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Abstract. Mata is a well-engineered automata library written in C++ that offers
a unique combination of speed and simplicity. It is meant to serve in applications
such as string constraint solving and reasoning about regular expressions, and
as a reference implementation of automata algorithms. Besides basic algorithms
for (non)deterministic automata, it implements a fast simulation reduction and
antichain-based language inclusion checking. The simplicity allows a straightfor-
ward access to the low-level structures, making it relatively easy to extend and
modify. Besides the C++ API, the library also implements a Python binding.
The library comes with a large benchmark of automata problems collected from
relevant applications such as string constraint solving, regular model checking,
and reasoning about regular expressions. We show that Mata is on this benchmark
significantly faster than all libraries from a wide range of automata libraries we
collected. Its usefulness in string constraint solving is demonstrated by the string
solver Z3-Noodler, which is based on Mata and outperforms the state of the art
in string constraint solving on many standard benchmarks.

1 Introduction

We introduce a new finite automata library Mata1. It is intended to be used in ap-
plications where automata languages are manipulated by set operations and queries,
presumably in a tight loop where automata are iteratively combined together using
the classical as well as special-purpose constructions. Examples are applications like
string constraint solving algorithms such as [11,24,22,1,10,3,71], processing of regular
expressions [28,49], regular model checking (e.g., [16,15,58,26,13,81,6]), or decision
procedures for logics such as WS1S or quantified Presburger arithmetic [20,80,43,12].
The solved problems are computationally hard, often beyond the PSPACE-completeness
of basic automata problems such as language inclusion. Efficiency is hence a primary
concern. Achieving speed in applications requires, on one hand, fast implementation
of basic automata algorithms (union, intersection, complement, minimization or size
reduction, determinization, emptiness/inclusion/equivalence/membership test, parsing
of regular expressions) and, on the other hand, access to low-level primitives to im-
plement diverse application-specific algorithms and optimizations that often build on
a tight integration with the application environment. Moreover, processing of regular
expressions and, even more so, string constraint solving are areas of active research,
with constantly evolving algorithms, heuristics, and optimizations. An automata library
hence needs flexibility, extensibility, easy access to the low-level data structures, and

1 https://github.com/VeriFIT/mata
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ideally a low learning curve, which is important when involving students in academic
research and utilizing limited resources of small research teams.

Fast and simple are therefore our two main requirements for the library. An additional
third requirement is a well-engineered infrastructure and a good set of benchmarks and
tests, important for effective research and reliable deployment. Mata is therefore built
around a data structure for the transition relation of a non-deterministic automaton that
is a compromise between simplicity and speed. It represents transitions explicitly, as
triples of a sources state, a single symbol, and a target state. This contrasts with various
flavors of symbolic representation of transition relation used in advanced automata
implementations in order to handle large or infinite alphabets (e.g. Unicode in processing
of texts, or bit vectors in reasoning about LTL, arithmetic, or WS1S). However, in
the applications we consider, working internally with large alphabets can essentially
always be avoided by preprocessing (mainly by mintermization, aka factorization of the
alphabet). The simplicity of an explicit representation then seems preferable. It allows
to use a data structure specifically tailored for computing post-images of tuples and sets
of states in automata algorithms: a source state-indexed array, storing at each index the
transitions from that source state in a two layered structure, with the first layer divided
and ordered by symbols, and the second layer ordered by target states. The data structure
seems to be unique among the existing libraries and yields an exceptional performance.

Mata currently provides basic functionality, basic automata operations and tests,
parsing of regexes and automata in a textual format, and mintermization. From the
more advanced algorithms for working with non-deterministic automata, it implements
antichain-based inclusion checking [35], and simulation-based size reduction based on
the advanced algorithm of [65,4,48]. The inclusion check appears to be by a large
margin the fastest implementation available, and together with the tree automata library
Vata [59], Mata is the only library with an implementation of a simulation algorithm
of the second generation originating from [65,21] (the second generation algorithms
combine partition-relation pairs to manipulate preorders that were handled explicitly
by the first generation algorithms such as [44,52]). Mata is implemented in C++,
uses almost exclusively the STL library for its data structures, and has no external
dependencies2 This makes it relatively easy to learn and integrate with other software
projects. It is a well-engineered project at GitHub, with modern test and quality of code
assurance infrastructure. Besides the C++ API, it provides a Python binding for fast
prototyping and easy experimenting, for instance using interactive Jupyter notebooks.

We evaluated its speed in, to our best knowledge, so far the most comprehensive
comparison of automata libraries. We compare with 7 well-known automata libraries on
a large benchmark of problems from domains close to Mata’s designation, mainly string
constraint solving, processing regular expressions, and regular model checking. Mata
consistently outperforms all other libraries, from several times to orders of magnitude.

That Mata is a good fit for string constraint solving is demonstrated by its central
role in the string solver Z3-Noodler, which implements the algorithms of [11,24], and
outperforms the state of the art on many standard benchmarks (see [25] for details).

2 Although, at the moment, it uses the BDD library CUDD [70] in mintermisation and the regular
expression parser from RE2 [41]. The code from these projects is, however, contained within
Mata. Moreover, the connection to CUDD is not tight and we plan to remove it in the future.
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Our contributions can be summarised by the following three points:

1. Mata, a fast, simple, and well-engineered automata library, well suited for appli-
cation in string constraint solving and regex processing, in research and student
projects, as well as in industrial applications.

2. An extension of a benchmark of automata problems from string constraint solving,
processing regular expressions, regular model checking, and solving arithmetic
constraints.

3. A comparison of a representative sample of well-known automata libraries against
the above benchmark, demonstrating the superior performance of Mata.

2 Related Work

In this overview of automata algorithms and implementations, we focus on the technol-
ogy relevant to Mata, i.e., automata used as a symbolic representation of sets of words
and manipulated mainly by set operations. We omit automata technology made for other
purposes, such as regular pattern matching, which concentrates on the membership test.

Automata techniques. The most textbook-like approach is to keep finite automata de-
terministic (the so-called DFA), which has the advantage of simple algorithms and
data structures. Essentially all classical problems reduce to product construction, de-
terminization by subset construction, final state reachability test, and minimization (by
Hopcroft’s [50], Moore’s [62], Brzozowski’s [19], or Huffman’s [51] algorithms). The
obvious drawback is the susceptibility to state explosion in determinization.

An alternative is to determinize automata only when necessary (e.g., only before
complementing). Non-determinism may bring up to exponential savings in automata
sizes and modern algorithms for nondeterministic finite automata (NFA) can in practice
avoid the exponential worst-case cost of problems like the language inclusion test.

Namely, a major breakthrough in working with NFAs were the antichain-based
algorithms for testing language universality and inclusion of NFA first introduced (to the
best of our knowledge) in [74] and later rediscovered in [82]. They dramatically improve
practical efficiency of the subset construction by subsumption pruning (discarding larger
sets). They were later extended with simulation [5,35] (and generalized to numerous
other kinds of automata and problems). A principally similar is the bisimulation up-
to congruence technique of [14], which optimizes the NFA language equivalence test.
Although experimental data in various works are somewhat contradictory, the more
systematic studies so far found antichain-based algorithms more efficient [39,38].

NFAs require more involved reduction methods than DFAs, such as those based on
simulation [65,21,44,52,48] or bisimulation [76,64,46]. Simulation reduces significantly
more but is much more costly. The algorithms for computing simulation of the second
generation [65,21], which use the so-called partition-relation pairs to represent preorders
on states, are practically much faster than the first generation algorithms [44,52].
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Representations of the transition relation. In order to handle automata over large or
infinite alphabets, such as Unicode or bit vectors, some implementations of automata
represent transitions symbolically. Transitions may be annotated by sets of symbols
represented as BDDs, logical formulae, intervals of numbers, etc. The most systematic
approach to this has been taken in works on symbolic automata [78,32,33], where
the symbol predicates may be taken from any effective Boolean algebra (essentially
a countable set closed under Boolean operations). Some libraries, such as Spot [36],
Owl [57], or Mosel [55] use BDDs to compactly represent sets of symbols on transitions.
Even more compact are the symbolic representations of the transition relation used
in Mona [43] and in the symbolic version of the tree automata library Vata [59],
where all transitions starting at a state are represented as a single multi-terminal BDDs
with the target states in the leaves (the paths represent symbols). Although symbolic
representation may offer new optimization opportunities [32] and give more generality, it
also brings complexity and overhead. Adapting the known algorithms may be nontrivial
[32,46] to the point of being a difficult unsolved problem (such as the fast computation
of simulation relation of [65,21]). In our application area, working with large alphabets
can mostly be avoided in preprocessing, for instance by means of a priori mintermization
(partitioning the alphabet into groups of symbols indistinguishable from the viewpoint
of the input problem). The simplicity and transparency of explicit representation of
transitions then seems preferable.

Alternating automata. Alternating automata (AFA) received attention recently in the
context of string solving and regex processing [79,28,45,40]. They allow to keep au-
tomata operations implicit up to the point of the PSPACE-complete emptiness test,
which can be solved by clever heuristics (e.g. [79,28,45,82,38,30]). Available implemen-
tations were recently compared with selected NFA libraries [38] and neither approach
dominated. AFA are, however, often not a viable alternative since adapting complex
algorithms from, e.g., string solving to AFA typically requires to redesign the entire
algorithm from scratch (as, e.g., in [45,79]).

String solving and SMT solvers. String constraint solving is currently the primary
application target of Mata. Mata is already a basis of an efficient string solver Z3-
Noodler [25] and a number of other string solvers could perhaps benefit from its
performance, especially those that already use automata as a primary data structure, e.g.
[23,3,10,1]. Besides, SMT string constraint solvers can also be used to reason about
regular properties, though the results of [38] suggest that their efficiency is not on par
with dedicated fast automata libraries.

Automata libraries. We give overview of known automata libraries with a focus on
those that we later include in our experimental comparison in Section 6.

The Brics [63] automata library is often considered a baseline in comparisons. It
implements both NFA and DFA, where each state keeps the set (implemented as a hash
map) of transitions, which are represented symbolically using character ranges. It is
written in Java and relatively optimized.

The Automata.net library [77], written in C#, implements symbolic NFA parame-
terized by an effective Boolean algebra. The transition relation (as well as its inverse) are
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implemented as a hash map from states to the dynamic array of transitions from a given
state, each transition annotated with a predicate over the algebra. We use it in our compar-
ison with the algebra of BDDs. Automata.net has been developed for a long time and
has accumulated a number of novel techniques (e.g., an optimized minimization [31]).

Mona [43], written in C, is a famous optimized implementation of deterministic
automata used for deciding WS1S/WS𝑘S formulae. To handle DFA with complex tran-
sition relations over large alphabets of bit vectors, Mona uses a compact fully symbolic
representation of the transition relation: a single MTBDD for all transitions originating
in a state, with the target states in its leaves. Mona can represent only a DFA, hence
every operation implicitly determinizes its output.

Vata [59], written in C++, implements non-deterministic tree automata. It can be
used with NFA, too as they are a special case of tree automata. It is relatively optimized
and features fast implementation of the antichain-based inclusion checking [15,47]
(which for NFA boils down to the inclusion check of [35]) and the second generation
simulation computation algorithm of [48].

Awali [60] is a library that targets weighted automata and transducers over an
arbitrary semiring. To implement the transition relation, it keeps a vector of transitions
and for each state 𝑠 two vectors: one keeps the indices of transitions leaving 𝑠 and the
other one the indices of transitions entering 𝑠.

AutomataLib [53] is a Java automata library and the basis of the automata learning
framework LearnLib [54]. It focuses on DFAs and implements their transition relation
as a flattened 2D matrix that maps the source state and symbol to the target state.

Automata.py [37] is written in Python. It defines the transition relation in a liberal
way, as any mapping from source states to a mapping of symbols to a target state (DFA)
or to a set of target states (NFA).

FAdo [7] is a Python library written with efficiency in mind. It uses a similar
structure as Automata.py, but more specific, with the transition as a Python dictionary
(a hash map), and states represented as numbers used as indices into an array.

There is a number of other automata libraries that we do not include into our
comparison since they seem similar to the included ones or we were not able to use
them. The C alternative of Brics [61] and the Java implementation of symbolic NFA
of [29] are in our experiment covered by Automata.net and Brics. Alaska [34]
contains interesting implementations of antichain-based algorithms, but is no longer
maintained nor available. Lash [12] is a long-developed tool for arithmetic reasoning
based on automata, with an efficient core automata library, written in C. Its transition
relation is an array indexed by states, where every state is associated with a symbol-
target ordered list of transitions. Lash uses partial symbolic representation – it encodes
symbols as sequence of binary digits. The comparison with Mona in [56] on automata
benchmark originating from arithmetic problems placed its performance significantly
behind Mona. It seems to no longer be maintained, and we were not able to run it on
our benchmarks.

There is also a number of implementations of automata over infinite words, for
instance Spot [36], Owl [57], or Goal [75], which are in their nature close to the finite
word automata libraries (Spot and Owl are optimized and use BDDs on transition edges
similarly as Automata.net), but implement different algorithms.
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Mata evolved from a prototype implementation eNfa used in the comparison of AFA
emptiness checkers as a baseline implementation of classical automata [38]. Surprised
by its performance, we decided to turn it into a serious widely usable library. Current
Mata is much more mature and efficient than the eNfa of [38].

3 Preliminaries on Finite Automata

Words and alphabets. An alphabet is a set Σ of symbols/letters (usually denoted
𝑎, 𝑏, 𝑐, . . .) and the set of all words over Σ is denoted as Σ∗. The concatenation of
words 𝑢 and 𝑣 is denoted by 𝑢 · 𝑣. The empty word, the neutral element of concatenation,
is denoted by 𝜖 (𝜖 ∉ Σ).

Finite automata. A (nondeterministic) finite automaton (NFA) over an alphabet Σ is a
tuple A = (𝑄, post , 𝐼, 𝐹) where 𝑄 is a finite set of states, post : 𝑄 × (Σ ∪ {𝜖}) → 2𝑄

is a symbol-post function, 𝐼 ⊆ 𝑄 is the set of initial states, and 𝐹 ⊆ 𝑄 is the set of final
states. A run of A over a word 𝑤 ∈ Σ∗ is a sequence 𝑝0𝑎1𝑝1𝑎2 . . . 𝑎𝑛𝑝𝑛 where for all
1 ≤ 𝑖 ≤ 𝑛 it holds that 𝑎𝑖 ∈ Σ ∪ {𝜖}, 𝑝𝑖 ∈ post (𝑝𝑖−1, 𝑎𝑖), and 𝑤 = 𝑎1 · 𝑎2 · · · 𝑎𝑛. The
run is accepting if 𝑝0 ∈ 𝐼 and 𝑝𝑛 ∈ 𝐹, and the language 𝐿 (A) of A is the set of all
words for which A has an accepting run. A is called deterministic (DFA) if |𝐼 | ≤ 1,
|post (𝑞, 𝜖) | = 0, and |post (𝑞, 𝑎) | ≤ 1 for each 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. A state is useful if it
belongs to some accepting run, else it is useless. An automaton with no useless states is
trimmed. A state is reachable if it appears on a run starting at an initial state. In Mata,
we further use post (𝑞) = {(𝑎, post (𝑞, 𝑎)) | post (𝑞, 𝑎) ≠ ∅} to denote the state-post
of 𝑞. We call symbol-post and state-post the post-image functions. We also use 𝑞−𝑎→𝑝

where 𝑝 ∈ post (𝑞, 𝑎) to denote transitions. The set of all transitions of A is called the
transition relation of A and we denote it by Δ.

Automata operations. In this paragraph we assume automata without 𝜖 transitions. The
subset construction generates from A the DFA (𝑄⊆ , post⊆ , 𝐼⊆ , 𝐹⊆) where 𝑄⊆ = P(𝑄),
𝐼⊆ = {𝐼}, 𝐹⊆ = {𝑆 ∈ 𝑄⊆ | 𝑆 ∩ 𝐹 ≠ ∅}, and where post⊆ (𝑆, 𝑎) = ⋃

𝑠∈𝑆 post (𝑠, 𝑎). The
automaton for complement is obtained from it by complementing 𝐹⊆ , i.e., the set of final
states is given as𝑄⊆\𝐹⊆ . The intersection of two automataA1 = (𝑄1, post1, 𝐼1, 𝐹1) and
A2 = (𝑄2, post2, 𝐼2, 𝐹2) is implemented by their product (𝑄1×𝑄2, post

× , 𝐼1× 𝐼2, 𝐹1×
𝐹2) where post× ((𝑞, 𝑟), 𝑎) = post1 (𝑞, 𝑎) × post2 (𝑟, 𝑎). A sensible implementation of
course only computes the reachable parts of the product and the subset construction. The
union 𝐿 (A1) ∪ 𝐿 (A2) is obtained by disjointly uniting all components of A1 and A2.
Similarly, the concatenation 𝐿 (A1).𝐿 (A2) is the automaton (𝑄1⊎𝑄2, post1⊎post2⊎
post ′, 𝐼1, 𝐹′) where ⊎ denotes the disjoint union, post ′ (𝑞, 𝑎) = {𝑟 | 𝑞 ∈ 𝐹1 ∧ ∃𝑠 ∈
𝐼2 : 𝑟 ∈ post2 (𝑠, 𝑎)} is the connecting symbol-post and 𝐹′ is 𝐹2 if 𝐼2 ∩ 𝐹2 = ∅ and
𝐹1∪𝐹2 otherwise (this construction avoids introducing 𝜖-transitions). Note that we omit
superscript of symbol-post function when it is clear from the context.
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Fig. 1: The transition relation.

4 The Architecture of Mata

We explain in this section the implementation techniques that make Mata efficient on a
wide range of automata operations.

4.1 Automata Representation

States and transition symbols are unsigned integers (starting from 0). This makes it easy
to store information about them in a state-/symbol-indexed vectors. A frequently used
low-level data structure is OrdVector, a set of ordered elements implemented as an
ordered array (with std::vector as the underlying data structure). It has constant time
addition and removal of the largest element (push back and pop back), linear union,
intersection, and difference (by variants of merging), good memory locality and fast
iteration through elements, logarithmic lookup (by binary search), but a slow insertion
and removal (insert and erase) at other than the last position, as the elements on
the right of the modified position must be shifted. Many Mata algorithms utilize the
constant time handling of the largest element in, e.g., synchronized traversal of multiple
OrdVector containers. Initial and final states are kept in sparse sets [18], with fast
iteration through elements and constant lookup, insertion, and removal.

Data structure for the transition relation. The main determinant of Mata is its three-
layered data structure Delta for the transition relation. It is implemented as a vector post
where, for every state 𝑞, post[𝑞] is of the type StatePost, representing post (𝑞) as an
OrdVector of objects of the type SymbolPost, each in turn representing one post (𝑞, 𝑎)
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by storing the symbol 𝑎 and an OrdVector of the target states. The SymbolPosts in
OrdVector are ordered by their symbols3. A visualization of Delta is shown in Fig. 1.

The weak point of Delta is inherited from OrdVector: slow insert or erase
of a specific transition (these operations are, however, used scarcely in the considered
scenarios). Its strength is mainly fast iteration through the post-image of a state, of a pair
of states in the product construction, and of a set of states in the subset construction.

4.2 Automata Operations

Generating post-images in subset construction. In the subset construction, each iteration
through post (𝑆) for a set of states 𝑆 is keeping an array of iterators, one into each post (𝑞)
for all 𝑞 ∈ 𝑆. Every iteration shifts the iterators to the right, to post (𝑞, 𝑏) where 𝑏 is the
closest from above to the current global minimal symbol 𝑎, and returns post (𝑆, 𝑎) as the
union of all post (𝑞, 𝑎)’s pointed to by the iterators. No searching in vectors is needed. The
entire iteration through all post (𝑆)’s makes the iterators in the SymbolPosts traverse
their respective vectors only once.

Constructing the transitions leading from 𝑆 while iterating through post (𝑆) is done
by appending to OrdVectors, without a need to insert at internal positions of vectors.
The iteration through the SymbolPosts is ordered by symbol, hence each newly created
transition from the macrostate 𝑆 has a larger symbol than all the previously created
ones. The symbol-post therefore belongs at the end of the OrdVector of symbol-posts
of post (𝑆), where it is push backed. Since the resulting automaton is deterministic, the
vectors of targets are singletons, and their creation does not require insert either.

Generating post-images in product construction. Similarly as in the subset construction
above, iterating through post ((𝑞, 𝑟)) in the product construction is done by synchronous
iteration through post (𝑞) and post (𝑟) from the smallest common symbol to the largest.
In each step, the iteration returns the Cartesian product of the targets in the symbol-
posts. Unlike the subset construction, adding the corresponding transitions from (𝑞, 𝑟)
to the product automaton sometimes does need an insert into the vector of targets. It is
however not that frequent: Newly discovered product states are assigned the so far highest
numbers, so these are added to the target vectors by push back. The insert may hence
be needed only when creating a non-deterministic transition to a state discovered earlier.

Storing sets and pairs of states in the subset and product construction. OrdVector is
also used to map generated sets in the subset to the identities of generated states. The map
uses a hash table (std::unordered map) where values are OrdVectors. The product
construction uses either a two-dimensional array to map pairs of states to product states
(for smaller automata) or a vector pro map of hash tables, where the identity of the
product state (𝑞, 𝑟) is found in the hash map prod map[q] under the key 𝑟.

3 Mata supports 𝜖-transitions and some operations can work with them internally. We represent
𝜖 as the symbol with the highest possible number, hence SymbolPost with 𝜖 is always the
last one in the vectors of SymbolPosts in Delta. The 𝜖 is therefore easy to be accessed in,
e.g., 𝜖-transition elimination. Some operations also support several 𝜖-like symbols (e.g., 𝜖1,
𝜖2, . . . ), which are convenient in some algorithms in string solving [11,24] or can play a role
of different synchronization symbols, etc.
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Emptiness test and trimming. Emptiness test and trimming are used frequently and
must be fast. Mata’s emptiness test is just a state space exploration that utilizes the fast
iteration through post-images of a state.

Trimming consists of two steps: (1) identification of useful states and (2) removal of
states that are not useful. Identification of useful states must, besides forward exploration
to identify reachable states, identify states that reach a final state. A naive solution
would be a backward exploration from final states. Delta is, however, not well suited
for backward search and although reverting it is doable, its cost is not negligible either.
We therefore use a smarter solution, which uses a simplification of the non-recursive
Tarjan’s algorithm [73] to discover strongly connected components (SCCs). Tarjan’s
algorithm is essentially a depth-first exploration augmented to identify the SCCs. To
identify useful states, on finding an SCC with a final state, we mark the entire SCC as
useful together with all states on the path to that SCC, which is readily stored on the
depth-first search stack. The cost of computing useful states is then similar to the cost
of a single depth-first exploration, which is indeed negligible.

Removal of useless states then needs to be done in a Delta-friendly way. The naive
approach that removes useless states and transitions incident with them one by one would
be extremely slow due to the need of searching and calling erase in the OrdVectors of
Delta. Instead, we perform the whole removal and related operations in a single pass
through Delta. Before the pass begins, first, we create a map renaming mapping each
useful state to its new name (the trimming also renames the states in order to have the
remaining states form a consecutive sequence). During the pass, the following operations
need to be performed: (i) in the outermost loop, each useful state 𝑞 in Delta is moved
to index renaming[𝑞], (ii) in every vector of target states, each useful target is moved
to the left in the target vector by that many positions, as there were smaller useless states
before it, and (iii) while doing that, the target state 𝑞 is renamed to renaming[𝑞].

Union and concatenation. Mata is relatively slow in operations that copy or create
large parts of automata, such as non-deterministic union or concatenation, or simple
copying of an automaton. This is perhaps due to the imperfect memory locality (the
three layers of vectors in Delta) and the need to copy every single transition (unlike,
e.g., symbolic automata with BDDs on transitions, where the BDDs may be shared).
Mata has, however, in-place variants of union and concatenation, which do not copy
Delta, but only append the post vectors and rename the target states in the appended
part, which is fast. The price for the speed is the loss of the original automata, but they
are in many use cases not needed (as, e.g., in inductive constructions of automata from
regular expressions or formulae).

Antichain-based inclusion checking. Mata implements the antichain-based inclusion
checking of [35]. Given the inclusion problem 𝐿 (A) ⊆ 𝐿 (B), the algorithm explores
the space of the product of A and the subset construction on B, consisting of pairs (𝑞, 𝑆)
with 𝑞 being a state of A and 𝑆 being a set of states of B. In particular, it searches, on the
fly, for a reachable pair (𝑞, 𝑆) with a final 𝑞 and a non-final 𝑆, which would be a witness
non-inclusion. The algorithm optimizes the search by subsumption pruning—discarding
states (𝑞, 𝑆) if another (𝑞, 𝑆′) with 𝑆 ⊆ 𝑆′ has been found. Our implementation uses the
infrastructure for computing post-images of product and subset construction discussed
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above. The reached pairs (𝑞, 𝑆) are stored in a state-𝑞-indexed vector incl map of
collections of sets 𝑆. The sets are again represented as OrdVectors. On reaching a
pair (𝑞, 𝑆), all sets 𝑆′ stored in incl map[𝑞] are tested for inclusion with 𝑆. If 𝑆 ⊇ 𝑆′,
then 𝑆 is dropped, and if 𝑆 ⊆ 𝑆′, then 𝑆′ is removed from incl map[𝑞] (as well as
other sets 𝑆′′ such that 𝑆 ⊆ 𝑆′′) and 𝑆 is added to incl map[𝑞]. A large speed-up is
sometimes obtained by prioritizing exploration of pairs (𝑞, 𝑆) with 𝑆 being of a small
size. A smaller set means a better chance to subsume other pairs, to reach a witness of
non-inclusion, and to generate other pairs with small sets. The algorithm then explores
a much smaller state space.

Simulation. Mata uses an implementation of a fast algorithms for computing simulation,
namely, the algorithm from [65], which was adapted from Kripke structures to automata
in [4], and later further optimized in [48]. The implementation originates in Vata [59].

Low-level API. The API of Mata contains an interface for accessing the most low-level
features needed to implement algorithms in the style described above. For instance, the
API provides iterators over transitions of Δ in the form of triples 𝑞−𝑎→𝑟, iterators through
moves (pairs (𝑎, 𝑟) such that 𝑞−𝑎→𝑟 ∈ Δ) of a state 𝑞, or generic synchronized iterators,
which allow a simultaneous iteration in a set of vectors used in union and in computing
the post-image in the product and subset construction. Since the main data structures
are not complicated and have simple invariants, programming with them on the low
level is possible even for an outsider. This low-level Mata API is, for instance, used
in the string solver Z3-Noodler. [25] presents a detailed comparison of Z3-Noodler
with the state of the art in string solving. Its exceptional performance on regex and word
equation-heavy constraints is to a large degree due to Mata.

5 Infrastructure of Mata

Mata comes with the following tools and features to make using, developing, and
extending it convenient.

Python interface. Mata provides an easy-to-use Python interface, making it a full-
fledged automata library for Python projects. It is available on the official Python package
repository4 and can be installed easily using the pip package manager:

$ pip install libmata

An example of using the Mata Python binding is shown in Fig. 2. The interface is
implemented using the optimizing static compiler Cython wrapping the C++ Mata
calls and covers all important parts of the C++ functionality. This low-level interaction
with the optimized C++ code keeps the Python code fast. To show the capabilities of
the interface and to provide material for easy onboarding, Mata also contains several
Jupyter notebooks with examples of how to use it.

4 https://pypi.org/project/libmata/

https://pypi.org/project/libmata/
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from libmata import nfa, alphabets, parser, plotting
aut1 = parser.from_regex(’((a+b)*a)*’)
aut2 = parser.from_regex(’aab*’)
con_aut = nfa.nfa.concatenate(aut1, aut2).trim()
plotting.store()[’alphabet’] = \

alphabets.OnTheFlyAlphabet.from_symbol_map({’a’:97, ’b’:98})
e_h = [

(lambda aut, e: e.symbol == 98, {’color’:’black’}),
(lambda aut, e: e.symbol == 97, {’style’:’dashed’,’color’:’black’})

]
n_h = [

(lambda aut, q: q in aut.final_states,
{’color’:’red’,’fillcolor’:’red’}),

(lambda aut, q: q in aut.initial_states,
{’color’: ’orange’, ’fillcolor’: ’orange’}),

]
plotting.plot(con_aut, with_scc=True,

node_highlight=n_h, edge_highlight=e_h)

(a) An example of using Mata from Python.

4 b

3

a

0

a

a

1

a

a

2

b

a

a

(b) The output.

Fig. 2: An example of a Python interface for Mata. The code (a) loads automata from
regular expressions (a, b are transition symbols; *, and + represent iterations: 0 or more,
and 1 or more, respectively), concatenates them, and displays the trimmed concatenation
using the conditional formatting with the output in (b).

@NFA-explicit
%Initial q0 q1
%Final q1
q0 a48 q1
q0 a52 q1
q1 a48 q1

(a) NFA with explicit alphabet.

@NFA-bits
%Initial q1
%Final q2 q1 q0
q0 ((!a0 | !a1) & a2) q2
q1 (a0 & a1 & !a2) q0
q2 ((a0 & a1) | a2) q1

(b) NFA with symbolic alphabet.

Fig. 3: Examples of NFAs in the
.mata format.

.mata format and parsing. Mata brings its own
automata format. The main features of the format
are extensibility to cover various types of automata,
human-readability, yet still high level of compact-
ness. Each .matafile consists of automata definitions.
The first line of the definition describes the type of
the automaton, together with the alphabet. The for-
mat supports both explicit and symbolic (bit vector)
alphabets. For a symbolic alphabet, symbols are en-
coded as formulae over atomic propositions, where
the parser of .mata implements mintermization (par-
titioning the alphabet into groups of symbols indistin-
guishable from the viewpoint of the input problem),
which transforms it into an explicit alphabet with the
symbols representing the minterms. The following
lines contain a sequence of key-values statements that set particular traits of the au-
tomaton, such as initial or final states. The rest of the definition is a list of transitions.
Examples of automata in .mata format are shown in Fig. 3.

Other than the introduced format, Mata can also parse automata from regular
expressions using the parser from the regex matcher RE2 [41]. This means that Mata
can handle even complex syntax used in real-world regular expressions.

Continuous integration. We implement continuous integration via GitHub Actions.
In particular, actions automatically build the library including the Python binding on
MacOS and Ubuntu, check for warnings, code quality and run unit tests together with
the code coverage. The actions are triggered after each commit, and the checks are
mandatory for merging branches to the main branch, and can also be run locally.
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Fig. 4: Cactus plot showing cumulative run time per benchmark. The time axis is logarithmic.

6 Experimental Evaluation

We compared Mata against 7 selected libraries discussed in Section 2: Vata [59],
Brics [63], Awali [60], Automata.net [77], AutomataLib [53], FAdo [7], and Au-
tomata.py [37],5 on a benchmark of basic automata problems from string constraint
solving, reasoning about regular expressions, regular model checking, and a few exam-
ples from solving arithmetic formulae. Most of the benchmark problems are taken from
earlier works [38,30,40,28], but we added new problems from string constraint solving
and solving quantified linear integer arithmetic (LIA).

We mainly aim to demonstrate the efficiency of the basic data structures and imple-
mentation techniques of Mata. This is best seen on standard constructions, where all
libraries implement the same high-level algorithm, such as product, subset construction,
or reachability test within complementation, intersection, emptiness test, etc. We then
also showcase the efficiency of more advanced algorithms implemented only in Mata
and Vata, the antichain-based inclusion test and simulation reduction.

5 We also tried to compare with Mona, but using it as a standalone library that would parse
automata in our format turned to be problematic. We were getting many inconsistent results
and so we decided to drop it from the comparison.
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Table 1: Statistics for the benchmarks. We list the number of timeouts (TO), average time
on solved instances (Avg), median time over all instances (Med), and standard deviation
over solved instances (Std), with the best values in bold. The times are in milliseconds
unless seconds are explicitly stated. We use ∼0 to denote a value close to zero.

armc-incl (136) b-smt (384) email-filter (500) lia-explicit (169) lia-symbolic (169)

TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std

Mata 0 174 2 1 s 0 1 1 1 0 1 ∼0 9 0 42 6 356 0 2 2 6
Awali 7 1 s 17 3 s 0 6 6 4 0 46 4 162 6 21 21 16 0 8 7 14
Vata 0 324 43 577 0 7 7 10 0 42 2 322 0 121 51 671 1 11 10 11
Automata.net 9 1 s 125 3 s 0 148 153 30 0 69 66 30 0 113 117 49 6 103 107 33
Brics 5 659 34 2 s 4 43 43 19 6 103 17 280 0 66 62 63 6 55 60 33
AutomataLib 10 843 669 1 s 7 390 126 3 s 48 516 390 521 0 458 285 1 s 6 164 173 52
FAdo 58 8 s 22 s 10 s 9 109 112 67 64 6 s 1 s 11 s 1 1 s 727 2 s 6 135 149 105
Automata.py 10 913 133 3 s 334 24 TO 15 4 520 19 2 s 1 372 167 894 6 35 35 25

noodler-compl (751) noodler-conc (438) noodler-inter (4872) param-inter (267) param-union (267)

TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std

Mata 0 39 ∼0 401 0 100 10 286 0 ∼0 ∼0 3 156 1 s TO 4 s 0 166 7 326
Awali 0 73 2 638 0 490 55 1 s 6 3 1 7 157 6 s TO 7 s 0 1 s 81 3 s
Vata 0 57 2 296 - 2 4 ∼0 22 159 7 s TO 8 s 14 6 s 270 12 s
Automata.net 0 53 39 110 - 0 26 24 9 157 8 s TO 10 s 0 220 47 314
Brics 0 47 8 190 0 136 35 204 0 7 3 21 159 6 s TO 6 s 0 223 50 307
AutomataLib 0 293 143 793 - 17 276 216 675 227 8 s TO 13 s 227 10 s TO 15 s
FAdo 10 646 5 4 s 189 10 s 25 s 13 s 10 271 52 2 s 250 15 s TO 20 s 115 5 s 12 s 11 s
Automata.py 3 263 5 2 s - 5 38 3 353 254 4 s TO 6 s 245 11 s TO 16 s

Benchmarks. We use the following benchmark sets.

b-smt [38] contains 384 instances of boolean combinations of regular properties, ob-
tained from SMT formulae over the theory of strings. These include difficult hand-
written problems containing membership in regular expressions extended with in-
tersection and complement from [71] and emptiness problems from Norn [2,3] and
SyGuS-qgen benchmarks, collected in SMT-LIB [9,67,68].

email-filter [38] contains 500 inclusion checks of the form 𝑟5 ⊆ 𝑟1∧𝑟2∧𝑟3∧𝑟4 obtained
analogously as in [30]. Each 𝑟𝑖 is one of the 75 regexes6 from RegExLib [66],
selected so that 𝑟1 ∧ 𝑟2 ∧ 𝑟3 ∧ 𝑟4 ∧ 𝑟5 is not empty. Similar kind of these problems
is solved in spam-filtering: one tests whether a new filter 𝑟5 adds anything new to
existing filters.

param-inter [38] contains 4 sets of parametric intersection problems from [40] and 2
sets from [28]. In total, this includes 267 problems. The parameter controls the size
of the regex or the number of regexes to be combined. param-union is the variant
of the benchmark that performs union instead of intersection.

armc-incl [38] contains 136 language inclusion problems derived from runs of an
abstract regular model checker of [15] (verification of the bakery algorithm, bubble
sort, and a producer-consumer system).

6 https://github.com/lorisdanto/symbolicautomata/blob/master/
benchmarks/src/main/java/regexconverter/pattern%4075.txt

https://github.com/lorisdanto/symbolicautomata/blob/master/benchmarks/src/main/java/regexconverter/pattern%4075.txt
https://github.com/lorisdanto/symbolicautomata/blob/master/benchmarks/src/main/java/regexconverter/pattern%4075.txt
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Table 2: Relative speedup of Mata on instances where both libraries finished.
Awali Vata Automata.net Brics AutomataLib FAdo Automata.py

armc-incl 27.52 1.86 29.73 16.98 21.44 4839.55 23.22
b-smt 3.7 4.52 89.64 26.13 236.36 70.16 24.47
email-filter 25.07 22.59 37.19 55.3 273.35 9999.29 282.41
lia-explicit 2.22 2.88 2.69 1.57 10.89 85.17 25.38
lia-symbolic 3.46 4.65 51.82 27.99 82.47 67.54 17.97
noodler-compl 1.85 1.45 1.37 1.22 7.44 137.53 15.58
noodler-conc 4.87 - - 1.36 - 1979.56 -
noodler-inter 4.02 6.42 33.98 9.04 371.23 363.49 51.51
param-inter 5.36 7.3 7.27 6.49 1.43 2148.64 58.85
param-union 8.61 51.77 1.33 1.34 833.69 1618.04 5860.62

lia consists of 169 complementation problems created during the run of Amaya [8],
a tool for deciding linear integer arithmetic (LIA) formulae using an automata-based
decision procedure of [17]. The formulae are taken from UltimateAutomizer [42]
and tptp [72] benchmarks, collected in SMT-LIB [9,69]. The transition relation
in Amaya is represented symbolically using BDDs; in our experiments we tested
both symbolic representation (in lia-symbolic) and explicit representation (in lia-
explicit), where explicit symbols are bit vectors represented by the BDDs.

noodler consists of instances created during the run of the string solver Z3-Noodler
[11,24,25] on the regex-heavy benchmark AutomatArk [10] from SMT-LIB [9,67].
We collected 751 complementation, 438 concatenation, and 4,872 intersection prob-
lems in noodler-compl, noodler-conc, and noodler-inter respectively.

Experimental setup. We converted all benchmarks into a common textual automata
format (the .mata format, see Section 5), and wrote dedicated parsers or conversions for
all the libraries. The conversion and parsing are not included in the run times since the
parsers are not optimized and the typical use cases do not require parsing every input
automaton from a textual format. From some of the benchmarks, we excluded small units
of examples where the conversion failed. We measure only the time needed for carrying
out the specified operations on automata already parsed into each library’s internal data
structures. Automata in all benchmarks but lia and those coming from regexes, email-
filter, b-smt, param-inter, and param-union, had small or moderate alphabet sizes
(all below 100 symbols, except noodler-inter with up to 252 symbols). The explicit
automata from LIA solving (lia-explicit) have at most 1,024 symbols (corresponding to
10 bits).7 After performing mintermization on automata with symbolic representation
(lia-symbolic), the number of symbols was reduced to at most 30, and mintermization
runs on automata from regular expressions returned alphabets with at most 80 symbols.

7 It should be noted that these LIA problems are by no means representative of typical LIA
formulae, which could generate much larger alphabets and transition relations that require
some sort of symbolic representation.
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Fig. 5: Cactus plot showing cumulative run time per operation. The time axis is logarithmic.

Results. We summarize the results of each benchmark in cactus plots in Fig. 4 (displaying
cumulative run times of benchmarks, with the instances ordered by their run time) and
Table 1. Table 2 shows relative speedups of Mata over each library on problem instances
that both libraries finished in time. We also present statistics for individual automata
operations across the entire benchmark in Fig. 5 and Table 3. We do not show the
performance of Mata’s Python interface in the plots and tables as it is matches that one
of Mata. All examples were run in six parallel jobs on Fedora GNU/Linux 38 with an
Intel Core 3.4 GHz processor and 20 GiB RAM with 60 s timeout.

Mata consistently outperforms all other libraries on all benchmarks and in all opera-
tions, up to few exceptions. It is sometimes matched or outperformed by Automata.net
and Brics in union and concatenation operation (on param-union and noodler-conc).
Brics and Automata.net are sometimes faster since they may be able to share parts of
the representation (such as BDDs on the transitions) between the automata operands and
the union/concatenation, while Mata copies the entire data structure (and the memory
locality of Delta, with its three layers of vectors, is not perfect). Brics appears par-
ticularly fast in emptiness checking since it implicitly trims the automata, after which
the emptiness test becomes a trivial query on emptiness of the set of states. The cost
of the emptiness check is thus hidden in the cost of other operations (we do not state
statistics from trimming for Brics for this reason). Brics and Automata.net also have
a smaller average time in constructing the complements in lia-symbolic, due to a few
high run times of Mata on examples that have many transitions per a pair of states.
Solving these examples, and generally examples generated from solving LIA, is indeed
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Table 3: Statistics for the operations on solved instances. We list the average time (Avg),
median time (Med), and standard deviation (Std), with the best values in bold. The times
are in milliseconds. Note that only the operations that the given library finished within
the timeout are counted, hence the numbers are significantly biased in favour of libraries
that timeouted more (the harder benchmarks are no counted in), and should be red in
the context of Table 1 and the cactus plots. We use ∼0 to denote a value close to zero.

complement concatenation emptiness inclusion intersection trim union

Avg Med Std Avg Med Std Avg Med Std Avg Med Std Avg Med Std Avg Med Std Avg Med Std

Mata 25 1 315 78 8 235 ∼0 ∼0 2 37 ∼0 576 295 ∼0 3 s 76 ∼0 828 14 ∼0 45
Awali 38 2 462 166 22 402 17 ∼0 138 250 2 2 s 312 ∼0 2 s 516 ∼0 4 s 173 ∼0 527
Vata 36 3 294 - 14 ∼0 130 85 1 374 699 ∼0 4 s 408 ∼0 3 s 2 s ∼0 5 s
Automata.net 73 59 89 - ∼0 ∼0 ∼0 245 43 1 s 621 14 4 s 31 9 165 69 6 163
Brics 46 24 140 136 35 204 ∼0 ∼0 ∼0 204 10 1 s 115 4 1 s - 99 2 232
AutomataLib 75 31 657 - 3 2 5 60 42 102 91 59 748 - 311 2 3 s
FAdo 320 3 2 s 6 s 10 s 10 s 223 ∼0 2 s 3 s 84 8 s 479 48 3 s 10 3 70 1 s 84 6 s
Automata.py 226 25 2 s - 53 ∼0 1 s 263 6 1 s 39 2 479 - 203 TO 377

a case for symbolic representation of transitions, and it is currently not a primary target
of Mata. However, Mata is still much faster than any other library on mintermised
versions of the same examples. AutomataLib is faster in some parametric intersection
examples because of its implicit determinization, which in some particular examples
returns much smaller automata. When the other libraries are made to determinize, they
behave analogously, and Mata again solves most examples and takes the least time. Still,
on all operations except emptiness, Mata is the fastest overall, and on emptiness it is
by far the fastest from libraries that actually do solve the emptiness problem. Mata has
especially efficient inclusion test, and trimming, an operation which is usually needed
very frequently, is also a strong point of Mata’s performance.

Mata’s simulation reduction (Mata-Sim in the results) does not help much when the
time for computing the simulation is counted in, as seen in Fig. 4. Simulation reduction
is indeed costly, and our eager strategy of reducing all automata is probably sub-optimal.
The run times of complement, however, show a considerable speedup after automata
are reduced, and Mata-Sim solves some complement and also parametric intersection
examples that no other library can.

Overall, Mata appears significantly faster than all the libraries we have tried, with
the closest competitor being often more than an order of magnitude slower.

Threats to validity. Our results must be taken with a grain of salt as the experiment
contains an inherent room for error. Mainly, not knowing every library intimately, we
might have missed the most optimal solutions, and our parsers of the .mata format
might be building the internal data structures of the libraries in a sub-optimal way. The
experiment was also running in parallel on a server with limited resources, which might
lead to fluctuations in run times We are, however, confident that our main conclusions
are well justified.
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7 Conclusions and Future Work

We have introduced a new automata library Mata, explained its principles, and evaluated
its performance. Mata is not the most general or feature-full library. Libraries such as
Awali or Automata.net are much more complex and comprehensive, are more widely
applicable, either to various symbolic representations of automata or to automata with
registers, while still being impressively efficient. Mata, however, does what it is meant
to do better than all the other libraries: solve examples from string solving, regular
expression processing, and regular model checking much faster, while staying simple
and transparent, easily extensible and applicable to projects.

We continue working on Mata’s set of features as well as its efficiency. We plan to
extend Mata with transducers, add support for registers that could handle, e.g., counting
in regular expressions, and experiment with the poor man’s symbolic representation of
bit vector alphabets represented as sequences of bits (used in Lash [12]), so that Mata
can be used adequately in applications such as solving WS1S and arithmetic formulae.
We believe that the efficiency of the basic data structures discussed here can be much
improved by focusing on the low-level performance. Custom data structures, specialised
memory management, improvement in memory locality, and, generally, the class of
optimizations used in BDD packages, could shift Mata’s performance much further.
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23. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path feasibility
of string-manipulating programs with complex operations. Proc. of POPL’19 (2019)
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