Counting in Regexes Considered Harmful:
Exposing ReDoS Vulnerability of Nonbacktracking Matchers

Lenka Turotiova!, Lukas Holik!, Tvan Homoliak!, Ondfej Lengél!, Margus Veanes?, Toma$ Vojnar!

YFaculty of Information Technology, Brno University of Technology, Brno, Czech Republic
{ituronova,holik,ihomoliak,lengal,vojnar}@fit.vutbr.cz
2Microsoft Research, Microsoft, Redmond, USA
margus@microsoft.com

Abstract

In this paper, we study the performance characteristics of non-
backtracking regex matchers and their vulnerability against
ReDoS (regular expression denial of service) attacks. We fo-
cus on their known Achilles heel, which are extended regexes
that use bounded quantifiers (e.g., ‘ (ab) {100}’). We propose
a method for generating input texts that can cause ReDoS
attacks on these matchers. The method exploits the bounded
repetition and uses it to force expensive simulations of the de-
terministic automaton for the regex. We perform an extensive
experimental evaluation of our and other state-of-the-art Re-
DoS generators on a large set of practical regexes with a com-
prehensive set of backtracking and nonbacktracking matchers,
as well as experiments where we demonstrate ReDoS attacks
on state-of-the-art real-world security applications contain-
ing SNORT with Hyperscan and the HW-accelerated regex
matching engine on the NVIDIA BlueField-2 card. Our ex-
periments show that bounded repetition is indeed a notable
weakness of nonbacktracking matchers, with our generator
being the only one capable of significantly increasing their
running time.

1 Introduction

Matching regexes (regular expressions) is a ubiquitous task of
various software, used, e.g., for searching, data validation,
detection of information leakage, parsing, replacing, data
scraping, or syntax highlighting. It is commonly used and
natively supported in most programming languages [7]. For
instance, about 30-40 % of Java, JavaScript, and Python soft-
ware uses regex matching (as reported in multiple studies;
see, e.g., [10]).

Regex matching is a computationally intensive process of-
ten applied on large texts. Predictability of its efficiency has
a significant impact on the overall usability of software ap-
plications. However, no matching algorithm is perfect, and
an unlucky combination of a regex and text may increase the
matching time by a few orders of magnitude. Unfortunately,

satisfactory analytical means for distinguishing vulnerable
regexes do not exist. Since very specific and rare texts may be
needed to trigger an extreme behaviour, vulnerable regexes are
easily missed even by thorough testing (moreover, regexes are
seldom thoroughly tested, as concluded in [48,49]). A mani-
festation of such vulnerability might then have serious conse-
quences, such as a failed input validation against SQL injec-
tion or cross-site scripting attacks (cf. [52]).

Vulnerable regexes are also a doorway for denial of ser-
vice attacks based on overwhelming a matching engine by
crafting a vulnerability-triggering text, the so-called ReDoS
(regular expression denial of service) attacks. For instance,
in 2016, ReDoS caused an outage of StackOverflow [15] or
rendered vulnerable websites that used the popular Express.js
framework [4]. The fact that ReDoS is indeed a common and
serious threat is argued by several works such as [10, 11].
Therefore, stress testing of regex matchers, the topic of this
work, 18 an active research area.

Several methods and tools have been developed that at-
tempt to determine whether a given regex is vulnerable to
a ReDoS and to generate a triggering text (also referred to as
evil text hereafter). Existing ReDoS analyzers [35,39,50,53]
focus on the most common family of matchers: those based
on the backtracking algorithm." These include, e.g., the regex
matching engines of wide-spread programming languages
NET, Python, Perl, PHP, Java, JavaScript, and Ruby. The ba-
sic backtracking algorithm is simple and easily extensible
with advanced features, however, it is at worst exponential in
the text length. Regexes prone to extreme running times are
easily constructed and found in practice [11]. ReDoS analyz-
ers can often find triggering texts for regexes used in practice,
and even some analytical methods for identifying regexes
vulnerable to backtracking were proposed (cf. Section 3).

In contrast to the above mentioned works on vulnera-

!Essentially, a backtracking matcher descends through the syntactic struc-
ture of the regex, finds a mapping of the letters from the text to the atomic
regex sub-expressions. Seen through the lens of a non-deterministic automa-
ton compiled from the regex, backtracking is a depth-first exploration of the
tree of all runs along the input line.

bility of backtracking-based matching, we present the first
systematic study of the vulnerability of nonbacktracking
automata-based matchers. Automata-based matchers evolved
from Thompson’s algorithm [43] (also referred to as NFA-
simulation, where NFA stands for nondeterministic finite au-
tomaton). In essence, the algorithm is a breadth-first explo-
ration of the runs of the NFA for the given regex along the
input text. In combination with caching, it becomes an on-
the-fly subset construction of the DFA (deterministic finite
automaton), also called online DFA-simulation. Forms of
online DFA-simulation are implemented in Google’s RE2 li-
brary [17], the standard GNU grep program [19], the Rust
standard regex matcher [14], or Symbolic Regex Matcher
(SRM) [38].% Intel’s Hyperscan [8] uses a variation of NFA-
simulation algorithm as one of its components, among a num-
ber of other techniques.

The automata-based approaches are harder to implement,
and thus less flexible. On the other hand, there are years of
empirical evidence showing much more stable performance
of these approaches, implemented, e.g., in Google’s RE2 en-
gine [17]. Their worst-case complexity is linear in the length
of the input text. Therefore, automata-based matchers are over-
whelmingly preferred when avoiding regex vulnerabilities is
a priority, and they are now prevailing in performance-critical
industrial applications such as network intrusion detection
systems (NIDSes) [25,30] and credential scanning [27].

We present the first systematic large-scale study of vul-
nerability of automata-based matching, focused especially
on online DFA-simulation. We focus on what seems to be
the main weakness of the online DFA-simulation approach:
bounded repetition (or bounded quantifier/counting operator),
which is a commonly used feature of extended regexes. The
bounded repetition operator allows to concisely express that
some pattern is repeated a specified number of times, e.g.,
in the regex ‘(ab) {100}’, the bounded quantifier ‘{100}’
specifies 100 repetitions of the string ‘ab’. It has been rec-
ognized that regexes that use bounded quantifiers can suffer
from performance problems both in backtracking (cf. [32])
and nonbacktracking matchers (cf. [21]). To the best of our
knowledge, until now, this problem has, however, never been
studied systematically, and concrete possibilities of exploiting
it for ReDoS have not been analyzed.

Our approach. We present an algorithm for generating evil
texts that target automata-based matchers. We target mainly
matchers based on online DFA-simulation, but our techniques
can also be effective with other kinds of automata-based
matchers, such as Hyperscan (cf. Section 6.6). Our exper-
iments confirm that our generator is the first one effective in
finding evil texts for automata-based matchers.

As an example, consider the regex ‘% [~ \x0d\x0a] {1000}’
(from the database of regexes of the intrusion detection system

25RM is based on symbolic Antimirov derivatives [3] constructed on the
fly, also in the spirit of online DFA construction.

SNORT [25]), which tells the matcher that after seeing ‘%’, it
can accept after exactly 1000 characters other than carriage
return ‘\x0d’ and line feed ‘\x0a’. The NFA of the regex is
heavily non-deterministic and has more than 1,000 states. The
minimal DFA has more than 2'%% states (it needs to always
“remember” all positions of the character ‘%’ within the last
seen 1,000 characters other than ‘\x0d’ and ‘\x0a’). The
DFA states produced by the determinisation during matching
may also be large, namely, they are sets of up to 1000 NFA
states. A text on which the DFA would reach many different
large DFA states is highly problematic for most matchers,
backtracking as well as online DFA-based. Such a text is,
however, also highly specific and the probability of generating
it randomly is low (the text must contain sub-strings of 1,000
characters other then ‘\x0d’ and ‘\x0a’ with varying and
frequent placements of ‘%”). Our evil text generator is the only
automated tool we know of that can discover such text.

Our generator is based on heuristics that generate expensive
runs of the DFA of the regex. Besides a general algorithm
applicable to any regex, it features a heuristic specialising
on bounded repetition, based on an analysis of the so-called
counting-set automata [46]. Especially with extended regexes
such as the regex ‘$[*\x0d\x0a] {1000} from above, it is
capable of forcing creation of many large DFA states—the
number of these states may be exponential and their size may
be linear in the repetition bound (i.e., 1,000 in our example),
dramatically increasing the matching time. *

We evaluate our generator on a comprehensive database
of regexes (from software projects at GitHub [12], net-
work intrusion detection systems [2, 25, 37], detection of
security breaches [20, 45], academic papers [47, 54], posts
on Stack Overflow [31], and the RegExLib database [36])
against a set of major industrial regex matchers (RE2,
grep, Hyperscan [8, 17, 19], as well as standard library
matchers of .NET, Python, Perl, PHP, Java, JavaScript,
Rust, and Ruby) and compare its performance against ex-
isting ReDoS generators (RXXR2 [35], RegexStatic [50],
RegexCheck [53], and Rescue [39]). The results of
the evaluation substantiate the following conclusions,
which are also the main contributions of the paper:

1. Bounded repetition is an Achilles heel of automata-based
matchers and our novel generator is the only one that
can effectively generate ReDoS texts for them.

2. On the other hand, without bounded repetition, Re-

3Bounded repetition may be expressed without the counting, by simply
repeating the pattern the needed number of times, leading to the same DFA.
This is, however, impractical and almost never used. The pitfalls of counting
show even in the worst case complexity of the DFA and matching algorithms.
In contrast to basic regexes, where the DFA is exponential and the matching
time is linear to the size of the regex (when matching by automata algorithms
such as online DFA simulation), bounded repetition leads to a doubly expo-
nential DFA and singly exponential matching time. This is because the DFA
for a bounded repetition is exponential in the repetition bounds (or their mul-
tiple in the case of nested bounded repetitions, asin “ ((a{10}) {10}) {10}°),
which is again exponential in the size of their decadic numerals.

DoS generators have none or negligible success with
automata-based matchers.

3. Our new ReDoS generator can indeed generate attacks
on practical applications where the performance of regex
matching is critical, namely on SNORT 3 with enabled
Hyperscan [25] as well as hardware accelerated regex
matching on the NVIDIA BlueField-2 DPU [29]. For
both technologies, we achieved a slowdown of regex
matching engines by a few orders of magnitude, tested
on regexes from real-world SNORT rulesets.

Organization. After preliminaries and related work in Sec-
tions 2 and 3, we present our main technical contribution,
the ReDoS generator targeting automata-based matchers, in
Sections 4 and 5. Section 4.1 analyses a model of an online
DFA-simulation based matcher. The analysis gives grounds to
develop our novel ReDoS generator in Section 4.2, based on
analysing the regex’s DFA. Section 5 then presents its speciali-
sation to bounded repetition. Section 6 details the experiments,
giving evidence of vulnerability of automata-based matching
against bounded repetition, including concrete practical im-
plications, and Section 7 suggests possibilities of mitigating
the implied security risks.

2 Preliminaries

We will recall needed formal concepts: words, languages,
regular expressions and automata as well as the essentials
of pattern matching, matching algorithms, ReDoS and the
considered attacker model.

Words, languages, regular expressions. We consider
a fixed finite alphabet of characters/symbols X (presumably
a large one such as Unicode). Words are sequences of charac-
ters from X, with the empty sequence denoted by €. Languages
are sets of words. The operators of concatenation - and itera-
tion * applied on words or languages have the usual meaning.
We consider the usual basic syntax of regular expressions
(ak.a., regexes) generated by the grammar

R:=o0o | (R) | RR| RIR| R* | R{n,n)

where n.m € N, 0 <n, 0 <m,n <m, and o is a charac-
ter class, i.e, a set of characters from X. A character class
is most often of the form a, ., [a;-bjas-by...ay-by], Or
["a;-bjaz-by...an-byl, denoting a singleton containing
the character a € X, the entire set X, a union of » intervals of
characters, or the complement of the same, respectively.

The language of a regex R, denoted L(R), is constructed
inductively to the structure of R, from its atomic sub-
expressions, character classes, using the language operations
denoted by the regex combinators. They are understood as
usual: two regexes in a sequence stand for the concatenation
of their languages, ‘|’ is the choice or union, ‘*’ is the itera-
tion, and ‘{n,m}’, is the bounded iteration, equivalent to the
union of i-fold concatenations of its operand for n <i < m.

Finite automata. We consider nondeterministic finite au-
tomata (NFAs) over X of the form A = (Q, 9, qo, F) where Q
is a finite set of states, 8 is a set of transitions of the form
q-apr with g,r € Q and a € £, g € Q is the initial state,
and F' C Q is the set of final states. The language of the au-
tomaton, denoted L(A), is the set of all words a; ...a,, n > 0,
for which the automaton has an accepting run, a sequence of
transitions g <a1)>q1 Ha2)> - - - Han)>q, with g, € F.

The automaton is deterministic (DFA) if for every state g
and symbol a, & has at most one transition g (a}>r. Any NFA
can be determinised by the subset construction, which creates
the DFA A’ = (Q',&,q), F') with Q' =29, i.e., with subsets
of A as the new states, the singleton {¢o} as the initial state g,
with sets intersecting with F being final, i.e., F' = {SC Q|
SNF # 0}, and with the successor of a state S C Q under
a symbol a constructed as the set of a-successors of the NFA
states in S, S {ap»S' € & for §' = {5’ | s € SAsHaprs’ € 3}.

Pattern matching. In its simplest form, pattern matching is
the problem of deciding whether a given word (line) w has an
infix conforming to a given regex R. In other words, it decides
whether w can be written as a concatenation x.v.y such that
veEL(R),ie,weL(.*R.*). Anchors, ‘*’ at the start of the
regex and ‘$’ at the end, can be used to force the match v start
at the beginning of the line (the prefix x is empty) or end at
the end of the line (the suffix y is empty), respectively.

Besides the simplest problem of deciding whether a match
appears on a single input line, which is the single-line mode
of matching, we will also consider matching in the multi-line
mode, in which the matcher is supposed to filter all lines of
the input text that match the regex.

Approaches to pattern matching. We distinguish two fam-
ilies of pattern matching algorithms used in practice: back-
tracking and nonbacktracking automata-based algorithms.
(1) Backtracking [40] algorithms in their simplest form
use a recursive procedure that descends the syntactic tree of
the regex while reading the text from the left to the right
and matching its characters against sub-expressions of the
regex. Since disjunction and iteration offer a choice, the re-
cursion backtracks to the last unexplored choice when the
matching fails. It is in fact very similar to a depth-first ex-
ploration of all runs following the input line through an NFA
corresponding to the regex. Since such matchers are concep-
tually very simple (a basic implementation takes a few lines
of functional code (e.g. [34], page 7) and since they are pro-
cessing a single path through the NFA at a time, backtracking
algorithms are flexible and amenable to easy extensions with
features such as priority of matched sub-expressions, sub-
matching, or back-references. Nonetheless, as the number of
NFA runs over a single line is in the worst case exponential
in its length, the worst-case complexity of matching using
a backtracking matcher is exponential in the length of the
text. Extreme matching times do not occur often if regexes
are written defensively, and modern implementations are fast,

especially when an accepting path is guessed early. How-
ever, overlooking a dangerous regex is easy and writing such
a regex intentionally is even easier. For instance, when run
on the regex (a|b|ab) *bc’ against the input string (ab)"ac
with n = 50, standard matchers in Java, Python, and .NET be-
come unresponsive [34]. Examples of industrial backtracking
matchers include regex matchers in the standard libraries of
.NET, Python, Perl, PHP, Java, JavaScript, and Ruby.

(2) A basic and naive automata-based matching alterna-
tive to backtracking is the (offline) DFA-simulation, which is
based on constructing a DFA for the regex. Having the DFA
at hand is the best scenario for matching since every character
is then processed in constant time by simply following the
unique transition from the current DFA state to the successor.
The problem is that determinisation may explode exponen-
tially, rendering matching slow or unfeasible (the matcher
may time out already during the DFA construction). This
approach is therefore seldom used in practice.

A more practical alternative to DFA-simulation is based
on Thompson’s algorithm [43] aka NFA-simulation. NFA-
simulation essentially differs from the backtracking algo-
rithm by replacing the depth-first NFA exploration strategy
by a breadth-first search strategy. Reading each symbol of the
text means updating the set of all NFA states reached by runs
over the so far processed prefix of the line. The time needed
to process each symbol is thus linear to the size of the NFA
(an iteration through all transitions over the symbol starting
in the current set of states), and the entire matching is only
linear in the length of the line. An advanced implementation
of NFA-simulation is a part of Intel’s Hyperscan [8] (among
a number of other techniques such as advanced use of the
Boyer-Moore algorithm [5] for string-matching, innovative
parallelisation, or using specialised processor instructions).

A crucial ingredient for the performance of several practi-
cal matchers is caching. The reached sets of NFA states are
actually states of the DFA constructed by the subset construc-
tion, while a DFA state and its successor reached after read-
ing a symbol constitute a DFA transition. The encountered
DFA states and transitions are cached. When the matching
algorithm stays inside the cache of transitions, it is exactly
the same as the offline DFA simulation, with constant per-
character complexity. We will call the version with caching
online DFA-simulation (following the terminology of [14]).
Online DFA-simulation can achieve much better performance
and especially stability and resilience against ReDoS than
backtracking. The disadvantage is perhaps a less straightfor-
ward implementation, which implies lower flexibility. Also,
it is not clear how to extend online DFA-simulation with ad-
vanced regex features such as back-references. Well-known
examples of industrial matchers based on DFA-simulation
include RE2 [17], grep [19], SRM [38], or the regex matcher
in Rust [14].

ReDoS and associated attacker model. This paper deals
with vulnerability of regex matchers against ReDoS. Specifi-

cally, we assume a remote service utilizing a regex matcher
with a set of deployed regexes that are required for the oper-
ation of the service. We assume that some of the deployed
regexes contain bounded repetition. The attacker knows which
regexes are deployed at the service, or has a way of informed
guessing (e.g., Snort regexes are public or easily obtainable
via subscription, open source web development frameworks
have known regex input validators, etc.).

The attacker can access the service in a way that enables
triggering remote execution of the regex matcher (with de-
ployed regexes) on an arbitrary (i.e., provided by the attacker)
input text. The goal of the attacker is to pass into the service
an (evil) text that will render the service unavailable (causing
a denial of service) or impose a significant performance drop
due to the consumption of an exceptionally high amount of
computational resources. In such cases, we say that the regex
is vulnerable for the respective matcher, and we consider three
different views on vulnerability. Given a fixed length of text,
it can mean one of the following (a detailed description is
given in Section 6.1):

(a) exceeding a certain time interval for processing of a text
of the given length,

(b) exceeding a certain ratio of the measured time w.r.t. ‘nor-
mal’ time for the given matcher, or

(c) exceeding a certain ratio of the measured time w.r.t. ‘nor-
mal’ time for the given matcher relative to the particular
regex, assuming some knowledge of a normal matching
time for each regex.

3 Related Work on ReDoS

ReDoS [32] vulnerabilities have typically been attributed to
backtracking-based matching, as discussed in depth in [10,11].
Backtracking regex matching engines are essentially Turing
complete (cf. [24]) and therefore most analysis questions
about them are difficult or undecidable. All prior research on
ReDoS generators has focused on methods that attempt to
generate inputs that essentially cause excessive backtracking
at runtime, effectively causing non-termination of matching.
Here we summarize main such approaches.

We focus mainly on static ReDoS generators, which anal-
yse a regex statically, as opposed to dynamic generators,
which analyse a profile of a regex matcher run. Static ReDoS
generators are primarily based on the NFA representation of
regexes [22] and exploit different techniques, such as pump-
ing analysis [22,34], transducer analysis [42], adversarial
automata construction [53], and NFA ambiguity analysis [51].
Such techniques can be sound and even complete for certain
classes of regexes. Their main disadvantages are a high rate
of false positives and ineffectiveness against nonbacktrack-
ing regex matching engines. An overview of existing ReDoS
generators follows:

RegexStatic [51] classifies the worst-case simulation
cost for a regex on an input as linear, polynomial, or expo-

nential based on how the depth-first search tree is predicted
to evolve during backtracking. It supports also nonregular
features like back-references.

RegexCheck [53] also identifies if a regex has linear,
super-linear, or exponential time complexity based on its NFA.
Moreover, it can construct an attack automaton capturing all
those strings that trigger the worst-case behaviour. It also
combines static and dynamic analysis to avoid false positives.
It has limited support for extended (nonregular) features.

RXXR2 [34,35] constructs an NFA from a given regex and
then it searches for instances of a pattern in the NFA using
an efficient pattern matching algorithm. It searches all sub-
expressions for exponential vulnerability in a form of eje}e3
where e is a prefix expression, e3 is a suffix expression, and
€5 is a vulnerable expression. The result is an attack string
xy"zsuch that x € L(e), y € L(e3) and xy"z & L(eje5e3).

SlowFuzz [33] is a dynamic fuzzing tool. It is based on
an evolutionary fuzzer [23] that searches for those inputs that
can trigger a large number of edges in the control flow graph
of the program under testing. However, it lacks knowledge
of regex structures, which may lead to false negatives. The
results in [33] compare matching slowdown among individual
iterations of the algorithm. Out of the tools mentioned here, it
is the most general tool for generating evil texts, since it can
handle most of the extended features supported in regexes.

Rescue [39] combines dynamic and static techniques us-
ing a genetic search algorithm as a guide. The aim is to find
an input string that maximizes the number of matching steps,
using regex search profiling data. The maximum string length
is set to 128. A string is classified as exposing a ReDoS vul-
nerability if it causes more than 10% matching steps.

Finally, let us note that existing generators sometimes
aim at extremely severe vulnerabilities, for instance, where
a backtracking-based matcher gets completely stuck on a text
hundreds of characters long (e.g. [39]). Automata-based
matchers do not exhibit vulnerabilities this severe, but they
can still be slowed down by several orders of magnitude, for
which they need a long-enough input text (in the order of
megabytes). These are the vulnerabilities that we target.

4 ReDoS Generation

We now discuss our ReDoS generator, i.e., a tool that gener-
ates an evil text for a given regex. We target primarily non-
backtracking automata-based matchers, mainly those based
on online DFA-simulation (although, as we show in Sec-
tion 6, our technique works for backtracking matchers as
well, and it can be tweaked to cause significant troubles also
to Hyperscan, which uses NFA-simulation).

The generator, combined with a technique that exploits
counting presented subsequently in Section 5, is the main
technical contribution of our paper.

4.1 Hypothetical Matcher

We first discuss a hypothetical matcher, which will serve as
a model target for our ReDoS generator described later in
Section 4.2. The model was created by studying the imple-
mentations of the regex matchers in grep, Rust, SRM, and
RE2. It uses online DFA-simulation with a specific manage-
ment of the DFA cache, similarly to the mentioned match-
ers. Our model does not take into account specific advanced
optimizations and implementation techniques used in real
performance-oriented matchers. Taking them into account
might, of course, improve the performance of the generator
for a specific matcher, but our goal is a ReDoS generator that
is universal and simple; therefore we use a model that cap-
tures only the most important common aspects. Despite that,
the real-world matchers are quite close to this hypothetical
matcher (only Hyperscan is related more loosely, since it uses
the most radical innovations, combined with NFA-simulation
instead of online DFA-simulation).

The matching algorithm and its complexity. The hypo-
thetical matcher implements the online DFA-simulation algo-
rithm with the following management of the cache: (i) When
the cache exceeds some size, it is reset and (ii) if the cache
utilization is too low or is reset too often, the matcher disables
the cache completely and reverts to pure NFA-simulation.

Algorithm | describes the hypothetical matcher in pseu-
docode. It simulates a run of the DFA obtained by subset
construction from the input NFA A = (Q, 3, qo, F) along the
input word w. In order to do this without constructing the
entire DFA up-front, it uses the class DFA, which constructs
DFA transitions and encountered DFA states lazily, on de-
mand, and saves them for further use. Namely, it stores integer
IDs of the encountered DFA states (subsets of Q) in a hash
table state2id, paired with the inverse mapping id2state of
the DFA states back to their IDs. A discovered DFA state is
identified with the number of the so far identified states plus
one (Line 17). The ID of the target state of each used DFA
transition is saved in the map successor, accessible under the
ID of the source state and the symbol on the transition. The
map final records whether an ID belongs to a final state.

The i-th character w[i] of the input line is processed in
a single iteration of the for loop on Line 3. The cost of the
iteration depends on whether the DFA transition is in the
cache or not. If yes, then successor[q, w[i]] on Line 22 simply
returns the ID ¢’ of the successor of the current state ID g.
The lookup has a small constant cost (accessing the index w/i]
of an array of successors associated with g).

On the other hand, if the DFA transition is not cached, then
it must be constructed, which is expensive: The construction
requires to iterate through all w|i]-transitions originating from
the NFA states in the current DFA state S (Line 25). The cost
of this iteration depends on the size of S and the number of the
used NFA transitions, both of which can be bounded by |A|
(the size of A, |A| = |Q| 4+ |8]|). Furthermore, the book-keeping

costs of the cache of DFA states, paid after every cache miss
on Line 22, is also significant (although dominated by the
cost of constructing the transition on Line 25). Looking up
a DFA state on Line 14 and adding a DFA state on Line 26
both take time proportional to the size of the DFA state.

Algorithm 1: Hypothetical matcher
Input :NFA A= (Q,9,s0,F), word w
Output : rrue iff w € L(A), otherwise false
1 dfa < new DFA ()
2 g<dfa.init ({so})
3 fori< 1to|w| do
4 if dfa.final[g] then return frue
5 q' < dfa.get_successor_id (g,w[i])
6 | g4
if dfa.big () then g + dfa.init (dfa.id2state|q])
if dfa.ineffective () then disable DFA caching

/1 O(|wl]-|A])

//0(JA])

9 return false

10 class DFA:
11 state2id: 22 — N; id2state: N — 22;
12 successor: N x X — N; final: N — {true,false}

13 method get_state_id(SC Q):

14 q + state2id|S] /70(|S])
15 if ¢ = None then

16 q <+ state2id.cardinality + 1

17 state2id[S] + q /7 0(]S])
18 id2statelq] < S

19 finallg] < (SNF #0)

20 return g

21 method get_successor_id(g e N,a€X):

2 q' < successor|q,a) // 0(1)
23 if ¢ = None then

24 S « id2state[q]

25 S« {s'|seS,sHaprs’ €8} // O(JA])
26 q' <+ get_state_id(S) /7 0(|S'])
27 successor|q,a] + ¢’

28 | return ¢’

29 method init (SC Q):

30 id2state < state2id < successor < final < 0

31 | return get_state_1id(S)

The complexity of matching with a high utilization of the
cache is therefore approaching O(|w|), but in the worst case,
with a low cache utilisation, it increases to O(|w| - |A]). The
multiplicative factor |A| may be especially high with extended
regexes with the bounded repetition operator, where the size
of |A| is linearly dependent on the repetition bounds (this is
exponential in the size of the regex, assuming that the bound
is given as a decadic or similar numeral). For instance, the
NFA for the regex ‘. *a. {k}’ needs k+ 1 states and the DFA
obtained by the subset construction has 25+ states, each of

them a set of up to k + 1 states of the NFA."

The algorithm manages limited resources available for
the cache on Lines 7 and 8. The cache is reset on Line 7
if it grows beyond some predefined bound (given by the
method dfa.big (), whose implementation would be matcher-
specific). The size of the cache is computed as the sum
of sizes of cached DFA states plus the number of cached
transitions, Y {|S| : DFA.state2id[S] # None} + |{(id,a) :
DFA successorlid,a) # None}| (note that larger DFA states
hence contribute more to the size of the cache). Line 8 may
then entirely disable caching if the cache is reset too often
or if its utilisation is too low (given by a matcher specific
implementation of dfa.ineffective ()). Disabling the cache
means reverting to NFA-simulation in which every step must
iterate through all NFA states in the current set and all their
transitions with the current letter.

Multi-line mode. The matcher described above works in
the single-line mode. In the multi-line mode, the for loop
on Line 3 is wrapped in an iteration over all lines and every
matched line is reported. Importantly, the DFA cache is not
reset after processing one line, but is re-used when processing
subsequent lines.

4.2 ReDoS Generation Algorithm

As follows from the analysis above, our best shot to stress
the hypothetical matcher is to attempt to increase its runtime
close to O(|w| - |A|) by rendering the cache ineffective and
forcing construction of many large DFA states and transi-
tions whose computation is expensive. For that, recall that
every newly discovered DFA state S C Q is searched for and
inserted into the cache, with a cost linear to its size, and sub-
sequently causes a cache miss and forces the construction of
a transition on Line 25, with a cost linear to the number of
wli]-transitions starting in S. The size of S also determines
the cost of looking up and inserting DFA states to the cache
on Lines 14 and 26. The cost of creating the DFA transition,
that is, at most the number of the NFA transitions, is usually
strongly correlated with the size of the source state S (even
though it is not precisely determined by it since it depends on
the transition relation).

Our aim is, therefore, to produce a text that discovers many
different large DFA states as fast as possible. In other words,
we want to force a DFA run (or a sequence of runs in the case
of multi-line matching) with a high ratio of the sum of sizes of
newly discovered DFA states and the text length. We will call
this ratio the evilness of the text. Highly evil texts cause a low
cache hit/miss ratio, the cache also fills up quickly, must be
reset frequently, and there is a high chance that the utilisation
of the cache drops to the point where it is completely disabled.

ReDoS generator overview. Our ReDoS generator con-
structs a text w with high evilness as a concatenation wy - - - w,,

4The *.* in the regex is included for clarity, but note that it is redundant
in the absence of anchors.

of lines, each line w; generated by a run p; starting at the
initial state of the DFA. Each run p; first takes the shortest
possible path through the already visited part of the DFA to
a largest discovered but so far unvisited state, referred to as
the starting state of p;, from where it navigates to new unvis-
ited DFA states through DFA transitions chosen according to
some successor selection criterion.

The run p; is thus a concatenation p}.pi2 of a prefix pi1
through already visited DFA states and a suffix pl-2 through
unvisited states. The criterion for navigating the second phase,
that is, for selecting unvisited successors while constructing
the suffix, is a parameter of the algorithm. The basic strategy,
called GREEDY, simply selects the largest unvisited successor.
(alternatives will be discussed later). This drives the explo-
ration towards large new states. The run p; then ends when it
cannot continue to any unvisited and non-final state.

Avoiding final states has the following rationale. Obvi-
ously, continuing a line after reaching a final state would be
counterproductive because the matcher has already returned
true. Avoiding final states altogether additionally means that
we generate only non-matching lines, which is motivated
by the fact that we ideally want texts that are hard for on-
line DFA-simulation-based as well as backtracking matchers.
Non-matching lines are generally harder for backtracking
matchers. They cannot terminate early after finding a single
accepting NFA run but are forced to explore the entire tree of
runs over the input line.

ReDoS generator in detail. We present the algorithm for
generating ReDoS attacks in detail as Algorithm 2. Since
constructing the entire DFA may be infeasible due to its size,
the algorithm again uses the implicit DFA that is a part of
the hypothetical online DFA matcher in Algorithm | and thus
constructs only those parts of the DFA used to process the
generated text.

Every iteration of the while-loop on Line 7 generates one
line of the text, namely, the i-th iteration generates w; by con-
structing the run p;. The algorithm maintains a set visited
of IDs of DFA states that were visited by some run p;, and
a set unvisited of IDs of discovered but yet unvisited states.
The while loop terminates when there are no states remaining
in unvisited. To select the starting state g of p; (Line 8) and
construct the shortest run to g quickly (via function prefix
on Line 10), the algorithm uses a mechanism analogous to
the one used in Dijkstra’s algorithm for computing the short-
est paths from a given source: Every discovered DFA state
p € visited U unvisited remembers the last transition in the
shortest discovered run from the initial state to p, namely, the
predecessor state pre(p) on the run and the symbol ¢(p) on
its last transition. The state p also remembers the length (dis-
tance) d(p) of the shortest run. The values of pre(p), d(p),
and o(p) are updated whenever a transition to the state p
is taken (Lines 18 and 19). If the run ending by that tran-
sition is shorter than the current shortest run, the function
prefix(q) can then construct the shortest discovered run to g

in the form go a1)}>q; Ha2)> ... Han)+q, by taking ¢, = ¢,
qi = pre(qgit+1), and a; = 6(g;) for all 0 < i < n, and return
the word a ...a, read along this run. The starting state g of
p; is chosen on Line 8 from unvisited by selecting the DFA
state (obtained as dfa.id2state[q]) of the largest size with the
smallest distance d(q).

The suffix of the run, p/, is where the text supposed to
increase the cost of matching is generated. The algorithm
navigates through unexplored DFA states according to the
strategy given by the input parameter STRATEGY as long as
the current state g has some unexplored non-final successor p
(Line 20). Namely, the for-loop on Line 13 collects into succ
all transitions leading to non-final and not yet visited DFA
states from the current state g (as pairs consisting of the target
state p and symbol a). The particular transition is selected
from there according to the criterion STRATEGY on Line 21.

Algorithm 2: DFA-based text generation
Input: An NFA A = (Q,9,s0,F),
successor selection criterion STRATEGY
Output: evil text w (concatenation of several lines)

1 dfa < new DFA
2 go + dfa.init ({so})
3 unvisited.enqueue(qo)
4 d(CIQ) ~0
5 visited < 0
6 W<€
7 while unvisited # 0 do
8 q < unvisited.dequeue_nearest_largest()
9 visited.add(q)
10 w w-prefix(q)
11 while true do
12 succ <0
13 for a € X do
14 p < dfa.get_successor_id|g,d]
15 if dfa.final[p]V p € visited then continue
16 succ.add(p,a)
17 unvisited.enqueue(p)
18 ifd(q)+1 < d(p)Vvd(p) = None then
1 | (d(p),o(p),pre(p)) + (d(q)+1,a,9)
20 if succ = 0 then break
21 (¢',a) < succ.choose(STRATEGY)
b7) unvisited.remove(q')
23 visited.add(q")
24 qg+—q
25 W w-a
26 W< w-\n

27 return w

Exploration strategies. The ReDoS generation algorithm
is parameterized by the strategy of exploration of unvisited
DFA states, represented by the successor selection criterion
STRATEGY. We will consider the following three strategies.

The first strategy, RANDOM, picks from succ a random
successor. This produces mostly random but still ‘reasonable’
texts, for which the matcher does not return false before the
line ends, because the DFA run never leaves the area of useful
DFA states. We use RANDOM as the baseline to confirm that
the reasoning behind our other two selection criteria, supposed
to generate highly evil texts, works.

The simpler of the two strategies, GREEDY, navigates the
search towards large DFA states by always choosing the suc-
cessor corresponding to the largest set of states. On the other
hand, the more complex strategy COUNTING is then opti-
mized towards generating texts for regexes with bounded
repetition; it is discussed in detail in the following section.

5 ReDoS Generation for Bounded Repetition

We will now discuss the specialisation of the ReDoS generator
from the previous section for regexes with counting. That is,
we will specify the successor selection criterion COUNTING
used as the parameter STRATEGY in Algorithm 2.

Regexes with bounded repetition are the main focus of our
work since their DFAs tend to have extremely many large
states. This shows even in the worst case complexity of on-
line DFA-simulation (as well as of NFA-simulation), where
processing each input character can take a number of steps
exponential to the size of the regex (the complexity is linear to
the repetition bounds, which are represented using a logarith-
mic number of bits). The general idea of generating evil texts
for bounded repetition is the same as for normal regexes—to
force many different and large DFA states. We propose an
optimized strategy for navigating towards them.

Counting automata. To explain the strategy, let us first
have another look at compilation of bounded repetition to au-
tomata. Since the NFAs for bounded repetition might already
be too large (linear in the repetition bounds, exponential in
the size of the regex), we use succinct automata with counters
that count repetitions of the counted sub-expressions at run-
time. Since the counter values are not a part of the automata
control state, they are only computed at runtime, the size of
these automata is independent of the counter bounds and only
linear in the size of the regex.

We use a formalisation of these automata as nondeterminis-
tic counting automata (NCAs) from [46], which also discusses
their compilation from regexes with bounded repetition. See
an example NCA for the regex “. *a. {100} in Figure la. As
seen in the figure, a transition of the NCA can reset a counter
to 0, keep it unchanged, increment it, and test whether its
value belongs to a specified constant interval. The values
of every counter ¢ can only reach values in between 0 and
some max, € N (the maximum number which ¢ is compared
against). A run of an NCA over a word goes through a se-
quence of configurations, pairs of the form (g,v) where ¢
is a control state and v is a counter valuation, a mapping
of counters to their integer values. For instance, one of the

NCA runs from Figure 12 on the word a'% generates config-
urations (g,c=0), (s,c=0), (s,c=1),...,(s,¢=99), but the
NCA can postpone the transition into s arbitrarily, leading
to different values values of c. It is easy to see that one can
construct an NFA whose set of states is the set of reachable
configurations of an NCA; the runs of such an NFA would go
precisely through the same configurations as the runs of the
NCA over the same word.

The so-called naive determinisation of the NCA then pro-
duces a standard DFA that would be obtained by the subset
construction from the induced NFA described above. The
states of the DFA are thus sets of the configurations. For the
example from Figure 12, a run of the DFA on the word '
would traverse through the following sequence of DFA states
(recall that each set of configurations is one state of the DFA):

{(g,¢=0),(s,¢=0),(s,c=1),...,(s,c=99)}.

Our ReDoS generator therefore navigates through a space
of such DFA states. The states may be extraordinarily large
especially when the NCA configurations within them have
many distinct counter values, such as in our example, where
the run on the word a'% ends in a DFA state where the control
state s is paired with 100 values.

Counting-set automata. Our heuristic for navigating
through such DFAs towards large states attempts to increase
the number of counter values. To do that, we take advan-
tage of our earlier work on determinisation of NCAs into the
so-called counting-set automata (CSAs) [46]. Namely, [46]
shows how an NCA can be determinised into a CSA of a size
independent of the counter bounds (unlike DFA, which may
be exponentially large). The CSA is a deterministic machine
that simulates the DFA but achieves succinctness by comput-
ing the counter values only at runtime, as values of a certain
kind of registers. Since a single DFA state contains many
counter values paired with NCA control states, these registers
must be capable of holding a set of integer values. We call
these registers, which store sets of integers, counting sets. A
transition may then update a counting set ¢ by increment-
ing all its elements, resetting it to the singleton {0}, adding
the element O or 1 to it, and test whether the minimal or the
maximal value in the set belongs to some constant interval.’
A counting set for a counter c is also restricted to only con-
tain values between 0 and max, (the set-increment operation
removes values greater than max.). An example of a CSA

SThese operations can actually be implemented to work in constant time,
hence simulation of CSA gives a fast matching algorithm for bounded rep-
etition. We have implemented and tested a prototype matcher based on the
CSA simulation in Section 6.

997.5 998 998.5 999
c:={0} "~ H

0 3
W B 3) 4
LAe< IOO/L =c+1 a/c:={0}Uc+1
e=t0 Mx09\x20] / ei={1
%@* - }wax = e (e~
1000
=100 1 AMin(c) > 100

fe ! " {CO} /" 121 A Min (c) < 100/ »/—\O
ci= cimetl "M\ x09\x20] AMin(c)<1000 / c:={1}Uc+1 b) \x09/¢: _{1}9995

(a) NCA for “.*a. {100} (b) CSA from determinization of (a)

Figure 1: NCA and CSA. The transitions are labeled by their guard, which specifies the input character class (‘e

" \XZO AMin(c)<1000/c:=c+1 \x09 AMin(c)<1000/c:={1}Uc+1

(c) CSA with weights for the regex ‘“*HOST\x09* [*\x20] {1000}’

> stands for “any

character”) and possibly restricts counter (or counting set) values, separated by ‘/’ from the counter update (an unspecified
update means that the value stays the same). In (b) and (c), the notation {0} Uc + 1 stands for the set of values obtained by
incrementing each value in ¢, adding 0, and removing values larger than the upper bound of the counter, 100 for (b) and 1000
for (c). The edges denoting initial states are labelled with initial values of the counters. Final states are in (a) and (b) labelled

with an acceptance condition on counters, e.g. {c¢ > 100} in (a). In (c), the final condition at states 6 and 7 is Max(c) =

is the automaton obtained by determinizing the NCA from
Figure 12, shown in Figure 1b. Its run on the word a'% would
generate the following sequence of configurations:

({g},e={0}),
({g,s},c={0}),
({g,5},¢={0,1}),

({q,s} c={0,..

Note that the sets of values for ¢ precisely correspond to the
values of c¢ that s appear with in the run of the DFA shown
above. The run-time configurations of a run of a CSA are
(encodings of) states of the DFA that would be generated by
a run reading the same word.

.,99}).

Navigation towards large counting sets. Since CSAs are
still small (relative to the DFA), they can be pre-computed
and analysed as a whole. We use such an analysis to obtain
guiding criteria that lead a run through their configuration
space towards configurations with many different counter
values. Runs of CSAs simulate runs of DFAs, so such guiding
criteria may be directly used to navigate runs of the DFAs as
the successor selection criterion COUNTING.

Particularly, in the CSA for a given regex, we try to navigate
towards cycles that are likely to create large counting sets. For
every counter c, every cycle in the CSA is assigned a weight
weight,., which represents an estimate of the maximum count-
ing set for ¢ that iterations of the cycle can generate. The
number reflects the following intuitions:

First, since the counting set ¢ can contain only values be-
tween O and max,, it can have at most max.+1 elements.
Second, the cycle is pumping up the set if (i) it does not re-
set it, (ii) it adds O or 1 and also increments the elements
of the set (without the increment, it would be only repeat-
edly adding 0/1’s to a set already containing it). Third, it is
better if only a few increments happen in between additions
of 0/1’s. For instance, a cycle that increments the counting set

1000.

four times per every addition of 0/1 is actually filling it with
multiples of 4, hence it can generate a set of the size at most
m“‘x;t *1 In summary, the weight of the cycle for the counter ¢
is non-zero only if the cycle does not reset ¢ and increments ¢
at least once, and then it equals max,. multiplied by the num-
ber add_cnt, of additions of 0/1 to ¢ divided by the number
inc_cnt. of increments of c, i.e. weight, = %ﬂm'
The final weight of a cycle is then computed as a sum of
weights for individual counters Y .cc weight,. with C being

the set of all counters used in the automaton.

The weights of cycles are assigned to states and propa-
gated through the transitions of the CSA. Initially, all states
have weight 0. We then process the cycles in the CSA one
by one. For each of them, the first step is setting all weights
of all states in the cycle to the maximum of their previous
weight and the weight of the cycle. The weight of the cycle is
then propagated backwards through paths reaching the cycle.
Namely, the weight of a state r, weight(r), propagates through
a transition g Ha)>r so that weight(q) is assigned the maxi-
mum of weight(q) and weight(r) —0.5. This is iterated as
long as some weight can be increased. In the end, transitions
with heavy target states point in the direction of short paths
towards heavy cycles (the shortness is achieved through the
subtraction of 0.5 for every transition that the weight of the
cycles is propagated through).

Example 5.1. Consider the CSA for the regex
‘““HOST\x09* [*\x20] {1000}* (a simplified regex from
SNORT [25]) in Figure Ic. States of the CSA have assigned
weights according to the algorithm described above. Figure 2
shows the tree of DFA states obtained by Algorithm 2.

The underlying NFA would look similar as the CSA in
Figure lc, with the difference that there are copies of states 6
and 7 for each value of counter ¢ between 1 and 1000
(and there is a nondeterministic choice over ‘\x09’ in
states (6,c=i) whether to stay in (6,c=i) or go to (6,c=i+
).

{(Le=0)} | B [{(2,c=0)} | O [{B,e=0)} | S [{(4,c=0)} | T | {(5,c=0)}

d:0,s:1,w:997.5 d:1,s:1,w:998

d:2,s:1,w:998.5

d:3,s:1,w:999 d:4,s:1,w:999.5]

E{(7,c=2)}] E{(7,c=1)7(7,c=2)}]
d:6,s:1,w:0 d:6,5:2,w:0

B E

{(67 c=1), (67C':2)}
d:6,s:2,w:1000

\x09

E{(7,c=3)}] [{(7,(’=2)7(7,c=3)}j
d:7,s:1,w:0 d:7,5:2,w:0

E{(7,c=1)

,(7,0=2), (77c=3)}]

d:7,s:3,w:0

d:1003,s:1,w:0 d:1003,s:2,w:0

[{(7,c=v999)}] E{(7,c:998),’(7,c:999)}] [{(7,c=997

d:1003,s:3,w:0

d:1003,5:999, w:1000

)7(7,c=v998)7(7,c=999)}j [{(@c:l),...V,(67c:999)}j

Figure 2: DFA states explored by Algorithm 2 on the regex ‘“HOST\x09* [*\x20]{1000}".

If traversed using the GREEDY strategy (assuming that
whenever there is a choice in Figure 2 between two DFA
states with the same sizes, the strategy picks the left one,
e.g., when choosing between {(7,c=1)} and {(6,c=2)},
GREEDY would choose {(7,c=1)}) the traversal would first
select the branch that goes to state 7 as soon as possible with
DFA states of size 1 (the left-most branch), then it would
select the branch with DFA states of size 2 (the second branch
from the left), etc., generating the text:

HOSTaaa...a\n

HOST\x09bbb...b\n

HOST\x09\x09ccc...c\n

HOST\x09\x09...\x09yy\n
HOST\x09\x09...\x09\x09z\n
HOST\x09\x09...\x09\x09\x09\n
The generated text is sub-optimal because it first targets “easy’
DFA states of size 1 and explores the most difficult path (with
the longest sequence of \x09) only as the last one.

On the other hand, the COUNTING strategy avoids this by
using the weights computed for the DFA states, which causes
that the paths are explored in the reversed order, preferring
state 6 because it has a higher weight:

HOST\x09\x09...\x09\x09\x09\n

HOST\x09\x09...\x09\x09z\n

HOST\x09\x09...\x09yy\n

1

HOST\x09\x09ccc...c\n
HOST\x09bbb...b\n
HOSTaaa...a\n

Indeed, in our experiments, for this regex, RE2 took 23 times
longer to process the text generated by COUNTING than the
text generated by GREEDY.

6 Experimental Results

We have implemented our approach in a C# prototype called
GadgetCA and evaluated its capability of generating text caus-

ing efficiency problem (ReDoS attack) for the state-of-the-art
regex matchers especially with regexes that contain a bounded
repetition and compared with existing ReDoS generators.

Matchers. We experiment with the matchers introduced in
Section 2. We have automata-based matchers grep [19] (ver-
sion 3.3), RE2 [17], SRM [38], and the standard regex matcher
in Rust [14], all four based on online DFA-simulation,
Hyperscan [8], which uses NFA simulation, and also the
prototype matcher CA [46], based on counting set automata
(cf. Section 5), which specialises in handling bounded quanti-
fiers (CA implements offline CSA-simulation, i.e., it simulates
a pre-constructed deterministic CSA on the input text). Then,
representing backtracking matchers, we have standard library
regex matching engines of a wide spectrum of program-
ming languages: .NET [26], Python [16], Perl [44], PHP [18],
Java [13], JavaScript [9], and Ruby [6]. We note that grep,
RE2, Rust, and Hyperscan are performance-oriented match-
ers containing many high- and low-level optimizations.

In Section 6.6, we also experiment with the NIDS
SNORT [25], which internally uses Hyperscan, and with the
hardware-accelerated regex matching engine on the NVIDIA
BlueField-2 [29] card.

Except the experiments in Section 6.6, we run our bench-
marks on a machine with the Intel(R) Xeon(R) CPU E3-1240
v3@3.40 GHz running Debian GNU/Linux (we run .NET
tools on the Mono platform [1]).

Size of ReDoS text. In order to avoid low-level noise in
the measured times of matchers, we generate texts of the size
~50MB. We use this value since we observed that at around
50 MB, the ratio between the performance of a matcher on
a random text and on a generated ReDoS candidate start to
stabilize for many of the used matchers. Larger text sizes may
still increase the slowdown, but using them would rise the
cost of our experiments beyond what we can manage.

GadgetCA. Our generator GadgetCA generates a text for
a potential ReDoS attack using our approach presented in

Sections 4 and 5. In particular, we run the ReDoS text genera-
tor for 10 mins or until it completely explores the state space.
(We emphasize that generating the ReDoS texts is not a time
critical task, since they can be prepared in advance before an
attack.) Then, we take the obtained text and copy it as many
times as needed in order to obtain a ~50 MB long text.

The particular ReDoS generation algorithm used depends
on the chosen search strategy: GREEDY, COUNTING, RAN-
DOM, or ONELINE (which is yet another strategy used to
target SNORT’s Hyperscan in Section 6.6).

Other generators. We compared GadgetCA against state-
of-the-art generators, which are mainly focused on back-
tracking matchers (indeed, as far as we know, GadgetCA
is the first generator targeting nonbacktracking matchers),
namely RXXR2 [35], RegexStatic [50], RegexCheck [53],
and Rescue [39].° These generators use different algorithms
to generate a ReDoS text. The generators may consume ex-
cessive time while analysing the regex and generating a Re-
DoS text, hence, we limited their running time to 10 mins
(the same as for our generator). Note that all of these tools
are research prototypes, so they do not support all regex fea-
tures. The generators generate a ReDoS text template in the
form of a triple (prefix, pump, suffix) so that a concrete ReDoS
text can be obtained by instantiating prefix - pump* - suffix for
some k. Therefore, we set k for each of the ReDoS texts so
that |prefix| + |pump| - k + |suffix| ~ 50 MB.

Dataset. The regexes that we targeted in the experiment
were selected from the following sources: (a) the database
of over 500,000 real-world regexes coming from an Internet-
wide analysis of regexes collected from over 190,000 soft-
ware projects [12]; (b) the databases of regexes used by
network intrusion detection systems (NIDSes), in particu-
lar, SNORT [25], Bro [37], Sagan [2], and the academic pa-
pers [47, 54]; (c) the RegExLib database of regexes [36],
which is a website dedicated to regexes for various domain-
specific languages (DSLs); (d) regexes from posts on Stack
Overflow [31]; (e) industrial regexes from Microsoft used for
security purposes [20]; and (f) industrial regexes from Trust-
Port [45] for detecting security breaches. This gave us a set of
609,992 regexes that we denote as ALL. We then categorized
the regexes in ALL into several classes as follows:
SUPPORTED (443,265) is a subset of ALL of syntactically
correct regexes without features not supported by our tool—
e.g., look-arounds, back-references, etc. Moreover, our tool
also does not support regexes with the bounded repetition that
yield a non-uniform NCA” (there were 101 such regexes).
COUNTERS (47,513) is a subset of SUPPORTED contain-
ing regexes with bounded repetition. The rest of SUPPORTED

6We do not include SlowFuzz [33] into the evaluation since we were not
able to run it in our test environment. According to [39], Rescue, which we
include, is more effective than SlowFuzz.

"Due to the technical difficulty of characterizing such regexes and the
relatively small number of regexes affected by this, we refer the interested
reader to the description in [46, Section 6.4].

is in NOCOUNTERS (395,752).

ABOVEZ20 (8,099) is a subset of COUNTERS with regexes
where the sum of upper bounds of bounded repetition is above
20 (i.e., regexes where the use of bounded repetition may
potentially lead to state space explosion). The rest of COUN-
TERS is put into BELOW20 (39,414).

6.1 Methodology

Let us now elaborate on the criteria we use to classify ReDoS
attacks. In the literature, we found the following used criteria:
Shen et al. [39] generate strings at most 128 symbols long and
consider a string a ReDoS if Java’s regex library matcher
makes at least 103 steps on it. Davis et al. [11] generate
strings of lengths 100kB—1 MB and call a string a ReDoS
if the matcher takes more than 10 s to match it. Staicu and
Pradel [41] generate pairs of random and crafted strings of
an increasing length and measure the differences of the times
the matcher takes for the random and the crafted string in
each pair, obtaining a sequence d;,d, . ..,d,. They consider
a crafted string a ReDoS if d| < d» < --- < d,. Rathnayake
and Thielecke [35], Wiistholz et al. [53], and Weideman et
al. [51] define that a regex is ReDoS-vulnerable if it meets
some condition that causes super-linear behaviour (they do
not examine the run time of the matchers in detail).

We base our ReDoS criteria on the criteria in [11], but nor-
malize it w.r.t. the significantly lower average matching times
for automata-based matchers ([11] only considers backtrack-
ing matchers). Our ReDoS criteria are the following:

* >10s: The matching takes over 10s. This corresponds

to the throughput of <5 MB/s.

* >100s: The matching takes over 100 s. This corresponds
to the throughput of <0.5 MB/s.

¢ >100x AVGRrEgex: The matcher takes at least 100 times
longer than usual on the given regex. The usual time is
computed as the average runtime of the same matcher
on 10 different ~50 MB-long random texts. This is rel-
evant when the user has some idea about the average
performance of the matcher on the regex, presumably
from testing.

* >100x AVGmaTcHER: The matcher takes at least 100
times more than usual globally. The usual time is the av-
erage time the same matcher takes on a random ~50 MB-
long text across all regexes. However, we include only
regexes without the anchors ‘*” and ‘$’ since match-
ing regexes with anchors in a random text mostly ends
by declaring non-match after processing the first few
characters. Average matching times (in seconds) for the
matchers are given in Table 1.

6.2 Summary of Results

Let us quickly summarize results obtained in our experimental

evaluation, described in detail in the following sections:

R1: Regexes with bounded repetition with higher bounds
are potentially vulnerable to ReDoS attacks even for
automata-based matchers.

Table 1: The average matching time [s] of a random 50 MB-long text for each of the matchers (averaged over all regexes)

grep hSycI:;:‘- re2 | srm | ca | rust | ruby | php | perl | python | java | javaScript | .NET
0.04 0.07 | 0.14 | 1.02 | 1.32 | 0.07 | 2.13 | 3.10 | 0.09 0.69 1.11 0.93 2.59

Table 2: Numbers of regexes from ABOVEZ20 for which various generators successfully generated >100s and >10s-ReDoS texts.
Red (darker) colour emphasizes higher numbers. For each ReDoS criterion, matchers are split into groups based on their types.

>100s-ReDoS attacks >10s-ReDoS attacks
Generators grep | re2 |rust|srm hsycl;? ca ||ruby | php |perl|python java é'::;)t grep| re2 |rust|srm hzcl;e;
s GREEDY | 192 72| 76 |238 0 |61 56 | 200 |215| 210 390 274|311] 1
2 |COUNTING | 216 110| 96 |272 0 |45 89 | 218 |242]| 211 295|391] 3
32| RANDOM | 126 28 | 48 123 0 |46 60 | 160 |181| 111 259|242 1
S| ONELINE | 192 17 | 32 | 23 0 |56[333 | 40 |187| 433 |414| 378 78 | 30 6
RXXR2 7 0210 0 1] 24| 0 | 4 30 11 11 34 110120 0
RegexCheck | 14 0| 2 | O 0 0| 7 1 1 9 8 4 16 || 25 0 | 3|0 1 0 7 3 7 18 15 9 36
RegexStatic | 34 1 | 5 | O 0 8| 160 | 63 | 69 | 262 [253| 243 285 | 78 | 1 910 0 19 || 182 | 70 | 78 | 287 |274 254 | 333
Rescue 12 0|3]0 0 21 23| 3 | 4 23 13| 12 27 110 3|0 0 4124 2 5 26 13 13 28
\ random text \ 52 4 \ 11 \ 17 H 0 \82\ 33 \ 47 \ 23 \ 109 \162\ 36 231 H 153\ 10 \ 70 \ 27 H 2 \137H 175\ 47 \ 147\ 272 \255 228 -]

R2: If a regex does not contain counting, it mostly cannot
be used to perform a ReDoS attack on automata-based
matchers.

Our informed exploration strategy COUNTING is bet-
ter at generating ReDoS texts than the (less informed)
strategies GREEDY and RANDOM.

Other state-of-the-art ReDoS generators are not able to
generate ReDoS text for automata-based matchers.

Our techniques can be used to attack mature real-world
security solutions.

R3:

R4:

RS:

6.3 R1: Vulnerability of Counting Regexes

In our first experiment, we show that the use of bounded
repetition with a higher bound in regexes creates a possible
attack surface for ReDoS even for online DFA-simulation-
based matchers. We used the set of regexes ABOVE20 and
tried to generate ReDoS attacks using GadgetCA and other
matchers using the methodology described above.

First, see the top part of left-hand side of Table 2, which
shows how many successful >100s-ReDoS texts different
settings of GadgetCA were able to generate for online DFA-
simulation-based matchers. Notice that we were able to gen-
erate 216 ReDoS texts for grep, 110 ReDoS texts for RE2,
96 ReDosS texts for Rust, and 272 ReDoS texts for SRM (using
the COUNTING strategy).

Next, the right-hand side of the table shows data for the
weaker ReDoS criterion >10s. The number of generated suc-
cessful ReDoS-texts is significantly higher: 1,181 for grep,
1,116 for RE2, 295 for Rust, and 391 for SRM (all using the
COUNTING strategy).

Under both ReDoS criteria above, the COUNTING strategy
achieves the best results for online DFA-simulation-based
matchers and, moreover, for the >10s criterion also for back-
tracking matchers. Further, GREEDY obtains significantly bet-
ter results than RANDOM, proving that our informed search
strategies are better in generating hard texts than uninformed

search, confirming R3. The table also shows that Hyperscan,
SRM, and CA are more robust towards being attacked by our
ReDoS texts: SRM has a special support for counters and CA
is a matcher that uses counting set automata (cf. Section 5).
We will discuss Hyperscan in Section 6.6. See Appendix A
for examples of evil texts generated by GadgetCA using the
COUNTING strategy.

In the left-hand side of Table 3, we provide a comparison of
the number of >100x AVGyaTrcaer-ReDoS texts generated
by the tools. Again, note that a slowdown of >100 times wrt.
the global average for the matcher was achieved on many
regexes for online DFA-simulation-based matchers (2,457 for
grep, 742 for RE2, 1,016 for Rust, and 300 for SRM). Since
the global average matching time for PHP was 3.1 s and we
used the timeout of 300 s for matchers, in this table, the PHP
column contains the number of timeouts instead. A more
detailed analysis for other slowdown ratios is in Figure 3.
Notice that although Hyperscan looks almost invincible in
the results in Table 2, we are able to slow it down by a factor
of 10-50 in many instances (543).

On the other hand, the right-hand side of Table 3 compares
the numbers of generated >100xX AVGrggex-ReDoSes. In
this case, a slowdown of >100 times wrt. the average time for
the matcher and the regex was also achieved often for online
DFA-simulation-based matchers (1,157 for grep, 1,465 for
RE2, 1,066 for Rust, and 279 for SRM).

We conclude that many counting regexes can be success-
fully attacked using ReDoS texts created by our generator.

6.4 R2: Regexes Without Counting

The second experiment shows that when targeting automata-
based matchers, it is indeed important to exploit counting.
Since the set SUPPORTED is too large for us to run a Re-
DoS generator for each regex, we use a quick filter based on
the intuition that ReDoS in these matchers is caused by gener-
ating many large DFA states. Hence we run DFA construction
for each regex from the set. If the construction terminates

Table 3: Numbers of regexes with successfully generated >100xX AVGyaTrcuer and >100xX AVGrggex-ReDoS texts.

>100x AVGyarcuer-ReDoS attacks >100x AVGRrggex-ReDoS attacks

Generators grep |re2 | rust srm hsycl; enr- ca||ruby| php | perl |python|java é'::;;t .NET || grep| re2 |rust|srm hg cl; elf- ca||ruby | php| perl |python|java ;3::; .NET
< GREEDY 15195 18| 2 |40 260 | 38 [382 367 [328| 314 431 14 57 |12 0 0 164 | 9 | 174 | 232 |190| 194 | 203
+ | COUNTING 300 5 |67 277 |279| 258 416 279 2 3 407 | 142 140 | 171
2| RANDOM 289 3 |46[348|388 [412 176 |177| 117 320 292 |130|| © 0 153 | 156|266 | 91 63 | 60 72
&8 ONELINE 23 20 (53[0 322 | 34 |441 | 448 |405| 379 15 57 |16 23 0] 199| 9 |208| 277 |232| 228 | 238
RXXR2 3 0]2 0] 0 1] 24| 0 5 30 10 | 10 34 1 0 2 0] o ofl 0|0 4 22 8 8 20
RegexCheck |104 0| 5 0 [1 |0 7 | 1 | 7 11 8 4 14 4]0 40 o0 |of] 3]0]o0 4 3 2 2
RegexStatic | 93 1 | 9 O 1 7| 159| 50 | 80 | 263 |253| 243 279 || 47 | 5 5 0 0 O 80 | 14| 49 | 137 [125| 134 | 90
Rescue 12 0] 3 0 0 2| 23| 2 5 23 13| 12 26 1 2 4 |0 0 112 2| 6 15 7 6 14

with less than 1,000 states, we consider the regex safe. After
1,000 DFA states, the construction is stopped, and the regex
is marked as possibly vulnerable. This test is quick, since
constructing 1,000 DFA states is fast, and the vast majority
of the regexes have even much smaller DFAs.

To assess the accuracy of the test in predicting that a regex
is not vulnerable for automata-based matchers, we apply the
test on the regexes from ABOVE20 for which we did manage
to generate a ReDoS text for automata-based matchers (cf.
the experiment in R1). From ~2,000 of them, only grep and
Rust had cases with DFA smaller than 1,000 states, namely
24 cases, 6 for grep and 18 for Rust (RE2, CA, Hyperscan,
and SRM had none). These counterexample cases witness that
our filter is not always right, at least for grep and Rust, and
ReDoS with automata-based matchers might be possible even
with small DFA. Still, the scarcity of these cases confirms that
the test is a good predictor even for grep and Rust.”

Running the test on SUPPORTED resulted in the following
numbers of regexes with DFAs with >1,000 states:

NOCOUNTERS BELOW20 ABOVE20
175 (0.04%) 343 (0.8%) 1,600 (20 %)

We then used GadgetCA to generate ReDoS candidates for
the regexes in NOCOUNTERS U BELOW20 whose DFAs had
more than 1,000 states. Only 7 regexes caused >100s-ReDoS
for automata-based matchers, two for grep— ‘\". {20}\$’
and ‘\"_.{19}\$" (note that both also contain “higher
bounds” for the quantifiers)—and 5 for SRM. A >10s-ReDoS
was caused by 24 regexes for grep and ~6 regexes for each
of RE2, Rust, and SRM. The relative sizes of the sets indicate
that regexes without higher repetition bounds are much less
vulnerable to ReDoS for automata-based matchers (518 vul-
nerable from 435,166 in NOCOUNTERS UBELOW20 while
1,600 vulnerable from 8,099 in ABOVE20).

6.5 R4: Comparison with Other Generators

Our next experiment confirms that our generator can create
new ReDoS attacks much more effectively than existing tools.

First, compare the middle part of the left- and right-hand
side of Table 2. For other generators, the ten-fold stronger
>100s-ReDoS criterion makes almost no difference: they can-
not find and exploit the features of the regex that make the

8The 24 cases are probably caused by specific implementation techniques
or different interpretation of the regexes. The 18 cases of Rust seem to be
related to handling of large character classes (\w appears in all 18 cases).

matchers slow down (both for automata-based and backtrack-
ing matchers). The same holds for the >100x AVGpATCHER
and >100x AVGRrggex-ReDoS criteria in Table 3.

Second, compare the bottom part (random text) with the
middle part of the table. For counting regexes, a random text
is in the majority of cases actually better in creating a Re-
DoS than current state-of-the-art ReDoS generators (only
RegexStatic can keep up with the random text on some
matchers). Relating this to GadgetCA in the top part of the ta-
ble reveals that the numbers of successfully attacked regexes
for the two criteria differ significantly, hence GadgetCA in-
deed succeeds in exploiting the critical feature of the regex.

Third, the comparison of the top part with the middle part
of the table shows that GadgetCA significantly outperforms
other matchers on online DFA-simulation-based matchers and
most of the other generators even on backtracking matchers
(the only exception being RegexStatic, which is comparable
on some backtracking matchers).

6.6 RS: Real-World Security Solutions

Our final experiment demonstrates that the results obtained in
R1 carry over to real-world security solutions which should
be prepared for being targeted by (Re)DoS. We carried out an
extensive evaluation of the abilities of SNORT 3 [25], a popu-
lar and often used NIDS, which internally uses Hyperscan, to
withstand ReDoS attacks generated by GadgetCA. Instead of
using some of the previously introduced datasets, which might
contain regexes created by people unaware of the dangers of
ReDoS, we used regexes from rulesets provided with SNORT,
which are written by security experts and tested in production.
In particular, we used regexes from the following four rulesets:
(1) Emerging Threats Pro, (ii) Emerging Threats 3CORESec
(versions 157 and 164), and (iii) Talos LightSPD (version
2021-03-11-001). We call the obtained set of 1,112 PCRE
regexes SNORT (from the original 22,425 original regexes we
removed 16,094 regexes not supported by our tool, and then fil-
tered the 1,112 regexes with quantifier bounds at least 20). The
experiment was run in two different settings: (i) on a commod-
ity x86_64 machine with SNORT using Hyperscan and (ii) on
a computer with an NVIDIA BlueField-2 card [28], which pro-
vides its own hardware-accelerated regex matching solution.

Modified ReDoS Generator. In this experiment, we use
a modified version of our ReDoS generator for the reason that
although Hyperscan, used within SNORT, can be counted

3500

o
&
3000 o~ NS
N &
2500 L
g g
2000 X) v
— wn
o0 o — <
1500 v o Q o] =] o
o g - - S
n — ~
n o —A o —
1000 o B Ro o0 o ™)
g q < Q < ©
° '; m | g (<)) n |~ ~ ~ g
500 | S o L © < ~ a N 0SS F N <
: = MEETRE N TR R =N A RN
. o I R RS ° 5l 87m| Fop| SRl %
grep re2 rust srm hyperscan ca ruby php perl python java javaScript .NET
Matcher
| 1050 ©50-100 = 100-500 m >=500 |

Figure 3: Histogram of ratios between times of matchers for random and ReDoS text generated by GadgetCA.

as an automata-based matcher, it is not based on online
DFA-simulation. Experiments discussed in the previous sec-
tions indeed show that our ReDoS generator, which targets
mainly online DFA-simulation, is only mildly successful
with Hyperscan. We therefore use here a modification of
GadgetCA tailored for Hyperscan.

We specifically target the following coarse abstraction of
Hyperscan’s matching algorithm: the regex is split into a se-
quence of sub-strings (not containing any regex operator) and
sub-regexes (or a choice of such sequences) so that a word is
matched if it is a concatenation w = vy - - - v, of the sub-strings
of the given regex and words matched by the sub-regexes. The
first phase of matching tests whether w contains all the sub-
strings in the right order, by an extension of the Boyer-Moore
algorithm. The second phase tests whether the remaining
sub-words are matched by the respective sub-regexes. The op-
portunity for slowing Hyperscan down is in the second phase,
which uses NFA-simulation to match the sub-expressions.’

We therefore aim at generating evil texts that contain the
needed sequence of sub-strings and therefore pass the first
phase of matching, and where the second phase is also hard.
To do that, we use our generator to get a single evil word u
over a run that takes the CSA from the initial to a final state.
The word is essentially generated by the first iteration of the
while-loop on Line 11 of Algorithm 2 parameterised with the
strategy COUNTING (a single CSA run that aims at maximis-
ing the sizes of counting sets). The word u is then iterated to
get the output text w = uuuu . .. of the required length.

A word w generated this way is likely to be evil for the
following two reasons: (i) every occurrence of u# in w contains
all sub-strings, generating many possible splits of w into the
sub-strings and the parts to be matched by the sub-regexes;
(ii) the word u, generated by our generator, is likely to force
large DFA states, expensive for NFA simulation. Note also

90ur abstraction of Hyperscan is coarse, but it is simple and sufficient for
our needs: to show that methods similar to those for online DFA-simulation
can be used to find vulnerabilities of Hyperscan too. A specialised ReDoS
generator based on a more thorough analysis of Hyperscan’s algorithm
might yield better results, but is already out of the scope of this paper.

that, unlike for online DFA simulation, it does not matter that
the encountered DFA states are likely to be found repeatedly
in the repeating instances of u since NFA simulation is not
caching the DFA.

6.6.1 SNORT with Hyperscan on x86_64

We installed SNORT 3 with enabled performance monitor and
Hyperscan on a commodity x86_64 machine (we used Intel
i7-10510U CPU @ 1.80 GHz with 4 Hyper-Threading cores).
Then, we were running SNORT on 100 MB-large PCAP files
with random and ReDoS IPv4 traffic that we generated and
captured the processing time of the regex matching engine,
as provided in the output of the performance monitor mod-
ule. We ran two experiments with two different sizes of IP
packets for two selected Ethernet frames” MTUs: 1,500 B and
9,000 B (we note that bigger sizes of the payload could be
used to attack SNORT with TCP reassembly turned on). See
Figures 4a and 4b for the slowdown that we achieved with
our ReDoS text over random text.

The histograms clearly show the SNORT rulesets we used
contain many possibilities for slowing SNORT down (see Ap-
pendix B for the most vulnerable regexes). In particular, using
packet size of 1,500 B, in 43 cases we achieved a slowdown
of over 40, with 2 regexes slowing the matcher down over
100x. The number of vulnerable regexes is even higher for
the packet size 9,000 B: 91 regexes yield a slowdown of over
50x and 32 regexes over 100x.

We contacted the development team of SNORT and did the
responsible disclosure of the discovered vulnerable regexes.
SNORT development team stated that the vulnerability is stem-
ming from the Hyperscan library, and they mitigate it by
restricting the length of packets on which the matching is
performed as well as by using timeouts (the standard configu-
ration of SNORT comes with the backtracking-based PCRE en-
gine enabled, which is, however, even more prone to attacks).
This might, however, lead to skipping the malicious content
that can be presented at the end of the packet/data, making
the NIDS ineffective: malicious packets may get passed to
applications behind the NIDS.

100 70

65

o0 8
g 80 . 60
x £
g)n 70 63 g,n 50 44
£ 60 2
“ < 40
2 50 °
-?E:' 40 é 30

29

2 3 2 2

20 10

10 R 10

0 0

10 20 40 60 80 100 S
& o
»)

Slowdown

(a) SNORT 3@Hyperscan (1,500 B)

Slowdown
(b) SNORT 3@Hyperscan (9,000 B)

140

120

80
32
60
21

Number of regexes

40

9 I
20
. --l

N o o
& S B

o
@! ;s,ee;& ¢,°° ¢,°°
7 R

Slowdown
(c) NVIDIA BlueField-2

Figure 4: Histograms of slowdowns for SNORT 3 with Hyperscan (packet sizes 1,500 B and 9,000 B) and BlueField-2 regex

matching for ReDoS texts over random texts.

6.6.2 NVIDIA BlueField-2

In the second part of this experiment, we used an NVIDIA
BlueField-2 data processing unit (BF2) MBF2H332A-
AEEQOT [29], which integrates eight 64-bit ARMv8 Cortex-
A72 cores and houses two 25 GbE interfaces. BF2 provides
hardware-accelerated regex matching capabilities, accessible
via NVIDIA’s data plane development kit (DPDK) [28]: in
our experiments, we used the regex compiler rxpc and the
testbed for the regex matching engine called rxpbench. In
this experiment, we ran rxpbench on blocks of random and
ReDoS texts of the length 100 GB (this time, we did not need
to chunk the texts into packets and provided the text directly
in memory) and measured the throughput of the matcher. We
measured that the regex matching engine itself enables in-
memory processing at ~40 Gbps. For the evaluation, we used
a subset of SNORT rules containing 617 regexes that we name
SNORT-BF2 (we took all regexes from SNORT that could be
compiled by rxpc, which does not support some advanced
features of PCRE, such as negative look-ahead).

See Figure 4c for histograms of slowdowns we obtained
with our ReDoS text as compared to random text. Observe that
we obtained a slowdown of more than 100x on the ReDoS
text in over 92 cases. Moreover, for 16 cases, we obtained
a slowdown over 500 (with the highest slowdown ratio be-
ing 2,194 x). See Appendix B for a list of regexes on which
we obtained the largest slowdown. We have reported the vul-
nerability to NVIDIA, which confirmed it to be caused by
a conceptual limitation of their regex matching engine. We
plan to cooperate on a possible mitigation.

Our results indicate that ReDoS attacks are in general suc-
cessful in slowing down the throughput of the most recent
hardware utilized for NIDS in the industry. Moreover, we
emphasize that for a successful ReDoS attack on an NIDS, it
suffices to have a single vulnerable rule in the used rulesets.

7 Mitigation Techniques

Standard techniques for mitigation of ReDoS attacks are the
following: (i) setting a resource limit (e.g., a timeout) and
(ii) limiting the size of the input (e.g., to the first 100 charac-

ters) of the regex matcher. Although such techniques can avert
the scenario of a server becoming unresponsive, they leave
a part of the input traffic not classified and potentially harmful
or unnecessarily dropped. A mitigation specific for regexes
with the counting operator is to substitute it by the star * op-
erator, which over-approximates the language of the original
regex (this might yield other issues, such as increasing the
number of false positives in an NIDS).

There are, however, two ways how users of regex matchers
can mitigate the attacks without the mentioned disadvantages:

1. Use our ReDoS generator GadgetCA to evaluate whether

aregex is ReDoS-vulnerable.

2. Use a matching algorithm that can handle counting effi-
ciently, the one implemented in the tool CA or possibly
also SRM (these matchers are still too immature to be
used in production, but an efficient implementation of
the techniques they use within RE2 or Hyperscan should
give rise to a robust regex matching solution).

8 Conclusion and Future Work

We have shown that nonbacktracking automata-based regex
matchers, which are sometimes suggested as a mitigation
of ReDoS, are still ReDoS-vulnerable. We have developed
a method for constructing inputs for these matchers that make
them perform poorly and cause significant slowdown on
a large class of regexes, in particular those with counting.

In future, we plan to focus on developing robust regex
matchers that could prevent these kinds of attacks. A first
proof of concept is the matcher CA from [46], but the class of
counting regexes it support is quite restricted; we will there-
fore explore formal models that can deal with more general
classes of counting regexes efficiently.

Acknowledgment. We thank the reviewers for their com-
ments on how to improve the quality of the paper and the Cy-
berGrid group from FEEC BUT for lending us the NVIDIA
BF2 card. This work was supported by the Czech Min-
istry of Education, Youth and Sports project LL.1908 of the
ERC.CZ programme, the Czech Science Foundation project
20-07487S, and the FIT BUT internal project FIT-S-20-6427.

References

(1]
(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Mono. https://www.mono-project.com/.

The Sagan Log Analysis Engine. https://
quadrantsec.com/sagan_log_analysis_engine/.
Valentin Antimirov. Partial derivatives of regular expres-
sions and finite automaton constructions. Theoretical
Computer Science, 155(2):291 — 319, 1996.

Adam Baldwin. Regular expression
denial of service affecting Express.js.
https://medium.com/node-security/reqular-
expression-denial-of-service-affecting-
express—Jjs-9c397c164c43, 2016.

Robert S. Boyer and J. Strother Moore. A fast string
searching algorithm. Commun. ACM, 20(10):762-772,
1977.

James Britt and Neurogami Secret Laboratory. Reg-
exp - Ruby. https://ruby-doc.org/core-2.3.1/
Regexp.html, 2021.

Wikipedia contributors. Regular expression—wikipedia.
https://en.wikipedia.org/w/index.php?title=
Regular_expression&%2001did=852858998, 2019.
Intel Corporation. https://github.com/intel/
hyperscan, 2021.

Oracle Corporation. Regexp - JavaScript. https:
//developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/RegExp,
2021.

James C. Davis. Rethinking regex engines to address
ReDoS. In ESEC/FSE’19, pages 1256—-1258. ACM,
2019.

James C. Davis, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. The impact of regular expression
denial of service (ReDoS) in practice: An empirical
study at the ecosystem scale. In ESEC/FSE’18, pages
246-256. ACM, 2018.

James C. Davis, Louis G. Michael IV, Christy A. Cogh-
lan, Francisco Servant, and Dongyoon Lee. Why aren’t
regular expressions a lingua franca? An empirical study
on the re-use and portability of regular expressions. In
ESEC/FSE’19, pages 1256-1258. ACM, 2019.

MDN Web Docs. Class pattern - java. https:
//docs.oracle.com/en/java/javase/11/docs/
api/java.base/java/util/regex/Pattern.html,
2021.

docs.rs. regex - rust. https://docs.rs/regex/1.5.

4/regex/, 2021.

Stack Exchange. Outage postmortem. http:
//stackstatus.net/post/147710624694/
outage-postmortem-july-20-2016, 2016.
Python Software Foundation. re - Python. https:

//docs.python.org/3.6/1library/re.html, 2021.
Google. RE2. https://github.com/google/re2.

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]
(28]

[29]

(30]

(31]

(32]

(33]

[34]

The PHP Group. PCRE patterns - PHP. https://www.
php.net/manual/en/regexp.introduction.php,
2021.

Mike Haertel et al. GNU grep. https://www.gnu.
org/software/grep/.

Lukas Holik, Ondfej Lengdl, Olli Saarikivi, Lenka Tur-
onovd, Margus Veanes, and Tomas Vojnar. Succinct
determinisation of counting automata via sphere con-
struction. In Proc. of APLAS’ 19, volume 11893 of LNCS,
pages 468—489. Springer, 2019.

Intel. Hyperscan 5.4 developer’s reference guide, per-
formance considerations. http://intel.github.io/
hyperscan/dev-reference/performance.html,
2021.

James Kirrage, Asiri Rathnayake, and Hayo Thielecke.
Static analysis for regular expression denial-of-service
attacks. In NSS’13, volume 7873 of LNCS, pages 135-
148. Springer, 2013.

LLVM project. libFuzzer: A library for coverage-guided
fuzz testing. https://1llvm.org/docs/LibFuzzer.
html.

Blake Loring, Duncan Mitchell, and Johannes Kinder.
Sound regular expression semantics for dynamic sym-
bolic execution of JavaScript. In PLDI’19, pages 425—
438. ACM, 2019.

M. Roesch et al. Snort: A Network Intrusion Detection
and Prevention System,. http://www.snort.org.
Microsoft. https://docs.microsoft.com/en-us/
dotnet/api/system.text.regularexpressions.
regex.match, 2020.

Microsoft. CredScan. https://secdevtools.
azurewebsites.net/helpcredscan.html, 2021.
NVIDIA. Data plane development kit (dpdk). https:
//developer.nvidia.com/networking/dpdk.
Nvidia. Nvidia BlueField-2 DPU. https:
//waw.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/documents/
datasheet-nvidia-bluefield-2-dpu.pdf, 2020.
Open Information Security Foundation. Suricata.
https://suricata.io/.

Stack Overflow. Question and answer site for program-
mers. http://stackoverflow.com/.

OWASP. Regular expression denial of service — ReDoS.
https://owasp.org/www-community/attacks/
Regular_expression_Denial_of_Service -_
ReDoS, 2020.

Theofilos Petsios, Jason Zhao, Angelos D. Keromytis,
and Suman Jana. Slowfuzz: Automated domain-
independent detection of algorithmic complexity vul-
nerabilities. In CCS’17, pages 2155-2168. ACM, 2017.
Asiri Rathnayake. Semantics, analysis and security of
backtracking regular expression matchers. PhD thesis,
University of Birmingham, UK, 2015.

https://www.mono-project.com/
https://quadrantsec.com/sagan_log_analysis_engine/
https://quadrantsec.com/sagan_log_analysis_engine/
https://ruby-doc.org/core-2.3.1/Regexp.html
https://ruby-doc.org/core-2.3.1/Regexp.html
https://en.wikipedia.org/w/index.php?title=Regular_expression&%20oldid=852858998
https://en.wikipedia.org/w/index.php?title=Regular_expression&%20oldid=852858998
https://github.com/intel/hyperscan
https://github.com/intel/hyperscan
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://docs.rs/regex/1.5.4/regex/
https://docs.rs/regex/1.5.4/regex/
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://docs.python.org/3.6/library/re.html
https://docs.python.org/3.6/library/re.html
https://github.com/google/re2
https://www.php.net/manual/en/regexp.introduction.php
https://www.php.net/manual/en/regexp.introduction.php
https://www.gnu.org/software/grep/
https://www.gnu.org/software/grep/
http://intel.github.io/hyperscan/dev-reference/performance.html
http://intel.github.io/hyperscan/dev-reference/performance.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://www.snort.org
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.match
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.match
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.match
https://secdevtools.azurewebsites.net/helpcredscan.html
https://secdevtools.azurewebsites.net/helpcredscan.html
https://developer.nvidia.com/networking/dpdk
https://developer.nvidia.com/networking/dpdk
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://suricata.io/
http://stackoverflow.com/
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS

[35] Asiri Rathnayake and Hayo Thielecke. Static analysis
for regular expression exponential runtime via substruc-
tural logics. CoRR, abs/1405.7058, 2014.

[36] RegExLib.com. The Internet’s first Regular Expression
Library. http://regexlib.com/.

[37] Robin Sommer et al. The Bro Network Security Monitor.
http://www.bro.org.

[38] Olli Saarikivi, Margus Veanes, Tiki Wan, and Eric Xu.
Symbolic regex matcher. In TACAS 2019, volume 11427
of LNCS, pages 372-378. Springer, 2019.

[39] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing
Ma, and Jian Lu. Rescue: crafting regular expression
DoS attacks. In ASE’18, pages 225-235. ACM, 2018.

[40] Henry Spencer. Software solutions in C. chapter
A Regular-expression Matcher, pages 35-71. Academic
Press Professional, Inc., 1994.

[41] Cristian-Alexandru Staicu and Michael Pradel. Freezing
the web: A study of ReDoS vulnerabilities in JavaScript-
based web servers. In USENIX’18, pages 361-376.
USENIX Association, 2018.

[42] Satoshi Sugiyama and Yasuhiko Minamide. Checking
time linearity of regular expression matching based on
backtracking. IPSJ Online Transactions, 7:82-92, 2014.

[43] Ken Thompson. Programming techniques: Regular ex-
pression search algorithm. Commun. ACM, 11(6):419—
422, 1968.

[44] Tain Truskett. Perl regular expressions refer-
ence - perl. https://perldoc.perl.org/5.22.0/
perlreref, 2021.

[45] TrustPort. World class cyber security. https://www.
trustport.com/, 2021.

[46] Lenka Turoniovd, LukaS Holik, Ondfej Lengal, Olli
Saarikivi, Margus Veanes, and Toma$ Vojnar. Regex
matching with counting-set automata. Proc. ACM Pro-
gram. Lang., 4(O0OPSLA):218:1-218:30, 2020.

[47] Milan Ceéka, Vojtéch Havlena, Lukas Holik, Ondfej
Lengél, and Tomas Vojnar. Approximate reduction of
finite automata for high-speed network intrusion detec-
tion. In Proc. of TACAS’18, volume 10806 of LNCS.
Springer, 2018.

[48] Peipei Wang, Chris Brown, Jamie A. Jennings, and
Kathryn T. Stolee. Demystifying regular expression
bugs. Empir. Softw. Eng., 27(1):21, 2022.

[49] Peipei Wang and Kathryn T. Stolee. How well are
regular expressions tested in the wild? In FSE’18, pages
668-678. ACM, 2018.

[50] Nicolaas Weideman. RegexStatic. https://github.
com/NicolaasWeideman/RegexStaticAnalysis,
2015.

[51] Nicolaas Weideman, Brink van der Merwe, Martin
Berglund, and Bruce W. Watson. Analyzing matching
time behavior of backtracking regular expression match-
ers by using ambiguity of NFA. In CIAA’16, volume
9705 of LNCS, pages 322-334. Springer, 2016.

[52] Matthias Wiibbeling. Regular expression security. AD-
MIN, 55, 2020.

[53] Valentin Wiistholz, Oswaldo Olivo, Marijn J. H. Heule,
and Isil Dillig. Static detection of DoS vulnerabilities
in programs that use regular expressions. In TACAS’17,
volume 10206 of LNCS, pages 3-20, 2017.

[54] Liu Yang, Rezwana Karim, Vinod Ganapathy, and Randy
Smith. Improving NFA-based signature matching using
ordered binary decision diagrams. In Recent Advances
in Intrusion Detection, pages 58—78. Springer Berlin
Heidelberg, 2010.

A Examples of Generated Evil Texts

Example 1. For the regex 0id=["\0D\x0A] {1000} (origi-
nating from SNORT) GadgetCA (strategy: COUNTING) gener-
ates a text of several lines, each of the length 1,003 characters
and containing full or unfinished copies of the string ‘0id=":
(0id=)>0id
(01d=)?*0id0id=

Each new copy of 0id= adds a new value to the counting-set
and since all characters of the string ‘0id=" belong to the
character class [*\0D\x0A], which is being counted, all ex-
isting values in the counting-set are also incremented. The
variety of full or unfinished copies of the prefix 0id= forces
creation of many large DFA states with different counter val-
ues. The length of the shortest string matched by the regex is
1,004 characters, however, we aim at generating the longest
non-matching lines, and so the length of the generated lines
is 1,003 characters. The generated text is demanding for most
automata-based matchers (matching time for 50 MB input:
grep: 0.83s, Hyperscan: 0.06s, RE2: 228.28 s, SRM: 46.54 s,
CA: 2.77 s, Rust: 96.7 s).

Example 2. For the regex <[*>\x20] {500} (originating
from SNORT) GadgetCA generates a text containing sub-
strings of the length 500 (the length of a minimal match is 501)
with many different placements of ‘<’:

(<)300

where Q is an arbitrary character other than ‘<’. This text
also forces matchers to generate many DFA states with dif-
ferent counter values, yielding the following matching times
(on 50 MB texts): grep: 0.11s, Hyperscan: 0.1s, RE2: TO,
SRM: TO, GadgetCA: 2.8s, Rust: 112.34s.

B Attacks on Real-world Security Solutions

In Tables 4 and 5, we provide examples of regexes for which
we managed to obtain a significant slowdown of SNORT (with
Hyperscan as the regex matching engine) and the NVIDIA
BlueField-2 DPU respectively.

http://regexlib.com/
http://www.bro.org
https://perldoc.perl.org/5.22.0/perlreref
https://perldoc.perl.org/5.22.0/perlreref
https://www.trustport.com/
https://www.trustport.com/
https://github.com/NicolaasWeideman/RegexStaticAnalysis
https://github.com/NicolaasWeideman/RegexStaticAnalysis

Table 4: Slowdown of regex matching in Snort3 with Hyperscan on x86_64.

SID Slowdown Slowdown Regex
(MTU=9000B) (MTU=1500B)
46310 213.95 78.89 [?&Ju=["&\s]{35}
31068 172.32 50.49 <hostname>. {0,250} [\x60\x3b\x 7c\x24\x28\x26]
2644 165.81 65.57 \(\s*TIMESTAMP\s*(\s*(\x27[M\x27]+ \x22[M\x22]+\x22)\s* \s*((\x27[MN\x27]{ 1000, }I(\x22["\x22]{ 1000, }))
13364 163.52 71.15 sre\s™\x3D(3D)Ns*[*"][A'"]{244}
19925 160.95 58.7 value\s*=\s*[\x27\x22][Mx27\x22]{257 }
2102614 157.95 52.68 TIME_ZONE\s*=\s*((\x27["\x27]1{ 1000, H)I(\x22["\x22]{ 1000, }))
17659 157.41 79.18 \sM\x28(\x27[Mx27]{64 } \x27[Mx27]\x27\s * \s*\x27[\x27]{ 64 })
2611 157.39 49.67 USING\s*((\x27[MN\x27]{ 1000 })I(\x22["\x22]{ 1000}))
46309 152.34 65.7 [?&]p=["&\s]{260}
39982 145.5 55.61 [?&]sn=["&]{129}
2651 140.95 51.26 NUMTO(DSIYM)INTERVAL\s*\(\s*¥\d-+\s* \s*((\x27[M\x27]{ 1000, }I(\x22["\x22]{ 1000, }))
2102699 138.15 49.25 TO_CHAR\s*\(\s*SYSTIMESTAMP\s* \s*(\x27[Mx27]{256 } \x22[M\x22]{256})
19121 136.82 63.89 SET\s*EXPLAIN\s*FILE\s*TO\s*[\x22\x27]["\x22\x27]{927}
2640 135.24 56.41 \(\s*F(\X27[MX27]* Nx22[Mx22]+\x22)\s* \s*(truelfalse)\s* \s*((\x27[M\x27]{ 1000, })I(\x22["\x22]{ 1000, }))
15114 135.06 51.46 embed sre=\s*(\x27[Mx27]{ 1000} \x22[MN\x22]{ 1000 }I["\s\x22\x27]{ 1000})
29679 133.17 7716 document\.execCommand \(\s*[\x22\x27]InsertUnorderedList[\x22\x27]\s *\\\s*\x3B.{ 0,250 }\s *\w+\.swapNode
’ ’ \(\s*[A-Za-Z\(O\"V\\=\]{ 1,75 N\s*\)\s *document\.execCommand\(\s *[\x22\x27]Undo[\x22\x27\s*\)\s*\x 3B
39707 131.81 48.37 folder\s*name\s*=\s*[\x22]["\x22]{200}
39709 125.72 49.06 folder\s*name\s*=\s*[\x27]["\x27]{200}
27805 1239 45.19 V3001[0-9A-F1{262,304}
20889 122.09 47.98 <\s*valitem[*>]*\s(valuelname)\s*=\s*([\x22\x27])["\x22\x27]{ 104 }
16516 121.4 44.42 sys\x2eolapimpl\x5ft\x2eodcitablestart\x28["\x2c]+\x2¢c[Mx2¢]+\x2c\s ¥\x27?[Mx2c\x27] {303 }
29184 120.92 54.3 encoding\x3D[\x22\x27][Mx22\x27]{ 1024}
14991 120.65 61.81 select\s+xmlquery\s*\x28\s*(\x27\x22)["\x27\x22] {512}
43005 120.52 35.49 [?&]psk=["&]{256}
29185 118.76 50.13 version\x3D[\x22\x27][MN\x22\x27]{ 1024}
33310 117.95 54.87 \X3C\x2 1ENTITY\s+.*\s+\x22\x26[\x22]{ 700}
27808 110.1 29.94 \x2f\?[a-f0-9]{60,66 }
42078 108.17 43.24 [?&](cmdIpwdlusr)=["&]{64}
24388 106.01 43.94 name=\s*[M\r\n\x3b\s\x2c]{300}
Table 5: Slowdown of regex matching at an NVIDIA BlueField-2 card.
Thourghputon Thourghput on
SID Random Text Redos Text Slowdown Regex
[Gbs] [Gbs]
2046 41.24 0.02 2,193.76 NsPARTIAL.*BODY\.PEEK\[["\]\1024V
19213 41.19 0.02 1,681.04 /Subject\x3a\x20[Mn]*\x3fQ\x3f[M\n]{512}/
17367 40.30 0.03 1,174.83 NA{3\s+[Mn]{1019}/
6507 41.09 0.04 957.74 Ax2fnds[*\r\n]{ 1000}/
1021 41.21 0.04 956.06 Ns{230,}\.htr/
20241 40.66 0.04 947.72 /Oid\x3D["\xOD\x0A]{ 1000}/
15489 40.58 0.04 920.28 Ax3cimg[Mx3e]*sre\x3d(\x221\x27) ?[Mx22\x27\s]{300}/
3547 40.79 0.05 829.08 /php.*\x3f[Mn]{256}/
25586 41.03 0.06 732.67 /host=["&]{1024}/
8060 41.31 0.06 728.49 /GET\s\x2f["\r\n]{900}/
31354 41.14 0.06 656.15 Ax28\x3f\x3d[")]{300}/
3149 41.22 0.06 655.34 /object\s[*>]*type\s*=\s*[\x22\x27][Mx22\x27]*\x2f{ 32}/
17568 41.11 0.06 641.29 Aw {3 }1\x25\x30\x30[\r\n] {2000}/
4127 41.15 0.08 545.82 NAx2fnds\x2f[*&\r\n\x3b] {500}/
38287 40.97 0.08 543.40 Jakey=["&]{500}/
18484 41.14 0.08 536.42 /https Nx3a\x20\x 2f[Mn\r]{ 1000}/
43545 41.22 0.08 485.54 /-group[Mr\n\s]{ 1280}/
33310 40.96 0.09 469.76 NAx3C\x21ENTITY\s+.#\s-+\x22\x26["\x22]{ 700}/
2701 41.20 0.09 434.18 /sid=["&\x3b\r\n] {255}/
2107 41.21 0.10 427.53 NsCREATE\s[Mn]{ 1024}/
18579 41.18 0.10 426.76 /(ContextlAction)\x3D[M\x26\x3b]{ 1024}/
20889 40.87 0.10 419.58 [<\s*valitem[*>]*\s(valuelname)\s*=\s*([\x22\x27])[M\x22\x27]{ 104 }/
JOOS*OX27[MX27]x27N\x22[Mx22]+H\x22)\s* \s*(\x 27 [M\x27]{ 1075, }\x22["\x22]{1075,})
2826 41.28 0.10 416.17 NOs*(\x27[Mx27]{1075,}\x22[Mx22]{ 1075, HN\s*(\x27[Mx27]*¥\x27\x22[Mx22]+\x22)
\s*\s*){2}(\x27[Mx271{ 1075,} \x22[MN\x22]{1075,}))/
JOOs*(\X27[MX2719\x271\x22[Mx22]+H\x22)\s* \s*(\x27[Mx27]{ 1075, }\x22[M\x22]{1075,})
2826 40.73 0.10 410.57 NOs*(\Xx27[Mx27]1{1075,}\x22[Mx22]{ 1075,))NO\s*((\X27[Mx27]F\x 27N\ 22[Mx22]+\x22)\s* \s*)
{2}(\x27[Mx27]1{1075,}\x22["\x22]{1075,}))/
21671 41.16 0.10 403.94 /zip\x3a\x2A\x2f[M\x0A\x20\x09\xOB\x0C\x85\x 3E\x3C] {400}/
20240 41.20 0.11 375.87 /Template\x3D["\xOD\x0A]{ 1000}/
27940 41.08 0.11 374.44 /password=["\x26]{1024}/
2103070 41.00 0.11 361.25 NSFETCH\s[*\n]{500}/
36195 41.21 0.12 338.07 Jactserver=["&]{982}/
36196 40.86 0.12 335.47 Jactserver=["&]{987}/

	Introduction
	Preliminaries
	Related Work on ReDoS
	ReDoS Generation
	Hypothetical Matcher
	ReDoS Generation Algorithm

	ReDoS Generation for Bounded Repetition
	Experimental Results
	Methodology
	Summary of Results
	R1: Vulnerability of Counting Regexes
	R2: Regexes Without Counting
	R4: Comparison with Other Generators
	R5: Real-World Security Solutions
	Snort with Hyperscan on x86_64
	NVIDIA BlueField-2

	Mitigation Techniques
	Conclusion and Future Work
	Examples of Generated Evil Texts
	Attacks on Real-world Security Solutions

