talks about elements of a universe—denoted by terms formed from variables, constants,
and functions
® eg., b5, f(x,2),36 4+ 23, fatherOf (motherOf (z)), head("abc"), sin(y), ...
> propositions are substituted with predicates over terms
® eg., x =y, even(x), p(z,y, 2), isFatherOf (z,y), ...
> introducing quantifiers to express existential or universal properties about elements of
the universe (first-order quantification)

® Vx — universal quantifier (all elements satisfy property)
® Jr — existential quantifier (some element satisfies property)
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First-Order Logic
First-Order Logic (FOL)
m also called (first-order) predicate logic, predicate calculus, ...

m generalizes propositional logic by
> interpreting (“looking inside”) propositions
> talks about elements of a universe—denoted by terms formed from variables, constants,
and functions

® eg., x5, f(z,2), 36 + 2 - 3, fatherOf (motherOf (z)), head("abc™), sin(y), ...
> propositions are substituted with predicates over terms
® eg., x =y, even(x), p(z,y, 2), isFatherOf (z,y), ...
> introducing quantifiers to express existential or universal properties about elements of
the universe (first-order quantification)

® Vz — universal quantifier (all elements satisfy property)
® Jr — existential quantifier (some element satisfies property)

m much more expressive than propositional logic!
> therefore, also more complex (in general undecidable)
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First-Order Logic

Example
m All men are mortal. Socrates is a man. So Socrates is mortal.
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First-Order Logic

Example
m All men are mortal. Socrates is a man. So Socrates is mortal.

(Va(man(z) — mortal(z)) A man(Socrates)) — mortal(Socrates)

m There are infinitely many prime numbers.

v
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First-Order Logic

m All men are mortal. Socrates is a man. So Socrates is mortal.
(Va(man(z) — mortal(z)) A man(Socrates)) — mortal(Socrates)

m There are infinitely many prime numbers.

VxEly(y >z /\Vz((z #1Az#y) = Vw(wz # y))>
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m All men are mortal. Socrates is a man. So Socrates is mortal.
(Va(man(z) — mortal(z)) A man(Socrates)) — mortal(Socrates)

m There are infinitely many prime numbers.
VxEly(y >z AVz((z # LAz #y) = Vw(wz # y))>

m The relation R is transitive.
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m All men are mortal. Socrates is a man. So Socrates is mortal.
(Va(man(z) — mortal(z)) A man(Socrates)) — mortal(Socrates)

m There are infinitely many prime numbers.

Va:Ely(y >z /\Vz((z #1Az#y) = Vw(wz # y))>
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First-Order Logic

m All men are mortal. Socrates is a man. So Socrates is mortal.
(Va(man(z) — mortal(z)) A man(Socrates)) — mortal(Socrates)
m There are infinitely many prime numbers.
Va:Ely(y >z AVz((z # 1Az # y) = Vw(wz # y))>

m The relation R is transitive. VaVyVz( (R(z,y) A R(y, z)) = R(z, z) )

B LetR[name, id] and S[id, age] be tablesin an SQL
select R.name from R join S on R.id = S.id where S.age

= 42
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First-Order Logic

m All men are mortal. Socrates is a man. So Socrates is mortal.
(Va(man(z) — mortal(z)) A man(Socrates)) — mortal(Socrates)
m There are infinitely many prime numbers.
Va:Ely(y >z AVz((z # 1Az # y) = Vw(wz # y))>

m The relation R is transitive. VaVyVz( (R(z,y) A R(y, z)) = R(z, z) )

B LetR[name, id] and S[id, age] be tablesin an SQL
select R.name from R join S on R.id = S.id where S.age

Jz(R(z, z) A S(z,42))

= 42

Lecture 2 First-Order Logic IAM’24

3/36



First-Order Logic

m All men are mortal. Socrates is a man. So Socrates is mortal.
(Va(man(z) — mortal(z)) A man(Socrates)) — mortal(Socrates)

m There are infinitely many prime numbers.

Va:Ely(y >z AVz((z # 1Az # y) = Vw(wz # y))>

m The relation R is transitive. VaVyVz( (R(z,y) A R(y, z)) = R(z, z) )

B LetR[name, id] and S[id, age] be tablesin an SQL
select R.name from R join S on R.id = S.id where S.age

Jz(R(z, z) A S(z,42))

m Fermat’s Last theorem

42
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First-Order Logic

m All men are mortal. Socrates is a man. So Socrates is mortal.
(Va(man(z) — mortal(z)) A man(Socrates)) — mortal(Socrates)
m There are infinitely many prime numbers.
Va:Ely(y >z AVz((z # 1Az # y) = Vw(wz # y))>

m The relation R is transitive. VaVyVz( (R(z,y) A R(y, z)) = R(z, z) )

B LetR[name, id] and S[id, age] be tablesin an SQL
select R.name from R join S on R.id = S.id where S.age

Jz(R(z, z) A S(z,42))

m Fermat’s Last theorem
VnVaVy(n >2 —  Vz(z" +y" #2"))

42
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First-Order Logic
What is NOT expressible with FOL:

m “Adam is an ancestor of Socrates.” (using isParentOf)
Attempts:
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> Jz1,..., 2, (isParentOf (Adam, 1) A ... A isParentOf (z,,, Socrates))
[n is bounded]
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What is NOT expressible with FOL:

m “Adam is an ancestor of Socrates.” (using isParentOf)
Attempts:

> Jz1,..., 2, (isParentOf (Adam, 1) A ... A isParentOf (z,,, Socrates))
_ [n is bounded]
> EIfQ'”X(Socmtes € X ANAdam € X A (Vy € X:

(3z € X : isParentOf (z,y)) Vy = Adam))

[3in — second-order finite quantification, cf. MSO]
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First-Order Logic
What is NOT expressible with FOL.:

m “Adam is an ancestor of Socrates.” (using isParentOf)
Attempts:

> Jz1,..., 2, (isParentOf (Adam, 1) A ... A isParentOf (z,,, Socrates))
_ [n is bounded]
> EIfQ'”X(Socmtes € X ANAdam € X A (Vy € X:

(3z € X : isParentOf (z,y)) Vy = Adam))

[3in — second-order finite quantification, cf. MSO]
> isAncestorOf (z,y) ¥ isParentOf (z,y) V
(3z: isAncestorOf (z, z) A isParentOf (z,y))

[recursive predicate]
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First-Order Logic
What is NOT expressible with FOL:

m “Adam is an ancestor of Socrates.” (using isParentOf)
Attempts:

> Jz1,..., 2, (isParentOf (Adam, 1) A ... A isParentOf (z,,, Socrates))
> EIg”X(Socmtes € X ANAdam € X A (Vy € X:

(3z € X : isParentOf (z,y)) Vy = Adam))

[3in — second-order finite quantification, cf. MSO]

> isAncestorOf (z,y) & isParentOf (z,y) V
(3z: isAncestorOf (z, z) A isParentOf (z,y))

[recursive predicate]

[n is bounded]

m “Anakin is more likely than Gandalf the father of Luke.”
Attempts:

> ?I$#dk*#R&Q
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Syntax

Syntax:
m Alphabet:

> logical connectives: =, A, V, —, <>, (---) (from PL)
> variables: x,y,...,x1,22,... (hold elements of a universe)
> quantifiers: v, 3
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Syntax

Syntax:
m Alphabet:
> logical connectives: =, A, V, —, <>, (---) (from PL)
> variables: x,y,...,x1,22,... (hold elements of a universe)
> quantifiers: v, 3
» function symbols (With /4.1y): fr2, +/2, sin/g, fatherOf 1, Sy1, 70, 420, - -
® nullary functions (arity 0): constants

® to be used as, e.g., f(a,3), +(40,2), sin(S(z)), fatherOf (Luke), m()
® we often simplify the notation: +(40,2) — 40 + 2, 7() =, ...
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Syntax

Syntax:
m Alphabet:
> logical connectives: =, A, V, —, <>, (---) (from PL)
> variables: x,y,...,x1,22,... (hold elements of a universe)
> quantifiers: v, 3
» function symbols (With /4.1y): fr2, +/2, sin/g, fatherOf 1, Sy1, 70, 420, - -
® nullary functions (arity 0): constants

® to be used as, e.g., f(a,3), +(40,2), sin(S(z)), fatherOf (Luke), m()
® we often simplify the notation: +(40,2) — 40 + 2, 7() =, ...

> predicate symbols (With /44ty )t 173, isFatherOf j,, isJedijy, </, - ..
® to be used as, e.g., p(a, z,9), isFatherOf (Anakin, Luke), isJedi( Anakin), <(x, )
¢ we often simplify the notation: <(z, ) — z <, ...

> predicate symbol of equality =/,
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Syntax

Syntax:
m Alphabet:
> logical connectives: =, A, V, —, <>, (---) (from PL)
> variables: x,y,...,x1,22,... (hold elements of a universe)
> quantifiers: v, 3
» function symbols (With /4.1y): fr2, +/2, sin/g, fatherOf 1, Sy1, 70, 420, - -
® nullary functions (arity 0): constants

® to be used as, e.g., f(a,3), +(40,2), sin(S(z)), fatherOf (Luke), m()
® we often simplify the notation: +(40,2) — 40 + 2, 7() =, ...

> predicate symbols (With /44ty )t 173, isFatherOf j,, isJedijy, </, - ..

® to be used as, e.g., p(a, z,9), isFatherOf (Anakin, Luke), isJedi( Anakin), <(x, )
¢ we often simplify the notation: <(z, ) — z <, ...

> predicate symbol of equality =/,
m Signature (F,P) = function symbols + predicate symbols
> language: given by the signature
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First-Order Logic — Syntax

m the language of order theory: (F =0, P = {</2})
> no function symbol
> one binary predicate symbol <
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First-Order Logic — Syntax

m the language of order theory: (F =0, P = {<)5})
» no function symbol
> one binary predicate symbol <
m the language of group theory: (F = {-2,¢/0},P = 0)
> binary function symbol - (group multiplication)
> nullary function symbol e for neutral element
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First-Order Logic — Syntax

m the language of order theory: (F =0, P = {<)5})
» no function symbol
> one binary predicate symbol <

m the language of group theory: (F = {-2,¢/0},P = 0)
> binary function symbol - (group multiplication)
> nullary function symbol e for neutral element

m the language of set theory: (F =0, P = {€)5})

m the language of theory of arrays: (7 = {-[-]},,[-, ]}3},P = 0)
» binary function symbol for reading from array -[-]", e.g., A[i]"

» ternary function symbol for writing into array -[-, -|*, e.g., A[i, y]*
(writing y at index i in array A)
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m the language of order theory: (F =0, P = {<)5})
» no function symbol
> one binary predicate symbol <

m the language of group theory: (F = {-2,¢/0},P = 0)
> binary function symbol - (group multiplication)
> nullary function symbol e for neutral element

m the language of set theory: (F =0, P = {€)5})
m the language of theory of arrays: (7 = {-[-]},,[-, ]}3},P = 0)

» binary function symbol for reading from array -[-]", e.g., A[i]"
» ternary function symbol for writing into array -[-, -|*, e.g., A[i, y]*
(writing y at index i in array A)

m the language of theory of lists: (F = {cons)y, car/;, cdr/; }, P = {atom,; })
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First-Order Logic — Syntax

m the language of order theory: (F =0, P = {<)5})
» no function symbol
> one binary predicate symbol <

m the language of group theory: (F = {-2,¢/0},P = 0)
> binary function symbol - (group multiplication)
> nullary function symbol e for neutral element

m the language of set theory: (F =0, P = {€/»})
m the language of theory of arrays: (7 = {-[-]},,[-, ]}3},P = 0)

» binary function symbol for reading from array -[-]", e.g., A[i]"

» ternary function symbol for writing into array -[-, -|*, e.g., A[i, y]*

(writing y at index i in array A)
m the language of theory of lists: (F = {cons)y, car/;, cdr/; }, P = {atom,; })
m the language of elementary (so-called Peano) aritmetic:
(F={00, 51,42, 72}, P =0)
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First-Order Logic — syntax

Grammar: formulae are composed of terms
m term (it will hold a value from the universe):

tu=x | f(t1,...,tn)

where z € X and f), is a function symbol
(the special case of a constant ¢, is also a term)

m ground term: a term with no variables
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First-Order Logic — syntax

Grammar: formulae are composed of terms
m term (it will hold a value from the universe):

tu=x | f(t1,...,tn)

where z € X and f), is a function symbol
(the special case of a constant ¢, is also a term)
m ground term: a term with no variables
m examples of terms:
> z,5, f(z,2), 40 + 2, car(cons(z, y)), head("abc"), siny
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First-Order Logic — syntax
Grammar (cont.):
m atomic formula:
Gatom = DP(t1, ..., tn)
for a predicate symbol p/,, and terms ¢4,.. ., ¢,
(also for p being the equality symbol =/,)
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First-Order Logic — syntax
Grammar (cont.):
m atomic formula:
Gatom = D(t1,...,tn)
for a predicate symbol p/,, and terms ¢4,.. ., ¢,
(also for p being the equality symbol =/,)

m formula:
®Y = Patom ‘ (_‘(Pl) ‘

(1 Ap2) [ (1 V p2) |
(1 = w2) | (g1 4> p2) |

(Vapr) | Brer)

> where z is a variable from the set of variables X
> (parentheses are often omitted)
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First-Order Logic — syntax
Grammar (cont.):
m atomic formula:
Gatom = D(t1,...,tn)
for a predicate symbol p/,, and terms ¢4,.. ., ¢,
(also for p being the equality symbol =/,)

m formula:
®Y = Patom ‘ (_‘(Pl) ‘

(1 Ap2) [ (1 V p2) |
(1 = w2) | (g1 4> p2) |

(Vapr) | Brer)

> where z is a variable from the set of variables X
> (parentheses are often omitted)
m examples of formulae:
> J2(40 + z = 42 A 40 - = = 80),
> Vr(tan(z) = %),
> atom(car(cons(z,y))),
> Va(ylz=y-yVa=—-y-y))
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First-Order Logic — Variables
Variables in formulae:
m bound: occur in the scope of a quantifier
> e.g. BOUND(3z(z =4 A —(y =5))) = {«}
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First-Order Logic — Variables
Variables in formulae:
m bound: occur in the scope of a quantifier
> e.g. BOUND(3z(z =4 A —(y =5))) = {«}
m free: there is an occurrence not bound by any quantifier
> e.g.FREE(z =4 A Jy(y =5)) = {«}
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First-Order Logic — Variables
Variables in formulae:

m bound: occur in the scope of a quantifier

> e.g. BOUND(3z(z =4 A —(y =5))) = {«}
m free: there is an occurrence not bound by any quantifier

> e.g.FREE(z =4 A Jy(y =5)) = {«}
m FREE(-) and BOUND(-) are symbols of the metalanguage
m a variable can occur both bound and free in a formula
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First-Order Logic — Variables
Variables in formulae:

m bound: occur in the scope of a quantifier

> e.g. BOUND(3z(z =4 A —(y =5))) = {«}
m free: there is an occurrence not bound by any quantifier

> e.9. FREE(x =4 A Jy(y = 5)) = {«}
m FREE(-) and BOUND(-) are symbols of the metalanguage
m a variable can occur both bound and free in a formula

Va( p(f(x),y) = Vy(p(f(z),)) )

» 1z only occurs bound

> y occurs both free (antecedent) and bound (consequent)
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First-Order Logic — Variables
Variables in formulae:

m bound: occur in the scope of a quantifier

> e.g. BOUND(3z(z =4 A —(y =5))) = {«}
m free: there is an occurrence not bound by any quantifier

> e.9. FREE(x =4 A Jy(y = 5)) = {«}
m FREE(-) and BOUND(-) are symbols of the metalanguage
m a variable can occur both bound and free in a formula

Va( p(f(x),y) = Vy(p(f(z),)) )

» 1z only occurs bound

> y occurs both free (antecedent) and bound (consequent)

m we often write ¢(x1,...,z,) when FREE(p) C {z1,...,2n}
> z,...,x, serve as the “interface” of ¢
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First-Order Logic — Variables
Variables in formulae:

m bound: occur in the scope of a quantifier

> e.g. BOUND(3z(z =4 A —(y =5))) = {«}
m free: there is an occurrence not bound by any quantifier

> e.9. FREE(x =4 A Jy(y = 5)) = {«}
m FREE(-) and BOUND(-) are symbols of the metalanguage
m a variable can occur both bound and free in a formula

Va( p(f(x),y) = Vy(p(f(z),)) )

» 1z only occurs bound

> y occurs both free (antecedent) and bound (consequent)

m we often write ¢(x1,...,z,) when FREE(p) C {z1,...,2n}
> z,...,x, serve as the “interface” of ¢

m ¢ is ground (or closed) if FREE(p) = 0)
IAM24 9/36



Semantics
Semantics of FOL.:
m so far, the symbols did not have any meaning!
m more complicated than for PL
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Semantics
Semantics of FOL.:
m so far, the symbols did not have any meaning!
m more complicated than for PL
Interpretation I = (Dy, ay):
m provides the meaning to the symbols
» a formula may hold in one interpretation and not hold in another

m domain (universe) of discourse D;: a non-empty set of elements
> e.g., N, {0,1,2,3,4}, R3, People, List|N], &, ...
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Semantics
Semantics of FOL:
m so far, the symbols did not have any meaning!
m more complicated than for PL
Interpretation I = (Dy, ay):
m provides the meaning to the symbols
> a formula may hold in one interpretation and not hold in another

m domain (universe) of discourse D;: a non-empty set of elements
> e.g., N, {0,1,2,3,4}, R3, People, List|N], &, ...

m assignment a;: n

—_——
» for every function symbol f,,, a function f;: Dy x ... x Dy — Dy
® eg., I(+)={(0,0)—0,(0,1) = 1,(1,0) — 1,(1,1) — 2,...}
e for constants, this gives us one value, e.g., I(7) = {() — 3.1415926. ..}
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Semantics
Semantics of FOL:
m so far, the symbols did not have any meaning!
m more complicated than for PL
Interpretation I = (Dy, ay):
m provides the meaning to the symbols
> a formula may hold in one interpretation and not hold in another
m domain (universe) of discourse D;: a non-empty set of elements
> e.g., N, {0,1,2,3,4}, R3, People, List|N], &, ...
m assignment a;: n

—_——
» for every function symbol f,,, a function f;: Dy x ... x Dy — Dy
® eg., I(+)={(0,0)—0,(0,1) = 1,(1,0) — 1,(1,1) — 2,...}
e for constants, this gives us one value, e.g., I(7) = {() — 3.1415926. ..}

n

—~
» for every predicate symbol p,,, a relation p; C Dy x ... x Dy

* eg, I(<)=1{(0,1),(0,2),(1,2),...}
® eg., I(evens;) ={0,2,4,...}
° eg, I(edge/Q) = {(v1,v2), (v2,v3),...}
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Semantics
Semantics of FOL:
m so far, the symbols did not have any meaning!
m more complicated than for PL
Interpretation I = (Dy, ay):
m provides the meaning to the symbols
> a formula may hold in one interpretation and not hold in another
m domain (universe) of discourse D;: a non-empty set of elements
> e.g., N, {0,1,2,3,4}, R3, People, List|N], &, ...
m assignment a;: n

—_——
» for every function symbol f,,, a function f;: Dy x ... x Dy — Dy
® eg., I(+)={(0,0)—0,(0,1) = 1,(1,0) — 1,(1,1) — 2,...}
e for constants, this gives us one value, e.g., I(7) = {() — 3.1415926. ..}

n

—~
» for every predicate symbol p,,, a relation p; C Dy x ... x Dy
® eg., I(<)=1{(0,1),(0,2),(1,2),...}
® eg., I(evens;) ={0,2,4,...}
¢ eg., I(edge/Q) = {(1}1,1}2), (1}2,1}3), .- }

> for every variable z € X a value from Dy, e.g., I(x) = 42
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First-Order Logic — Interpretations

Examples of interpretations of the language with the signature (F = {+/,}, P = 0):

m Addition in N: D; = N where
> I(+) = (+n) (addition of natural numbers)
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First-Order Logic — Interpretations

Examples of interpretations of the language with the signature (F = {+/,}, P = 0):
m Addition in N: D; = N where
» I(+) = (+n) (addition of natural numbers)
m Addition in R?: D; = R3 where
> I(+) = {([x1, 91, 21], [%2, Y2, 22]) = [#1 +& T2, Y1 +R Y2, 21 TR 22] | Z1,...,22 € R}
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First-Order Logic — Interpretations

Examples of interpretations of the language with the signature (F = {+/,},P = 0):
m Addition in N: D; = N where
> I(+) = (+n) (addition of natural numbers)
m Addition in R?: D; = R3 where
> I(+) = {([x1, 91, 21], [%2, Y2, 22]) = [#1 +& T2, Y1 +R Y2, 21 TR 22] | Z1,...,22 € R}
m Disjunction in a Boolean algebra: D; = {0, 1} where
> I(+)={(0,0) —0,(0,1) — 1,(1,0) — 1,(1,1) — 1}
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First-Order Logic — Interpretations

Examples of interpretations of the language with the signature (F = {+/,},P = 0):
m Addition in N: D; = N where
> I(+) = (+n) (addition of natural numbers)
m Addition in R?: D; = R3 where
> I(+) = {([x1, 91, 21], [%2, Y2, 22]) = [#1 +& T2, Y1 +R Y2, 21 TR 22] | Z1,...,22 € R}
m Disjunction in a Boolean algebra: D; = {0, 1} where
> I(+)={(0,0) —0,(0,1) — 1,(1,0) — 1,(1,1) — 1}
m Modular addition in {0,1,2}: D; = {0,1,2} where
» I(+)={(z,y) —~ (z +y mod 3) | z,y € {0,1,2}}
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First-Order Logic — Interpretations
Example
Language with the signature (F = {+/3, /2, —1}, P = {E1 }):
m Addition, multiplication, and opposite number in Z: D; = Z
> I(+) = (+z) (addition of natural numbers)

> I(-) = (-z) (multiplication of natural numbers)
> I(—)={z—~ 0—zx)|zeZ}
> [(E)=1{...,—4,-2,0,2,4,...}
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First-Order Logic — Interpretations

Language with the signature (F = {+/2, /2, =1}, P = {E1 }):
m Addition, multiplication, and opposite number in Z: D; = Z
» [(+) = (+z) (addition of natural numbers)
> I() (-z) (multiplication of natural numbers)
I(-)={z— (0—z=z)|zeZ}
I(E)={..,-4,-2,0,2,4,...}
[ | D|SJunct|on, conjunctlon, and negation in a Boolean algebra: D; = {0, 1}
> I(+)={(0,0) —~0,(0,1) =~ 1,(1,0) — 1,(1,1) — 1}
> I(-) ={(0,0) ~ 0,(0,1) + 0,(1,0) — 0, (1,1) > 1}
> [(-)={0— 1,1~ 0}
> I(E) = {0}
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First-Order Logic — Interpretations

Language with the signature (F = {+/2, /2, =1}, P = {E1 }):
m Addition, multiplication, and opposite number in Z: D; = Z
> I(+) = (+z) (addition of natural numbers)

> I( ) = (-z) (multiplication of natural numbers)
I(-)={e— (0—xz)|zeZ}
I(E)={..,-4,-2,0,2,4,...}
[ | D|SJunct|on, conjunctlon, and negation in a Boolean algebra: D; = {0, 1}
> I(+)={(0,0) —~0,(0,1) =~ 1,(1,0) — 1,(1,1) — 1}
> I(-) = {(0,0) — 0,(0,1) = 0,(1,0) = 0, (1,1) ~ 1}
> [(-)={0— 1,1~ 0}
(E) = {0}

m Union, concatenation, and iteration of sets of words over X:
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First-Order Logic — Interpretations

Language with the signature (F = {+/2, /2, =1}, P = {E1 }):
m Addition, multiplication, and opposite number in Z: D; = Z
> I(+) = (+z) (addition of natural numbers)

> I( ) = (-z) (multiplication of natural numbers)
I(-)={z— (0—z=z)|zeZ}
I(E)={...,—4,-2,0,2,4,...}
[ | D|SJunct|on, conjunctlon, and negation in a Boolean algebra: D; = {0, 1}
> I(+) ={(0,0)—0,(0,1) = 1,(1,0) — 1,(1,1) — 1}
> I(:) ={(0,0) = 0,(0,1) = 0,(1,0) —~ 0,(1,1) — 1}
> [(-)={0— 1,1~ 0}
(E) = {0}
m Union, concatenation, and iteration of sets of words over ¥: D; = 2*°
> IE ) ={(z,9) = (zUy) | z,y S X7}
I(-)
I(E)

)= {(@.y) > {w|ueavey) 2y}
= {o = Upsofu' |uca} |2 € 5}

E) = {{e}}




Semantics
Truth value: inductive definition:

m [erms: evaluate their value recursively
def

I[f(t1, ..., tn)] = I[f](I[t1], ..., I[tn])
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Semantics
Truth value: inductive definition:

m Terms: evaluate their value recursively
def

If(t, . t)] AU, . I]t)
Then: Il p(ts,... ta) iff (I[t],....I[ta]) € I[p]
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Semantics
Truth value: inductive definition:

m Terms: evaluate their value recursively

If(tr, - )] E I, T[]

Then:  I'|=p(ty,....tn) it (It],.... I[tn]) € I[p]
(for equality: I |= (t1 = to) iff I[t1] and I[tg] denote the same element from Dy)
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Semantics
Truth value: inductive definition:

m Terms: evaluate their value recursively
def

I[f(trs s ta)] = AU, - I]E])
Then: I Ep(ty,....t,) iff (I[t1],...,I[ts]) € I[p]
(for equality: I |= (t1 = to) iff I[t1] and I[t2] denote the same element from Dy)

m logical connectives (same as for PL):
- iff I 1 o
I):Zbl/\wg |ffI):w1andI):¢2
I)Zd)l\/’([}g |ffI):w10rI):w2
I)=¢1—>¢2 lff,lfI)zzplthenI):ng
I)Zd)l(—)l/)g iffI)le)landI)ZQJZJQ,OI’IF&’(/JlandII;éibQ
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Semantics
Truth value: inductive definition:

m Terms: evaluate their value recursively

If(tr, - )] E I, T[]

Then: I plty,... tn) iff (Ifta),.... I[ta]) € I[p]
(for equality: I |= (t1 = to) iff I[t1] and I[tQ] denote the same element from Djy)

m logical connectives (same as for PL):
g iff I 1 o
I):¢1A1p2 |ffI):z/11andI):zp2
I)Zd)l\/’(/)g |ffI):1/J10rI):w2
I):¢1—>¢2 |ff,|fI):zp1thenI):w2
I):’lle’l]Z)Q iffI)Zl/JlandI)ZQJZJQ,OI’IF&’(/JlandII;&le

m quantifiers: let I <{z — v} denote an interpretation obtained from I by substituting
rx—=7byxz—vinlI (I <{zw— v}isavariant)
I =V iffforallve Dywehave I <{z— v} =
I =3z ¢ iffthereexists v € Dysuchthat I <{z — v} ¢
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First-Order Logic — Semantics

Let L be the language with the signature (F = {+/5, —1}, P = {Z;;}) and its
interpretation I, with D;, = {a,b, c} and

I(-)={a~ a,b— c,c— b} I1(Z) = {a,b}

Does the following formula hold in I: VaVy(Z(x) »c+y=—y) ?
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First-Order Logic

model of a formula ¢:
m is an interpretation I such that I = ¢
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First-Order Logic

model of a formula ¢:
m is an interpretation I such that I = ¢

satisfiability:
m formula ¢ is satisfiable if it has a model

m i.e., there is an interpretation I with the domain D;, valuation of function symbols,
predicate symbols, and variables a; such that I |= ¢
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First-Order Logic

logical validity:
m formula ¢ is (logically) valid if it holds in all interpretations of the given language, i.e.,
for all domains, and valuations of function and predicate symbols and variables

m denoted as = ¢
m (equivalent to the notion of tautology in propositional logic)
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First-Order Logic

logical validity:
m formula ¢ is (logically) valid if it holds in all interpretations of the given language, i.e.,
for all domains, and valuations of function and predicate symbols and variables

m denoted as = ¢
m (equivalent to the notion of tautology in propositional logic)

Example
Is the following formula valid?

p:14+1=2
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First-Order Logic

logical validity:

m formula ¢ is (logically) valid if it holds in all interpretations of the given language, i.e.,
for all domains, and valuations of function and predicate symbols and variables

m denoted as = ¢
m (equivalent to the notion of tautology in propositional logic)

Example
Is the following formula valid?

p:14+1=2
why?
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First-Order Logic

logical validity:
m formula ¢ is (logically) valid if it holds in all interpretations of the given language, i.e.,
for all domains, and valuations of function and predicate symbols and variables
m denoted as = ¢
m (equivalent to the notion of tautology in propositional logic)

Is the following formula valid?
p:14+1=2
why?
m there is an interpretation I where ¢ does not hold
> eg., D;=Nwith I(+)={...,(1,1) — 3,...}
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First-Order Logic

logical validity:
m formula ¢ is (logically) valid if it holds in all interpretations of the given language, i.e.,
for all domains, and valuations of function and predicate symbols and variables
m denoted as = ¢
m (equivalent to the notion of tautology in propositional logic)

Is the following formula valid?
p:1+1=2
why?
m there is an interpretation I where ¢ does not hold
» eg., D;=NwithI(+)={...,(1,1)—3,...}
m we often want to restrict the considered interpretations ¢ ~ theory (language +
axioms)
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First-Order Logic

logical equivalence:
m formulae ¢ and ¢ are logically equivalent if = ¢ <> ¢
m (or: if for any interpretation I of the given language it holds that I = ¢ iff I |= v)
m denoted as ¢ &
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First-Order Logic

logical equivalence:
m formulae ¢ and ¢ are logically equivalent if = ¢ <> ¢
m (or: if for any interpretation I of the given language it holds that I = ¢ iff I |= v)
m denoted as p < ¥

logical consequence:
m formula v is a logical consequence of a formula ¢ if = ¢ — ¢
m (or: if for any interpretation I of the given language it holds that: if I = ¢, then I = v)
m denoted as p =
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Semantic Argument for FOL

To decide validity of FOL formulae, we extend the semantic argument method from PL
using the following proof rules:
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Semantic Argument for FOL

To decide validity of FOL formulae, we extend the semantic argument method from PL
using the following proof rules:

: I IEVze
m universal quantification 1: for any ground term t
I<{z—t}Ee
. . o IFETxe
m existential quantification 1: for any ground term t

I<{z—t} e

In practice, we often choose t containing symbols that were introduced earlier (to
obtain a contradiction). We assume the language has at least one constant symbol.
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Semantic Argument for FOL

To decide validity of FOL formulae, we extend the semantic argument method from PL
using the following proof rules:

) o IEVze
m universal quantification 1: for any ground term t
I<{z—t}Ee
. . o IFETxe
m existential quantification 1: for any ground term t

I<{x =t}

In practice, we often choose t containing symbols that were introduced earlier (to
obtain a contradiction). We assume the language has at least one constant symbol.

. I IEVze
m universal quantification 2: for a fresh constant symbol ¢

I<{x—ct o

. . L I'E3Jze
m existential quantification 2: for a fresh constant symbol ¢

I<{z—c} =y
The value ¢ cannot have been used in the proof before.
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Semantic Argument for FOL

m contradiction:

J:I<---E=p(si,...,sn)
K:I<---FEp(t,... ty)

I):J_ fOflSiSn:J[Si]:K[ti]
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Semantic Argument for FOL

m contradiction:

J:I<---E=p(si,...,sn)
K:I<---FEp(t,... ty)

I):J_ fOflSiSn:J[Si]:K[tz‘]

m rules for (=) will be introduced in the next lecture (about theories)
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Semantic Argument for FOL (example)

Prove that the formula  ¢: (Vz(p(z))) — (Yy(p(y))) is valid.
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Semantic Argument for FOL (example)

Prove that the formula  ¢: (Vz(p(z))) — (Yy(p(y))) is valid.

Solution.
Assume ¢ is invalid, i.e., there exists I s.t. I [~ . Then,

1. I}~ (Va(p(e))) = (Vy(p(y))) assumption

2. I EVz(p(x)) by 1 and semantics of —
3. IEVYy(p(y)) by 1 and semantics of —
4. T<a{y— un} = py) by 3 and semantics of V
5. I<{z— v} Ep(zx) by 2 and semantics of vV
6. I=1 from 4 and 5
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Substitution
Substitution

m again, more involved than for PL (because of quantifiers)
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Substitution
Substitution

m again, more involved than for PL (because of quantifiers)

m Renaming: Let ¢ = Vx¢. The renaming of z to a fresh variable 2’ in ¢ is the formula
plz/2'] = Va' )" where ¢’ is obtained v by replacing every free occurrence of x by z’.
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Substitution
Substitution

m again, more involved than for PL (because of quantifiers)

m Renaming: Let ¢ = Vx¢. The renaming of z to a fresh variable 2’ in ¢ is the formula
plz/2'] = Va' )" where ¢’ is obtained v by replacing every free occurrence of x by z’.

m Substitution: mapping from formulae to formulae

JI{Fli—)Gl,...,FnHGn}
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Substitution
Substitution

m again, more involved than for PL (because of quantifiers)

m Renaming: Let ¢ = Vx¢. The renaming of z to a fresh variable 2’ in ¢ is the formula
plz/2'] = Va' )" where ¢’ is obtained v by replacing every free occurrence of x by z’.

m Substitution: mapping from formulae to formulae

JZ{Fli—)Gl,...,Fn’—)Gn}

m Safe substitution: F'o

> for each quantified variable = in F' that also occurs free in o, rename « to a fresh variable
2’ to produce F’

* (e.g., Jz(z =y))
> compute F'o
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Substitution
Substitution

m again, more involved than for PL (because of quantifiers)

m Renaming: Let ¢ = Vx¢. The renaming of z to a fresh variable 2’ in ¢ is the formula
plz/2'] = Va' )" where ¢’ is obtained v by replacing every free occurrence of x by z’.

m Substitution: mapping from formulae to formulae

JZ{Fli—)Gl,...,Fn’—)Gn}

m Safe substitution: Fo
> for each quantified variable = in F' that also occurs free in o, rename « to a fresh variable
2’ to produce F’
® (e.g., Jz(z =vy))
> compute F'o

Proposition (Substitution of Equivalent Formulae)

If, given o, for each i it holds that F; < G;, then F < Fo
where Fo is computed as a safe substitution.
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Useful Equivalences

Ve(—p) < -dxe
Jz(—p) & Vze
(Ve (@) A(Vyd(y)) < Va(pr) Ap(z))
Gre() v @yely) < alpl) V()
Ve < o
Jre &
Va(pVy) & (Vop) Ve
J(eny) & (Fze)Ay

Lecture 2 First-Order Logic

if ¢ FREE
if 2 ¢ FREE

if ¢ FREE

if 2 ¢ FREE
if 2 ¢ FREE

IAM’24
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Normal Forms (NNF)

Negation Normal Form (NNF):
m similar as for PL
m contains only A, Vv, =, 3, and V as connectives
m — appears only in front of predicates
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Normal Forms (NNF)

Negation Normal Form (NNF):
m similar as for PL
m contains only A, Vv, =, 3, and V as connectives
m — appears only in front of predicates

Let

p: =IndzIy(n>2 A Tz(a" +y" =2")).
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Normal Forms (NNF)

Negation Normal Form (NNF):
m similar as for PL
m contains only A, Vv, =, 3, and V as connectives
m — appears only in front of predicates

Let
p: =IndzIy(n>2 A Tz(a" +y" =2")).
The formula
Y: VnVaVy(-(n >2) VvV Vz(=(@" 4+ y" =2")))

is equivalent to ¢ and is in NNF.
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Normal Forms (PNF)

Prenex Normal Form (PNF):
m formula is of the form

=171 . ---inﬂn(fﬂ(mh---wn,yh---,ymD

prefix matrix

where Q; € {V,3} and v is quantifier-free; {y1,...,yn} are the free variables of ¢
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Normal Forms (PNF)

Prenex Normal Form (PNF):
m formula is of the form

0 =0Q111 . ...ann(w(xl,...,xn,yl,...,ymD

prefix matrix

where Q; € {V,3} and v is quantifier-free; {y1,...,yn} are the free variables of ¢

Let

Y VnVaVy(=(n >2) Vv Vz(=(2" +y" =2"))).
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Normal Forms (PNF)

Prenex Normal Form (PNF):
m formula is of the form

(p:lel . ---ann(w(xla'"7xn7y17"'aymD

prefix matrix

where Q; € {V,3} and v is quantifier-free; {y1,...,yn} are the free variables of ¢

Let
Y VnVaVy(=(n >2) Vv Vz(=(2" +y" =2"))).
The formula

X VaVaVyVz(—(n >2) Vv (2" 4y =2"))

is equivalent to ¢» and is in PNF.
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Prenex Normal Form
Conversion to PNF:

elimination of useless quantifiers: Qz¢ ~» ¢ for Q € {3,V} if « ¢ FREE(p)
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Prenex Normal Form
Conversion to PNF:

elimination of useless quantifiers: Qz¢ ~» ¢ for Q € {3,V} if « ¢ FREE(p)
eliminination of occurrences of <3: <1 ~ (p =) A (Y — ¢)
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Prenex Normal Form
Conversion to PNF:

elimination of useless quantifiers: Qz¢ ~» ¢ for Q € {3,V} if « ¢ FREE(p)
eliminination of occurrences of <3: <1 ~ (p =) A (Y — ¢)

renaming of variables:
> if there exists x € X such that

® itis in the intersection of FREE(y) and BOUND(y) or
® it is quantified more than once

then substitute in ¢ the subformula Qx (for @ € {3, v}) for the formula Qy(v[z/y])
® where y is a new variable that has no occurrence in ¢
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Prenex Normal Form
Conversion to PNF:
elimination of useless quantifiers: Qzy ~» ¢ for @ € {3,V} if © ¢ FREE(p)
eliminination of occurrences of <3: <1 ~ (p =) A (Y — ¢)

renaming of variables:
> if there exists x € X such that

® itis in the intersection of FREE(y) and BOUND(y) or
® it is quantified more than once

then substitute in ¢ the subformula Qx (for @ € {3, v}) for the formula Qy(v[z/y])
® where y is a new variable that has no occurrence in ¢
push negation inside:
—Jzp o~ V(mp) | (e AY) o~ meV | a(e oY) e o A
Wz~ 3z(op) | (eVY) > e A S P
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Prenex Normal Form
Conversion to PNF:
elimination of useless quantifiers: Qzy ~» ¢ for @ € {3,V} if © ¢ FREE(p)
eliminination of occurrences of <3: <1 ~ (p =) A (Y — ¢)

renaming of variables:
> if there exists x € X such that

® itis in the intersection of FREE(y) and BOUND(y) or
® it is quantified more than once

then substitute in ¢ the subformula Qx (for @ € {3, v}) for the formula Qy(v[z/y])
® where y is a new variable that has no occurrence in ¢
push negation inside:

—3ze o~ V(o) | (P AY) w me V) | (e =) e p A

Wzp o~ Jz(op) | (eVY) > e Ay T e
move quantifiers to the left:
Qr(p) NY ~ Qr(p A1) Qr(p) = ~ Qu(p—1)
Qr(p) VY ~ Qu(p Vi) = Q(Y) ~ Qu(p—1v)

for Q € {3,V}, where Q is the quantifier “opposite” to Q (I — VaV ~ 3J).
IAM'24 25/36



Prenex Normal Form

Example
Convert the following formula to PNF.

VYr(n>2 — -3zdydz(z" +y" =2")) &
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Prenex Normal Form

Example
Convert the following formula to PNF.

VYr(n>2 — -3zdydz(z" +y" =2")) &

eVn(n>2 — Vz-IyIz(a"+y" =2"))
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Prenex Normal Form

Example
Convert the following formula to PNF.

VYr(n>2 — -3zdydz(z" +y" =2")) &
eVn(n>2 — Vz-IyIz(a"+y" =2"))

eVn(n>2 — VaVy-Iz(z" +y" = 2"))
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Prenex Normal Form

Example
Convert the following formula to PNF.

VYr(n>2 — -3zdydz(z" +y" =2")) &
eVn(n>2 — Vz-IyIz(a"+y" =2"))
eVn(n>2 — VaVy-Iz(z" +y" = 2"))

eVn(n>2 — VaVyVz(-(z" +y" = 2")))
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Prenex Normal Form

Convert the following formula to PNF.

VYr(n>2 — -3zdydz(z" +y" =2")) &
eVn(n>2 — Vz-IyIz(a"+y" =2"))
eVn(n>2 — VaVy-Iz(z" +y" = 2"))
evn(n>2 —  Vavyva(-(a" +y" = 2M))

sVnVz(n>2 —  VyVz(=(z" +y" = 2")))
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Prenex Normal Form

Convert the following formula to PNF.

VYr(n>2 — -3zdydz(z" +y" =2")) &
eVn(n>2 — Vz-IyIz(a"+y" =2"))
eVn(n>2 — VaVy-Iz(z" +y" = 2"))
evn(n>2 —  Vavyva(-(a" +y" = 2M))
sVnVz(n>2 —  VyVz(=(z" +y" = 2")))

& VnVaVy(n >2 —  Vz(=(z" +y" = 2")))
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Prenex Normal Form

Convert the following formula to PNF.

VYr(n>2 — -3zdydz(z" +y" =2")) &
eVn(n>2 — Vz-IyIz(a"+y" =2"))
eVn(n>2 — VaVy-Iz(z" +y" = 2"))
evn(n>2 —  Vavyva(-(a" +y" = 2M))
sVnVz(n>2 —  VyVz(=(z" +y" = 2")))

& VnVaVy(n >2 —  Vz(=(z" +y" = 2")))

& VnVaVyVz(n >2 — (2" +y" =2"))
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Prenex Normal Form

Convert the following formula to PNF.
vy (3(P(z,) + Qw, 2)) A 32 (Ve (R(w,9) V Q@,9)) )
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Prenex Normal Form

Convert the following formula to PNF.
vy (3(P(z,) + Qw, 2)) A 32 (Ve (R(w,9) V Q@,9)) )

& ¥y (32(P(e,y)) = Q. 2)) A Va(R(z.9) V Q(a,y))
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Prenex Normal Form

Convert the following formula to PNF.
vy (3(P(z,) + Qw, 2)) A 32 (Ve (R(w,9) V Q@,9)) )

& ¥y (32(P(e,y)) = Q. 2)) A Va(R(z.9) V Q(a,y))

& ¥y(Fo(P(@,y)) = QW, 2)) A Vu(R(u,y) V Q(u,1))

v
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Prenex Normal Form

Example
Convert the following formula to PNF.
vy (3(P(z,) + Qw, 2)) A 32 (Ve (R(w,9) V Q@,9)) )

& ¥y(Fo(P@,y) = QW, 2)) AVa(R(z,1) V Q(x,1))
& ¥y(Fo(P(@,y)) = QW, 2)) A Vu(R(u,y) V Q(u,1))

& ¥y (Fe(P(z,9) = Q) ) ABu(=(Rlu,y) vV Quy)))

v
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Prenex Normal Form
Example
Convert the following formula to PNF.

Yy (EIJ:(P(m, y)) — Q(y, z)) A =3z (Vw(R(w, y)VQ(x, y))) &
& Vy(3e(P(z,1)) = QM. 2)) AV (R(z,y) v Q(z,1))

<:>Vy<5|x —>Qyz> —|Vu (u,y) \/Quy))
@Vy(Elx —>Qyz>/\5| ( (u,y) V Q(u, y)))

& vy((3(P(2,9) = Qv, 2)) A Fu(~(R(u,y) v Q(u,v)) )
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Prenex Normal Form

Convert the following formula to PNF.

Yy (EI:E(P(m, y)) — Q(y, z)) A =3z (Vx(R(az, y)VQ(x, y))) &
o Vy(EIx(P(x ¥) = Qv 2)) A ~Va(R(z,5) V Q(z,y))

<:>Vy<5|x ) — Q(y, 2)

) A =vu(R(u, 5) v Q(u,y)
&y (3u(P —>Qyz)A3 (~(R(w.y) v Q(up)) )
& vy((3(P(2,9) = Qv, 2)) A Fu(~(R(u,y) v Q(u,v)) )
& Vy3u( (3(P(z,1) = Q. 2)) A ~(R(w,1) v Qu,p) )
& Vy3u(va(P(z,y) » Q. 9) A= (R(w,y) v Q(w.y))
& WAz ((P(e,y) > Qy,2)) A=(R(u,y) v Qu,)) ) A




Normal Forms (DNF, CNF)

m disjunctive normal form (DNF): PNF where matrix is in DNF

m conjuctive normal form (CNF): PNF where matrix is in CNF
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Skolem Normal Form

m Skolem Normal Form (SNF):

> formula is in the PNF
> formula does not contain any existential quantifier 3

m Given a FOL formula ¢, there might not be an equivalent formula in the SNF.
m There will, however, always be an equisatisfiable formula ¢’ in the SNF.

> equisatisfiable: o is satisfiable iff ' is satisfiable
m Skolemization:

> Assume the following formula:

©: Vo Vg . Vo Jy(yY)
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Skolem Normal Form

m Skolem Normal Form (SNF):
» formula is in the PNF
> formula does not contain any existential quantifier 3
m Given a FOL formula ¢, there might not be an equivalent formula in the SNF.
m There will, however, always be an equisatisfiable formula ¢’ in the SNF.
> equisatisfiable: o is satisfiable iff ' is satisfiable
m Skolemization:
> Assume the following formula:

©: Vo Vg . Vo Jy(yY)

> y dependson zy,...,xx
> o is satisfiable iff for every tuple (z1, ..., zy), there exists a y such that ¢ is satisifable
under such an incomplete assignment

> i.e., if there exists a k-ary function f, that for every tuple (z1,...,z;) assigns
a corresponding y
> ~~ we can remove Jy and substitute all free occurrences of y in ¢ for f,(z1,...,zx)
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Skolem Normal Form

Example
Transform the following formula into an equisatisfiable formula in the SNF:

JzVyAzVuIv(x +y+ 2z = u +v)
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Skolem Normal Form

Example
Transform the following formula into an equisatisfiable formula in the SNF:

JaVyAVuv(z +y + 2 = u + v)
~ Vy3eVuTu(fe +y + 2 =u+v)
~ VyVudu(fe +y + f2(y) =u +v)
> VyVu(fe +y + f2(y) = u+ fo(y,w))
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Soundness and Completeness of Semantic Argument

Soundness _ -
m a proof method is sound if it never proves a wrong formula:

if F¢  then Eo

The semantic argument is sound. \

F ¢: ¢ is provable
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Soundness and Completeness of Semantic Argument

Soundness _ -
m a proof method is sound if it never proves a wrong formula:

if Fo then Eoe

The semantic argument is sound.
Completeness

m a proof method is complete if it can prove every valid formula:
if Eo then Fe

F ¢: ¢ is provable

Theorem (Gddel’'s completeness theorem)
The semantic argument is complete.

There are also other sound and complete methods for FOL (e.g. natural deduction,
Hilbert system, resolution).
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Lowenheim-Skolem Theorem

Theorem (Léwenheim-Skolem (simplified))

If an FOL formula has a model of an infinite cardinality
then it has a model of any infinite cardinality.
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Herbrand Interpretation

Herbrand interpretation of a language L

m a special kind of interpretation I
m the domain Dy is fixed as the set of all ground terms of L (i.e., no variables),
» if L does not contain any constant symbol, we create a new one

m interpretation of function symbols is “natural’
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Herbrand interpretation of a language L

m a special kind of interpretation I
m the domain Dy is fixed as the set of all ground terms of L (i.e., no variables),
> if L does not contain any constant symbol, we create a new one

m interpretation of function symbols is “natural’

Let us assume the FOL language L with the signature (F = {ao, fj2, 911}, P = {pj2})
m Dy ={"a","g(a)","f(a,a)","g(g(a))", "g(f(a,a))","f(g(a),a)","g(f(a, g(g(a))))", .. .}
m Ig(a) ={() — “a}
m I(g) = {"a" = “g(a)”,"g(a)” = “g(g(a))", “f(a,a)” = “g(f(a,a))", ...}
m Ig(f) ={(a","a") = “f(a,a)", ("g(a)","a”) = “f(g(a),a)", ...}
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Herbrand model

Herbrand model: a model of a formula that is also a Herbrand interpretation
m i.e., we need to provide interpretation of predicate symbols and variables only

Theorem (Herbrand’s theorem (simplified))
A set of FOL formulae has a model iff it has a Herbrand model.

m ~ it is enough to search for Herbrand models (e.g., model construct. in SMT solvers)
m minimal Herbrand model (semantics of PROLOG programs)
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Notes

m Exists exactly one:

Az p(x)
where y is not free in ¢

m many-sorted logics:

> capture the natural requirement to distinguish types of variables
> e.g.in
Vw € ¥*(safe(w) = In € N(#: (¢ (w) = #1y (w)))
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