Lecture 2 — First-Order Logic

Ondřej Lengál

Faculty of Information Technology Brno University of Technology

IAM'24

First-Order Logic (FOL)

■ also called (first-order) predicate logic, predicate calculus, ...

- also called (first-order) predicate logic, predicate calculus, ...
- generalizes propositional logic by
 - interpreting ("looking inside") propositions

- also called (first-order) predicate logic, predicate calculus, ...
- generalizes propositional logic by
 - interpreting ("looking inside") propositions
 - talks about elements of a universe—denoted by terms formed from variables, constants, and functions
 - e.g., x, 5, f(x, 2), $36 + 2 \cdot 3$, fatherOf(motherOf(x)), head("abc"), sin(y), ...

- also called (first-order) predicate logic, predicate calculus, ...
- generalizes propositional logic by
 - interpreting ("looking inside") propositions
 - talks about elements of a universe—denoted by terms formed from variables, constants, and functions
 - e.g., x, 5, f(x, 2), $36 + 2 \cdot 3$, fatherOf(motherOf(x)), head("abc"), sin(y), . . .
 - propositions are substituted with predicates over terms
 - e.g., x = y, even(x), p(x, y, z), isFatherOf(x, y), ...

- also called (first-order) predicate logic, predicate calculus, ...
- generalizes propositional logic by
 - interpreting ("looking inside") propositions
 - talks about elements of a universe—denoted by terms formed from variables, constants, and functions
 - e.g., x, 5, f(x, 2), $36 + 2 \cdot 3$, fatherOf(motherOf(x)), head("abc"), sin(y), ...
 - propositions are substituted with predicates over terms
 - e.g., x = y, even(x), p(x, y, z), isFatherOf(x, y), ...
 - introducing quantifiers to express existential or universal properties about elements of the universe (first-order quantification)
 - $\forall x$ universal quantifier (all elements satisfy property)
 - $\exists x$ existential quantifier (some element satisfies property)

- also called (first-order) predicate logic, predicate calculus, ...
- generalizes propositional logic by
 - interpreting ("looking inside") propositions
 - talks about elements of a universe—denoted by terms formed from variables, constants, and functions
 - e.g., x, 5, f(x, 2), $36 + 2 \cdot 3$, fatherOf(motherOf(x)), head("abc"), sin(y), ...
 - propositions are substituted with predicates over terms
 - e.g., x = y, even(x), p(x, y, z), isFatherOf(x, y), ...
 - introducing quantifiers to express existential or universal properties about elements of the universe (first-order quantification)
 - $\forall x$ universal quantifier (all elements satisfy property)
 - $\exists x$ existential quantifier (some element satisfies property)
- much more expressive than propositional logic!
 - ► therefore, also more complex (in general undecidable)

Example

■ All men are mortal. Socrates is a man. So Socrates is mortal.

Example

All men are mortal. Socrates is a man. So Socrates is mortal.

$$(\forall x (man(x) \rightarrow mortal(x)) \land man(Socrates)) \rightarrow mortal(Socrates)$$

Example

All men are mortal. Socrates is a man. So Socrates is mortal.

$$(\forall x (man(x) \rightarrow mortal(x)) \land man(Socrates)) \rightarrow mortal(Socrates)$$

■ There are infinitely many prime numbers.

Example

All men are mortal. Socrates is a man. So Socrates is mortal.

$$(\forall x (man(x) \rightarrow mortal(x)) \land man(Socrates)) \rightarrow mortal(Socrates)$$

There are infinitely many prime numbers.

$$\forall x \exists y \Big(y > x \land \forall z \Big((z \neq 1 \land z \neq y) \to \forall w (wz \neq y) \Big) \Big)$$

Example

All men are mortal. Socrates is a man. So Socrates is mortal.

$$(\forall x (man(x) \rightarrow mortal(x)) \land man(Socrates)) \rightarrow mortal(Socrates)$$

There are infinitely many prime numbers.

$$\forall x \exists y \Big(y > x \land \forall z \Big((z \neq 1 \land z \neq y) \to \forall w (wz \neq y) \Big) \Big)$$

■ The relation R is transitive.

Example

All men are mortal. Socrates is a man. So Socrates is mortal.

$$(\forall x (man(x) \rightarrow mortal(x)) \land man(Socrates)) \rightarrow mortal(Socrates)$$

There are infinitely many prime numbers.

$$\forall x \exists y \Big(y > x \land \forall z \Big((z \neq 1 \land z \neq y) \to \forall w (wz \neq y) \Big) \Big)$$

■ The relation R is transitive. $\forall x \forall y \forall z ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$

Example

All men are mortal. Socrates is a man. So Socrates is mortal.

$$(\forall x (man(x) \rightarrow mortal(x)) \land man(Socrates)) \rightarrow mortal(Socrates)$$

There are infinitely many prime numbers.

$$\forall x \exists y \Big(y > x \land \forall z \Big((z \neq 1 \land z \neq y) \to \forall w (wz \neq y) \Big) \Big)$$

- The relation R is transitive. $\forall x \forall y \forall z (\ (R(x,y) \land R(y,z)) \rightarrow R(x,z)\)$
- Let R[name, id] and S[id, age] be tables in an SQL select R.name from R join S on R.id = S.id where S.age = 42

Example

All men are mortal. Socrates is a man. So Socrates is mortal.

$$(\forall x (man(x) \rightarrow mortal(x)) \land man(Socrates)) \rightarrow mortal(Socrates)$$

■ There are infinitely many prime numbers.

$$\forall x \exists y \Big(y > x \land \forall z \Big((z \neq 1 \land z \neq y) \to \forall w (wz \neq y) \Big) \Big)$$

- The relation R is transitive. $\forall x \forall y \forall z ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$
- Let R[name, id] and S[id, age] be tables in an SQL select R.name from R join S on R.id = S.id where S.age = 42

$$\exists z (R(x,z) \land S(z,42))$$

Example

All men are mortal. Socrates is a man. So Socrates is mortal.

$$(\forall x (man(x) \rightarrow mortal(x)) \land man(Socrates)) \rightarrow mortal(Socrates)$$

■ There are infinitely many prime numbers.

$$\forall x \exists y \Big(y > x \land \forall z \Big((z \neq 1 \land z \neq y) \to \forall w (wz \neq y) \Big) \Big)$$

- The relation R is transitive. $\forall x \forall y \forall z (\ (R(x,y) \land R(y,z)) \rightarrow R(x,z)\)$
- Let R[name, id] and S[id, age] be tables in an SQL select R.name from R join S on R.id = S.id where S.age = 42

$$\exists z (R(x,z) \land S(z,42))$$

Fermat's Last theorem

Example

All men are mortal. Socrates is a man. So Socrates is mortal.

$$(\forall x (man(x) \rightarrow mortal(x)) \land man(Socrates)) \rightarrow mortal(Socrates)$$

■ There are infinitely many prime numbers.

$$\forall x \exists y \Big(y > x \land \forall z \Big((z \neq 1 \land z \neq y) \to \forall w (wz \neq y) \Big) \Big)$$

- The relation R is transitive. $\forall x \forall y \forall z ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$
- Let R[name, id] and S[id, age] be tables in an SQL select R.name from R join S on R.id = S.id where S.age = 42

$$\exists z (R(x,z) \land S(z,42))$$

Fermat's Last theorem

$$\forall n \forall x \forall y (n > 2 \rightarrow \forall z (x^n + y^n \neq z^n))$$

What is **NOT** expressible with FOL:

"Adam is an ancestor of Socrates." (using isParentOf) Attempts:

What is **NOT** expressible with FOL:

- "Adam is an ancestor of Socrates." (using isParentOf) Attempts:
 - $ightharpoonup \exists x_1, \dots, x_n (isParentOf(Adam, x_1) \land \dots \land isParentOf(x_n, Socrates))$

[n is bounded]

What is **NOT** expressible with FOL:

- "Adam is an ancestor of Socrates." (using isParentOf) Attempts:
 - $ightharpoonup \exists x_1, \dots, x_n \big(isParentOf(Adam, x_1) \land \dots \land isParentOf(x_n, Socrates) \big)$

[n is bounded]

 $\quad \Rightarrow \exists_2^{\mathsf{fin}} X \Big(Socrates \in X \land Adam \in X \land \big(\forall y \in X \colon$

$$(\exists z \in X : isParentOf(z, y)) \lor y = Adam))$$

 $[\exists_2^{\text{fin}}$ — second-order finite quantification, cf. MSO]

What is **NOT** expressible with FOL:

- "Adam is an ancestor of Socrates." (using isParentOf) Attempts:
 - $ightharpoonup \exists x_1, \dots, x_n \big(isParentOf(Adam, x_1) \land \dots \land isParentOf(x_n, Socrates) \big)$

[n is bounded]

 $\quad \Rightarrow \exists_2^{\mathsf{fin}} X \Big(Socrates \in X \land Adam \in X \land \big(\forall y \in X \colon$

$$(\exists z \in X : isParentOf(z, y)) \lor y = Adam)$$

 \exists_2^{fin} — second-order finite quantification, cf. MSO]

 \blacktriangleright is $AncestorOf(x,y) \stackrel{\mathsf{def}}{\Leftrightarrow} is ParentOf(x,y) \lor$

$$(\exists z : isAncestorOf(x, z) \land isParentOf(z, y))$$

[recursive predicate]

What is **NOT** expressible with FOL:

- "Adam is an ancestor of Socrates." (using isParentOf) Attempts:
 - $ightharpoonup \exists x_1, \dots, x_n \big(isParentOf(Adam, x_1) \land \dots \land isParentOf(x_n, Socrates) \big)$

[n is bounded]

 $\qquad \exists_2^{\mathsf{fin}} X \Big(Socrates \in X \land Adam \in X \land \big(\forall y \in X :$

$$(\exists z \in X : isParentOf(z, y)) \lor y = Adam)$$

 $[\exists_2^{fin}$ — second-order finite quantification, cf. MSO]

 \blacktriangleright is $AncestorOf(x,y) \stackrel{\mathsf{def}}{\Leftrightarrow} is ParentOf(x,y) \lor$

$$(\exists z : isAncestorOf(x, z) \land isParentOf(z, y))$$

[recursive predicate]

- "Anakin is more likely than Gandalf the father of Luke." Attempts:
 - ?!\$#dk*#R&Q

Syntax:

Alphabet:

- ▶ logical connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow , (\cdots) (from PL)
- \triangleright variables: $x, y, \dots, x_1, x_2, \dots$ (hold elements of a universe)
- ▶ quantifiers: ∀,∃

Syntax:

Alphabet:

- ▶ logical connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , (\cdots) (from PL)
- ightharpoonup variables: $x, y, \dots, x_1, x_2, \dots$ (hold elements of a universe)
- ▶ quantifiers: ∀,∃
- function symbols (with $f_{/arity}$): $f_{/2}$, $f_{/$
 - nullary functions (arity 0): constants
 - to be used as, e.g., f(a,3), +(40,2), $\sin(S(x))$, fatherOf(Luke), $\pi()$
 - we often simplify the notation: $+(40,2) \mapsto 40+2, \pi() \mapsto \pi, \dots$

Syntax:

Alphabet:

- ▶ logical connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow , (\cdots) (from PL)
- ightharpoonup variables: $x, y, \dots, x_1, x_2, \dots$ (hold elements of a universe)
- P quantifiers: ∀,∃
- function symbols (with $_{/arity}$): $f_{/2}$, $+_{/2}$, $\sin_{/1}$, $father Of_{/1}$, $S_{/1}$, $\pi_{/0}$, $42_{/0}$,...
 - nullary functions (arity 0): constants
 - to be used as, e.g., f(a, 3), +(40, 2), $\sin(S(x))$, fatherOf(Luke), $\pi()$
 - we often simplify the notation: $+(40,2) \mapsto 40+2, \pi() \mapsto \pi, \dots$
- ▶ predicate symbols (with $_{/arity}$): $p_{/3}$, $isFatherOf_{/2}$, $isJedi_{/1}$, $<_{/2}$, . . .
 - to be used as, e.g., p(a, x, 9), isFatherOf(Anakin, Luke), isJedi(Anakin), $<(x, \pi)$
 - we often simplify the notation: $<(x,\pi)\mapsto x<\pi,\ldots$
- predicate symbol of equality =_{/2}

Syntax:

- Alphabet:
 - ▶ logical connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow , (\cdots) (from PL)
 - ightharpoonup variables: $x, y, \dots, x_1, x_2, \dots$ (hold elements of a universe)
 - ▶ quantifiers: ∀,∃
 - function symbols (with $_{/arity}$): $f_{/2}$, $+_{/2}$, $\sin_{/1}$, $father Of_{/1}$, $S_{/1}$, $\pi_{/0}$, $42_{/0}$,...
 - nullary functions (arity 0): constants
 - to be used as, e.g., f(a, 3), +(40, 2), $\sin(S(x))$, fatherOf(Luke), $\pi()$
 - we often simplify the notation: $+(40,2) \mapsto 40+2, \pi() \mapsto \pi, \dots$
 - ▶ predicate symbols (with $_{/arity}$): $p_{/3}$, $isFatherOf_{/2}$, $isJedi_{/1}$, $<_{/2}$, . . .
 - to be used as, e.g., p(a, x, 9), isFatherOf(Anakin, Luke), isJedi(Anakin), $<(x, \pi)$
 - we often simplify the notation: $\langle (x,\pi) \mapsto x < \pi, \dots$
 - predicate symbol of equality =_{/2}
- Signature $\langle \mathcal{F}, \mathcal{P} \rangle$ = function symbols + predicate symbols
 - language: given by the signature

- the language of order theory: $\langle \mathcal{F} = \emptyset, \mathcal{P} = \{<_{/2}\} \rangle$
 - no function symbol
 - one binary predicate symbol <</p>

- the language of order theory: $\langle \mathcal{F} = \emptyset, \mathcal{P} = \{<_{/2}\} \rangle$
 - no function symbol
 - one binary predicate symbol <</p>
- the language of group theory: $\langle \mathcal{F} = \{\cdot_{/2}, e_{/0}\}, \mathcal{P} = \emptyset \rangle$
 - binary function symbol (group multiplication)
 - nullary function symbol e for neutral element

- the language of order theory: $\langle \mathcal{F} = \emptyset, \mathcal{P} = \{<_{/2}\} \rangle$
 - no function symbol
 - one binary predicate symbol <</p>
- the language of group theory: $\langle \mathcal{F} = \{ \cdot_{/2}, e_{/0} \}, \mathcal{P} = \emptyset \rangle$
 - ▶ binary function symbol · (group multiplication)
 - ightharpoonup nullary function symbol e for neutral element
- the language of set theory: $\langle \mathcal{F} = \emptyset, \mathcal{P} = \{ \in_{/2} \} \rangle$

- the language of order theory: $\langle \mathcal{F} = \emptyset, \mathcal{P} = \{<_{/2}\} \rangle$
 - no function symbol
 - one binary predicate symbol <</p>
- the language of group theory: $\langle \mathcal{F} = \{ \cdot_{/2}, e_{/0} \}, \mathcal{P} = \emptyset \rangle$
 - ▶ binary function symbol · (group multiplication)
 - ightharpoonup nullary function symbol e for neutral element
- the language of set theory: $\langle \mathcal{F} = \emptyset, \mathcal{P} = \{ \in_{/2} \} \rangle$
- the language of theory of arrays: $\langle \mathcal{F} = \{\cdot [\cdot]_{/2}^r, \cdot [\cdot, \cdot]_{/3}^w\}, \mathcal{P} = \emptyset \rangle$
 - binary function symbol for reading from array $\cdot [\cdot]^r$, e.g., $A[i]^r$
 - ternary function symbol for writing into array $\cdot [\cdot, \cdot]^w$, e.g., $A[i, y]^w$ (writing y at index i in array A)

- the language of order theory: $\langle \mathcal{F} = \emptyset, \mathcal{P} = \{<_{/2}\} \rangle$
 - no function symbol
 - one binary predicate symbol <</p>
- the language of group theory: $\langle \mathcal{F} = \{ \cdot_{/2}, e_{/0} \}, \mathcal{P} = \emptyset \rangle$
 - ▶ binary function symbol · (group multiplication)
 - nullary function symbol e for neutral element
- the language of set theory: $\langle \mathcal{F} = \emptyset, \mathcal{P} = \{ \in_{/2} \} \rangle$
- the language of theory of arrays: $\langle \mathcal{F} = \{\cdot [\cdot]_{/2}^r, \cdot [\cdot, \cdot]_{/3}^w\}, \mathcal{P} = \emptyset \rangle$
 - binary function symbol for reading from array $\cdot [\cdot]^r$, e.g., $A[i]^r$
 - ternary function symbol for writing into array $\cdot [\cdot, \cdot]^w$, e.g., $A[i, y]^w$ (writing y at index i in array A)
- the language of theory of lists: $\langle \mathcal{F} = \{ \mathsf{cons}_{/2}, \mathsf{car}_{/1}, \mathsf{cdr}_{/1} \}, \mathcal{P} = \{ \mathsf{atom}_{/1} \} \rangle$

- the language of order theory: $\langle \mathcal{F} = \emptyset, \mathcal{P} = \{<_{/2}\} \rangle$
 - no function symbol
 - one binary predicate symbol <</p>
- the language of group theory: $\langle \mathcal{F} = \{ \cdot_{/2}, e_{/0} \}, \mathcal{P} = \emptyset \rangle$
 - binary function symbol · (group multiplication)
 - ightharpoonup nullary function symbol e for neutral element
- the language of set theory: $\langle \mathcal{F} = \emptyset, \mathcal{P} = \{ \in_{/2} \} \rangle$
- the language of theory of arrays: $\langle \mathcal{F} = \{\cdot [\cdot]_{/2}^r, \cdot [\cdot, \cdot]_{/3}^w\}, \mathcal{P} = \emptyset \rangle$
 - binary function symbol for reading from array $\cdot [\cdot]^r$, e.g., $A[i]^r$
 - ternary function symbol for writing into array $\cdot [\cdot, \cdot]^w$, e.g., $A[i, y]^w$ (writing y at index i in array A)
- the language of theory of lists: $\langle \mathcal{F} = \{ \mathsf{cons}_{/2}, \mathsf{car}_{/1}, \mathsf{cdr}_{/1} \}, \mathcal{P} = \{ \mathsf{atom}_{/1} \} \rangle$
- the language of elementary (so-called Peano) aritmetic:

$$\langle \mathcal{F} = \{0_{0}, S_{1}, +_{2}, \cdot_{2}\}, \mathcal{P} = \emptyset \rangle$$

Grammar: formulae are composed of *terms*

term (it will hold a value from the universe):

$$t ::= x \quad | \quad f(t_1, \dots, t_n)$$

where $x \in \mathbb{X}$ and $f_{/n}$ is a function symbol (the special case of a constant $c_{/0}$ is also a term)

ground term: a term with no variables

Grammar: formulae are composed of *terms*

term (it will hold a value from the universe):

$$t ::= x \quad | \quad f(t_1, \dots, t_n)$$

where $x \in \mathbb{X}$ and $f_{/n}$ is a function symbol (the special case of a constant $c_{/0}$ is also a term)

- ground term: a term with no variables
- examples of terms:
 - ightharpoonup x, 5, f(x, 2), 40 + 2, car(cons(x, y)), head("abc"), sin y

Grammar (cont.):

atomic formula:

$$\varphi_{atom} ::= p(t_1, \dots, t_n)$$

for a predicate symbol $p_{/n}$ and terms t_1, \ldots, t_n (also for p being the equality symbol $=_{/2}$)

Grammar (cont.):

atomic formula:

$$\varphi_{atom} ::= p(t_1, \dots, t_n)$$

for a predicate symbol $p_{/n}$ and terms t_1, \ldots, t_n (also for p being the equality symbol $=_{/2}$)

formula:

$$\varphi ::= \varphi_{atom} \mid (\neg \varphi_1) \mid$$
$$(\varphi_1 \land \varphi_2) \mid (\varphi_1 \lor \varphi_2) \mid$$
$$(\varphi_1 \to \varphi_2) \mid (\varphi_1 \leftrightarrow \varphi_2) \mid$$
$$(\forall x \varphi_1) \mid (\exists x \varphi_1)$$

- \blacktriangleright where x is a variable from the set of variables $\mathbb X$
- (parentheses are often omitted)

First-Order Logic — syntax

Grammar (cont.):

atomic formula:

$$\varphi_{atom} ::= p(t_1, \dots, t_n)$$

for a predicate symbol $p_{/n}$ and terms t_1, \ldots, t_n (also for p being the equality symbol $=_{/2}$)

formula:

$$\varphi ::= \varphi_{atom} \mid (\neg \varphi_1) \mid$$
$$(\varphi_1 \land \varphi_2) \mid (\varphi_1 \lor \varphi_2) \mid$$
$$(\varphi_1 \to \varphi_2) \mid (\varphi_1 \leftrightarrow \varphi_2) \mid$$
$$(\forall x \varphi_1) \mid (\exists x \varphi_1)$$

- ightharpoonup where x is a variable from the set of variables X
- (parentheses are often omitted)
- examples of formulae:
 - $\exists x(40 + x = 42 \land 40 \cdot x = 80),$
 - $\blacktriangleright \forall x(\tan(x) = \frac{\sin(x)}{\cos(x)}),$
 - ightharpoonup atom(car(cons((x, y))),
 - $\forall x(\exists y(x=y\cdot y\vee x=-y\cdot y))$

Variables in formulae:

- **bound**: occur in the scope of a quantifier
 - e.g. BOUND($\exists x (x = 4 \land \neg (y = 5))) = \{x\}$

Variables in formulae:

- **bound**: occur in the scope of a quantifier
 - e.g. BOUND($\exists x (x = 4 \land \neg (y = 5))) = \{x\}$
- free: there is an occurrence not bound by any quantifier
 - e.g. $FREE(x = 4 \land \exists y(y = 5)) = \{x\}$

Variables in formulae:

- **bound**: occur in the scope of a quantifier
 - e.g. BOUND($\exists x (x = 4 \land \neg (y = 5))) = \{x\}$
- free: there is an occurrence not bound by any quantifier
 - e.g. $FREE(x = 4 \land \exists y(y = 5)) = \{x\}$
- FREE(\cdot) and BOUND(\cdot) are symbols of the metalanguage
- a variable can occur both bound and free in a formula

Variables in formulae:

- **bound**: occur in the scope of a quantifier
 - e.g. BOUND($\exists x (x = 4 \land \neg (y = 5))) = \{x\}$
- free: there is an occurrence not bound by any quantifier
 - e.g. $FREE(x = 4 \land \exists y(y = 5)) = \{x\}$
- FREE (\cdot) and BOUND (\cdot) are symbols of the metalanguage
- a variable can occur both bound and free in a formula

Example

$$\forall x (p(f(x), y) \rightarrow \forall y(p(f(x), y)))$$

- ▶ x only occurs bound
- ▶ *y* occurs both free (antecedent) and bound (consequent)

Variables in formulae:

- **bound**: occur in the scope of a quantifier
 - e.g. BOUND($\exists x (x = 4 \land \neg (y = 5))) = \{x\}$
- free: there is an occurrence not bound by any quantifier
 - e.g. $FREE(x = 4 \land \exists y(y = 5)) = \{x\}$
- FREE (\cdot) and BOUND (\cdot) are symbols of the metalanguage
- a variable can occur both bound and free in a formula

Example

$$\forall x (p(f(x), y) \rightarrow \forall y(p(f(x), y)))$$

- x only occurs bound
- y occurs both free (antecedent) and bound (consequent)
- we often write $\varphi(x_1,\ldots,x_n)$ when $\text{FREE}(\varphi)\subseteq\{x_1,\ldots,x_n\}$
 - $ightharpoonup x_1, \ldots, x_n$ serve as the "interface" of φ

Variables in formulae:

- **bound**: occur in the scope of a quantifier
 - e.g. BOUND($\exists x (x = 4 \land \neg (y = 5))) = \{x\}$
- free: there is an occurrence not bound by any quantifier
 - e.g. $FREE(x = 4 \land \exists y(y = 5)) = \{x\}$
- FREE (\cdot) and BOUND (\cdot) are symbols of the metalanguage
- a variable can occur both bound and free in a formula

Example

$$\forall x (p(f(x), y) \rightarrow \forall y(p(f(x), y)))$$

- x only occurs bound
- y occurs both free (antecedent) and bound (consequent)
- we often write $\varphi(x_1,\ldots,x_n)$ when $\text{FREE}(\varphi)\subseteq\{x_1,\ldots,x_n\}$
 - $ightharpoonup x_1, \ldots, x_n$ serve as the "interface" of φ
- lacksquare φ is ground (or closed) if $FREE(\varphi) = \emptyset$

Semantics of FOL:

- so far, the symbols *did not have any meaning!*
- more complicated than for PL

Semantics of FOL:

- so far, the symbols *did not have any meaning!*
- more complicated than for PL

Semantics of FOL:

- so far, the symbols did not have any meaning!
- more complicated than for PL

- provides the meaning to the symbols
 - a formula may hold in one interpretation and not hold in another
- **domain** (universe) of discourse D_I : a non-empty set of elements
 - e.g., \mathbb{N} , $\{0, 1, 2, 3, 4\}$, \mathbb{R}^3 , People, List $[\mathbb{N}]$, Σ^* , ...

Semantics of FOL:

- so far, the symbols did not have any meaning!
- more complicated than for PL

- provides the meaning to the symbols
 - a formula may hold in one interpretation and not hold in another
- **domain** (universe) of discourse D_I : a non-empty set of elements
 - e.g., \mathbb{N} , $\{0, 1, 2, 3, 4\}$, \mathbb{R}^3 , People, List $[\mathbb{N}]$, Σ^* , ...
- \blacksquare assignment α_I :
 - ▶ for every function symbol $f_{/n}$, a function $f_I : \overbrace{D_I \times \ldots \times D_I} \to D_I$
 - e.g., $I(+) = \{(0,0) \mapsto 0, (0,1) \mapsto 1, (1,0) \mapsto 1, (1,1) \mapsto 2, \ldots\}$
 - for constants, this gives us one value, e.g., $I(\pi) = \{() \mapsto 3.1415926... \}$

Semantics of FOL:

- so far, the symbols did not have any meaning!
- more complicated than for PL

- provides the meaning to the symbols
 - a formula may hold in one interpretation and not hold in another
- **domain** (universe) of discourse D_I : a non-empty set of elements
 - e.g., \mathbb{N} , $\{0, 1, 2, 3, 4\}$, \mathbb{R}^3 , People, List $[\mathbb{N}]$, Σ^* , ...
- \blacksquare assignment α_I :
 - ▶ for every function symbol $f_{/n}$, a function $f_I : \overbrace{D_I \times \ldots \times D_I} \to D_I$
 - e.g., $I(+) = \{(0,0) \mapsto 0, (0,1) \mapsto 1, (1,0) \mapsto 1, (1,1) \mapsto 2, \ldots\}$
 - for constants, this gives us one value, e.g., $I(\pi) = \{() \mapsto 3.1415926... \}$
 - lacktriangledown for every predicate symbol $p_{/n}$, a relation $p_I\subseteq \overbrace{D_I\times\ldots\times D_I}$
 - e.g., $I(<) = \{(0,1), (0,2), (1,2), \ldots\}$
 - e.g., $I(even_{/1}) = \{0, 2, 4, \ldots\}$
 - e.g., $I(edge_{/2}) = \{(v_1, v_2), (v_2, v_3), \ldots\}$

Semantics of FOL:

- so far, the symbols did not have any meaning!
- more complicated than for PL

- provides the meaning to the symbols
 - a formula may hold in one interpretation and not hold in another
- **domain** (universe) of discourse D_I : a non-empty set of elements
 - e.g., \mathbb{N} , $\{0, 1, 2, 3, 4\}$, \mathbb{R}^3 , People, List $[\mathbb{N}]$, Σ^* , ...
- \blacksquare assignment α_I :
 - ▶ for every function symbol $f_{/n}$, a function $f_I : \overbrace{D_I \times \ldots \times D_I} \to D_I$
 - e.g., $I(+) = \{(0,0) \mapsto 0, (0,1) \mapsto 1, (1,0) \mapsto 1, (1,1) \mapsto 2, \ldots\}$
 - for constants, this gives us one value, e.g., $I(\pi) = \{() \mapsto 3.1415926 \ldots \}$
 - lacktriangledown for every predicate symbol $p_{/n}$, a relation $p_I\subseteq \overbrace{D_I\times\ldots\times D_I}$
 - e.g., $I(<) = \{(0,1), (0,2), (1,2), \ldots\}$
 - e.g., $I(even_{/1}) = \{0, 2, 4, \ldots\}$
 - e.g., $I(edge_{/2}) = \{(v_1, v_2), (v_2, v_3), \ldots\}$
 - for every variable $x \in \mathbb{X}$ a value from D_I , e.g., I(x) = 42

Example

- Addition in \mathbb{N} : $D_I = \mathbb{N}$ where
 - ► $I(+) = (+_{\mathbb{N}})$ (addition of natural numbers)

Example

- Addition in \mathbb{N} : $D_I = \mathbb{N}$ where
 - ► $I(+) = (+_{\mathbb{N}})$ (addition of natural numbers)
- Addition in \mathbb{R}^3 : $D_I = \mathbb{R}^3$ where
 - $I(+) = \{([x_1, y_1, z_1], [x_2, y_2, z_2]) \mapsto [x_1 +_{\mathbb{R}} x_2, y_1 +_{\mathbb{R}} y_2, z_1 +_{\mathbb{R}} z_2] \mid x_1, \dots, z_2 \in \mathbb{R}\}$

Example

- Addition in \mathbb{N} : $D_I = \mathbb{N}$ where
 - ► $I(+) = (+_{\mathbb{N}})$ (addition of natural numbers)
- Addition in \mathbb{R}^3 : $D_I = \mathbb{R}^3$ where
 - $I(+) = \{([x_1, y_1, z_1], [x_2, y_2, z_2]) \mapsto [x_1 +_{\mathbb{R}} x_2, y_1 +_{\mathbb{R}} y_2, z_1 +_{\mathbb{R}} z_2] \mid x_1, \dots, z_2 \in \mathbb{R}\}$
- Disjunction in a Boolean algebra: $D_I = \{0, 1\}$ where
 - $I(+) = \{(0,0) \mapsto 0, (0,1) \mapsto 1, (1,0) \mapsto 1, (1,1) \mapsto 1\}$

Example

- Addition in \mathbb{N} : $D_I = \mathbb{N}$ where
 - ► $I(+) = (+_{\mathbb{N}})$ (addition of natural numbers)
- Addition in \mathbb{R}^3 : $D_I = \mathbb{R}^3$ where
 - $I(+) = \{([x_1, y_1, z_1], [x_2, y_2, z_2]) \mapsto [x_1 +_{\mathbb{R}} x_2, y_1 +_{\mathbb{R}} y_2, z_1 +_{\mathbb{R}} z_2] \mid x_1, \dots, z_2 \in \mathbb{R}\}$
- Disjunction in a Boolean algebra: $D_I = \{0, 1\}$ where
 - $I(+) = \{(0,0) \mapsto 0, (0,1) \mapsto 1, (1,0) \mapsto 1, (1,1) \mapsto 1\}$
- Modular addition in $\{0,1,2\}$: $D_I = \{0,1,2\}$ where
 - $I(+) = \{(x,y) \mapsto (x+y \mod 3) \mid x,y \in \{0,1,2\}\}$

Example

- Addition, multiplication, and opposite number in \mathbb{Z} : $D_I = \mathbb{Z}$
 - $I(+) = (+_{\mathbb{Z}})$ (addition of natural numbers)
 - ▶ $I(\cdot) = (\cdot_{\mathbb{Z}})$ (multiplication of natural numbers)
 - $I(-) = \{x \mapsto (0 \mathbb{Z} x) \mid x \in \mathbb{Z}\}\$
 - $I(E) = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$

Example

- Addition, multiplication, and opposite number in \mathbb{Z} : $D_I = \mathbb{Z}$
 - $I(+) = (+_{\mathbb{Z}})$ (addition of natural numbers)
 - ▶ $I(\cdot) = (\cdot_{\mathbb{Z}})$ (multiplication of natural numbers)
 - $I(-) = \{x \mapsto (0 \mathbb{Z} x) \mid x \in \mathbb{Z}\}\$
 - $I(E) = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$
- Disjunction, conjunction, and negation in a Boolean algebra: $D_I = \{0, 1\}$
 - $I(+) = \{(0,0) \mapsto 0, (0,1) \mapsto 1, (1,0) \mapsto 1, (1,1) \mapsto 1\}$
 - $I(\cdot) = \{(0,0) \mapsto 0, (0,1) \mapsto 0, (1,0) \mapsto 0, (1,1) \mapsto 1\}$
 - $I(-) = \{0 \mapsto 1, 1 \mapsto 0\}$
 - $I(E) = \{0\}$

Example

- Addition, multiplication, and opposite number in \mathbb{Z} : $D_I = \mathbb{Z}$
 - $I(+) = (+_{\mathbb{Z}})$ (addition of natural numbers)
 - $ightharpoonup I(\cdot) = (\cdot_{\mathbb{Z}})$ (multiplication of natural numbers)
 - $I(-) = \{x \mapsto (0 \mathbb{Z} x) \mid x \in \mathbb{Z}\}\$
 - $I(E) = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$
- Disjunction, conjunction, and negation in a Boolean algebra: $D_I = \{0, 1\}$
 - $I(+) = \{(0,0) \mapsto 0, (0,1) \mapsto 1, (1,0) \mapsto 1, (1,1) \mapsto 1\}$
 - $I(\cdot) = \{(0,0) \mapsto 0, (0,1) \mapsto 0, (1,0) \mapsto 0, (1,1) \mapsto 1\}$
 - $I(-) = \{0 \mapsto 1, 1 \mapsto 0\}$
 - $I(E) = \{0\}$
- Union, concatenation, and iteration of sets of words over Σ :

Example

- Addition, multiplication, and opposite number in \mathbb{Z} : $D_I = \mathbb{Z}$
 - $I(+) = (+_{\mathbb{Z}})$ (addition of natural numbers)
 - $ightharpoonup I(\cdot) = (\cdot_{\mathbb{Z}})$ (multiplication of natural numbers)
 - $I(-) = \{x \mapsto (0 \mathbb{Z} x) \mid x \in \mathbb{Z}\}\$
 - $I(E) = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$
- Disjunction, conjunction, and negation in a Boolean algebra: $D_I = \{0, 1\}$
 - $I(+) = \{(0,0) \mapsto 0, (0,1) \mapsto 1, (1,0) \mapsto 1, (1,1) \mapsto 1\}$
 - $I(\cdot) = \{(0,0) \mapsto 0, (0,1) \mapsto 0, (1,0) \mapsto 0, (1,1) \mapsto 1\}$
 - $I(-) = \{0 \mapsto 1, 1 \mapsto 0\}$
 - $I(E) = \{0\}$
- Union, concatenation, and iteration of sets of words over Σ : $D_I = 2^{\Sigma^*}$
 - $I(+) = \{(x,y) \mapsto (x \cup y) \mid x,y \subseteq \Sigma^*\}$
 - $I(\cdot) = \{(x,y) \mapsto \{uv \mid u \in x, v \in y\} \mid x,y \subseteq \Sigma^*\}$
 - $I(-) = \{x \mapsto \bigcup_{i>0} \{u^i \mid u \in x\} \mid x \subseteq \Sigma^*\}$
 - $I(E) = \{ \{ \epsilon \} \}$

Truth value: inductive definition:

■ Terms: evaluate their value recursively

$$I[f(t_1,\ldots,t_n)] \stackrel{\mathsf{def}}{=} I[f](I[t_1],\ldots,I[t_n])$$

Truth value: inductive definition:

■ Terms: evaluate their value recursively

$$I[f(t_1,\ldots,t_n)] \stackrel{\mathsf{def}}{=} I[f](I[t_1],\ldots,I[t_n])$$

Then:
$$I \models p(t_1, \dots, t_n)$$
 iff $(I[t_1], \dots, I[t_n]) \in I[p]$

Truth value: inductive definition:

■ Terms: evaluate their value recursively

$$I[f(t_1,\ldots,t_n)] \stackrel{\mathsf{def}}{=} I[f](I[t_1],\ldots,I[t_n])$$

Then: $I \models p(t_1, \dots, t_n)$ iff $(I[t_1], \dots, I[t_n]) \in I[p]$ (for equality: $I \models (t_1 = t_2)$ iff $I[t_1]$ and $I[t_2]$ denote the same element from D_I)

Truth value: inductive definition:

Terms: evaluate their value recursively

$$I[f(t_1,\ldots,t_n)] \stackrel{\mathsf{def}}{=} I[f](I[t_1],\ldots,I[t_n])$$

Then: $I \models p(t_1, \dots, t_n)$ iff $(I[t_1], \dots, I[t_n]) \in I[p]$ (for equality: $I \models (t_1 = t_2)$ iff $I[t_1]$ and $I[t_2]$ denote the same element from D_I)

■ logical connectives (same as for PL):

```
\begin{split} I &\models \neg \psi & \text{iff } I \not\models \psi \\ I &\models \psi_1 \wedge \psi_2 & \text{iff } I \models \psi_1 \text{ and } I \models \psi_2 \\ I &\models \psi_1 \vee \psi_2 & \text{iff } I \models \psi_1 \text{ or } I \models \psi_2 \\ I &\models \psi_1 \rightarrow \psi_2 & \text{iff, if } I \models \psi_1 \text{ then } I \models \psi_2 \\ I &\models \psi_1 \leftrightarrow \psi_2 & \text{iff } I \models \psi_1 \text{ and } I \models \psi_2, \text{ or } I \not\models \psi_1 \text{ and } I \not\models \psi_2 \end{split}
```

Truth value: inductive definition:

Terms: evaluate their value recursively

$$I[f(t_1,\ldots,t_n)] \stackrel{\mathsf{def}}{=} I[f](I[t_1],\ldots,I[t_n])$$

Then: $I \models p(t_1, \dots, t_n)$ iff $(I[t_1], \dots, I[t_n]) \in I[p]$ (for equality: $I \models (t_1 = t_2)$ iff $I[t_1]$ and $I[t_2]$ denote the same element from D_I)

■ logical connectives (same as for PL):

```
\begin{split} I &\models \neg \psi & \text{iff } I \not\models \psi \\ I &\models \psi_1 \wedge \psi_2 & \text{iff } I \models \psi_1 \text{ and } I \models \psi_2 \\ I &\models \psi_1 \vee \psi_2 & \text{iff } I \models \psi_1 \text{ or } I \models \psi_2 \\ I &\models \psi_1 \rightarrow \psi_2 & \text{iff, if } I \models \psi_1 \text{ then } I \models \psi_2 \\ I &\models \psi_1 \leftrightarrow \psi_2 & \text{iff } I \models \psi_1 \text{ and } I \models \psi_2, \text{ or } I \not\models \psi_1 \text{ and } I \not\models \psi_2 \end{split}
```

quantifiers: let $I \triangleleft \{x \mapsto v\}$ denote an interpretation obtained from I by substituting $x \mapsto ?$ by $x \mapsto v$ in I ($I \triangleleft \{x \mapsto v\}$ is a variant)

$$I \models \forall x \varphi \quad \text{iff for all } v \in D_I \text{ we have } I \triangleleft \{x \mapsto v\} \models \varphi$$
 $I \models \exists x \varphi \quad \text{iff there exists } v \in D_I \text{ such that } I \triangleleft \{x \mapsto v\} \models \varphi$

First-Order Logic — Semantics

Example

Let L be the language with the signature $\langle \mathcal{F}=\{+_{/2},-_{/1}\},\,\mathcal{P}=\{Z_{/1}\}\rangle$ and its interpretation I_L with $D_{I_L}=\{a,b,c\}$ and

$$I_{L}(+) = \begin{array}{c|cccc} & a & b & c \\ \hline a & a & b & c \\ b & b & c & a \\ c & c & a & b \end{array} \qquad I_{L}(-) = \{a \mapsto a, b \mapsto c, c \mapsto b\} \qquad I_{L}(Z) = \{a, b\}$$

Does the following formula hold in I_L : $\forall x \forall y (Z(x) \rightarrow x + y = -y)$?

model of a formula φ :

 \blacksquare is an interpretation I such that $I \models \varphi$

model of a formula φ :

 \blacksquare is an interpretation I such that $I \models \varphi$

satisfiability:

- \blacksquare formula φ is satisfiable if it has a model
- i.e., there is an interpretation I with the domain D_I , valuation of function symbols, predicate symbols, and variables α_I such that $I \models \varphi$

logical validity:

- formula φ is (logically) valid if it holds in **all** interpretations of the given language, i.e., for all domains, and valuations of function and predicate symbols and variables
- \blacksquare denoted as $\models \varphi$
- (equivalent to the notion of *tautology* in propositional logic)

logical validity:

- formula φ is (logically) valid if it holds in **all** interpretations of the given language, i.e., for all domains, and valuations of function and predicate symbols and variables
- \blacksquare denoted as $\models \varphi$
- (equivalent to the notion of tautology in propositional logic)

Example

Is the following formula valid?

$$\varphi \colon 1 + 1 = 2$$

logical validity:

- formula φ is (logically) valid if it holds in **all** interpretations of the given language, i.e., for all domains, and valuations of function and predicate symbols and variables
- \blacksquare denoted as $\models \varphi$
- (equivalent to the notion of *tautology* in propositional logic)

Example

Is the following formula valid?

$$\varphi \colon 1 + 1 = 2$$

why?

logical validity:

- formula φ is (logically) valid if it holds in **all** interpretations of the given language, i.e., for all domains, and valuations of function and predicate symbols and variables
- \blacksquare denoted as $\models \varphi$
- (equivalent to the notion of tautology in propositional logic)

Example

Is the following formula valid?

$$\varphi \colon 1 + 1 = 2$$

why?

- lacktriangle there is an interpretation I where φ does not hold
 - e.g., $D_I = \mathbb{N}$ with $I(+) = \{..., (1,1) \mapsto 3,...\}$

16/36

logical validity:

- formula φ is (logically) valid if it holds in **all** interpretations of the given language, i.e., for all domains, and valuations of function and predicate symbols and variables
- \blacksquare denoted as $\models \varphi$
- (equivalent to the notion of tautology in propositional logic)

Example

Is the following formula valid?

$$\varphi : 1 + 1 = 2$$

why?

- lacktriangle there is an interpretation I where φ does not hold
 - e.g., $D_I = \mathbb{N}$ with $I(+) = \{..., (1,1) \mapsto 3, ...\}$
- we often want to restrict the considered interpretations $\varphi \leadsto$ theory (language + axioms)

logical equivalence:

- lacktriangledown formulae φ and ψ are logically equivalent if $\models \varphi \leftrightarrow \psi$
- \blacksquare (or: if for any interpretation I of the given language it holds that $I \models \varphi$ iff $I \models \psi$)
- lacksquare denoted as $\varphi \Leftrightarrow \psi$

logical equivalence:

- lacktriangledown formulae φ and ψ are logically equivalent if $\models \varphi \leftrightarrow \psi$
- \blacksquare (or: if for any interpretation I of the given language it holds that $I \models \varphi$ iff $I \models \psi$)
- \blacksquare denoted as $\varphi \Leftrightarrow \psi$

logical consequence:

- lacktriangle formula ψ is a logical consequence of a formula φ if $\models \varphi \rightarrow \psi$
- (or: if for any interpretation I of the given language it holds that: if $I \models \varphi$, then $I \models \psi$)
- denoted as $\varphi \Rightarrow \psi$

To decide validity of FOL formulae, we extend the semantic argument method from PL using the following proof rules:

To decide validity of FOL formulae, we extend the semantic argument method from PL using the following proof rules:

- universal quantification 1: $\frac{I \models \forall x \varphi}{I \triangleleft \{x \mapsto t\} \models \varphi}$ for any ground term t
- existential quantification 1: $\frac{I \not\models \exists x \varphi}{I \triangleleft \{x \mapsto t\} \not\models \varphi}$ for any ground term t

In practice, we often choose t containing symbols that were introduced earlier (to obtain a contradiction). We assume the language has at least one constant symbol.

To decide validity of FOL formulae, we extend the semantic argument method from PL using the following proof rules:

- universal quantification 1: $\frac{I \models \forall x \varphi}{I \triangleleft \{x \mapsto t\} \models \varphi}$ for any ground term t
- existential quantification 1: $\frac{I \not\models \exists x \varphi}{I \triangleleft \{x \mapsto t\} \not\models \varphi}$ for any ground term t

In practice, we often choose t containing symbols that were introduced earlier (to obtain a contradiction). We assume the language has at least one constant symbol.

- universal quantification 2: $\frac{I \not\models \forall x \varphi}{I \triangleleft \{x \mapsto c\} \not\models \varphi}$ for a *fresh constant symbol* c
- existential quantification 2: $\frac{I \models \exists x \varphi}{I \triangleleft \{x \mapsto c\} \models \varphi}$ for a *fresh constant symbol* c

The value c cannot have been used in the proof before.

contradiction:

$$J: I \triangleleft \cdots \models p(s_1, \dots, s_n)$$

$$K: I \triangleleft \cdots \not\models p(t_1, \dots, t_n)$$

$$I \models \bot$$

for
$$1 \le i \le n \colon J[s_i] = K[t_i]$$

contradiction:

$$\begin{array}{ll} J\colon I\vartriangleleft\cdots\models p(s_1,\ldots,s_n)\\ K\colon I\vartriangleleft\cdots\not\models p(t_1,\ldots,t_n)\\ I\models\bot \end{array} \qquad \text{for } 1\leq i\leq n\colon J[s_i]=K[t_i] \end{array}$$

■ rules for (=) will be introduced in the next lecture (about theories)

Semantic Argument for FOL (example)

Example

Prove that the formula $\psi \colon (\forall x(p(x))) \to (\forall y(p(y)))$ is valid.

Semantic Argument for FOL (example)

Example

Prove that the formula $\psi \colon (\forall x(p(x))) \to (\forall y(p(y)))$ is valid.

Solution.

Assume ψ is invalid, i.e., there exists I s.t. $I \not\models \psi$. Then,

1.
$$I \not\models (\forall x(p(x))) \rightarrow (\forall y(p(y)))$$

$$2. \quad I \models \forall x(p(x))$$

3.
$$I \models \forall y(p(y))$$

$$4. \quad I \triangleleft \{y \mapsto v_1\} \not\models p(y)$$

$$5. \quad I \triangleleft \{x \mapsto v_1\} \models p(x)$$

6.
$$I \models \bot$$

Lecture 2

assumption by 1 and semantics of \rightarrow

by 1 and semantics of \rightarrow

by 3 and semantics of \forall

by 2 and semantics of \forall

from 4 and 5

Substitution

again, more involved than for PL (because of quantifiers)

Substitution

- again, more involved than for PL (because of quantifiers)
- Renaming: Let $\varphi = \forall x \, \psi$. The renaming of x to a fresh variable x' in φ is the formula $\varphi[x/x'] = \forall x' \, \psi'$ where ψ' is obtained ψ by replacing every free occurrence of x by x'.

Substitution

- again, more involved than for PL (because of quantifiers)
- Renaming: Let $\varphi = \forall x \, \psi$. The renaming of x to a fresh variable x' in φ is the formula $\varphi[x/x'] = \forall x' \, \psi'$ where ψ' is obtained ψ by replacing every free occurrence of x by x'.
- Substitution: mapping from formulae to formulae

$$\sigma: \{F_1 \mapsto G_1, \dots, F_n \mapsto G_n\}$$

Substitution

- again, more involved than for PL (because of quantifiers)
- Renaming: Let $\varphi = \forall x \, \psi$. The renaming of x to a fresh variable x' in φ is the formula $\varphi[x/x'] = \forall x' \, \psi'$ where ψ' is obtained ψ by replacing every free occurrence of x by x'.
- **Substitution**: mapping from formulae to formulae

$$\sigma: \{F_1 \mapsto G_1, \dots, F_n \mapsto G_n\}$$

- **Safe substitution**: $F\sigma$
 - for each quantified variable x in F that also occurs free in σ , rename x to a fresh variable x' to produce F'
 - (e.g., $\exists x(x=y)$)
 - ightharpoonup compute $F'\sigma$

Substitution

- again, more involved than for PL (because of quantifiers)
- Renaming: Let $\varphi = \forall x \, \psi$. The renaming of x to a fresh variable x' in φ is the formula $\varphi[x/x'] = \forall x' \, \psi'$ where ψ' is obtained ψ by replacing every free occurrence of x by x'.
- **Substitution**: mapping from formulae to formulae

$$\sigma: \{F_1 \mapsto G_1, \dots, F_n \mapsto G_n\}$$

- Safe substitution: Fσ
 - for each quantified variable x in F that also occurs free in σ , rename x to a fresh variable x' to produce F'
 - (e.g., $\exists x(x=y)$)
 - ightharpoonup compute $F'\sigma$

Proposition (Substitution of Equivalent Formulae)

If, given σ , for each i it holds that $F_i \Leftrightarrow G_i$, then $F \Leftrightarrow F\sigma$ where $F\sigma$ is computed as a safe substitution.

Useful Equivalences

Normal Forms (NNF)

Negation Normal Form (NNF):

- similar as for PL
- \blacksquare contains only \land , \lor , \neg , \exists , and \forall as connectives
- ¬ appears only in front of predicates

Normal Forms (NNF)

Negation Normal Form (NNF):

- similar as for PL
- lacktriangle contains only \wedge , \vee , \neg , \exists , and \forall as connectives
- ¬ appears only in front of predicates

Example

Let

$$\varphi : \neg \exists n \exists x \exists y (n > 2 \land \exists z (x^n + y^n = z^n)).$$

Normal Forms (NNF)

Negation Normal Form (NNF):

- similar as for PL
- \blacksquare contains only \land , \lor , \neg , \exists , and \forall as connectives
- ¬ appears only in front of predicates

Example

Let

$$\varphi : \neg \exists n \exists x \exists y (n > 2 \land \exists z (x^n + y^n = z^n)).$$

The formula

$$\psi \colon \forall n \forall x \forall y (\neg (n > 2) \quad \lor \quad \forall z (\neg (x^n + y^n = z^n)))$$

is equivalent to φ and is in NNF.

Normal Forms (PNF)

Prenex Normal Form (PNF):

formula is of the form

$$\varphi = \underbrace{Q_1 x_1 \dots Q_n x_n}_{\text{prefix}} \underbrace{\left(\psi(x_1, \dots, x_n, y_1, \dots, y_m)\right)}_{\text{matrix}}$$

where $Q_i \in \{ \forall, \exists \}$ and ψ is quantifier-free; $\{y_1, \dots, y_m\}$ are the free variables of φ

Normal Forms (PNF)

Prenex Normal Form (PNF):

formula is of the form

$$\varphi = \underbrace{Q_1 x_1 \dots Q_n x_n}_{\text{prefix}} \underbrace{\left(\psi(x_1, \dots, x_n, y_1, \dots, y_m)\right)}_{\text{matrix}}$$

where $Q_i \in \{ \forall, \exists \}$ and ψ is quantifier-free; $\{y_1, \dots, y_m\}$ are the free variables of φ

Example

Let

$$\psi: \forall n \forall x \forall y (\neg (n > 2) \quad \lor \quad \forall z (\neg (x^n + y^n = z^n))).$$

Normal Forms (PNF)

Prenex Normal Form (PNF):

formula is of the form

$$\varphi = \underbrace{Q_1 x_1 \dots Q_n x_n}_{\text{prefix}} \underbrace{\left(\underbrace{\psi(x_1, \dots, x_n, y_1, \dots, y_m)}_{\text{matrix}} \right)}_{\text{matrix}}$$

where $Q_i \in \{ \forall, \exists \}$ and ψ is quantifier-free; $\{y_1, \dots, y_m\}$ are the free variables of φ

Example

Let

$$\psi: \forall n \forall x \forall y (\neg (n > 2) \quad \lor \quad \forall z (\neg (x^n + y^n = z^n))).$$

The formula

$$\chi: \forall n \forall x \forall y \forall z \big(\neg (n > 2) \quad \lor \quad \neg (x^n + y^n = z^n) \big)$$

is equivalent to ψ and is in PNF.

Conversion to PNF:

1 elimination of useless quantifiers: $Qx\varphi \rightsquigarrow \varphi$ for $Q \in \{\exists, \forall\}$ if $x \notin \text{FREE}(\varphi)$

Conversion to PNF:

- **1** elimination of useless quantifiers: $Qx\varphi \rightsquigarrow \varphi$ for $Q \in \{\exists, \forall\}$ if $x \notin FREE(\varphi)$
- **2** eliminination of occurrences of \leftrightarrow : $\varphi \leftrightarrow \psi \quad \leadsto \quad (\varphi \to \psi) \land (\psi \to \varphi)$

Conversion to PNF:

- **1** elimination of useless quantifiers: $Qx\varphi \rightsquigarrow \varphi$ for $Q \in \{\exists, \forall\}$ if $x \notin FREE(\varphi)$
- **2** eliminination of occurrences of \leftrightarrow : $\varphi \leftrightarrow \psi \quad \leadsto \quad (\varphi \to \psi) \land (\psi \to \varphi)$
- renaming of variables:
 - ightharpoonup if there exists $x \in \mathbb{X}$ such that
 - it is in the intersection of $FREE(\varphi)$ and $BOUND(\varphi)$ or
 - it is quantified more than once

then substitute in φ the subformula $Qx\psi$ (for $Q \in \{\exists, \forall\}$) for the formula $Qy(\psi[x/y])$

• where y is a new variable that has no occurrence in φ

Conversion to PNF:

- **1** elimination of useless quantifiers: $Qx\varphi \rightsquigarrow \varphi$ for $Q \in \{\exists, \forall\}$ if $x \notin FREE(\varphi)$
- **2** eliminination of occurrences of \leftrightarrow : $\varphi \leftrightarrow \psi \quad \leadsto \quad (\varphi \to \psi) \land (\psi \to \varphi)$
- renaming of variables:
 - ightharpoonup if there exists $x \in \mathbb{X}$ such that
 - it is in the intersection of $FREE(\varphi)$ and $BOUND(\varphi)$ or
 - it is quantified more than once

then substitute in φ the subformula $Qx\psi$ (for $Q \in \{\exists, \forall\}$) for the formula $Qy(\psi[x/y])$

- where y is a new variable that has no occurrence in φ
- 4 push negation inside:

$$\neg \exists x \varphi \quad \rightsquigarrow \quad \forall x (\neg \varphi) \quad | \quad \neg (\varphi \land \psi) \quad \rightsquigarrow \quad \neg \varphi \lor \neg \psi \quad | \quad \neg (\varphi \rightarrow \psi) \quad \rightsquigarrow \quad \varphi \land \neg \psi$$

$$\neg \forall x \varphi \quad \rightsquigarrow \quad \exists x (\neg \varphi) \quad | \quad \neg (\varphi \lor \psi) \quad \rightsquigarrow \quad \neg \varphi \land \neg \psi \quad | \quad \neg \neg \varphi \quad \rightsquigarrow \quad \varphi$$

Conversion to PNF:

- elimination of useless quantifiers: $Qx\varphi \rightsquigarrow \varphi$ for $Q \in \{\exists, \forall\}$ if $x \notin FREE(\varphi)$
- **2** eliminination of occurrences of \leftrightarrow : $\varphi \leftrightarrow \psi \rightsquigarrow (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
- 3 renaming of variables:
 - ightharpoonup if there exists $x \in \mathbb{X}$ such that
 - it is in the intersection of $FREE(\varphi)$ and $BOUND(\varphi)$ or
 - it is quantified more than once

then substitute in φ the subformula $Qx\psi$ (for $Q \in \{\exists, \forall\}$) for the formula $Qy(\psi[x/y])$

- where y is a new variable that has no occurrence in φ
- 4 push negation inside:

$$\neg \exists x \varphi \quad \rightsquigarrow \quad \forall x (\neg \varphi) \quad | \quad \neg (\varphi \land \psi) \quad \rightsquigarrow \quad \neg \varphi \lor \neg \psi \quad | \quad \neg (\varphi \rightarrow \psi) \quad \rightsquigarrow \quad \varphi \land \neg \psi$$

$$\neg \forall x \varphi \quad \rightsquigarrow \quad \exists x (\neg \varphi) \quad | \quad \neg (\varphi \lor \psi) \quad \rightsquigarrow \quad \neg \varphi \land \neg \psi \quad | \quad \neg \neg \varphi \quad \rightsquigarrow \quad \varphi$$

5 move quantifiers to the left:

$$Qx(\varphi) \wedge \psi \quad \rightsquigarrow \quad Qx(\varphi \wedge \psi) \qquad \qquad Qx(\varphi) \rightarrow \psi \quad \rightsquigarrow \quad \overline{Q}x(\varphi \rightarrow \psi)$$

$$Qx(\varphi) \vee \psi \quad \rightsquigarrow \quad Qx(\varphi \vee \psi) \qquad \qquad \varphi \rightarrow Qx(\psi) \quad \rightsquigarrow \quad Qx(\varphi \rightarrow \psi)$$

for $Q \in \{\exists, \forall\}$, where \overline{Q} is the quantifier "opposite" to Q ($\overline{\exists} \mapsto \forall$ a $\overline{\forall} \mapsto \exists$).

Example

$$\forall n (n > 2 \rightarrow \neg \exists x \exists y \exists z (x^n + y^n = z^n)) \Leftrightarrow$$

Example

$$\forall n (n > 2 \quad \rightarrow \quad \neg \exists x \exists y \exists z (x^n + y^n = z^n)) \Leftrightarrow$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \neg \exists y \exists z (x^n + y^n = z^n))$$

Example

$$\forall n (n > 2 \quad \rightarrow \quad \neg \exists x \exists y \exists z (x^n + y^n = z^n)) \Leftrightarrow$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \neg \exists y \exists z (x^n + y^n = z^n))$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \forall y \neg \exists z (x^n + y^n = z^n))$$

Example

$$\forall n (n > 2 \quad \rightarrow \quad \neg \exists x \exists y \exists z (x^n + y^n = z^n)) \Leftrightarrow$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \neg \exists y \exists z (x^n + y^n = z^n))$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \forall y \neg \exists z (x^n + y^n = z^n))$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \forall y \forall z (\neg (x^n + y^n = z^n)))$$

Example

$$\forall n (n > 2 \quad \rightarrow \quad \neg \exists x \exists y \exists z (x^n + y^n = z^n)) \Leftrightarrow$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \neg \exists y \exists z (x^n + y^n = z^n))$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \forall y \neg \exists z (x^n + y^n = z^n))$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \forall y \forall z (\neg (x^n + y^n = z^n)))$$

$$\Leftrightarrow \forall n \forall x (n > 2 \quad \rightarrow \quad \forall y \forall z (\neg (x^n + y^n = z^n)))$$

Example

$$\forall n (n > 2 \quad \rightarrow \quad \neg \exists x \exists y \exists z (x^n + y^n = z^n)) \Leftrightarrow$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \neg \exists y \exists z (x^n + y^n = z^n))$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \forall y \neg \exists z (x^n + y^n = z^n))$$

$$\Leftrightarrow \forall n (n > 2 \quad \rightarrow \quad \forall x \forall y \forall z (\neg (x^n + y^n = z^n)))$$

$$\Leftrightarrow \forall n \forall x (n > 2 \quad \rightarrow \quad \forall y \forall z (\neg (x^n + y^n = z^n)))$$

$$\Leftrightarrow \forall n \forall x \forall y (n > 2 \quad \rightarrow \quad \forall z (\neg (x^n + y^n = z^n)))$$

Example

$$\forall n (n > 2 \rightarrow \neg \exists x \exists y \exists z (x^n + y^n = z^n)) \Leftrightarrow$$

$$\Leftrightarrow \forall n (n > 2 \rightarrow \forall x \neg \exists y \exists z (x^n + y^n = z^n))$$

$$\Leftrightarrow \forall n (n > 2 \rightarrow \forall x \forall y \neg \exists z (x^n + y^n = z^n))$$

$$\Leftrightarrow \forall n (n > 2 \rightarrow \forall x \forall y \forall z (\neg (x^n + y^n = z^n)))$$

$$\Leftrightarrow \forall n \forall x (n > 2 \rightarrow \forall y \forall z (\neg (x^n + y^n = z^n)))$$

$$\Leftrightarrow \forall n \forall x \forall y (n > 2 \rightarrow \forall z (\neg (x^n + y^n = z^n)))$$

$$\Leftrightarrow \forall n \forall x \forall y \forall z (n > 2 \rightarrow \neg (x^n + y^n = z^n))$$

Example

$$\forall y \Big(\exists x (P(x,y)) \to Q(y,z) \Big) \land \neg \exists z \Big(\forall x \big(R(x,y) \lor Q(x,y) \big) \Big) \Leftrightarrow$$

Example

$$\forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \exists z \Big(\forall x \Big(R(x,y) \lor Q(x,y)\Big)\Big) \Leftrightarrow \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall x \Big(R(x,y) \lor Q(x,y)\Big)$$

Example

$$\forall y \Big(\exists x (P(x,y)) \to Q(y,z) \Big) \land \neg \exists z \Big(\forall x \Big(R(x,y) \lor Q(x,y) \Big) \Big) \Leftrightarrow$$

$$\Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z) \Big) \land \neg \forall x \Big(R(x,y) \lor Q(x,y) \Big)$$

$$\Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z) \Big) \land \neg \forall u \Big(R(u,y) \lor Q(u,y) \Big)$$

Example

$$\forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \exists z \Big(\forall x \Big(R(x,y) \lor Q(x,y)\Big)\Big) \Leftrightarrow$$

$$\Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall x \Big(R(x,y) \lor Q(x,y)\Big)$$

$$\Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall u \Big(R(u,y) \lor Q(u,y)\Big)$$

$$\Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big)$$

Example

$$\forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \exists z \Big(\forall x \Big(R(x,y) \lor Q(x,y)\Big)\Big) \Leftrightarrow \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall x \Big(R(x,y) \lor Q(x,y)\Big) \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall u \Big(R(u,y) \lor Q(u,y)\Big) \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big) \\ \Leftrightarrow \forall y \Big(\big(\exists x (P(x,y)) \to Q(y,z)\big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big)\Big) \\ \Leftrightarrow \forall y \Big(\big(\exists x (P(x,y)) \to Q(y,z)\big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big)\Big) \\ \Leftrightarrow \forall y \Big((\exists x (P(x,y)) \to Q(y,z)\big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big)\Big) \\ \Leftrightarrow \forall y \Big((\exists x (P(x,y)) \to Q(y,z)\big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big)\Big)$$

Example

Convert the following formula to PNF.

$$\forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \exists z \Big(\forall x \Big(R(x,y) \lor Q(x,y)\Big)\Big) \Leftrightarrow \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall x \Big(R(x,y) \lor Q(x,y)\Big) \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall u \Big(R(u,y) \lor Q(u,y)\Big) \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big) \\ \Leftrightarrow \forall y \Big(\big(\exists x (P(x,y)) \to Q(y,z)\big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big)\Big) \\ \Leftrightarrow \forall y \exists u \Big(\big(\exists x (P(x,y)) \to Q(y,z)\big) \land \neg \big(R(u,y) \lor Q(u,y)\big)\Big)\Big)$$

Example

Convert the following formula to PNF.

$$\forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \exists z \Big(\forall x \Big(R(x,y) \lor Q(x,y)\Big)\Big) \Leftrightarrow \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall x \Big(R(x,y) \lor Q(x,y)\Big) \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall u \Big(R(u,y) \lor Q(u,y)\Big) \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big) \\ \Leftrightarrow \forall y \Big(\big(\exists x (P(x,y)) \to Q(y,z)\big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big)\Big) \\ \Leftrightarrow \forall y \exists u \Big(\big(\exists x (P(x,y)) \to Q(y,z)\big) \land \neg \big(R(u,y) \lor Q(u,y)\big)\Big) \\ \Leftrightarrow \forall y \exists u \Big(\forall x \big(P(x,y) \to Q(y,z)\big) \land \neg \big(R(u,y) \lor Q(u,y)\big)\Big) \\$$

Example

Convert the following formula to PNF.

$$\forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \exists z \Big(\forall x \big(R(x,y) \lor Q(x,y)\big)\Big) \Leftrightarrow \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall x \big(R(x,y) \lor Q(x,y)\big) \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \neg \forall u \big(R(u,y) \lor Q(u,y)\big) \\ \Leftrightarrow \forall y \Big(\exists x (P(x,y)) \to Q(y,z)\Big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big) \\ \Leftrightarrow \forall y \Big(\big(\exists x (P(x,y)) \to Q(y,z)\big) \land \exists u \Big(\neg \big(R(u,y) \lor Q(u,y)\big)\Big)\Big) \\ \Leftrightarrow \forall y \exists u \Big(\big(\exists x (P(x,y)) \to Q(y,z)\big) \land \neg \big(R(u,y) \lor Q(u,y)\big)\Big) \\ \Leftrightarrow \forall y \exists u \Big(\forall x \big(P(x,y) \to Q(y,z)\big) \land \neg \big(R(u,y) \lor Q(u,y)\big)\Big) \\ \Leftrightarrow \forall y \exists u \forall x \Big(\big(P(x,y) \to Q(y,z)\big) \land \neg \big(R(u,y) \lor Q(u,y)\big)\Big) \\ \Leftrightarrow \forall y \exists u \forall x \Big(\big(P(x,y) \to Q(y,z)\big) \land \neg \big(R(u,y) \lor Q(u,y)\big)\Big) \\ \Leftrightarrow \forall y \exists u \forall x \Big(P(x,y) \to Q(y,z)\big) \land \neg \big(R(u,y) \lor Q(u,y)\big)\Big)$$

Normal Forms (DNF, CNF)

- disjunctive normal form (DNF): PNF where matrix is in DNF
- conjuctive normal form (CNF): PNF where matrix is in CNF

- Skolem Normal Form (SNF):
 - formula is in the PNF
 - ▶ formula does not contain any existential quantifier ∃
- \blacksquare Given a FOL formula φ , there might not be an equivalent formula in the SNF.
- There will, however, always be an equisatisfiable formula φ' in the SNF.
 - equisatisfiable: φ is satisfiable iff φ' is satisfiable
- Skolemization:
 - Assume the following formula:

$$\varphi : \forall x_1 \forall x_2 \dots \forall x_k \exists y(\psi)$$

- Skolem Normal Form (SNF):
 - formula is in the PNF
 - ▶ formula does not contain any existential quantifier ∃
- \blacksquare Given a FOL formula φ , there might not be an equivalent formula in the SNF.
- There will, however, always be an equisatisfiable formula φ' in the SNF.
 - equisatisfiable: φ is satisfiable iff φ' is satisfiable
- Skolemization:
 - Assume the following formula:

$$\varphi \colon \forall x_1 \forall x_2 \dots \forall x_k \exists y(\psi)$$

- \triangleright y depends on x_1, \ldots, x_k
- ho is satisfiable iff for every tuple (x_1, \ldots, x_k) , there exists a y such that ψ is satisfiable under such an incomplete assignment
- ▶ i.e., if there exists a k-ary function f_y that for every tuple (x_1, \ldots, x_k) assigns a corresponding y
- \blacktriangleright we can remove $\exists y$ and substitute all free occurrences of y in ψ for $f_y(x_1,\ldots,x_k)$

Example

Transform the following formula into an equisatisfiable formula in the SNF:

$$\exists x \forall y \exists z \forall u \exists v (x + y + z = u + v)$$

Example

Transform the following formula into an equisatisfiable formula in the SNF:

$$\exists x \forall y \exists z \forall u \exists v (x+y+z=u+v)$$

$$\rightsquigarrow \forall y \exists z \forall u \exists v (f_x+y+z=u+v)$$

$$\rightsquigarrow \forall y \forall u \exists v (f_x+y+f_z(y)=u+v)$$

$$\rightsquigarrow \forall y \forall u (f_x+y+f_z(y)=u+f_v(y,u))$$

Soundness and Completeness of Semantic Argument

Soundness

a proof method is **sound** if it never proves a wrong formula:

if
$$\vdash \varphi$$
 then $\models \varphi$

 $\vdash \varphi$: φ is provable

Theorem

The semantic argument is sound.

Soundness and Completeness of Semantic Argument

Soundness

a proof method is **sound** if it never proves a wrong formula:

if
$$\vdash \varphi$$
 then $\models \varphi$

 $\vdash \varphi$: φ is provable

Theorem

The semantic argument is sound.

Completeness

• a proof method is **complete** if it can prove every valid formula:

if
$$\models \varphi$$
 then $\vdash \varphi$

Theorem (Gödel's completeness theorem)

The semantic argument is complete.

Soundness and Completeness of Semantic Argument

Soundness

a proof method is **sound** if it never proves a wrong formula:

if
$$\vdash \varphi$$
 then $\models \varphi$

 $\vdash \varphi$: φ is provable

Theorem

The semantic argument is sound.

Completeness

a proof method is **complete** if it can prove every valid formula:

if
$$\models \varphi$$
 then $\vdash \varphi$

Theorem (Gödel's completeness theorem)

The semantic argument is complete.

There are also other sound and complete methods for FOL (e.g. natural deduction, Hilbert system, resolution).

Löwenheim-Skolem Theorem

Theorem (Löwenheim-Skolem (simplified))

If an FOL formula has a model of an infinite cardinality then it has a model of **any** infinite cardinality.

Herbrand interpretation of a language L

- \blacksquare a special kind of interpretation I_H
- \blacksquare the domain D_H is fixed as the set of all ground terms of L (i.e., no variables),
 - ▶ if *L* does not contain any constant symbol, we create a new one
- interpretation of function symbols is "natural"

Herbrand interpretation of a language L

- \blacksquare a special kind of interpretation I_H
- \blacksquare the domain D_H is fixed as the set of all ground terms of L (i.e., no variables),
 - ▶ if *L* does not contain any constant symbol, we create a new one
- interpretation of function symbols is "natural"

Example

Herbrand interpretation of a language L

- \blacksquare a special kind of interpretation I_H
- \blacksquare the domain D_H is fixed as the set of all ground terms of L (i.e., no variables),
 - ▶ if *L* does not contain any constant symbol, we create a new one
- interpretation of function symbols is "natural"

Example

Herbrand interpretation of a language L

- \blacksquare a special kind of interpretation I_H
- \blacksquare the domain D_H is fixed as the set of all ground terms of L (i.e., no variables),
 - ightharpoonup if L does not contain any constant symbol, we create a new one
- interpretation of function symbols is "natural"

Example

$$I_H(a) = \{() \mapsto "a"\}$$

Herbrand interpretation of a language L

- \blacksquare a special kind of interpretation I_H
- \blacksquare the domain D_H is fixed as the set of all ground terms of L (i.e., no variables),
 - if L does not contain any constant symbol, we create a new one
- interpretation of function symbols is "natural"

Example

$$I_H(a) = \{() \mapsto "a"\}$$

$$\blacksquare I_H(g) = \{ \text{``a''} \mapsto \text{``g(a)''}, \text{``g(a)''} \mapsto \text{``g(g(a))''}, \text{``f(a,a)''} \mapsto \text{``g(f(a,a))''}, \ldots \}$$

Herbrand interpretation of a language L

- \blacksquare a special kind of interpretation I_H
- the domain D_H is fixed as the set of all ground terms of L (i.e., no variables),
 - if L does not contain any constant symbol, we create a new one
- interpretation of function symbols is "natural"

Example

$$D_H = \{ \text{``a''}, \text{``g}(a)\text{''}, \text{``f}(a, a)\text{''}, \text{``g}(g(a))\text{''}, \text{``g}(f(a, a))\text{''}, \text{``f}(g(a), a)\text{''}, \text{``g}(f(a, g(g(a))))\text{''}, \ldots \}$$

- $I_H(a) = \{() \mapsto "a"\}$
- $\blacksquare I_H(g) = \{\text{``a"} \mapsto \text{``g(a)"}, \text{``g(a)"} \mapsto \text{``g(g(a))"}, \text{``f(a,a)"} \mapsto \text{``g(f(a,a))"}, \ldots\}$
- $\blacksquare I_H(f) = \{("a", "a") \mapsto "f(a, a)", ("g(a)", "a") \mapsto "f(g(a), a)", \ldots\}$

Herbrand model

Herbrand model: a model of a formula that is also a Herbrand interpretation

■ i.e., we need to provide interpretation of predicate symbols and variables only

Theorem (Herbrand's theorem (simplified))

A set of FOL formulae has a model iff it has a Herbrand model.

- → it is enough to search for Herbrand models (e.g., model construct. in SMT solvers)
- minimal Herbrand model (semantics of PROLOG programs)

Notes

Exists exactly one:

$$\exists ! x \, \varphi(x) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \exists x (\varphi(x) \land \forall y (\varphi(y) \rightarrow x = y))$$

where y is not free in φ

- many-sorted logics:
 - capture the natural requirement to distinguish types of variables
 - e.g. in

$$\forall w \in \Sigma^* \big(safe(w) \to \exists n \in \mathbb{N} \big(\#_{'('}(w) = \#_{')'}(w) \big) \big)$$

References

[A.R. Bradley and Z. Manna. The Calculus of Computation.]