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First-Order Logic
First-Order Logic (FOL)

also called (first-order) predicate logic, predicate calculus, . . .

generalizes propositional logic by
▶ interpreting (“looking inside”) propositions
▶ talks about elements of a universe—denoted by terms formed from variables, constants,

and functions
• e.g., x, 5, f(x, 2), 36 + 2 · 3, fatherOf (motherOf (x)), head("abc"), sin(y), . . .

▶ propositions are substituted with predicates over terms
• e.g., x = y, even(x), p(x, y, z), isFatherOf (x, y), . . .

▶ introducing quantifiers to express existential or universal properties about elements of
the universe (first-order quantification)

• ∀x — universal quantifier (all elements satisfy property)
• ∃x — existential quantifier (some element satisfies property)

much more expressive than propositional logic!
▶ therefore, also more complex (in general undecidable)
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First-Order Logic

Example
All men are mortal. Socrates is a man. So Socrates is mortal.

(
∀x(man(x)→mortal(x)) ∧man(Socrates)

)
→mortal(Socrates)

There are infinitely many prime numbers.

∀x∃y
(
y > x ∧ ∀z

(
(z ̸= 1 ∧ z ̸= y)→∀w(wz ̸= y)

))
The relation R is transitive. ∀x∀y∀z( (R(x, y) ∧R(y, z))→R(x, z) )

Let R[name, id] and S[id, age] be tables in an SQL
select R.name from R join S on R.id = S.id where S.age = 42

∃z(R(x, z) ∧ S(z, 42))

Fermat’s Last theorem
∀n∀x∀y

(
n > 2 → ∀z(xn + yn ̸= zn)

)
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First-Order Logic
What is NOT expressible with FOL:

“Adam is an ancestor of Socrates.” (using isParentOf )
Attempts:

▶ ∃x1, . . . , xn
(
isParentOf (Adam, x1) ∧ . . . ∧ isParentOf (xn,Socrates)

)
[n is bounded]

▶ ∃fin
2 X

(
Socrates ∈ X ∧Adam ∈ X ∧

(
∀y ∈ X :

(∃z ∈ X : isParentOf (z, y)) ∨ y = Adam
))

[∃fin
2 — second-order finite quantification, cf. MSO]

▶ isAncestorOf (x, y)
def⇔ isParentOf (x, y) ∨(

∃z : isAncestorOf (x, z) ∧ isParentOf (z, y)
)

[recursive predicate]

“Anakin is more likely than Gandalf the father of Luke.”
Attempts:
▶ ?!$#dk*#R&Q
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Syntax

Syntax:
Alphabet:
▶ logical connectives: ¬,∧,∨,→,↔, (· · · ) (from PL)
▶ variables: x, y, . . . , x1, x2, . . . (hold elements of a universe)
▶ quantifiers: ∀,∃

▶ function symbols (with /arity ): f/2, +/2, sin/1, fatherOf/1, S/1, π/0, 42/0,. . .
• nullary functions (arity 0): constants
• to be used as, e.g., f(a, 3), +(40, 2), sin(S(x)), fatherOf (Luke), π()
• we often simplify the notation: +(40, 2) 7→ 40 + 2, π() 7→ π, . . .

▶ predicate symbols (with /arity ): p/3, isFatherOf/2, isJedi/1, </2, . . .
• to be used as, e.g., p(a, x, 9), isFatherOf (Anakin,Luke), isJedi(Anakin), <(x, π)
• we often simplify the notation: <(x, π) 7→ x < π, . . .

▶ predicate symbol of equality =/2

Signature ⟨F ,P⟩ = function symbols + predicate symbols
▶ language: given by the signature
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First-Order Logic — Syntax
Example

the language of order theory: ⟨F = ∅,P = {</2}⟩
▶ no function symbol
▶ one binary predicate symbol <

the language of group theory: ⟨F = {·/2, e/0},P = ∅⟩
▶ binary function symbol · (group multiplication)
▶ nullary function symbol e for neutral element

the language of set theory: ⟨F = ∅,P = {∈/2}⟩
the language of theory of arrays: ⟨F = {·[·]r/2, ·[·, ·]

w
/3},P = ∅⟩

▶ binary function symbol for reading from array ·[·]r, e.g., A[i]r
▶ ternary function symbol for writing into array ·[·, ·]w, e.g., A[i, y]w

(writing y at index i in array A)

the language of theory of lists: ⟨F = {cons/2, car/1, cdr/1},P = {atom/1}⟩
the language of elementary (so-called Peano) aritmetic:
⟨F = {0/0, S/1,+/2, ·/2},P = ∅⟩
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First-Order Logic — syntax

Grammar: formulae are composed of terms
term (it will hold a value from the universe):

t ::= x | f(t1, . . . , tn)

where x ∈ X and f/n is a function symbol
(the special case of a constant c/0 is also a term)
ground term: a term with no variables

examples of terms:
▶ x, 5, f(x, 2), 40 + 2, car(cons(x, y)), head("abc"), sin y
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First-Order Logic — syntax
Grammar (cont.):

atomic formula:
φatom ::= p(t1, . . . , tn)

for a predicate symbol p/n and terms t1, . . . , tn
(also for p being the equality symbol =/2)

formula:
φ ::= φatom | (¬φ1) |

(φ1 ∧ φ2) | (φ1 ∨ φ2) |
(φ1 → φ2) | (φ1 ↔ φ2) |
(∀xφ1) | (∃xφ1)

▶ where x is a variable from the set of variables X
▶ (parentheses are often omitted)

examples of formulae:
▶ ∃x(40 + x = 42 ∧ 40 · x = 80),
▶ ∀x(tan(x) = sin(x)

cos(x) ),
▶ atom(car(cons(x, y))),
▶ ∀x(∃y(x = y · y ∨ x = −y · y))
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First-Order Logic — Variables
Variables in formulae:

bound: occur in the scope of a quantifier
▶ e.g. BOUND(∃x

(
x = 4 ∧ ¬(y = 5)

)
) = {x}

free: there is an occurrence not bound by any quantifier
▶ e.g. FREE(x = 4 ∧ ∃y(y = 5)) = {x}

FREE(·) and BOUND(·) are symbols of the metalanguage
a variable can occur both bound and free in a formula

Example

∀x
(
p(f(x), y)→∀y(p(f(x), y))

)
▶ x only occurs bound

▶ y occurs both free (antecedent) and bound (consequent)

we often write φ(x1, . . . , xn) when FREE(φ) ⊆ {x1, . . . , xn}
▶ x1, . . . , xn serve as the “interface” of φ

φ is ground (or closed) if FREE(φ) = ∅
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Semantics
Semantics of FOL:

so far, the symbols did not have any meaning!
more complicated than for PL

Interpretation I = (DI , αI):
provides the meaning to the symbols
▶ a formula may hold in one interpretation and not hold in another

domain (universe) of discourse DI : a non-empty set of elements
▶ e.g., N, {0, 1, 2, 3, 4}, R3, People, List [N], Σ∗, . . .

assignment αI :
▶ for every function symbol f/n, a function fI :

n︷ ︸︸ ︷
DI × . . .×DI → DI

• e.g., I(+) = {(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 2, . . .}
• for constants, this gives us one value, e.g., I(π) = {() 7→ 3.1415926 . . .}

▶ for every predicate symbol p/n, a relation pI ⊆
n︷ ︸︸ ︷

DI × . . .×DI

• e.g., I(<) = {(0, 1), (0, 2), (1, 2), . . .}
• e.g., I(even/1) = {0, 2, 4, . . .}
• e.g., I(edge/2) = {(v1, v2), (v2, v3), . . .}

▶ for every variable x ∈ X a value from DI , e.g., I(x) = 42
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First-Order Logic — Interpretations

Example
Examples of interpretations of the language with the signature ⟨F = {+/2},P = ∅⟩:

Addition in N: DI = N where
▶ I(+) = (+N) (addition of natural numbers)

Addition in R3: DI = R3 where
▶ I(+) = {([x1, y1, z1], [x2, y2, z2]) 7→ [x1 +R x2, y1 +R y2, z1 +R z2] | x1, . . . , z2 ∈ R}

Disjunction in a Boolean algebra: DI = {0, 1} where
▶ I(+) = {(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 1}

Modular addition in {0, 1, 2}: DI = {0, 1, 2} where
▶ I(+) = {(x, y) 7→ (x+ y mod 3) | x, y ∈ {0, 1, 2}}
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First-Order Logic — Interpretations
Example
Language with the signature ⟨F = {+/2, ·/2,−/1},P = {E/1}⟩:

Addition, multiplication, and opposite number in Z: DI = Z
▶ I(+) = (+Z) (addition of natural numbers)
▶ I(·) = (·Z) (multiplication of natural numbers)
▶ I(−) = {x 7→ (0−Z x) | x ∈ Z}
▶ I(E) = {. . . ,−4,−2, 0, 2, 4, . . .}

Disjunction, conjunction, and negation in a Boolean algebra: DI = {0, 1}
▶ I(+) = {(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 1}
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Semantics
Truth value: inductive definition:

Terms: evaluate their value recursively

I[f(t1, . . . , tn)]
def
= I[f ](I[t1], . . . , I[tn])

Then: I |= p(t1, . . . , tn) iff (I[t1], . . . , I[tn]) ∈ I[p]
(for equality: I |= (t1 = t2) iff I[t1] and I[t2] denote the same element from DI )

logical connectives (same as for PL):
I |= ¬ψ iff I ̸|= ψ
I |= ψ1 ∧ ψ2 iff I |= ψ1 and I |= ψ2

I |= ψ1 ∨ ψ2 iff I |= ψ1 or I |= ψ2

I |= ψ1 → ψ2 iff, if I |= ψ1 then I |= ψ2

I |= ψ1 ↔ ψ2 iff I |= ψ1 and I |= ψ2, or I ̸|= ψ1 and I ̸|= ψ2

quantifiers: let I ◁ {x 7→ v} denote an interpretation obtained from I by substituting
x 7→? by x 7→ v in I (I ◁ {x 7→ v} is a variant)
I |= ∀xφ iff for all v ∈ DI we have I ◁ {x 7→ v} |= φ
I |= ∃xφ iff there exists v ∈ DI such that I ◁ {x 7→ v} |= φ
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First-Order Logic — Semantics

Example
Let L be the language with the signature ⟨F = {+/2,−/1}, P = {Z/1}⟩ and its
interpretation IL with DIL = {a, b, c} and

IL(+) =

a b c

a a b c
b b c a
c c a b

IL(−) = {a 7→ a, b 7→ c, c 7→ b} IL(Z) = {a, b}

Does the following formula hold in IL: ∀x∀y(Z(x)→ x+ y = −y) ?
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First-Order Logic

model of a formula φ:
is an interpretation I such that I |= φ

satisfiability:
formula φ is satisfiable if it has a model
i.e., there is an interpretation I with the domain DI , valuation of function symbols,
predicate symbols, and variables αI such that I |= φ
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First-Order Logic

logical validity:
formula φ is (logically) valid if it holds in all interpretations of the given language, i.e.,
for all domains, and valuations of function and predicate symbols and variables
denoted as |= φ

(equivalent to the notion of tautology in propositional logic)

Example
Is the following formula valid?

φ : 1 + 1 = 2

why?
there is an interpretation I where φ does not hold
▶ e.g., DI = N with I(+) = {. . . , (1, 1) 7→ 3, . . .}

we often want to restrict the considered interpretations φ⇝ theory (language +
axioms)
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First-Order Logic

logical equivalence:
formulae φ and ψ are logically equivalent if |= φ↔ ψ

(or: if for any interpretation I of the given language it holds that I |= φ iff I |= ψ)
denoted as φ⇔ ψ

logical consequence:
formula ψ is a logical consequence of a formula φ if |= φ→ ψ

(or: if for any interpretation I of the given language it holds that: if I |= φ, then I |= ψ)
denoted as φ⇒ ψ

Lecture 2 First-Order Logic IAM’24 17 / 36



First-Order Logic

logical equivalence:
formulae φ and ψ are logically equivalent if |= φ↔ ψ

(or: if for any interpretation I of the given language it holds that I |= φ iff I |= ψ)
denoted as φ⇔ ψ

logical consequence:
formula ψ is a logical consequence of a formula φ if |= φ→ ψ

(or: if for any interpretation I of the given language it holds that: if I |= φ, then I |= ψ)
denoted as φ⇒ ψ

Lecture 2 First-Order Logic IAM’24 17 / 36



Semantic Argument for FOL
To decide validity of FOL formulae, we extend the semantic argument method from PL
using the following proof rules:

universal quantification 1:
I |= ∀xφ

I ◁ {x 7→ t} |= φ
for any ground term t

existential quantification 1:
I ̸|= ∃xφ

I ◁ {x 7→ t} ̸|= φ
for any ground term t

In practice, we often choose t containing symbols that were introduced earlier (to
obtain a contradiction). We assume the language has at least one constant symbol.

universal quantification 2:
I ̸|= ∀xφ

I ◁ {x 7→ c} ̸|= φ
for a fresh constant symbol c

existential quantification 2:
I |= ∃xφ

I ◁ {x 7→ c} |= φ
for a fresh constant symbol c

The value c cannot have been used in the proof before.
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Semantic Argument for FOL

contradiction:

J : I ◁ · · · |= p(s1, . . . , sn)
K : I ◁ · · · ̸|= p(t1, . . . , tn)

I |= ⊥
for 1 ≤ i ≤ n : J [si] = K[ti]

rules for (=) will be introduced in the next lecture (about theories)
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Semantic Argument for FOL (example)

Example
Prove that the formula ψ : (∀x(p(x)))→ (∀y(p(y))) is valid.

Solution.
Assume ψ is invalid, i.e., there exists I s.t. I ̸|= ψ. Then,

1. I ̸|= (∀x(p(x)))→ (∀y(p(y))) assumption
2. I |= ∀x(p(x)) by 1 and semantics of →
3. I |= ∀y(p(y)) by 1 and semantics of →
4. I ◁ {y 7→ v1} ̸|= p(y) by 3 and semantics of ∀
5. I ◁ {x 7→ v1} |= p(x) by 2 and semantics of ∀
6. I |= ⊥ from 4 and 5
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Substitution
Substitution

again, more involved than for PL (because of quantifiers)

Renaming: Let φ = ∀xψ. The renaming of x to a fresh variable x′ in φ is the formula
φ[x/x′] = ∀x′ ψ′ where ψ′ is obtained ψ by replacing every free occurrence of x by x′.
Substitution: mapping from formulae to formulae

σ : {F1 7→ G1, . . . , Fn 7→ Gn}

Safe substitution: Fσ
▶ for each quantified variable x in F that also occurs free in σ, rename x to a fresh variable

x′ to produce F ′

• (e.g., ∃x(x = y))
▶ compute F ′σ

Proposition (Substitution of Equivalent Formulae)
If, given σ, for each i it holds that Fi ⇔ Gi, then F ⇔ Fσ
where Fσ is computed as a safe substitution.
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Useful Equivalences

∀x(¬φ) ⇔ ¬∃xφ
∃x(¬φ) ⇔ ¬∀xφ

(∀xφ(x)) ∧ (∀y ψ(y)) ⇔ ∀x(φ(x) ∧ ψ(x)) if x /∈ FREE(ψ)

(∃xφ(x)) ∨ (∃y ψ(y)) ⇔ ∃x(φ(x) ∨ ψ(x)) if x /∈ FREE(ψ)

∀xφ ⇔ φ if x /∈ FREE(φ)

∃xφ ⇔ φ if x /∈ FREE(φ)

∀x(φ ∨ ψ) ⇔ (∀xφ) ∨ ψ if x /∈ FREE(ψ)

∃x(φ ∧ ψ) ⇔ (∃xφ) ∧ ψ if x /∈ FREE(ψ)
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Normal Forms (NNF)

Negation Normal Form (NNF):
similar as for PL
contains only ∧, ∨, ¬, ∃, and ∀ as connectives
¬ appears only in front of predicates

Example
Let

φ : ¬∃n∃x∃y
(
n > 2 ∧ ∃z(xn + yn = zn)

)
.

The formula

ψ : ∀n∀x∀y
(
¬(n > 2) ∨ ∀z(¬(xn + yn = zn))

)
is equivalent to φ and is in NNF.
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Normal Forms (PNF)
Prenex Normal Form (PNF):

formula is of the form

φ = Q1x1 . . . . Qnxn︸ ︷︷ ︸
prefix

(
ψ(x1, . . . , xn, y1, . . . , ym)︸ ︷︷ ︸

matrix

)
where Qi ∈ {∀,∃} and ψ is quantifier-free; {y1, . . . , ym} are the free variables of φ

Example
Let

ψ : ∀n∀x∀y
(
¬(n > 2) ∨ ∀z(¬(xn + yn = zn))

)
.

The formula

χ : ∀n∀x∀y∀z
(
¬(n > 2) ∨ ¬(xn + yn = zn)

)
is equivalent to ψ and is in PNF.

Lecture 2 First-Order Logic IAM’24 24 / 36



Normal Forms (PNF)
Prenex Normal Form (PNF):

formula is of the form

φ = Q1x1 . . . . Qnxn︸ ︷︷ ︸
prefix

(
ψ(x1, . . . , xn, y1, . . . , ym)︸ ︷︷ ︸

matrix

)
where Qi ∈ {∀,∃} and ψ is quantifier-free; {y1, . . . , ym} are the free variables of φ

Example
Let

ψ : ∀n∀x∀y
(
¬(n > 2) ∨ ∀z(¬(xn + yn = zn))

)
.

The formula

χ : ∀n∀x∀y∀z
(
¬(n > 2) ∨ ¬(xn + yn = zn)

)
is equivalent to ψ and is in PNF.

Lecture 2 First-Order Logic IAM’24 24 / 36



Normal Forms (PNF)
Prenex Normal Form (PNF):

formula is of the form

φ = Q1x1 . . . . Qnxn︸ ︷︷ ︸
prefix

(
ψ(x1, . . . , xn, y1, . . . , ym)︸ ︷︷ ︸

matrix

)
where Qi ∈ {∀,∃} and ψ is quantifier-free; {y1, . . . , ym} are the free variables of φ

Example
Let

ψ : ∀n∀x∀y
(
¬(n > 2) ∨ ∀z(¬(xn + yn = zn))

)
.

The formula

χ : ∀n∀x∀y∀z
(
¬(n > 2) ∨ ¬(xn + yn = zn)

)
is equivalent to ψ and is in PNF.

Lecture 2 First-Order Logic IAM’24 24 / 36



Prenex Normal Form
Conversion to PNF:

1 elimination of useless quantifiers: Qxφ ⇝ φ for Q ∈ {∃, ∀} if x /∈ FREE(φ)

2 eliminination of occurrences of ↔: φ↔ ψ ⇝ (φ→ ψ) ∧ (ψ→ φ)

3 renaming of variables:
▶ if there exists x ∈ X such that

• it is in the intersection of FREE(φ) and BOUND(φ) or
• it is quantified more than once

then substitute in φ the subformula Qxψ (for Q ∈ {∃,∀}) for the formula Qy(ψ[x/y])
• where y is a new variable that has no occurrence in φ

4 push negation inside:
¬∃xφ ⇝ ∀x(¬φ) ¬(φ ∧ ψ) ⇝ ¬φ ∨ ¬ψ ¬(φ→ ψ) ⇝ φ ∧ ¬ψ
¬∀xφ ⇝ ∃x(¬φ) ¬(φ ∨ ψ) ⇝ ¬φ ∧ ¬ψ ¬¬φ ⇝ φ

5 move quantifiers to the left:

Qx(φ) ∧ ψ ⇝ Qx(φ ∧ ψ) Qx(φ)→ ψ ⇝ Qx(φ→ ψ)

Qx(φ) ∨ ψ ⇝ Qx(φ ∨ ψ) φ→Qx(ψ) ⇝ Qx(φ→ ψ)

for Q ∈ {∃,∀}, where Q is the quantifier “opposite” to Q (∃ 7→ ∀ a ∀ 7→ ∃).
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Prenex Normal Form

Example
Convert the following formula to PNF.

∀n
(
n > 2 → ¬∃x∃y∃z(xn + yn = zn)

)
⇔

⇔ ∀n
(
n > 2 → ∀x¬∃y∃z(xn + yn = zn)

)
⇔ ∀n

(
n > 2 → ∀x∀y¬∃z(xn + yn = zn)

)
⇔ ∀n

(
n > 2 → ∀x∀y∀z(¬(xn + yn = zn))

)
⇔ ∀n∀x

(
n > 2 → ∀y∀z(¬(xn + yn = zn))

)
⇔ ∀n∀x∀y

(
n > 2 → ∀z(¬(xn + yn = zn))

)
⇔ ∀n∀x∀y∀z

(
n > 2 → ¬(xn + yn = zn)

)
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Prenex Normal Form
Example
Convert the following formula to PNF.
∀y

(
∃x(P (x, y))→Q(y, z)

)
∧ ¬∃z

(
∀x

(
R(x, y) ∨Q(x, y)

))
⇔

⇔ ∀y
(
∃x(P (x, y))→Q(y, z)

)
∧ ¬∀x

(
R(x, y) ∨Q(x, y)

)
⇔ ∀y

(
∃x(P (x, y))→Q(y, z)

)
∧ ¬∀u

(
R(u, y) ∨Q(u, y)

)
⇔ ∀y

(
∃x(P (x, y))→Q(y, z)

)
∧ ∃u

(
¬
(
R(u, y) ∨Q(u, y)

))
⇔ ∀y

((
∃x(P (x, y))→Q(y, z)

)
∧ ∃u

(
¬(R(u, y) ∨Q(u, y))

))
⇔ ∀y∃u

((
∃x(P (x, y))→Q(y, z)

)
∧ ¬

(
R(u, y) ∨Q(u, y)

))
⇔ ∀y∃u

(
∀x

(
P (x, y)→Q(y, z)

)
∧ ¬

(
R(u, y) ∨Q(u, y)

))
⇔ ∀y∃u∀x

((
P (x, y)→Q(y, z)

)
∧ ¬

(
R(u, y) ∨Q(u, y)

))
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Normal Forms (DNF, CNF)

disjunctive normal form (DNF): PNF where matrix is in DNF

conjuctive normal form (CNF): PNF where matrix is in CNF
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Skolem Normal Form

Skolem Normal Form (SNF):
▶ formula is in the PNF
▶ formula does not contain any existential quantifier ∃

Given a FOL formula φ, there might not be an equivalent formula in the SNF.
There will, however, always be an equisatisfiable formula φ′ in the SNF.
▶ equisatisfiable: φ is satisfiable iff φ′ is satisfiable

Skolemization:
▶ Assume the following formula:

φ : ∀x1∀x2 . . . ∀xk∃y(ψ)

▶ y depends on x1, . . . , xk
▶ φ is satisfiable iff for every tuple (x1, . . . , xk), there exists a y such that ψ is satisifable

under such an incomplete assignment
▶ i.e., if there exists a k-ary function fy that for every tuple (x1, . . . , xk) assigns

a corresponding y
▶ ⇝ we can remove ∃y and substitute all free occurrences of y in ψ for fy(x1, . . . , xk)
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Skolem Normal Form

Example
Transform the following formula into an equisatisfiable formula in the SNF:

∃x∀y∃z∀u∃v(x+ y + z = u+ v)

⇝ ∀y∃z∀u∃v(fx + y + z = u+ v)

⇝ ∀y∀u∃v(fx + y + fz(y) = u+ v)

⇝ ∀y∀u(fx + y + fz(y) = u+ fv(y, u))
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Soundness and Completeness of Semantic Argument

Soundness
a proof method is sound if it never proves a wrong formula:

if ⊢ φ then |= φ

⊢ φ: φ is provable

Theorem
The semantic argument is sound.

Completeness
a proof method is complete if it can prove every valid formula:

if |= φ then ⊢ φ

Theorem (Gödel’s completeness theorem)
The semantic argument is complete.

There are also other sound and complete methods for FOL (e.g. natural deduction,
Hilbert system, resolution).
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Löwenheim-Skolem Theorem

Theorem (Löwenheim-Skolem (simplified))
If an FOL formula has a model of an infinite cardinality
then it has a model of any infinite cardinality.
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Herbrand Interpretation

Herbrand interpretation of a language L
a special kind of interpretation IH
the domain DH is fixed as the set of all ground terms of L (i.e., no variables),
▶ if L does not contain any constant symbol, we create a new one

interpretation of function symbols is “natural”

Example
Let us assume the FOL language L with the signature ⟨F = {a/0, f/2, g/1},P = {p/2}⟩

DH = {“a”, “g(a)”, “f(a, a)”, “g(g(a))”, “g(f(a, a))”, “f(g(a), a)”, “g(f(a, g(g(a))))”, . . .}
IH(a) = {() 7→ “a”}
IH(g) = {“a” 7→ “g(a)”, “g(a)” 7→ “g(g(a))”, “f(a, a)” 7→ “g(f(a, a))”, . . .}
IH(f) = {(“a”, “a”) 7→ “f(a, a)”, (“g(a)”, “a”) 7→ “f(g(a), a)”, . . .}
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Herbrand model

Herbrand model: a model of a formula that is also a Herbrand interpretation
i.e., we need to provide interpretation of predicate symbols and variables only

Theorem (Herbrand’s theorem (simplified))
A set of FOL formulae has a model iff it has a Herbrand model.

⇝ it is enough to search for Herbrand models (e.g., model construct. in SMT solvers)
minimal Herbrand model (semantics of PROLOG programs)
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Notes

Exists exactly one:

∃!xφ(x) def⇔ ∃x(φ(x) ∧ ∀y(φ(y) → x = y))

where y is not free in φ

many-sorted logics:
▶ capture the natural requirement to distinguish types of variables
▶ e.g. in

∀w ∈ Σ∗(safe(w)→∃n ∈ N(#′(′(w) = #′)′(w))
)
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