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Abstract. We present a verifier of quantum programs called AutoQ 2.0. Quan-
tum programs extend quantum circuits (the domain of AutoQ 1.0) by classical
control flow constructs, which enable users to describe advanced quantum algo-
rithms in a formal and precise manner. The extension is highly non-trivial, as
we needed to tackle both theoretical challenges (such as the treatment of mea-
surement, the normalization problem, and lifting techniques for verification of
classical programs with loops to the quantum world), and engineering issues
(such as extending the input format with a support for specifying loop invariants).
We have successfully used AutoQ 2.0 to verify two types of advanced quantum
programs that cannot be expressed using only quantum circuits: the repeat-until-
success (RUS) algorithm and the weak-measurement-based version of Grover’s
search algorithm. AutoQ 2.0 can efficiently verify all our benchmarks: all RUS
algorithms were verified instantly and, for the weak-measurement-based version
of Grover’s search, we were able to handle the case of 100 qubits in ∼20 minutes.

1 Introduction

Quantum programs are an extension of quantum circuits that provide users with greater
control over quantum computing by allowing them to use more complex programming
constructs like branches and loops. Some of the most advanced quantum algorithms
cannot be defined by quantum circuits alone. For example, certain class of programs,
such as the repeat-until-success (RUS) algorithms [41] (which are commonly used
in generating special quantum gates) and the weak-measurement-based version [6] of
Grover’s search algorithm [31], use a loop with the condition being a classical value
(0 or 1) obtained by measuring a particular qubit. This added expressivity presents new
challenges, particularly in terms of verification. The additional complexity comes from
the measurement operation, where a particular qubit is measured to obtain a classical
value (and the quantum state is partially collapsed, which might require normalization),
and reasoning about control flow induced by branches and loops.

In classical program verification, a prominent role is played by deductive verifica-
tion [30,34,32], represented, e.g., by the tools Dafny [37], KeY [4], Frama-C [8],
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VeriFast [36], VCC [23], and many more. These tools only require the users to pro-
vide specifications in the form of pre- and post-conditions, along with appropriate loop
invariants. The rest of the proving process is entirely (in the ideal case) automated.
Unfortunately, in the realm of quantum computing, similar fully automated deductive
verification tools are, to the best of our knowledge, missing. Advanced tools for analysis
and verification of quantum programs—based on, e.g., quantum Hoare logic and the
tool CoqQ [50] or the path-sum formalism [5] and the tool Qbricks [14]—are quite
powerful but require a significant amount of human effort.

To bridge this gap, we present AutoQ 2.0, a major update over AutoQ 1.0 [19] with an
added support for quantum programs (AutoQ 1.0 only supported quantum circuits). In
AutoQ 1.0, given a triple {𝑃}𝐶 {𝑄}, where 𝑃 and 𝑄 are the pre- and post-conditions
recognizing sets of (pure) quantum states (represented by tree automata) and 𝐶 is
a quantum circuit, we can verify if all quantum states in 𝑃 reach some state in 𝑄 after
executing 𝐶. In AutoQ 2.0, we addressed several key challenges to make the support
of quantum programs possible. First, we need to handle branch statements. The key
issue here is to handle measurement of quantum states whose value is used in a branch
condition. For this we developed automata-based algorithms to compute the quantum
states after the measurement (Section 5). The second challenge is the handling of loop
statements. Similarly to deductive verification of classical programs, we require the users
to provide an invariant for each loop. With the loop invariant provided, we developed
a framework handling the rest of the verification process fully automatically. Moreover,
we show that a naive implementation of the measurement operation will encounter
the probability amplitude normalization problem. This is handled by designing a new
algorithm for entailment testing (Section 6).

Under this framework, the preconditions, postconditions, and invariants are all described
with a new automata model called level-synchronized tree automata (LSTAs) [1]. LSTAs
are specifically designed to efficiently encode quantum states and gate operations. As the
core data structure of the tool, we provide a formal definition of LSTAs in Section 2.2
to facilitate the presentation of our new entailment testing approach.

We used AutoQ 2.0 to verify various quantum programs using the repeat-until-success
(RUS) paradigm [41], as well as the weak-measurement-based version [6] of Grover’s
search [31] (Section 7). AutoQ 2.0 can efficiently verify all our benchmarks. The veri-
fication process for all RUS algorithms was instantaneous and for the weakly measured
versions of Grover, we were able to handle the case of 100 qubits in ∼20 min. To the
best of our knowledge, AutoQ 2.0 is currently the only tool for verification of quantum
programs with such a degree of automation.

Related work. Our work aligns with Hoare-style verification of quantum programs,
a topic extensively explored in prior studies [51,43,48,27,39]. This approach, inspired
by D’Hondt and Panangaden, utilizes diverse Hermitian operators as quantum predi-
cates, resulting in a robust and comprehensive proof system [25]. However, specifying
properties with Hermitian operators is often non-intuitive and difficult for automation
due to their vast matrix sizes. Consequently, these methods are typically implemented us-
ing proof assistants like Coq [9], Isabelle [45], or standalone tools built on top of Coq,
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like CoqQ [50]. These tools require substantial manual effort in the proof search. The
Qbricks approach [15] addresses the challenge of proof search by combining cutting-
edge theorem provers with decision procedures, leveraging the Why3 platform [29].
Nevertheless, this approach still demands considerable human intervention.

In the realm of automatic quantum software analysis tools, circuit equivalence check-
ers [5,22,33,47,23] prove to be efficient but less flexible in specifying desired properties,
primarily focusing on equivalence. These tools are valuable in compiler validation, with
notable examples being QCEC [13], Feynman [5], and SliQEC [17,44]. Quantum model
checking, supporting a rich specification language (various temporal logics [28,40,46]),
is, due to its limited scalability, more suited for verifying high-level protocols [7].
QPMC [28] stands out as a notable tool in this category. Quantum abstract interpreta-
tion [49,42] over-approximates the reachable state space to achieve better scalability, but
so far handles only circuits. The work in [52,26] aims at the verification of parameterized
quantum programs like variational quantum eigensolver (VQE) or quantum approximate
optimization algorithm (QAOA). However, the correctness properties they focused are
very different from what AutoQ 2.0 can handle. While the mentioned tools are fully
automated, they serve different purposes or address different phases of the development
cycle compared to AutoQ 2.0.

2 Background
Before we start, we first provide a minimal background needed for this work.

2.1 The Tree-View of Quantum States
In a traditional computer system with 𝑛 bits, a state is represented by 𝑛 Boolean values 0
or 1. An 𝑛-qubit quantum state can be viewed as a “probabilistic distribution” over 𝑛-bit
classical states. Here we often refer to each classical state as a computational basis state
or basis state for short. Hence a quantum state can be represented by a binary tree whose
branches correspond to the computational basis states and leaves correspond to complex
probability amplitudes5.

In Fig. 1(a), we can see an example of a 2-qubit state 𝑞 that maps basis states |00⟩,
|01⟩, |10⟩, |11⟩ to probability amplitudes 𝑎1, 𝑎2, 𝑎3, and 𝑎4, respectively. The left-going
dashed line denotes the 0-branch, and the right-going solid line denotes the 1-branch.
A quantum state can also be represented as a formal sum of basis states multiplied by
their amplitudes, e.g., we can represent the state 𝑞 as 𝑎1 |00⟩+𝑎2 |01⟩+𝑎3 |10⟩+𝑎4 |11⟩.

Quantum gates are fundamental operations performed on quantum states. Basic quantum
gates and their effects on the state 𝑞 from Fig. 1(a) are shown in Figs. 1(b) to 1(d). To
specify the target qubit to which a single qubit gate𝑈 is applied, a subscript number 𝑖 is
used. For example, 𝑋𝑖 denotes the application of the 𝑋 gate, which is also known as the
quantum “negation” gate, to the 𝑖-th qubit. The effect of this gate is to swap the 0- and
1-subtrees under all 𝑥𝑖 nodes (cf. Fig. 1(b)). On the other hand, for a controlled gate,
a superscript number 𝑖 is used to indicate the control qubit, while a subscript number 𝑗 is
used for the target qubit. The most notable example is the controlled-𝑋 gate 𝐶𝑋 𝑖

𝑗
, which

5 A state with complex amplitude 𝑎+𝑏𝑖 has the probability |𝑎+𝑏𝑖 |2 = 𝑎2+𝑏2 of being observed.
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(d) Applied 𝐻1

Fig. 1. The effect of applying selected quantum gates to state 𝑞

applies the 𝑋 𝑗 gate to 1-subtrees under (assuming 𝑖 < 𝑗) all 𝑥𝑖 nodes (cf. Fig. 1(c)).
Observe that after applying an 𝐻 gate (the Hadamard gate, which creates a quantum
superposition; cf. Fig. 1(d)), there is a normalization factor 1√

2
on all leaves to keep the

sum of probabilities one. This normalization factor can be derived from the tree leaf
values (𝑎1 + 𝑎3), (𝑎2 + 𝑎4), (𝑎1 − 𝑎3), and (𝑎2 − 𝑎4) and the fact that

∑4
𝑖=1 |𝑎𝑖 |2 = 1.

2.2 Level-Synchronized Tree Automata

As we mentioned in Section 1, the new algorithms introduced in this work are built on
top of LSTAs, making it essential to provide a formal definition. Readers may choose to
skim this section initially and refer back to it for details as needed later.

Trees. Our framework is based on the concept of perfect binary trees. A perfect binary
tree𝑇 is a map from tree nodes

⋃
0≤𝑖≤𝑛{0, 1}𝑖 , for some 𝑛 ∈ N0 ≔ N∪{0}, to a nonempty

set of symbols Σ, i.e.,𝑇 :
⋃

0≤𝑖≤𝑛{0, 1}𝑖 → Σ. All nodes 𝑣 ∈ ⋃0≤𝑖<𝑛{0, 1}𝑖 are internal
and have children nodes 𝑣.0 (left) and 𝑣.1 (right) where ‘.’ denotes concatenation (we
denote the empty string by 𝜖). All nodes 𝑣 ∈ {0, 1}𝑛 are leaves and have no children.
A node 𝑣’s height is its word length, denoted |𝑣 |. A node 𝑣 is at tree level 𝑖 when |𝑣 | = 𝑖.
We denote𝑇’s height by 𝑛. Perfect binary trees can be used to represent quantum states or
vectors of the size 2𝑛. For instance, the quantum state of Fig. 1(a) corresponds to a perfect
binary tree 𝑇 = {𝜖 ↦→ 𝑥1, 0 ↦→ 𝑥2, 1 ↦→ 𝑥2, 00 ↦→ 𝑎1, 01 ↦→ 𝑎2, 10 ↦→ 𝑎3, 11 ↦→ 𝑎4} of
height 2. Children of the node 1 are 10 and 11, and the leaf node 10 has no children.

LSTAs. A (symbolic) level-synchronized tree automaton (LSTA) [1] is a tuple A =

⟨𝑄,N∪term(C,X),Δ,R, 𝜑⟩ where𝑄 is a finite set of states,R ⊆ 𝑄 is a set of root states,
term(C,X) is a set of terms obtained from complex numbers C and a set of complex
variables X using function symbols from some fixed theory (in this paper, we will use
N for internal node symbols and term(C,X) for leaf symbols). Δ is a set of transitions

of the form 𝛿𝑖 = 𝑞
𝑓 |𝐶
−−−→ (𝑞1, 𝑞2) (internal transitions) and 𝛿ℓ = 𝑞

𝑓 |𝐶
−−−→ () (leaf

transitions), where 𝑞, 𝑞1, 𝑞2 ∈ 𝑄, 𝑓 ∈ term(C,X), and 𝐶 ⊆ N is a finite set of choices.
In the rest of the paper, we also draw the internal transition 𝛿𝑖 and leaf transition 𝛿ℓ as
𝑞

𝐶
𝑓 𝑞1 𝑞2 and 𝑞

𝐶
𝑓 , respectively, to provide a more intuitive presentation.

In the aforementioned form, we call 𝑞, 𝑓 , 𝐶, 𝑞1, 𝑞2, and {𝑞1, 𝑞2} the top, symbol,
choices, left, right, and bottom, respectively, of the transition 𝛿𝑖 , and denote them by
top(𝛿𝑖), sym(𝛿𝑖), ch(𝛿𝑖), left(𝛿𝑖), right(𝛿𝑖), and bot(𝛿𝑖), respectively. Needless to
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(d) 𝑀1= 1

Fig. 2. Intermediate states during the execution of Algorithm 1

say, bot(𝛿ℓ) = ∅. We further require the choices of different transitions with the same top
state to be disjoint, i.e., ∀𝛿1 ≠ 𝛿2 ∈ Δ : top(𝛿1) = top(𝛿2) =⇒ ch(𝛿1) ∩ ch(𝛿2) = ∅.
Finally, the global constraint 𝜑 is a formula used to restrict the values of X to those that
satisfy 𝜑 (if not stated, it is assumed to be “true”). For instance, when X = {𝑎, 𝑏}, we
can set 𝜑 = |𝑎 | > |𝑏 | to restrict the allowed valuation of 𝑎 and 𝑏.

Semantics of LSTAs. A run of an LSTA A on a tree 𝑇 is a map 𝜌 : dom(𝑇) → Δ

from tree nodes to transitions of A such that for each node 𝑣 ∈ dom(𝑇), when 𝑣 is an
internal node, 𝜌(𝑣) is of the form 𝑞

𝑇 (𝑣) |𝐶
−−−−−−→ (top(𝜌(𝑣.0)), top(𝜌(𝑣.1))). When 𝑣 is

a leaf node, 𝜌(𝑣) is of the form 𝑞
𝑇 (𝑣) |𝐶
−−−−−−→ ().

We give a run 𝜌 of the LSTA A in Fig. 3 on the tree 𝑇 in Fig. 2(d) (used later in
Algorithm 1) as follows:

𝜌(𝜖) = 𝑝
{1}

𝑥1 𝑞0 𝑞− , 𝜌(0) = 𝑞0
{1}

𝑥2 𝑟0 𝑟0 ,

𝜌(1) = 𝑞−
{1}

𝑥2 𝑟3 𝑟4 , 𝜌(00) = 𝜌(01) = 𝑟0
{1} 0 ,

𝜌(10) = 𝑟3
{1} − 𝑎1√

2
, 𝜌(11) = 𝑟4

{1} − 𝑎0√
2
.

A run 𝜌 is accepting if top(𝜌(𝜖)) ∈ R and all transitions used at the same level share
some common choice, i.e., ∀0 ≤ 𝑖 ≤ 𝑛 :

⋂{ch(𝛿) | 𝛿 ∈ {𝜌(𝑣) | 𝑣 ∈ {0, 1}𝑖}} ≠ ∅ (this
is the essential difference from standard tree automata that gives LSTAs the power to
compactly represent some classes of quantum states). The language of A, denoted as
L(A) is a set of trees𝑇 over N∪ term(C,X) such that there exists an accepting run ofA
over 𝑇 . Given a tree 𝑇 over N∪ term(C,X) and an assignment 𝜎 : X→ C, we use 𝑇 [𝜎]
to denote the tree obtained from 𝑇 by (i) substituting all occurrence of variables 𝑥 ∈ X
in 𝑇 by 𝜎(𝑥) and (ii) evaluating all terms in the resulting tree into values 𝑐 ∈ C.

3 Overview
In this section, we provide an overview of automata-based quantum program verification
with a running example (chosen for its simplicity). In the example, the quantum program
creates the effect of a non-standard quantum gate “−𝑋” (applying the 𝑋 gate and negating
all amplitude values) using the standard gates 𝑋 ,𝐻, and𝐶𝑋 (Algorithm 1). The program
operates on a 2-qubit system and performs the “−𝑋” gate on the second qubit when the
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first qubit is measured to be 1; otherwise, (the first qubit is 0 after measurement) the
state stays unchanged.

Algorithm 1: “−𝑋2” if𝑀1 = 1
1 Pre: {𝑎0 |10⟩ + 𝑎1 |11⟩};
2 𝐻1;𝐶𝑋1

2 ;
3 if 𝑀1 = 0 then {𝑋1};
4 Post: {𝑎0 |10⟩ + 𝑎1 |11⟩ ,
5 −𝑎1 |10⟩ − 𝑎0 |11⟩};

For all 𝑎0, 𝑎1 ∈ C, we verify Algorithm 1 against
the precondition {𝑎0 |10⟩ + 𝑎1 |11⟩}, which allows
the state with the first qubit |1⟩ and the second
qubit 𝑎0 |0⟩ +𝑎1 |1⟩, and the postcondition {𝑎0 |10⟩ +
𝑎1 |11⟩ , −𝑎1 |10⟩−𝑎0 |11⟩}, which includes the orig-
inal state and the state after the “−𝑋2” gate.

Our approach first constructs two LSTAs 𝑃 and 𝑄 that can recognize the states (binary
trees) of the pre- and post-conditions, respectively, and then computes another LSTA by
executing the gates 𝐻1;𝐶𝑋1

2 from 𝑃 (see Fig. 2(a) for the only quantum state accepted by
𝑃) with the gate algorithm introduced in [1]. This results in an LSTA 𝑃1 that recognizes
the state shown in Fig. 2(b). After applying the operator 𝑀1 to measure 𝑥1 (Line 3), 𝑃1
splits into two copies. One copy, 𝑃2, accepts the only quantum state shown in Fig. 2(c),
where the first qubit is measured to be 0. The other copy, 𝑃3, accepts the only quantum
state shown in Fig. 2(d), where the first qubit is measured to be 1.

It is important to note that the probability amplitudes of the quantum states from
Figs. 2(c) and 2(d) have not been normalized yet. To do that, we need to multiply
all leaves with the normalization factor

√
2. This will ensure that the square sum of

their absolute amplitude values becomes 1. Although the quantum states are not yet
normalized, we, however, still have sufficient information to obtain the corresponding
normalized states. In AutoQ 2.0, we choose to ignore all normalization factors and
design a new entailment testing algorithm (Section 6) that can detect the equivalence
of two non-normalized states. After both the true and false paths of the if statement
in the example are processed, we obtain two LSTAs 𝑃2 and 𝑃3 capturing all reachable
states. We then construct their union and test if all states in the union are included in the
post-condition (recognized by 𝑄) by testing entailment.

Algorithm 2: “−𝑋2”
1 Pre: {𝑎0 |10⟩ + 𝑎1 |11⟩};
2 𝐻1;𝐶𝑋1

2 ;
3 Inv:
{ 𝑎0√

2
|00⟩ + 𝑎1√

2
|01⟩ − 𝑎1√

2
|10⟩ − 𝑎0√

2
|11⟩};

4 while 𝑀1 = 0 do {𝑋1;𝐻1;𝐶𝑋1
2 };

5 Post: {−𝑎1 |10⟩ − 𝑎0 |11⟩};

A drawback of Algorithm 1 is that the
desired effect “−𝑋” manifests only if
𝑀1 = 1. In the case 𝑀1 = 0, we need to
run the same algorithm again until we
get a measurement of 1. To achieve this,
we can use a while loop statement, as
shown in Algorithm 2. The loop allows
us to repeatedly execute the same branch statement until the desired outcome is achieved.

To verify that the loop works correctly, we require the user to provide a loop invariant
in the form of an LSTA. The invariant here is { 𝑎0√

2
|00⟩ + 𝑎1√

2
|01⟩ − 𝑎1√

2
|10⟩ − 𝑎0√

2
|11⟩}

(cf. Fig. 2(b)). The verification process then involves checking if the invariant is inductive,
covers all reachable states before entering the loop, and does not contain any state that
would violate the post-condition. More details on the verification process will be given
in Section 5.3. With the loop invariant provided, we can ensure that the algorithm ends
up with a state where the “−𝑋” gate is applied to the second qubit when it terminates.
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𝑝

𝑞+ 𝑞±

𝑟+ 𝑟0 𝑟±

1√
2 0 1√

2
−1√

2

{1}
𝑥1
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𝑥2
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𝑥2

{1}

𝑥2

{2}

𝑥2

{1, 2} {1, 2} {1} {2}

(a) LSTA

Constants
c+ := 1 / sqrt2
c0 := 0
c- := -1 / sqrt2
Root States p
Transitions
[1,{1}](q+, q+-) -> p
[2,{1}](r+, r0) -> q+
[2,{2}](r0, r+) -> q+
[2,{1}](r0, r+-) -> q+-
[2,{2}](r+-, r0) -> q+-
[c+,{1,2}] -> r+
[c0,{1,2}] -> r0
[c+,{1}] -> r+-
[c-,{2}] -> r+-

(b) The .lsta file.

Fig. 4. The LSTA for Bell states and its textual description

In AutoQ 2.0, preconditions, postconditions, and invariants are represented as sets of
quantum states, encoded using the LSTA model. Therefore, it is important for users to
understand how to encode a set of quantum states with an LSTA. Below, we provide two
examples to give a basic understanding of the process. In the first example, we show how
to encode the postcondition of Algorithm 1, {𝑎0 |10⟩ + 𝑎1 |11⟩ , −𝑎1 |10⟩ − 𝑎0 |11⟩}.

𝑝

𝑞+ 𝑞0 𝑞−

𝑟1 𝑟2 𝑟4𝑟3𝑟0

𝑎0√
2

𝑎1√
2

0 −𝑎1√
2

−𝑎0√
2

{1} {2}
𝑥1 𝑥1

{1}
𝑥2 𝑥2

{1}{1}
𝑥2

{1} {1} {1} {1} {1}

Fig. 3. The LSTA recognizing the post-
condition of Algorithm 1

The corresponding LSTA is shown in Fig. 3. The
LSTA constructs trees that depict quantum states
beginning from the initial state 𝑝 at the root. It
continues to build the tree by choosing transitions
to explore new child states at each step, and this
process continues until it reaches the leaves. For
instance, the tree in Fig. 2(c) can be generated by

first picking the transition 𝑝
{1}

𝑥1 𝑞+ 𝑞0 ,

then the two transitions 𝑞+
{1}

𝑥2 𝑟1 𝑟2 and

𝑞0
{1}

𝑥2 𝑟0 , and ending with the three leaf

transitions 𝑟1
{1}

𝑎0/√2 , 𝑟2
{1}

𝑎1/√2 , and 𝑟0
{1} 0 . Similar to the conventional

tree automata (TAs) model, LSTAs utilize disjunctive branches to represent various
states that share a common structure. In Fig. 3, the state 𝑝 has two possible outgoing

transitions. If one picks the other transition 𝑝
{2}

𝑥1 𝑞0 𝑞− at the beginning, we
can generate the tree shown in Fig. 2(d).

The previous example does not fully demonstrate why incorporating a set of choices (the
numbers in the curly brackets) into the design of LSTAs is beneficial. Let us consider
another well-known example: the set of Bell states {|00⟩ ± |11⟩ , |01⟩ ± |10⟩}, generated
by the LSTA in Fig. 4(a). Without the restriction that all transitions at the same level
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Fig. 5. The architecture of AutoQ 2.0

must share a common choice, this LSTA would generate eight different trees (since 𝑞+,
𝑞±, and 𝑟± each have two outgoing transitions), which correspond to the quantum states
{|00⟩ ± |11⟩ , |01⟩ ± |10⟩ , |00⟩ ± |10⟩ , |01⟩ ± |11⟩}. However, only four of these trees
correspond to the Bell states, meaning the others are unintended. The LSTA uses the
labeled choices to rule out the unintended trees. More specifically, at level 2, the two
transitions labeled {1} can be used simultaneously, as they share the common choice 1.
Similarly, the two transitions labeled {2} can be used together due to their common
choice 2. In contrast, a transition labeled {1} cannot be used alongside one labeled 2, as
their choice sets are disjoint. At level 3, the transitions from 𝑟± can be used freely with
those from 𝑟+ and 𝑟0, since {1} (and {2}) ∩{1, 2} ≠ ∅. There are two valid combinations
of transitions at levels 2 and 3, and this LSTA generates exactly the four Bell states using
the nine transitions shown in the figure. The corresponding .lsta file, which illustrates
the input format for AutoQ 2.0, is shown in Fig. 4(b). In .lsta files, transitions are
labeled with pairs [𝑎, 𝑏], where 𝑎 indicates the symbol 𝑥𝑎 and 𝑏 is the set of choices.

4 System Architecture
We present the architecture of AutoQ 2.0 in Fig. 5. The tool is written in C++ and
uses the SMT solver Z3 [24] for satisfiability and entailment checking of constraints.
We allow the use of any theory that is supported by Z3. In our experiments, we used
NIRA (non-linear integer and real arithmetic). While this logic is generally undecidable,
Z3 always quickly solved the formulae we presented to it in our experiments.

Similar to verifiers for classical programs, in order to use AutoQ 2.0, the user needs to
provide the following: (i) a quantum program in the OpenQASM 3.0 format, (ii) pre-
and post-conditions in the .lsta format along with SMT formulae in the .smt format
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Algorithm 3: Algorithm for measurement
Input: LSTA A = ⟨𝑄,Σ,Δ,R, 𝜑⟩, target qubit 𝑥𝑖 , measurement outcome 𝑏
Output: The LSTA 𝑀=𝑏

𝑖
(A)

1 𝑄′ := {𝑞′ | 𝑞 ∈ 𝑄};

2 Δ′ := {𝑞′
𝑓 |𝐶
−−−→ (𝑞′1, 𝑞

′
2) | 𝑞

𝑓 |𝐶
−−−→ (𝑞1, 𝑞2) ∈ Δ} ∪ {𝑞′

0 |𝐶
−−−→ () | 𝑞

𝑓 |𝐶
−−−→ () ∈ Δ};

3 Δ≠𝑥𝑖 := {𝑞
𝑓 |𝐶
−−−→ (𝑞0, 𝑞1) | 𝑞

𝑓 |𝐶
−−−→ (𝑞0, 𝑞1) ∈ Δ ∧ 𝑓 ≠ 𝑥𝑖} ∪ {𝑞

𝑓 |𝐶
−−−→ () | 𝑞

𝑓 |𝐶
−−−→ () ∈ Δ};

4 if 𝑏 = 0 then Δ=𝑥𝑖 := {𝑞
𝑥𝑖 |𝐶−−−−→ (𝑞0, 𝑞

′
1) | 𝑞

𝑥𝑖 |𝐶−−−−→ (𝑞0, 𝑞1) ∈ Δ} ;

5 else Δ=𝑥𝑖 := {𝑞
𝑥𝑖 |𝐶−−−−→ (𝑞′0, 𝑞1) | 𝑞

𝑥𝑖 |𝐶−−−−→ (𝑞0, 𝑞1) ∈ Δ} ;
6 return 𝑀=𝑏

𝑖
(A) = ⟨𝑄 ∪𝑄′, Σ,Δ=𝑥𝑖 ∪ Δ≠𝑥𝑖 ∪ Δ′,R, 𝜑⟩;

to constrain the terms, and (iii) invariant for each loop in the .lsta format together
with an SMT formula. The specification (pre- and post-conditions) and the invariant (for
each loop) can be written as an LSTA (an .lsta file). Once these files are provided,
AutoQ 2.0 will process them and report either “Verified” or “Failed”.

Compared to AutoQ 1.0, there are several major changes in AutoQ 2.0. Firstly, it
features a new input interface to facilitate the use of quantum programs (instead of only
circuits) and uses LSTA as the back-end model (instead of standard tree automata).
Additionally, Program Executor now supports measurement and branch statements.
Another significant addition is the new Invariant Checker component, which handles
loop invariants. The Invariant Checker also uses the Entailment Checker to verify the
inductiveness of the invariant, which we do not explicitly show in the figure.

5 Handling Branch, Measurement, and Loop
We will start by presenting the syntax of quantum programs that AutoQ 2.0 can handle
and then informally describe their semantics. We use a flavor of quantum programs that
is similar to the one in [48], which is captured by the following grammar:

𝑃 ::= 𝑈
�� 𝑃; 𝑃

�� while (𝑀𝑖 = 𝑏) do {𝑃}
�� if (𝑀𝑖 = 𝑏) then {𝑃} else {𝑃}

where 𝑃 is a quantum program,𝑈 is a quantum gate annotated with its control and target
qubits (e.g.,𝐶𝑋2

1 ), 𝑏 ∈ {0, 1}, and 𝑀𝑖 is the measured value of the 𝑖-th qubit. AutoQ 2.0
supports standard non-parameterized quantum gates that allow (approximate) universal
computation [12,3], including Clifford gates (𝐻, 𝑆, and CX), 𝑇 , 𝑍 , SWAP, Toffoli, etc.

The execution of quantum gate𝑈 updates a quantum state (tree) in the standard way [20].
The language allows sequential composition (𝑃; 𝑃) of gate operations, branches (if
. . . else . . . ), and loops (while . . . ). When using if and while statements, the condition
𝑀𝑖 = 𝑏 (denoting that the value obtained from measuring 𝑥𝑖 was 𝑏) is used to determine
in which path to continue.

5.1 Handling Measurement

The key part of handling branch statements in AutoQ 2.0 is how measurement changes
the quantum states and how we should update the LSTA capturing the set of reachable
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states. As mentioned in Section 3, if the measured value of 𝑥𝑖 is 1, then we should
update the probability of the 0-subtrees below all 𝑥𝑖 nodes to 0. Examples can be found
in Fig. 2(b) (before measuring 𝑥1) and Figs. 2(c) and 2(d) (after measuring 𝑥1 as 0 and 1
respectively). An important design choice was that we do not normalize the probability
amplitudes and simply just make all leaves of one of the subtrees zero in this step,
leaving the task of matching non-normalized states to the entailment test (cf. Section 6).

In some cases, the measurement can generate an LSTA whose language contains a tree
where all leaves are 0. This can happen, e.g., when we compute the tree representing
the quantum state obtained from the state in Fig. 2(a) by measuring 𝑥1 = 0. We do not
consider such a tree to represent a quantum state. To handle such cases, our entailment test
R |=uts Q (formally defined in Section 6) adds a 0-labeled tree to the language ofQ before
the test. We use 𝑀=𝑏

𝑖
(A) to represent the LSTA obtained from A after measuring 𝑥𝑖

for the outcome 𝑏. The procedure for computing 𝑀=𝑏
𝑖
(A) is given in Algorithm 3.

The goal of the algorithm is to update all leaf values of �̄�-subtrees under 𝑥𝑖 to 0, where
�̄� = 1 − 𝑏. Lines 1 and 2 of Algorithm 3 create a primed copy of the input LSTA and
update all leaf values to 0 (Line 2). Lines 3 to 5 construct the new transition system: only
transitions labeled with 𝑥𝑖 are modified (Lines 4 and 5), while others remain unchanged
(Line 3). The key steps are in Lines 4 and 5, which control the subtrees of the measured
qubit. When 𝑏 = 0 (Line 4), all leaves of the 1-subtree are modified to 0, and thus, we
update 𝑞1 in the original transition to 𝑞′1 (symmetrically for 𝑏 = 1 in Line 5).

5.2 Handling Branch Statements

Given an LSTA A that recognizes a set of quantum states, we can precisely compute
the set of states that result from executing a branch statement if (𝑀𝑖 = 𝑏) then
{𝑃1} else {𝑃0} as follows (assuming that 𝑃0 and 𝑃1 do not involve loops): (i) Create
two LSTAs 𝑀=1

𝑖
(A) and 𝑀=0

𝑖
(A). (ii) Compute the result after executing 𝑃𝑏 from

𝑀=𝑏
𝑖
(A) for 𝑏 ∈ {0, 1}, following the gates’ semantics and recursively trigger the

procedure for branches. We use A0 and A1 to denote the LSTAs after executing 𝑃0
and 𝑃1, respectively. (iii) Construct an LSTA recognizing the union of A0 and A1 and
return it as the final result of this procedure. In principle, our approach can handle nested
control flow. We are, however, not aware of any real-world quantum program that uses
a nested control structure, and, therefore, for simplicity, AutoQ 2.0 now only supports
programs with non-nested control flow.

5.3 Handling Loop Statements

If we come across a loop statement while (𝑀𝑖 = 𝑏) do {𝐵} with 𝐵 being the loop body,
we require the user to provide a loop invariant in the form of an LSTA. We refer to the
invariant as I; it needs to satisfy the following properties: (i) It contains all reachable
states, captured by an LSTA R, before entering the loop. That is, R |=uts I. (ii) It is
inductive, i.e., 𝐵(𝑀=𝑏

𝑖
(I)) |=uts I′, where 𝐵(A) denotes an LSTA recognizing the set

of quantum states after executing 𝐵 from the quantum states in A and I′ is an LSTA
obtained from I whose variables and constraints are updated to a primed version. The
inductiveness guarantees that if we take any state accepted by I and perform 𝐵 on the
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state, the result will also be accepted by I. Together with the condition that I covers all
reachable states before entering the loop, I over-approximates all reachable states at the
loop entrance. We can, therefore, use 𝑀≠𝑏

𝑖
(I) to over-approximate all reachable states

at the loop exit.

6 Testing Entailment up to Scaling
In our approach, we use a special entailment test at some points, which we call entailment
up to scaling, denoted asA |=uts B. The reason for a special entailment relation is that—
as mentioned before—at measurements, we do not perform normalization. Intuitively,
given two LSTAs A = ⟨𝑄A , Σ,ΔA ,RA , 𝜑A⟩ and B = ⟨𝑄B , Σ,ΔB ,RB , 𝜑B⟩, the
relation A |=uts B holds if and only if for every tree 𝑇A in the language of A and
assignment to the variables occurring in 𝑇A , we can find a linearly scaled copy of 𝑇A
in the semantics of B (such that the values of variables occurring in both 𝑇A and 𝑇B
match). Formally,

A |=uts B ⇐⇒ (∀𝑇A ∈ L(A))(∀𝜎A : vars(𝑇A) → C) :
(∃𝑇B ∈ L(B))(∃𝜎B : (vars(𝑇B) \ vars(𝑇A)) → C) :
(∃𝑟 ∈ R \ {0}) : 𝑇A [𝜎A] = 𝑟 · 𝑇B [𝜎A ∪ 𝜎B],

where 𝑟 · 𝑇 denotes the tree with the same structure as 𝑇 with all numbers in leaves
multiplied by 𝑟 and vars(𝛾) for any mathematical object 𝛾 (a term, a tree with terms in
leaves, a set of terms, etc.) denotes the set of free variables occurring in the object. The
|=uts relation is central to our approach.

Enumerating all trees of A and looking for their scaled copies in B would be too
inefficient and even impossible in the case of LSTAs recognizing infinitely many finite
trees (such as those modelling invariants of parameterized quantum programs [1]).
Therefore, we modified the algorithm for LSTA language inclusion test presented in [1].
We note that language inclusion testing for LSTAs is more involved than for standard
TAs (cf. [11,2,35,38]). In the modification, we allow to relate the leaf values with a
linear factor for scaling (in contrast to only by identity as done in the original inclusion
testing algorithm), so that it tests the entailment A |=uts B.

The algorithm makes use of the following essential property of trees generated by an
LSTA A: if two nodes at the same level of a tree 𝑇 are labelled by the same state in
an accepting run of A on 𝑇 , then the subtrees rooted in these nodes are identical (this
follows from the semantics of LSTAs and the restriction on transitions, cf. Section 2.2).

Intuitively, the algorithm works as follows. It starts in the root states of A and B and
performs a downward traversal through the LSTAs, level by level, remembering, at each
level, how states from A can map to the states in B. Moreover, the algorithm also
remembers how the terms in the leaves of the tree fromA map to the terms in the leaves
of the tree fromB. The downward successors of each level are computed from transitions
leaving states at the level that need to be synchronized on their choice. The algorithm
explores the space of all of the reachable mappings until it reaches a point such that the
tree from A has all branches terminated. At this moment, we check whether the terms
from the leaf transitions ofA can be mapped (up to scaling) to the corresponding terms
from the leaf transitions in B. If not, conclude that the entailment does not hold.
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Fig. 6. Computing 𝑓 ′
𝑗

from 𝑓𝑖

Formally, the algorithm performs a
search in the directed graph (𝑉, 𝐸)
(constructed on the fly), where each
vertex 𝑣 ∈ 𝑉 is of the form 𝑣 =

(𝐷, {( 𝑓1, 𝑔1), . . . , ( 𝑓𝑚, 𝑔𝑚)}) for
some 𝑚 where 𝐷 ⊆ 𝑄A is called the
domain, each 𝑓𝑖 : 𝐷 → 2𝑄B is a map
that assigns every state ofA from the
domain 𝐷 a set of states of B, and
each 𝑔𝑖 : term(C,X) → 2term(C,X) is
a (partial) mapping from terms to sets
of terms. Intuitively, 𝐷 represents the set of states of A at one level of A’s run 𝜌, and
every 𝑓𝑖 represents the same level of some possible run 𝜌𝑖 of B on the same tree and the
way it can match the run 𝜌 ofA. For instance, in Section 6, the state 𝑞 ofA corresponds
to the states 𝑟, 𝑠 of B because they are used in the same tree level and the same tree
nodes, so we have 𝑓𝑖 (𝑞) = {𝑟, 𝑠}. Due to the property that all occurrences of a state at the
same level in a run generate the same subtree mentioned above, we only need to maintain
encountered states and their alignment with each another. The term mappings 𝑔𝑖 are
used to remember how the terms from the leaves ofA are mapped to terms in the leaves
of B. For instance, if some term 𝑡 from a leaf of A is mapped by two different terms 𝑡1
and 𝑡2 of B, we will later need to check whether there is a scaling factor 𝑟 such that
𝑡 = 𝑟 · 𝑡1 and, at the same time, 𝑡 = 𝑟 · 𝑡2 (and the global constraints of A and B are
satisfied). We give a general algorithm here; for LSTAs that accept only perfect trees
(as is the case for the ones encoding quantum states), all branches of the accepted trees
terminate at the same time so there is no need to remember the term mappings 𝑔 across
different levels and the scaling compatibility could be checked only locally.

The graph search begins from the source vertices, one for each state 𝑞 ∈ RA , of
the form ({𝑞}, {({𝑞 ↦→ {𝑟1}}, ∅), . . . , ({𝑞 ↦→ {𝑟𝑘}}, ∅)}), where {𝑟1, . . . , 𝑟𝑘} = RB ,
corresponding to the root states of bothA andB (the ∅’s denote empty term mappings). If
the search finds a terminal vertex (∅, 𝐹), where (∅, 𝑔) ∉ 𝐹, meaning that an accepting run
ofA has been found, but there is no corresponding matching run ofB (for any 𝑔), we can
conclude that the entailment test failed (it represents the case whenA finished reading all
branches of the tree butB did not). On the other hand, if there is (∅, 𝑔) ∈ 𝐹, we still need
to check that the set of terms 𝑔 is compatible. The graph’s edges represent generating the
next level of runs for bothA and B and how the respective states align with each other.
The specific construction of the edges from a vertex 𝑣 = (𝐷, {( 𝑓1, 𝑔1), . . . , ( 𝑓𝑚, 𝑔𝑚)}),
where 𝐷 ≠ ∅, to each lower-level vertex 𝑣′ = (𝐷′, {( 𝑓 ′1 , 𝑔

′
1), . . . , ( 𝑓

′
𝑛, 𝑔
′𝑛)}) follows.

First, we compute possible successors of the 𝐷-component of 𝑣. To do this, we need
to explore all feasible sets ΓA of transitions from 𝐷 in A. More concretely, in each
set ΓA , we select exactly one downward transition 𝛿𝑞A originating from each 𝑞A ∈ 𝐷,
such that all transitions in ΓA share a common choice (as required by the definition of
an accepting run (cf. Section 2.2). Formally, given 𝐷 = {𝑞1, . . . , 𝑞𝑘}, we consider all
sets of transitions ΓA = {𝛿1, . . . , 𝛿𝑘} such that the following formula holds:

(∀1 ≤ 𝑖 ≤ 𝑘 : 𝛿𝑖 ∈ Δ ∧ top(𝛿𝑖) = 𝑞𝑖) ∧ ⋂{ch(𝛿𝑖) | 1 ≤ 𝑖 ≤ 𝑘} ≠ ∅. (1)
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Algorithm 4: FindAllMappings(ΓA , 𝑓 )
Input: Set of transitions ΓA ⊆ ΔA , map 𝑓 : {top(𝛿) | 𝛿 ∈ ΓA} → 2𝑄B
Output: The set of pairs ( 𝑓 ′, 𝑔′) of mappings compatible with ΓA obtained from 𝑓

1 𝑄 ← ⋃
img( 𝑓 ); 𝐹′ ← ∅;

2 foreach ΓB ∈ FTrans(B, 𝑄) do
3 𝑓 ′ ← ∅; 𝑔′ ← ∅; failed← false;
4 foreach 𝛿A ∈ ΓA and 𝑞 ∈ 𝑓 (top(𝛿A)) do
5 {𝛿B} ← {𝛿B ∈ ΓB | 𝑞 = top(𝛿B)};
6 if 𝑎 = sym(𝛿A) and 𝑏 = sym(𝛿B) are both leaf symbols then 𝑔′ (𝑎).insert(𝑏) ;
7 else if sym(𝛿A) = sym(𝛿B) is an internal symbol then
8 𝑓 ′ (left(𝛿A)).insert(left(𝛿B)); 𝑓 ′ (right(𝛿A)).insert(right(𝛿B));
9 else failed← true; break;

10 if ¬failed then 𝐹′ .insert(( 𝑓 ′, 𝑔′)) ;
11 return 𝐹′;

We will denote the set of all such ΓA’s from a set of states 𝐷 as FTrans(A, 𝐷).

Next, we will show how to construct the set of all feasible pairs of mappings {( 𝑓 ′1 , 𝑔
′
1), . . .

( 𝑓 ′𝑛, 𝑔′𝑛)} for some ΓA and a pair of upper level mappings ( 𝑓 , 𝑔). Each pair of mappings
( 𝑓 ′

𝑗
, 𝑔′

𝑗
) at the lower level is derived from some pair of mappings ( 𝑓𝑖 , 𝑔𝑖) at the upper

level and a set of downward transitions ΓB fromB. The construction process is described
in Algorithm 4, where we use ( 𝑓 , 𝑔) to denote an upper level state and term mapping
respectively and ( 𝑓 ′, 𝑔′) to denote their lower level counterparts.

The basic idea of the algorithm is simple: (i) we use the upper level mapping 𝑓 and
transitions ΓA to compute the set of top states 𝑄 (Line 1), (ii) then, we find all feasible
transitions ΓB from 𝑄 (Line 2), and, finally, (iii) for each pair (ΓA , ΓB), we construct
one pair of lower level state and term mappings ( 𝑓 ′, 𝑔′) (Lines 4–9). Specifically, in
step (iii), it must hold that for each transition 𝛿A ∈ ΓA , every state 𝑞 ∈ 𝑓 (top(𝛿A))
needs to be able to match 𝛿A by a transition from ΓB . To check this, for every such 𝑞
we select from ΓB the transition 𝛿B , which is the transition of ΓB with 𝑞 as its top (it
follows from FTrans that there is exactly one). There are three possible cases:

– Both 𝛿A and 𝛿B are leaf transitions (Line 6): we remember in 𝑔′ that the symbol
of 𝛿B need to be able to match the symbol of 𝛿A , which will be checked later for
all such matchings together.

– The symbols of both 𝛿A and 𝛿B are internal (Line 7): in this case, we add new
entries to the lower level mapping 𝑓 ′.

– One transition is internal while the other is leaf (Line 9): the pair (ΓA , ΓB) cannot
form a feasible lower level mapping.

Finally, the main entailment testing routine is summarized in Algorithm 5. Line 2 creates
the set of source vertices of the explored graph. Lines 3–4 pick a vertex (𝐷, 𝐹) that
has not been processed yet. Lines 6–10 check whether (𝐷, 𝐹) is a terminal vertex and
conclude that the entailment test fails when such a vertex is reached. This check consists
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Algorithm 5: Checking if A |=uts B
Input: LSTAs A = ⟨𝑄A ,N ∪ term(C,X),ΔA ,RA , 𝜑A⟩,

B = ⟨𝑄B ,N ∪ term(C,X),ΔB ,RB = {𝑟1, . . . , 𝑟𝑘}, 𝜑B⟩.
Output: true if A |=uts B, false otherwise

1 processed← ∅;
2 workset← {({𝑞}, {({𝑞 ↦→ {𝑟1}}, ∅), . . . , ({𝑞 ↦→ {𝑟𝑘}}, ∅)}) | 𝑞 ∈ RA};
3 while ∃(𝐷, 𝐹) ∈ workset do
4 workset.remove((𝐷, 𝐹));
5 processed.insert((𝐷, 𝐹));
6 if 𝐷 = ∅ then
7 Y← {vars(𝑢1) | (𝑢1 ↦→ 𝑈2) ∈ 𝑔 ∧ (∅, 𝑔) ∈ 𝐹} ∪ vars(𝜑A);
8 Z← {vars(𝑈2) | (𝑢1 ↦→ 𝑈2) ∈ 𝑔 ∧ (∅, 𝑔) ∈ 𝐹} ∪ vars(𝜑B) \ Y;
9 if ¬∀Y : 𝜑A =⇒ ∃Z : 𝜑B ∧

∨
(∅,𝑔) ∈𝐹

∃𝑟 ∈ R \ {0} :
∧

(𝑢1 ↦→𝑈2 ) ∈𝑔
𝑢2∈𝑈2

𝑢1 = 𝑟 · 𝑢2 then
10 return false;

11 foreach ΓA ∈ FTrans(A, 𝐷) do
12 𝐷′ ←

{
𝑞 ∈ bot(𝛿) | 𝛿 ∈ ΓA

}
; 𝐹′ ← ∅;

13 foreach ( 𝑓 , 𝑔) ∈ 𝐹 do
14 𝑈 ← FindAllMappings(ΓA , 𝑓 );
15 𝐹′ ← 𝐹′ ∪ {( 𝑓 ′, 𝑔⋓ 𝑔′) | ( 𝑓 ′, 𝑔′) ∈ 𝑈};
16 if (𝐷′, 𝐹′) ∉ processed ∪ workset then workset.insert((𝐷′, 𝐹′)) ;
17 return true;

of looking at all pairs (∅, 𝑔) in 𝐹 and checking whether there is a way how the B-terms
from the 𝑔’s can together cover (modulo a scaling factor) the behaviour of theA-terms.
Lines 11–16 are the edge construction procedure. Lines 11–12 enumerate all feasible
ΓA and use them to create the next vertex (𝐷′, 𝐹′). Specifically, 𝐷′ are the bottom states
from ΓA (Line 12), and 𝐹′ are the union of all feasible mappings of ΓA (Lines 13–16).
The successor term mapping is computed from the upper-level one and from the one
returned by FindAllMappings by, for each term of A, merging corresponding sets of
terms of mappings: 𝑔⋓ 𝑔′ = {𝑥 ↦→ 𝑌 | 𝑥 ∈ dom(𝑔 ∪ 𝑔′), 𝑌 = 𝑔(𝑥) ∪ 𝑔′ (𝑥)} (Line 15).

A crucial part of the algorithm is the term mapping 𝑔 check between the terms from A
and the terms from B (Lines 7–10). Here, we want to check that for every possible value
that we can obtain from a term 𝑡 on the left-hand side of the entailment (satisfying A’s
global constraint 𝜑A) and every term 𝑡𝑖 from 𝑔(𝑡) = {𝑡1, . . . , 𝑡𝑘}, there is a way to
obtain a value (satisfying B’s global constraint 𝜑B) such that for all these values, there
is a common scaling factor 𝑟 to make them equal to the value from 𝑡. We emphasize the
way how we need to deal with the quantified variables. VariablesY occurring on the left-
hand side (and possibly also on the right-hand side, since we may need to synchronize
the values) are quantified universally, while variable Z occuring only on the right-hand
side of the entailment are quantified existentially. This scaling check requires invoking
an SMT solver with a formula in the NIRA (non-linear integer and real arithmetic) logic.
In the special case where all leaf symbols are constants, 𝑟 is the only variable, and global
constraints are true, the problem reduces to a simple QF_LRA (quantifier-free linear real
arithmetic) formula.
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Theorem 1 (Soundness). When Algorithm 5 terminates, it returns true iff A |=uts B.

Theorem 2 (Termination). When the terms in leaf symbols and the global constraints
of A and B use a decidable theory, the algorithm always terminates.

Proof. Since the number of states and terms occurring in A and B is finite, the con-
structed graph is also finite. Further, since the underlying theory for the terms and global
constraints is assumed to be decidable, the check at Line 9 always terminates. ⊓⊔

7 Experimental Results
We demonstrate the use of AutoQ 2.0 [21] on two real-world use cases consisting of
quantum programs with loops that were proposed in [41,6]. We ran all experiments
on a server running Ubuntu 22.04.3 LTS with an AMD EPYC 7742 64-core processor
(1.5 GHz), 1,152 GiB of RAM, and a 1 TB SSD.

7.1 The Weakly Measured Version of Grover’s Algorithm

Algorithm 6: A Weakly Measured Version of
Grover’s algorithm (solution 𝑠 = 0𝑛)

1 Pre: {1
��0𝑛+2〉 + 0 |∗⟩};

2 𝐻3; 𝐻4; . . . ; 𝐻𝑛+2;
3 O2,..., (𝑛+2) ; CK2

1;O2,..., (𝑛+2) ;
4 Inv: {𝑣sol1 |000𝑛⟩ + 𝑣𝑘

��000𝑛−11
〉
+ · · · +

5 𝑣𝑘 |001𝑛⟩ + 𝑣sol2 |100𝑛⟩ + 0 |∗⟩};
6 while 𝑀1 = 0 do
7 {G2,..., (𝑛+2) ;O2,..., (𝑛+2) ; CK2

1;O2,..., (𝑛+2)};
8 Post: {1 |10𝑠⟩ + 0 |∗⟩};

Grover’s algorithm [31], introduced in
1996, is a quantum algorithm that per-
forms an unstructured search. Given
an oracle function (which can say
whether a particular binary assign-
ment is a solution), Grover’s algorithm
can efficiently find a solution (with
high probability). The algorithm re-
quires approximately O(

√︁
𝑁/𝑘) eval-

uations of the oracle function, where
𝑁 is the size of the function’s domain
(usually 2𝑛 for 𝑛 qubits), and 𝑘 is the number of solutions. The number of solutions is,
however, not always known, making it difficult to determine the algorithm’s parameters
(the algorithm is sensitive to the number of evaluations; in particular, doing more eval-
uations may make the probability of finding the solution smaller). To address this issue,
a variation of Grover’s search, called the weakly measured version (cf. Algorithm 6), was
recently proposed [6]. The weakly measured version eliminates the need for knowing
the number of solutions, making the algorithm more applicable.

To explain the algorithm, we first introduce some of its key components. The algorithm
works over qubits 𝑥1, . . . , 𝑥𝑛+2. Line 2 first applies multiple Hadamard gates in parallel
to obtain the superposition on all qubits other than 𝑥1 and 𝑥2 (which are two ancillas),
obtaining the state in Fig. 7(a). The oracle circuit, denoted as O2,..., (𝑛+2) , works from
qubits 𝑥2 to 𝑥𝑛+2, where 𝑥2 is the ancilla qubit and 𝑥3 to 𝑥𝑛+2 are the working qubits.
As shown from Figs. 7(a) and 7(b) (and also from Figs. 7(c) and 7(d)), the effect of the
oracle circuit is to flip the ancilla qubit of the computational bases corresponding to the
solutions. That is, it swaps the amplitude values of |0𝑠⟩ and |1𝑠⟩, for all solutions 𝑠. The
oracle circuit can be constructed using gates supported in AutoQ 2.0.
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𝑥1
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sol.

ℓ−.. 𝑏ℓ
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..ℓ
− 0 ................................ 0

(f) Applied G2,..., (𝑛+2)

Fig. 7. Intermediate states of Algorithm 6

The controlled rotation gate 𝐶𝐾 𝑖
𝑗 is a special gate supported in AutoQ 2.0. In this

algorithm, the gate always applies to a target qubit whose value is |0⟩ when the controlled
qubit is |1⟩, and it updates the target qubit to 𝑎 |1⟩ + 𝑏 |0⟩ with 𝑎2 + 𝑏2 = 1, for some
very small 𝑏. In AutoQ 2.0, we use 𝑎 = 21

221 and 𝑏 = 220
221 . We demonstrate the behavior

of 𝐶𝐾2
1 from Figs. 7(b) and 7(c), where a small portion ( 212

2212 ≈ 1 %) of the probability
under the branch |01⟩ is moved to the branch |11⟩, as shown in Fig. 7(c). After applying
O2,..., (𝑛+2) again, we obtain the state in Fig. 7(d) (this state is captured by the loop
invariant). Here, we can already measure the qubit 𝑥1 and if the result is 1, this collapses
the probability of the left sub-tree of 𝑥1 in Fig. 7(d) to 0, so the only non-zero probability
basis is the solution |10𝑠⟩.

Otherwise (the result of measuring 𝑥1 was 0), we enter the loop, which contains the
Grover iteration circuit, denoted as G2,..., (𝑛+2) , which also uses O2,..., (𝑛+2) as a com-
ponent. The effect of G2,..., (𝑛+2) is to increase the probabilities of basis states for the
solutions and decrease others, as shown in Figs. 7(e) and 7(f). After G2,..., (𝑛+2) , we
execute the same sequence oracle-rotation-oracle as above to obtain a state resembling
Fig. 7(d). We keep repeating the above procedure until we measure 𝑥1 = 1, in which
case we terminate with a solution.

The results of the verification of weakly measured Grover’s search are in the left-hand
side of Table 1: AutoQ 2.0 was able to verify the program w.r.t. the specification even
for larger numbers of qubits in reasonable time.

7.2 Unitaries as Repeat-Until-Success Circuits
Repeat-until-success programs are a general framework that was introduced to simplify
quantum circuit decomposition (we introduced an example of generating the “−𝑋”
gate via the RUS framework in Section 3). RUS programs have been shown to be
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Table 1. Results of verifying some real-world examples with AutoQ 2.0. The number 𝑥 in
WMGrover(𝑥) indicates that the number of items to be searched is 2𝑥 .

Weakly Measured Grover’s Search [6] Repeat-Until-Success [41]

program qubits gates result time memory program qubits gates result time memory

WMGrover (03) 7 50 OK 0.0s 42MB (2𝑋 +
√

2𝑌 + 𝑍)/
√

7 2 29 OK 0.0s 7MB
WMGrover (10) 21 169 OK 0.2s 42MB (𝐼 + 𝑖

√
2𝑋)/

√
3 2 17 OK 0.0s 7MB

WMGrover (20) 41 339 OK 0.8s 42MB (𝐼 + 2𝑖𝑍)/
√

5 2 27 OK 0.0s 6MB
WMGrover (30) 61 509 OK 2.3s 43MB (3𝐼 + 2𝑖𝑍)/

√
13 2 43 OK 0.0s 7MB

WMGrover (40) 81 679 OK 5.4s 43MB (4𝐼 + 𝑖𝑍)/
√

17 2 77 OK 0.0s 6MB
WMGrover (50) 101 849 OK 11s 44MB (5𝐼 + 2𝑖𝑍)/

√
29 2 69 OK 0.0s 7MB

more efficient (in terms of circuit depth) than ancilla-free techniques when it comes
to synthesizing single-qubit gates (cf. [41,10]). We present the results of verification
of RUS programs for generating various non-standard gates in the right-hand side of
Table 1. Note that AutoQ 2.0 can verify these programs instantaneously.

8 Conclusion and Future Work
We presented a major extension of AutoQ 1.0 [19] with an added support for control
flow constructs and evaluated its feasibility on a family of programs for the weak-
measurement-based version of Grover’s algorithm and on implementations of a number
of non-standard quantum gates using repeat-until-success circuits. In the future, we wish
to extend the framework with automating invariant generation (e.g., using a modification
of the symbolic-execution-based technique from [16]) and add support for dealing with
more complex loops that give rise to mixed states.
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