
Lazy Automata Techniques for WS1S

Tomáš Fiedor1, Lukáš Holı́k1, Petr Janků1, Ondřej Lengál1,2, and Tomáš Vojnar1

1 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic
2 Institute of Information Science, Academia Sinica, Taiwan

Abstract. We present a new decision procedure for the logic WS1S. It originates
from the classical approach, which first builds an automaton accepting all models
of a formula and then tests whether its language is empty. The main novelty is to
test the emptiness on the fly, while constructing a symbolic, term-based represen-
tation of the automaton, and prune the constructed state space from parts irrele-
vant to the test. The pruning is done by a generalization of two techniques used in
antichain-based language inclusion and universality checking of finite automata:
subsumption and early termination. The richer structure of the WS1S decision
problem allows us, however, to elaborate on these techniques in novel ways. Our
experiments show that the proposed approach can in many cases significantly
outperform the classical decision procedure (implemented in the MONA tool) as
well as recently proposed alternatives.

1 Introduction
Weak monadic second-order logic of one successor (WS1S) is a powerful language
for reasoning about regular properties of finite words. It has found numerous uses,
from software and hardware verification through controller synthesis to computational
linguistics, and further on. Some more recent applications of WS1S include verifica-
tion of pointer programs and deciding related logics [1,2,3,4,5] as well as synthesis
from regular specifications [6]. Most of the successful applications were due to the tool
MONA [7], which implements classical automata-based decision procedures for WS1S
and WS2S (a generalization of WS1S to finite binary trees). The worst case complexity
of WS1S is nonelementary [8] and, despite many optimizations implemented in MONA
and other tools, the complexity sometimes strikes back. Authors of methods translating
their problems to WS1S/WS2S are then forced to either find workarounds to circumvent
the complexity blowup, such as in [2], or, often restricting the input of their approach,
give up translating to WS1S/WS2S altogether [9].

The classical WS1S decision procedure builds an automaton Aϕ accepting all mod-
els of the given formula ϕ in a form of finite words, and then tests Aϕ for language
emptiness. The bottleneck of the procedure is the size of Aϕ, which can be huge due
to the fact that the derivation of Aϕ involves many nested automata product construc-
tions and complementation steps, preceded by determinization. The main point of this
paper is to avoid the state-space explosion involved in the classical explicit construc-
tion by representing automata symbolically and testing the emptiness on the fly, while
constructing Aϕ, and by omitting the state space irrelevant to the emptiness test. This is
done using two main principles: lazy evaluation and subsumption-based pruning. These
principles have, to some degree, already appeared in the so-called antichain-based test-
ing of language universality and inclusion of finite automata [10]. The richer structure
of the WS1S decision problem allows us, however, to elaborate on these principles in
novel ways and utilize their power even more.

Overview of our algorithm. Our algorithm originates in the classical WS1S decision
procedure as implemented in MONA, in which models of formulae are encoded by finite
words over a multi-track binary alphabet where each track corresponds to a variable
of ϕ. In order to come closer to this view of formula models as words, we replace
the input formula ϕ by a language term tϕ describing the language Lϕ of all word
encodings of its models.

In tϕ, the atomic formulae of ϕ are replaced by predefined automata accepting lan-
guages of their models. Boolean operators (∧, ∨, and ¬) are turned into the correspond-
ing set operators (∪, ∩, and complement) over the languages of models. An existential
quantification ∃X becomes a sequence of two operations. First, a projection πX re-
moves information about valuations of the quantified variable X from symbols of the
alphabet. After the projection, the resulting language L may, however, encode some but
not necessarily all encodings of the models. In particular, encodings with some specific
numbers of trailing 0̄’s, used as a padding, may be missing. 0̄ here denotes the sym-
bol with 0 in each track. To obtain a language containing all encodings of the models,
L must be extended to include encodings with any number of trailing 0̄’s. This corre-
sponds to taking the (right) 0̄∗-quotient of L, written L − 0̄∗, which is the set of all
prefixes of words of L with the remaining suffix in 0̄∗. We give an example WS1S for-
mula ϕ in (1) and its language term tϕ in (2). The dotted operators represent operators

ϕ ≡ ∃X: Sing(X) ∧ (∃Y :Y =X + 1) (1)

tϕ ≡ πX(
{
ASing(X) ∩ (πY (AY=X+1)− 0̄∗)

}
)− 0̄∗ (2)

over language terms. See
Fig. 2 for the automata
ASing(X) and AY=X+1.

The main novelty of our work is that we test emptiness of Lϕ directly over tϕ.
The term is used as a symbolic representation of the automata that would be explicitly
constructed in the classical procedure: inductively to the terms structure, starting from
the leaves and combining the automata of sub-terms by standard automata constructions
that implement the term operators. Instead of first building automata and only then
testing emptiness, we test it on the fly during the construction. This offers opportunities
to prune out large portions of the state space that turn out not to be relevant for the test.

A sub-term tψ of tϕ, corresponding to a sub-formula ψ, represents final states of the
automaton Aψ accepting the language encoding models of ψ. Predecessors of the final
states represented by tψ correspond to quotients of tψ . All states of Aψ could hence
be constructed by quotienting tψ until fixpoint. By working with terms, our procedure
can often avoid building large parts of the automata when they are not necessary for
answering the emptiness query. For instance, when testing emptiness of the language
of a term t1 ∪ t2, we adopt the lazy approach (in this particular case the so-called
short-circuit evaluation) and first test emptiness of the language of t1; if it is non-
empty, we do not need to process t2. Testing language emptiness of terms arising from
quantified sub-formulae is more complicated since they translate to −0̄∗ quotients. We
evaluate the test on t − 0̄∗ by iterating the −0̄ quotient from t. We either conclude
with the positive result as soon as one of the iteration computes a term with a non-
empty language, or with the negative one if the fixpoint of the quotient construction is
reached. The fixpoint condition is that the so-far computed quotients subsume the newly
constructed ones, where subsumption is a relation under-approximating inclusion of
languages represented by terms. Subsumption is also used to prune the set of computed
terms so that only an antichain of the terms maximal wrt subsumption is kept.

2

Besides lazy evaluation and subsumption, our approach can benefit from multiple
further optimizations. For example, it can be combined with the explicit WS1S deci-
sion procedure, which can be used to transform arbitrary sub-terms of tϕ to automata.
These automata can then be rather small due to minimization, which cannot be applied
in the on-the-fly approach (the automata can, however, also explode due to determini-
sation and product construction, hence this technique comes with a trade-off). We also
propose a novel way of utilising BDD-based encoding of automata transition functions
in the MONA style for computing quotients of terms. Finally, our method can exploit
various methods of logic-based pre-processing, such as anti-prenexing, which, in our
experience, can often significantly reduce the search space of fixpoint computations.

Experiments. We have implemented our decision procedure in a prototype tool called
GASTON and compared its performance with other publicly available WS1S solvers on
benchmarks from various sources. In the experiments, GASTON managed to win over
all other solvers on various parametric families of WS1S formulae that were designed—
mostly by authors of other tools—to stress-test WS1S solvers. Moreover, GASTON was
able to significantly outperform MONA and other solvers on a number of formulae ob-
tained from various formal verification tasks. This shows that our approach is applicable
in practice and has a great potential to handle more complex formulae than those so far
obtained in WS1S applications. We believe that the efficiency of our approach can be
pushed much further, making WS1S scale enough for new classes of applications.

Related work. As already mentioned above, MONA [7] is the usual tool of choice for de-
ciding WS1S formulae. The efficiency of MONA stems from many optimizations, both
higher-level (such as automata minimization, the encoding of first-order variables used
in models, or the use of BDDs to encode the transition relation of the automaton) as well
as lower-level (e.g. optimizations of hash tables, etc.) [11,12]. Apart from MONA, there
are other related tools based on the explicit automata procedure, such as JMOSEL [13]
for a related logic M2L(Str), which implements several optimizations (such as second-
order value numbering [14]) that allow it to outperform MONA on some benchmarks
(MONA also provides an M2L(Str) interface on top of the WS1S decision procedure),
or the procedure using symbolic finite automata of D’Antoni et al. in [15].

Our work was originally inspired by antichain techniques for checking universality
and inclusion of finite automata [16,10,17], which use symbolic computation and sub-
sumption to prune large state spaces arising from subset construction. In [18], which is
a starting point for the current paper, we discussed a basic idea of generalizing these
techniques to a WS1S decision procedure. In the current paper we have turned the idea
of [18] to an algorithm efficient in practice by roughly the following steps: (1) refor-
mulating the symbolic representation of automata from nested upward and downward
closed sets of automata states to more intuitive language terms, (2) generalizing the pro-
cedure originally restricted to formulae in the prenex normal form to arbitrary formulae,
(3) introduction of lazy evaluation, and (4) many other important optimizations.

Recently, a couple of logic-based approaches for deciding WS1S appeared. Ganzow
and Kaiser [19] developed a new decision procedure for the weak monadic second-order
logic on inductive structures, within their tool TOSS, which is even more general than
WSkS. Their approach completely avoids automata; instead, it is based on Shelah’s
composition method. The TOSS tool is quite promising as it outperforms MONA on

3

some of the benchmarks. It, however, lacks some features in order to perform meaning-
ful comparison on benchmarks used in practice. Traytel [20], on the other hand, uses the
classical decision procedure, recast in the framework of coalgebras. The work focuses
on testing equivalence of a pair of formulae, which is performed by finding a bisim-
ulation between derivatives of the formulae. While it is shown that it can outperform
MONA on some simple artificial examples, the implementation is not optimized enough
and is easily outperformed by the rest of the tools on other benchmarks.

2 Preliminaries on Languages and Automata

A word over a finite alphabet Σ is a finite sequence w = a1 · · · an, for n ≥ 0, of
symbols from Σ. Its i-th symbol ai is denoted by w[i]. For n = 0, the word is the
empty word ε. A language L is a set of words over Σ. We use the standard language
operators of concatenation L.L′ and iteration L∗. The (right) quotient of a language L
wrt the language L′ is the language L − L′ = {u | ∃v ∈ L′ : uv ∈ L}. We abuse
notation and write L− w to denote L− {w}, for a word w ∈ Σ∗.

A finite automaton (FA) over an alphabet Σ is a quadruple A = (Q, δ, I, F) where
Q is a finite set of states, δ ⊆ Q × Σ × Q is a set of transitions, I ⊆ Q is a set
of initial states, and F ⊆ Q is a set of final states. The pre-image of a state q ∈ Q
over a ∈ Σ is the set of states pre [a](q) = {q′ | (q′, a, q) ∈ δ}, and it is the set
pre [a](S) =

⋃
q∈S pre [a](q) for a set of states S.

The language L(q) accepted at a state q ∈ Q is the set of words that can be read
along a run ending in q, i.e. all words a1 · · · an, for n ≥ 0, such that δ contains transi-
tions (q0, a1, q1), . . . , (qn−1, an, qn) with q0 ∈ I and qn = q. The language L(A) ofA
is then the union

⋃
q∈F L(q) of languages of its final states.

3 WS1S

In this section, we give a minimalistic introduction to the weak monadic second-order
logic of one successor (WS1S) and outline its explicit decision procedure based on
representing sets of models as regular languages and finite automata. See, for instance,
Comon et al. [21] for a more thorough introduction.

3.1 Syntax and Semantics of WS1S

WS1S allows quantification over second-order variables, which we denote by upper-
case letters X,Y, . . . , that range over finite subsets of N0. Atomic formulae are of the
form (i) X ⊆ Y , (ii) Sing(X), (iii) X = {0}, and (iv) X = Y + 1. Formulae are
built from the atomic ones using the logical connectives ∧,∨,¬, and the quantifier ∃X
where X is a finite set of variables (we write ∃X if X is a singleton {X}). A model of
a WS1S formula ϕ(X) with the set of free variables X is an assignment ρ : X → 2N0

of the free variables X of ϕ to finite subsets of N0 for which the formula is satisfied,
written ρ |= ϕ. Satisfaction of atomic formulae is defined as follows: (i) ρ |= X ⊆ Y
iff ρ(X) ⊆ ρ(Y), (ii) ρ |= Sing(X) iff ρ(X) is a singleton set, (iii) ρ |= X = {0}
iff ρ(X) = {0}, and (iv) ρ |= X = Y + 1 iff ρ(X) = {x}, ρ(Y) = {y}, and
x = y + 1. Satisfaction for formulae obtained using Boolean connectives is defined
as usual. A formula ϕ is valid, written |= ϕ, iff all assignments of its free variables to

4

finite subsets of N0 are its models, and satisfiable if it has a model. Wlog we assume
that each variable in a formula is quantified at most once.

3.2 Models as Words

Let X be a finite set of variables. A symbol τ over X is a mapping of all variables in X
to the set {0, 1}, e.g. τ = {X1 7→ 0, X2 7→ 1} for X = {X1, X2}, which we will write
as τ = X1 : 0

X2 : 1
below. The set of all symbols over X is denoted as ΣX . We use 0̄ to denote

the symbol in ΣX that maps all variables to 0, i.e. 0̄ = {X 7→ 0 | X ∈ X}.
An assignment ρ : X → 2N0 may be encoded as a word wρ of symbols over X in

the following way: wρ contains 1 in the (i + 1)-st position of the row for X iff i ∈ X
in ρ. Notice that there exists an infinite number of encodings of ρ: the shortest encoding
is wsρ of the length n+1, where n is the largest number appearing in any of the sets that
is assigned to a variable of X in ρ, or −1 when all these sets are empty. The rest of the
encodings are all those corresponding to wsρ extended with an arbitrary number of 0̄’s
appended to its end. For example, X1 : 0

X2 : 1
, X1 : 00
X2 : 10

, X1 : 000
X2 : 100

, X1 : 000 . . . 0
X2 : 100 . . . 0

are all encodings of the
assignment ρ = {X1 7→ ∅, X2 7→ {0}}. We use L(ϕ) ⊆ Σ∗X to denote the language of
all encodings of a formula ϕ’s models, where X are the free variables of ϕ.

For two sets X and Y of variables and any two symbols τ1, τ2 ∈ ΣX , we write
τ1 ∼Y τ2 iff ∀X ∈ X \Y : τ1(X) = τ2(X), i.e. the two symbols differ (at most) in the
values of variables inY . The relation∼Y is generalized to words such thatw1 ∼Y w2 iff
|w1| = |w2| and ∀1 ≤ i ≤ |w1| : w1[i] ∼Y w2[i]. For a language L ⊆ Σ∗X , we define
πY(L) as the language of words w that are ∼Y -equivalent with some word w′ ∈ L.
Seen from the point of view of encodings of sets of assignments, πY(L) encodes all
assignments that may differ from those encoded by L (only) in the values of variables
from Y . If Y is disjoint with the free variables of ϕ, then πY(L(ϕ)) corresponds to the
so-called cylindrification of L(ϕ), and if it is their subset, then πY(L(ϕ)) corresponds
to the so-called projection [21]. We use πY to denote π{Y } for a variable Y .

LV(ϕ ∨ ψ) = LV(ϕ) ∪ LV(ψ) (3)

LV(ϕ ∧ ψ) = LV(ϕ) ∩ LV(ψ) (4)

LV(¬ϕ) = Σ∗V \ LV(ϕ) (5)

LV(∃X : ϕ) = πX (LV(ϕ))− 0̄∗ (6)

Consider formulae over the set V of vari-
ables. Let free(ϕ) be the set of free variables of
ϕ, and letLV(ϕ) = πV\free(ϕ)(L(ϕ)) be the lan-
guage L(ϕ) cylindrified wrt those variables of
V that are not free in ϕ. Let ϕ and ψ be formu-
lae and assume that LV(ϕ) and LV(ψ) are lan-
guages of encodings of their models cylindrified wrt V. Languages of formulae obtained
from ϕ and ψ using logical connectives are defined by equations (3) to (6). Equations
(3)-(5) above are straightforward: Boolean connectives translate to the corresponding
set operators over the universe of encodings of assignments of variables in V. Exis-
tential quantification ∃X : ϕ translates into a composition of two language transfor-
mations. First, πX makes the valuations of variables of X arbitrary, which intuitively
corresponds to forgetting everything about values of variables in X (notice that this is a
different use of πX than the cylindrification since here variables of X are free variables
of ϕ). The second step, removing suffixes of 0̄’s from the model encodings, is necessary
since πX (LV(ϕ)) might be missing some encodings of models of ∃X : ϕ. For example,
suppose that V = {X,Y } and the only model of ϕ is {X 7→ {0}, Y 7→ {1}}, yielding
LV(ϕ) = X : 10

Y : 01

[
0
0

]∗
. Then πY (LV(ϕ)) = X : 10

Y : ??

[
0
?

]∗
does not contain the shortest encod-

ing X : 1
Y : ?

(where each ‘?’ denotes an arbitrary value) of the only model {X 7→ {0}} of

5

∃Y : ϕ. It only contains its variants with at least one 0̄ appended to it. This generally
happens for models of ϕ where the largest number in the value of the variable Y being
eliminated is larger than maximum number found in the values of the free variables of
∃Y : ϕ. The role of the −0̄∗ quotient is to include the missing encodings of models
with a smaller number of trailing 0̄’s into the language.

The standard approach to decide satisfiability of a WS1S formula ϕ with the set
of variables V is to construct an automaton Aϕ accepting LV(ϕ) and check emptiness
of its language. The construction starts with simple pre-defined automata Aψ for ϕ’s
atomic formulae ψ (see Fig. 2 for examples of automata for selected atomic formulae
and e.g. [21] for more details) accepting cylindrified languages LV(ψ) of models of ψ.
These are simple regular languages. The construction then continues by inductively
constructing automata Aϕ′ accepting languages LV(ϕ′) of models for all other sub-
formulae ϕ′ of ϕ, using equations (3)–(6) above. The language operators used in the
rules are implemented using standard automata-theoretic constructions (see [21]).

4 Satisfiability via Language Term Evaluation
This section introduces the basic version of our symbolic algorithm for deciding sat-
isfiability of a WS1S formula ϕ with a set of variables V. Its optimized version is the
subject of the next section. To simplify presentation, we consider the particular case of
ground formulae (i.e. formulae without free variables), for which satisfiability corre-
sponds to validity. Satisfiability of a formula with free variables can be reduced to this
case by prefixing it with existential quantification over the free variables. If ϕ is ground,
the language LV(ϕ) is either Σ∗V in the case ϕ is valid, or empty if ϕ is invalid. Then,
to decide the validity of ϕ, it suffices to test if ε ∈ LV(ϕ).

Our algorithm evaluates the so-called language term tϕ, a symbolic representation
of the language LV(ϕ), whose structure reflects the construction of Aϕ. It is a (finite)
term generated by the following grammar:

t ::= A | t∪ t | t∩ t | t | πX (t) | t−α | t−α∗ | T
where A is a finite automaton over the alphabet ΣV, α is a symbol τ ∈ ΣV or a set
S ⊆ ΣV of symbols, and T is a finite set of terms. We use marked variants of the
operators to distinguish the syntax of language terms manipulated by our algorithm
from the cases when we wish to denote the semantical meaning of the operators. A term
of the form t−α∗ is called a star quotient, or shortly a star, and a term t− τ is a symbol
quotient. Both are also called quotients. The language L(t) of a term t is obtained by
taking the languages of the automata in its leaves and combining them using the term
operators. Terms with the same language are language-equivalent. The special terms T ,
having the form of a set, represent intermediate states of fixpoint computations used to
eliminate star quotients.The language of a set T equals the union of the languages of its
elements. The reason for having two ways of expressing a union of terms is a different
treatment of ∪ and T , which will be discussed later. We use the standard notion of
isomorphism of two terms, extended with having two set terms isomorphic iff they
contain isomorphic elements.

A formula ϕ is initially transformed into the term tϕ by replacing every atomic sub-
formula ψ in ϕ by the automaton Aψ accepting LV(ψ), and by replacing the logical
connectives with dotted term operators according to equations (3)–(6) of Section 3.2.
The core of our algorithm is evaluation of the ε-membership query ε ∈ tϕ, which will
also trigger further rewriting of the term.

6

ε ∈ T iff ε ∈ t for some t ∈ T (7)
ε ∈ t∪ t′ iff ε ∈ t or ε ∈ t′ (8)
ε ∈ t∩ t′ iff ε ∈ t and ε ∈ t′ (9)

ε ∈ t iff not ε ∈ t (10)
ε ∈ πX (t) iff ε ∈ t (11)

ε ∈ A iff I(A) ∩ F (A) 6= ∅ (12)

The ε-membership query on a quotient-
free term is evaluated using equivalences
(7) to (12). Equivalences (7) to (11) reduce
tests on terms to Boolean combinations of
tests on their sub-terms and allow pushing
the test towards the automata at the term’s
leaves. Equivalence (12) then reduces it to
testing intersection of the initial states I(A) and the final states F (A) of an automaton.

Equivalences (7) to (11) do not apply to quotients, which arise from quantified sub-
formulae (cf. equation (6) in Section 3.2). A quotient is therefore (in the basic version)
first rewritten into a language-equivalent quotient-free form. This rewriting corresponds
to saturating the set of final states of an automaton in the explicit decision procedure
with all states in their pre∗-image over 0̄. In our procedure, we use rules (13) and (14).

πX (T)− 0̄∗ → πX (T −πX (0̄)
∗
) (13)Rule (13) transforms the term into

a form in which a star quotient is applied
on a plain set of terms rather than on a projection. A star quotient of a set is then elimi-
nated using a fixpoint computation that saturates the set with all quotients of its elements
wrt the set of symbols S = πX (0̄). A single iteration is implemented using rule (14).

T −S∗ →
{
T if T 	 S v T
(T ∪ (T 	 S))−S∗ otherwise (14)

There, T	S is the set {t− τ |
t ∈ T ∧ τ ∈ S} of quo-
tients of terms in T wrt sym-
bols of S. (Note that (14) uses the identity S∗ = {ε}∪S∗S.) Termination of the fixpoint
computation is decided based on the subsumption relation v, which is some relation
that under-approximates language inclusion of terms. When the condition holds, then
the language of T is stable wrt quotienting by S, i.e.L(T) = L(T −S∗). In the basic al-
gorithm, we use term isomorphism forv; later, we provide a more precise subsumption
relation with a good trade-off between precision and cost. Note that an iteration of rule
(14) can be implemented efficiently by the standard worklist algorithm, which extends
T only with quotients T ′	S of terms T ′ that were added to T in the previous iteration.

(t∪ t′)− τ → (t− τ)∪(t′− τ) (15)
(t∩ t′)− τ → (t− τ)∩(t′− τ) (16)

t− τ → t− τ (17)
πX (t)− τ → πX (t−πX (τ)) (18)
A− τ → pre [τ](A) (19)

The set T 	 S introduces quotient terms
of the form t− τ , for τ ∈ ΣV, which also
need to be eliminated to facilitate the ε-
membership test. This is done using rewriting
rules (15) to (19), where pre [τ](A) is A with
its set of final states F replaced by pre [τ](F).

If t is quotient-free, then rules (15)–(18)
applied to t− τ push the symbol quotient down the structure of t towards the automata
in the leaves, where it is eliminated by rule (19). Otherwise, if t is not quotient-free,
it can be re-written using rules (13)–(19). In particular, if t is a star quotient of a
quotient-free term, then the quotient-free form of t can be obtained by iterating rule
(14), combined with rules (15)–(19) to transform the new terms in T into a quotient-
free form. Finally, terms with multiple quotients can be rewritten to the quotient-free
form inductively to their structure. Every inductive step rewrites some star quotient of
a quotient-free sub-term into the quotient-free form. Note that this procedure is bound
to terminate since the terms generated by quotienting a star have the same structure as
the original term, differing only in the states in their leaves. As the number of the states
is finite, so is the number of the terms.

7

ε ∈ πX
({
{q}∩πY

(
{t}− πY (0̄)

∗)}− πX(0̄)
∗)

ε ∈
{
{q}∩ πY

(
{t}− πY (0̄)

∗)}− πX(0̄)
∗

1

ε ∈ {q}∩ πY
(
{t}− πY (0̄)

∗) ∨ ε ∈
({
{q}∩ πY

(
{t}− πY (0̄)

∗)}	 πX(0̄)
)
− πX(0̄)

∗

2 4

ε ∈ {q} ∧ ε ∈ πY
(
{t}− πY (0̄)

∗)
3

ε ∈
(
{q}∩ πY

(
{t}− πY (0̄)

∗))−
[
X : 0
Y : 0

]
∨

ε ∈
(
{q}∩ πY

(
{t}− πY (0̄)

∗))−
[
X : 1
Y : 0

]
∨ ε ∈

(({
{q}∩ πY

(
{t}− πY (0̄)

∗)}	 πX(0̄)
)
	 πX(0̄)

)
− πX(0̄)

∗

5

9

ε ∈
(
{q}−

[
X : 0
Y : 0

])
∩
(
πY
(
{t}− πY (0̄)

∗)−
[
X : 0
Y : 0

])

6

ε ∈ {q}−
[
X : 0
Y : 0

]
∧ ε ∈ πY

(
{t}− πY (0̄)

∗)−
[
X : 0
Y : 0

]
7

ε ∈ ∅
8

ε ∈ {q}−
[
X : 1
Y : 0

]
∧ ε ∈ πY

(
{t}− πY (0̄)

∗)−
[
X : 1
Y : 0

]
10 12

ε ∈ {p}
11

ε ∈
(
{t}− πY (0̄)

∗)−
[
X : 1
Y : 0

]
∨ ε ∈

(
{t}− πY (0̄)

∗)−
[
X : 1
Y : 1

]
13

ε ∈ {t}−
[
X : 1
Y : 0

]

∨
ε ∈

(
{t} 	 πY (0̄)

)
−
[
X : 1
Y : 0

]
∨ ε ∈

((
({t} 	 πY (0̄))	 πY (0̄)

)
− πY (0̄)

∗)−
[
X : 1
Y : 0

]

14
16

ε ∈ ∅
15

ε ∈
{
t−

[
X : 0
Y : 1

]}
−
[
X : 1
Y : 0

]
∨ ε ∈

{
t−

[
X : 0
Y : 0

]}
−
[
X : 1
Y : 0

]
17

ε ∈ {s}−
[
X : 1
Y : 0

] 18
ε ∈ {r} 19

Fig. 1. Example of deciding validity of the formula ϕ ≡ ∃X : Sing(X) ∧ (∃Y : Y = X + 1)

p q

[X: 0] [X: 0][X: 1]

a) ASing(X)

r s t

[
X : 0
Y : 0

] [
X : 0
Y : 0

]

[
X : 1
Y : 0

] [
X : 0
Y : 1

]

b) AY=X+1

Fig. 2. Example automata

Example 1. We will show the workings of our procedure
using an example of testing satisfiability of the formula
ϕ ≡ ∃X.Sing(X)∧(∃Y. Y = X+1). We start by rewrit-
ing ϕ into a term tϕ representing its language LV(ϕ):

tϕ ≡ πX({{q}∩πY ({t}−πY (0̄)∗)}−πX(0̄)∗)

(we have already used rule (13) twice). In the example,
a set R of states will denote an automaton obtained from
ASing(X) or AY=X+1 (cf. Fig. 2) by setting the final
states to R. Red nodes in the computation tree denote ε-membership tests that failed
and green nodes those that succeeded. Grey nodes denote tests that were not evaluated.

As noted previously, it holds that |= ϕ iff ε ∈ tϕ. The sequence of computation steps
for determining the ε-membership test is shown using the computation tree in Fig. 1.
The nodes contain ε-membership tests on terms and the test of each node is equivalent
to a conjunction or disjunction of tests of its children. Leafs of the form ε ∈ R are eval-
uated as testing intersection of R with the initial states of the corresponding automaton.
In the example, we also use the lazy evaluation technique (described in Section 5.2),
which allows us to evaluate ε-membership tests on partially computed fixpoints.

The computation starts at the root of the tree and proceeds along the edges in the
order given by their circled labels. Edges 2 and 4 were obtained by a partial unfolding
of a fixpoint computation by rule (14) and immediately applying ε-membership test on
the obtained terms. After step 3 , we conclude that ε /∈ {q} since {p} ∩ {q} = ∅,
which further refutes the whole conjunction below 2 , so the overall result depends on
the sub-tree starting by 4 . The steps 5 and 9 are another application of rule (14),
which transforms πX(0̄) to the symbols

[
X : 0
Y : 0

]
and

[
X : 1
Y : 0

]
respectively. The branch 5

pushes the −
[
X : 0
Y : 0

]
quotient to the leaf term using rules (16) and (9) and eventually fails

8

because the predecessors of {q} over the symbol
[
X : 0
Y : 0

]
in ASing(X) is the empty set. On

the other hand, the evaluation of the branch 9 continues using rule (16), succeeding in
the branch 10 . The branch 12 is further evaluated by projecting the quotient −

[
X : 1
Y : 0

]

wrt Y (rule 18) and unfolding the inner star quotient zero times (14 , failed) and once
(16). The unfolding of one symbol eventually succeeds in step 19 , which leads to
concluding validity of ϕ. Note that thanks to the lazy evaluation, none of the fixpoint
computations had to be fully unfolded. ut

5 An Efficient Algorithm
In this section, we show how to build an efficient algorithm based on the symbolic term
rewriting approach from Section 4. The optimization opportunities offered by the sym-
bolic approach are to a large degree orthogonal to those of the explicit approach. The
main difference is in the available techniques for reducing the explored automata state
space. While the explicit construction in MONA profits mainly from calling automata
minimization after every step of the inductive construction, the symbolic algorithm can
use generalized subsumption and lazy evaluation. None of the two approaches seems to
be compatible with both these techniques (at least in their pure variant, disregarding the
possibility of a combination of the two approaches discussed below).

Efficient data structures have a major impact on performance of the decision proce-
dure. The efficiency of the explicit procedure implemented in MONA is to a large degree
due to the BDD-based representation of automata transition relations. BDDs compactly
represent transition functions over large alphabets and provide efficient implementation
of operations needed in the explicit algorithm. Our symbolic algorithm can, on the other
hand, benefit from a representation of terms as DAGs where all occurrences of the same
sub-term are represented by a unique DAG node. Moreover, we assume the nodes to be
associated with languages rather than with concrete terms (allowing the term associ-
ated with a node to change during its further processing, without a need to transform
the DAG structure as long as the language of the term does not change).

We also show that despite our algorithm uses a completely different data structure
than the explicit one, it can still exploit a BDD-based representation of transitions of
the automata in the leaves of terms. Moreover, our symbolic algorithm can also be com-
bined with the explicit algorithm. Particularly, it turns out that, sometimes, it pays off
to translate to automata sub-formulae larger than the atomic ones. Our procedure can
then be viewed as an extension of MONA that takes over once MONA stops managing.
Lastly, optimizations on the level of formulae often have a huge impact on the per-
formance of our algorithm. The technique that we found most helpful is the so-called
anti-prenexing. We elaborate on all these optimizations in the rest of this section.

5.1 Subsumption
Our first technique for reducing the explored state space is based on the notion of sub-
sumption between terms, which is similar to the subsumption used in antichain-based
universality and inclusion checking over finite automata [10]. We define subsumption
as the relation vs on terms that is given by equivalences (20)–(25). Notice that, in rule
(20), all terms of T are tested against all terms of T ′, while in rule (21), the left-hand
side term t1 is not tested against the right-hand side term t′2 (and similarly for t2 and t′1).

9

T vs T ′ iff ∀t ∈ T ∃t′ ∈ T ′ : t vs t′ (20)
t1 ∪ t2 vs t′1 ∪ t′2 iff t1 vs t′1 and t2 vs t′2 (21)
t1 ∩ t2 vs t′1 ∩ t′2 iff t1 vs t′1 and t2 vs t′2 (22)

t vs t′ iff t ws t′ (23)
πX (t) vs πX (t′) iff t vs t′ (24)

A vs A′ iff F (A) ⊆ F (A′) (25)

The reason why ∪ is order-
sensitive is that the terms on dif-
ferent sides of the ∪ are assumed
to be built from automata with
disjoint sets of states (originat-
ing from different sub-formulae
of the original formula), and
hence the subsumption test on
them can never conclude positively. The subsumption under-approximates language
inclusion and can therefore be used for v in rule (14). It is far more precise than iso-
morphism and its use leads to an earlier termination of fixpoint computations.

T → T \ {t} if there is t′ ∈ T \ {t} with t vs t′ (26)
Moreover, vs can be

used to prune star quotient
terms T −S∗ while preserving their language. Since the semantics of the set T is the
union of the languages of its elements, then elements subsumed by others can be re-
moved while preserving the language. T can thus be kept in the form of an antichain of
vs-incomparable terms. The pruning corresponds to using the rewriting rule (26).

5.2 Lazy Evaluation

The top-down nature of our technique allows us to postpone evaluation of some of the
computation branches in case the so-far evaluated part is sufficient for determining the
result of the evaluated ε-membership or subsumption test. We call this optimization
lazy evaluation. A basic variant of lazy evaluation short-circuits elimination of quo-
tients from branches of ∪ and ∩. When testing whether ε ∈ t∪ t′ (rule (8)), we first
evaluate, e.g., the test ε ∈ t, and when it holds, we can completely avoid exploring t′

and evaluating quotients there. When testing ε ∈ t∩ t′, we can proceed analogously
if one of the two terms is shown not to contain ε. Rules (21) and (22) offer similar
opportunities for short-circuiting evaluation of subsumption of ∪ and ∩.

Let us note that subsumption is in a different position than ε-membership since
correctness of our algorithm depends on the precision of the ε-membership test, but
subsumption may be evaluated in any way that under-approximates inclusion of lan-
guages of terms (and over-approximates isomorphism in order to guarantee termina-
tion). Hence, ε-membership test must enforce eliminating quotients until it can con-
clude the result, while there is a choice in the case of the subsumption. If subsumption
is tested on quotients, it can either eliminate them, or it can return the (safe) negative an-
swer. However, this choice comes with a trade-off. Subsumption eliminating quotients
is more expensive but also more precise. The higher precision allows better pruning of
the state space and earlier termination of fixpoint computation, which, according to our
empirical experience, pays off.

Lazy evaluation can also reduce the number of iterations of a star. The iterations can
be computed on demand, only when required by the tests. The idea is to try to conclude
a test ε ∈ T −S∗ based on the intermediate state T of the fixpoint computation. This
can be done since L(T) always under-approximates L(T −S∗), hence if ε ∈ L(T),
then ε ∈ L(T −S∗). Continuing the fixpoint computation is then unnecessary.

The above mechanism alone is, however, rather insufficient in the case of nested
stars. Assume that an inner star fixpoint computation was terminated in a state T −S∗

10

when ε was found in T for the first time. Every unfolding of an outer star then propa-
gates − τ quotients towards T −S∗. We have, however, no way of eliminating it from
(T −S∗)− τ other than finishing the unfolding of T −S∗ first (which eliminates the
inner star). The need to fully unfold T −S∗ would render the earlier lazy evaluation of
the ε-membership test worthless. To remove this deficiency, we need a way of eliminat-
ing the − τ quotient from the intermediate state of T −S∗.

T −S∗ → T −S∗ < T (27)
ε ∈ t < t′ if ε ∈ t′ (28)
t < T 6vs t′ if T 6vs t′ (29)
t < T ws t′ if T ws t′ (30)

The elimination is achieved by letting the star
quotient T −S∗ explicitly “publish” its intermedi-
ate state T using rule (27). The symbol < is read as
“is under-approximated by.” Rules (28)–(30) allow
to conclude ε-membership and subsumption by test-
ing the under-approximation on its right-hand side
(notice the distinction between “if” and the “iff” used in the rules earlier).

(t < T)−S → ((t < T)−S) < T 	 S (31)Symbol quotients that come
from the unfolding of an outer star
can be evaluated on the approximation too using rule (31), which then applies the
symbol-set quotient on the approximation T of the inner term t, and publishes the result
on the right-hand side of <. The left-hand side still remembers the original term t−S.

T < T ′ → T (32)
Terms arising from rules (27) and (31) allow an efficient up-

date in the case an inner term t spawns a new, more precise
approximation. In the process, rule (32) is used to remove old outdated approximations.

We will explain the working of the rules and their efficient implementation on
an evaluation from Example 1. Note that in Example 1, the partial unfoldings of the
fixpoints that are tested for ε-membership are under-approximations of a star quo-
tient term. For instance, branch 14 corresponds to testing ε-membership in the right-

most approximation of the term
((

({t}−πY (0̄)
∗
) < {t}

)
−

[
X : 1
Y : 0

])
< {t}−

[
X : 1
Y : 0

]
by

rule (28) (the branch determines that ε /∈ {t}−
[
X : 1
Y : 0

]
). The result of 14 cannot conclude

the top-level ε-membership test because {t}−
[
X : 1
Y : 0

]
is just an under-approximation of

({t}−πY (0̄)
∗
)−

[
X : 1
Y : 0

]
. Therefore, we need to compute a better approximation of the

term and try to conclude the test on it. We compute it by first applying rule (32) twice to
discard obsolete approximations ({t} and {t}−

[
X : 1
Y : 0

]
), followed by applying rule (14)

to replace ({t}−πY (0̄)
∗
)−

[
X : 1
Y : 0

]
with

(
({t} ∪ ({t} 	 πY (0̄)))−πY (0̄)

∗)−
[
X : 1
Y : 0

]
. Let

β = {t} ∪ ({t} 	 πY (0̄)). Then, using rules (27) and (31), we can rewrite the term(
β−πY (0̄)

∗)−
[
X : 1
Y : 0

]
into

((
β−πY (0̄)

∗ < β
)
−

[
X : 1
Y : 0

])
< β 	

[
X : 1
Y : 0

]
, where β 	

[
X : 1
Y : 0

]

is the approximation used in step 16 , and re-evaluate the ε-membership test on it.
Implemented naı̈vely, the computation of subsequent approximations of fixpoints

would involve a lot of redundancy, e.g., in β−
[
X : 1
Y : 0

]
we would need to recompute the

term {t}−
[
X : 1
Y : 0

]
, which was already computed in step 15 . The mechanism can, how-

ever, be implemented efficiently so that it completely avoids the redundant computa-
tions. Firstly, we can maintain a cache of already evaluated terms and never evaluate
the same term repeatedly. Secondly, suppose that a term t−S∗ has been unfolded sev-
eral times into intermediate states (T1 = {t})−S∗, T2−S∗, . . . , Tn−S∗. One more
unfolding using (14) would rewrite Tn−S∗ into Tn+1 = (Tn ∪ (Tn	S))−S∗. When

11

computing the set Tn 	 S, however, we do not need to consider the whole set Tn, but
only those elements that are in Tn and are not in Tn−1 (since Tn = Tn−1∪ (Tn−1	S),
all elements of Tn−1	S are already in Tn). Thirdly, in the DAG representation of terms
described in Section 5.3, a term (T ∪ (T 	 S))−S∗ < T ∪ (T 	 S) is represented by
the set of terms obtained by evaluating T 	 S, a pointer to the term T −S∗ (or rather
to its associated DAG node), and the set of symbols S. The cost of keeping the history
of quotienting together with the under-approximation (on the right-hand side of <) is
hence only a pointer and a set of symbols.

5.3 Efficient Data Structures
We describe two important techniques used in our implementation that concern (1) rep-
resentation of terms and (2) utilisation of BDD-based symbolic representation of tran-
sition functions of automata in the leaves of the terms.

Representation of language terms. We keep the term in the form of a DAG such that
all isomorphic instances of the same term are represented as a unique DAG node, and,
moreover, when a term is rewritten into a language-equivalent one, it is still associated
with the same DAG node. Newly computed sub-terms are always first compared against
the existing ones, and, if possible, associated with an existing DAG node of an existing
isomorphic term. The fact that isomorphic terms are always represented by the same
DAG node makes it possible to test isomorphism of a new and previously processed
term efficiently—it is enough to test that their direct sub-terms are represented by iden-
tical DAG nodes (let us note that we do not look for language equivalent terms because
of the high cost of such a check).

We also cache results of membership and subsumption queries. The key to the cache
is the identity of DAG nodes, not the represented sub-terms, which has the advantage
that results of tests over a term are available in the cache even after it is rewritten ac-
cording to→ (as it is still represented by the same DAG node). The cache together with
the DAG representation is especially efficient when evaluating a new subsumption or ε-
membership test since although the result is not in the cache, the results for its sub-terms
often are. We also maintain the cache of subsumptions closed under transitivity.

BDD-based symbolic automata. Coping with large sets of symbols is central for our
algorithm. Notice that rules (14) and (18) compute a quotient for each of the symbols in
the set πX (τ) separately. Since the number of the symbols is 2|X |, this can easily make
the computation infeasible.

MONA resolves this by using a BDD-based symbolic representation of transition
relations of automata as follows: The alphabet symbols of the automata are assign-
ments of Boolean values to the free variables X1, . . . , Xn of a formula. The transitions
leading from a state q can be expressed as a function fq : 2{X1,...,Xn} → Q from all
assignments to states such that (q, τ, q′) ∈ δq iff fq(τ) = q′. The function fq is encoded
as a multi-terminal BDD (MTBDD) with variables X1, . . . , Xn and terminals from the
set Q (essentially, it is a DAG where a path from the root to a leaf encodes a set of
transitions). The BDD apply operation is then used to efficiently implement the com-
putation of successors of a state via a large set of symbols, and to facilitate essential
constructions such as product, determinization, and minimization. We use MONA to
create automata in leaves of our language terms. To fully utilize their BDD-based sym-
bolic representation, we had to overcome the following two problems.

12

First, our algorithm computes predecessors of states, while the BDDs of MONA
are meant to compute successors. To use apply to compute backwards, the BDDs
would have to be turned into a representation of the inverted transition function. This
is costly and, according to our experience, prone to produce much larger BDDs. We
have resolved this by only inverting the edges of the original BDDs and by imple-
menting a variant of apply that runs upwards from the leaves of the original BDDs,
against the direction of the original BDD edges. It cannot be as efficient as the normal
apply because, unlike standard BDDs, the DAG that arises by inverting BDD edges is
nondeterministic, which brings complications. Nevertheless, it still allows an efficient
implementation of pre that works well in our implementation.

A more fundamental problem we are facing is that our algorithm can use apply to
compute predecessors over the compact representation provided by BDDs only on the
level of explicit automata in the leaves of terms. The symbols generated by projection
during evaluation of complex terms must be, on the contrary, enumerated explicitly.
For instance, the projection πX (t) with X = {X1, . . . , Xn} generates 2n symbols,
with no obvious option for reduction. The idea to overcome this explosion is to treat
nodes of BDDs as regular automata states. Intuitively, this means replacing words over
ΣX that encode models of formulae by words over the alphabet {0, 1}: every symbol
τ ∈ ΣX is replaced by the string τ over {0, 1}. Then, instead of computing a quotient
over, e.g., the set πX (0̄) of the size 2n, we compute only quotients over the 0’s and 1’s.
Each quotienting takes us only one level down in the BDDs representing the transition
relation of the automata in the leaves of the term. For every variable Xi, we obtain
terms over nodes on the i-th level of the BDDs as −0 and −1 quotients of the terms
at the level i − 1. The maximum number of terms in each level is thus 2i. In the worst
case, this causes roughly the same blow-up as when enumerating the “long” symbols.
The advantage of this techniques is, however, that the blow-up can now be dramatically
reduced by using subsumption to prune sets of terms on the individual BDD levels.

5.4 Combination of Symbolic and Explicit Algorithms
It is possible to replace sub-terms of a language term by a language-equivalent automa-
ton built by the explicit algorithm before starting the symbolic algorithm. The main
benefit of this is that the explicitly constructed automata have a simpler flat structure
and can be minimized. The minimization, however, requires to explicitly construct the
whole automaton, which might, despite the benefit of minimization, be a too large over-
head. The combination hence represents a trade-off between the lazy evaluation and
subsumption of the symbolic algorithm, and minimization and flat automata structure of
the explicit one. The overall effect depends on the strategy of choice of the sub-formulae
to be translated into automata, and, of course, on the efficiency of the implementation
of the explicit algorithm (where we can leverage the extremely efficient implementation
of MONA). We mention one particular strategy for choosing sub-formulae in Section 6.

5.5 Anti-prenexing
Before rewriting an input formula to a symbolic term, we pre-process the formula by
moving quantifiers down by several language-preserving identities (which we call anti-
prenexing). We, e.g., change ∃X. (ϕ∧ψ) into ϕ∧(∃X. ψ) ifX is not free in ϕ. Moving
a quantifier down in the abstract syntax tree of a formula speeds up the fixpoint compu-
tation induced by the quantifier. In effect, one costlier fixpoint computation is replaced

13

by several cheaper computations in the sub-formulae. This is almost always helpful
since if the original fixpoint computation unfolds, e.g., a union of two terms, the two
fixpoint computations obtained by anti-prenexing will each unfold only one operand of
the union. The number of union terms in the original fixpoint is roughly the product of
the numbers of terms in the simpler fixpoints. Further, in order to push quantifiers even
deeper into the formula, we reorder the formula by several heuristics (e.g. group sub-
formulae with free occurrences of the same variable in a large conjunction) and move
negations down in the structure towards the leaves using De Morgan’s laws.

6 Experiments
We have implemented the proposed approach in a prototype tool GASTON3, Our tool
uses the front-end of MONA to parse input formulae, to construct their abstract syntax
trees, and also to construct automata for sub-formulae (as mentioned in Section 5.4).
From several heuristics for choosing the sub-formulae to be converted to automata by
MONA, we converged to converting only quantifier free sub-formulae and negations
of innermost quantifiers to automata since MONA can usually handle them without
any explosion. GASTON, together with all the benchmarks described below and their
detailed results, is freely available [22].

Table 1. UABE experiments
Formula MONA GASTON

Time Space Time Space
a-a 1.71 30 253 >2m >2m
ex10 7.71 131 835 12.67 82 236
ex11 4.40 2 393 0.18 4 156
ex12 0.13 2 591 6.31 68 159
ex13 0.04 2 601 1.19 16 883
ex16 0.04 3 384 0.28 3 960
ex17 3.52 165 173 0.17 3 952
ex18 0.27 19 463 >2m >2m
ex2 0.18 26 565 0.01 1 841
ex20 1.46 1 077 0.27 12 266
ex21 1.68 30 253 >2m >2m
ex4 0.08 6 797 0.50 22 442
ex6 4.05 27 903 22.69 132 848
ex7 0.90 857 0.01 594
ex8 7.69 106 555 0.03 1 624
ex9 7.16 586 447 9.41 412 417
fib 0.10 8 128 24.19 126 688

We compared GASTON’s performance with that of
MONA, DWINA implementing our older approach [18],
TOSS implementing the method of [19], and the imple-
mentations of the decision procedures of [20] and [15]
(which we denote as COALG and SFA, respectively).4

In our experiments, we consider formulae obtained from
various formal verification tasks as well as parametric
families of formulae designed to stress-test WS1S de-
cision procedures.5 We performed the experiments on
a machine with the Intel Core i7-2600@3.4 GHz pro-
cessor and 16 GiB RAM running Debian GNU/Linux.

Table 1 contains results of our experiments with for-
mulae from the recent work [24] (denoted as UABE be-
low), which uses WS1S to reason about programs with
unbounded arrays. Table 2 gives results of our experiments with formulae derived from
the WS1S-based shape analysis of [2] (denoted as Strand). In the table, we use sl to
denote Strand formulae over sorted lists and bs for formulae from verification of the
bubble sort procedure. For this set of experiments, we considered MONA and GASTON
only since the other tools were missing features (e.g., atomic predicates) needed to han-
dle the formulae. In the UABE benchmark, GASTON was used with the last optimization

3 The name was chosen to pay homage to Gaston, an Africa-born brown fur seal who escaped the
Prague Zoo during the floods in 2002 and made a heroic journey for freedom of over 300 km
to Dresden. There he was caught and subsequently died due to exhaustion and infection.

4 We are not comparing with JMOSEL [13] as we did not find it available on the Internet.
5 We note that GASTON currently does not perform well on formulae with many Boolean vari-

ables and M2L formulae appearing in benchmarks such as Secrets [11] or Strand2 [1,23],
which are not included in our experiments. To handle such formulae, further optimizations of
GASTON such as MONA’s treatment of Boolean variables via a dedicated transition are needed.

14

of Section 5.3 (treating MTBDD nodes as automata states) to efficiently handle quanti-
fiers over large numbers of variables. In particular, without the optimization, GASTON
hit 11 more timeouts. On the other hand, this optimization was not efficient (and hence
not used) in Strand. Table 2. Strand experiments

Formula MONA GASTON
Time Space Time Space

bs-loop-else 0.05 14 469 0.04 2 138
bs-loop-if-else 0.19 61 883 0.08 3 207
bs-loop-if-if 0.38 127 552 0.18 5 428
sl-insert-after-loop 0.01 2 634 0.36 5 066
sl-insert-before-head 0.01 678 0.01 541
sl-insert-before-loop 0.01 1 448 0.01 656
sl-insert-in-loop 0.02 5 945 0.01 1 079
sl-reverse-after-loop 0.01 1 941 0.01 579
sl-search-in-loop 0.08 23 349 0.03 3 247

The tables compare the overall time
(in seconds) the tools needed to decide the
formulae, and they also try to character-
ize the sizes of the generated state spaces.
For the latter, we count the overall num-
ber of states of the generated automata
for MONA, and the overall number of gen-
erated sub-terms for GASTON. The tables
contain just a part of the results, more can be found in [22]. We use >2m in case the
running time exceeded 2 minutes, oom to denote that the tool ran out of memory, +k
to denote that we added k quantifier alternations to the original benchmark, and N/A
to denote that the benchmark requires some feature or atomic predicate unsupported by
the given tool. On Strand, GASTON is mostly comparable, in two cases better, and
in one case worse than MONA. On UABE, GASTON outperformed MONA on six out of
twenty-three benchmarks, it was worse on ten formulae, and comparable on the rest.
The results thus confirm that our approach can defeat MONA in practice.

Table 3. Experiments with parametric families of formulae
Benchmark Src MONA DWINA TOSS COALG SFA GASTON

HornLeq [15] oom(18) 0.03 0.08 >2m(08) 0.03 0.01
HornLeq (+3) [15] oom(18) >2m(11) 0.16 >2m(07) >2m(11) 0.01
HornLeq (+4) [15] oom(18) >2m(13) 0.04 >2m(06) >2m(11) 0.01
HornIn [19] oom(15) >2m(11) 0.07 >2m(08) >2m(08) 0.01
HornTrans [18] 86.43 >2m(14) N/A N/A 38.56 1.06
SetSingle [18] oom(04) >2m(08) 0.10 N/A >2m(03) 0.01
Ex8 [24] oom(08) N/A N/A N/A N/A 0.15
Ex11(10) [24] oom(14) N/A N/A N/A N/A 1.62

The second part of our ex-
periments concerns paramet-
ric families of WS1S for-
mulae used for evaluation
in [19,18,15], and also pa-
rameterized versions of se-
lected UABE formulae [24].
Each of these families has
one parameter (whose meaning is explained in the respective works). Table 3 gives
times needed to decide instances of the formulae for the parameter having value 20. If
the tools did not manage this value of the parameter, we give in parentheses the highest
value of the parameter for which the tools succeeded. More results are available in [22].
In this set of experiments, GASTON managed to win over the other tools on many of
their own benchmark formulae. In the first six rows of Table 3, the superior efficiency
of GASTON was caused mainly by anti-prenexing. It turns out that this optimization
of the input formula is universally effective. When run on anti-prenexed formulae, the
performance of the other tools was comparable to that of GASTON. The last two bench-
marks (parameterized versions of formulae from UABE) show, however, that GASTON’s
performance does not stand on anti-prenexing only. Despite that its effect here was neg-
ligable (similarly as for all the original benchmarks from UABE and Strand), GAS-
TON still clearly outperformed MONA. We could not compare with other tools on these
formulae due to a missing support of the used features (e.g. constants).
Acknowledgement. We thank the anonymous reviewers for their helpful comments on
how to improve the presentation in this paper. This work was supported by the Czech
Science Foundation (projects 16-17538S and 16-24707Y), the BUT FIT project FIT-S-
17-4014, and the IT4IXS: IT4Innovations Excellence in Science project (LQ1602).

15

References

1. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures and data.
In: POPL 2011, ACM (2011) 611–622

2. Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND. In: SAS
2011. Volume 6887 of Lecture Notes in Computer Science., Springer (2011) 43–59

3. Iosif, R., Rogalewicz, A., Šimáček, J.: The tree width of separation logic with recursive
definitions. In: CADE 2013. Volume 7898 of Lecture Notes in Computer Science., Springer
(2013) 21–38

4. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and
bag properties via user-defined predicates in separation logic. Sci. Comput. Program. 77(9)
(2012) 1006–1036

5. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In:
POPL 2008, ACM (2008) 349–361

6. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over unbounded
domains. In: FMCAD 2010, IEEE (2010) 101–109

7. Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: new techniques for WS1S and WS2S. In:
CAV 1998. Volume 1427 of Lecture Notes in Computer Science., BRICS, Department of
Computer Science, Aarhus University, Springer (1998) 516–520

8. Meyer, A.R.: Weak monadic second order theory of successor is not elementary-recursive. In
Parikh, R., ed.: Logic Colloquium—Symposium on Logic Held at Boston, 1972–73. Volume
453 of Lecture Notes in Mathematics., Springer (1972) 132–154

9. Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative tree data
structures. In Bjørner, N., Sofronie-Stokkermans, V., eds.: CADE 2011. Volume 6803 of
Lecture Notes in Computer Science., Springer (2011) 476–491

10. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new algorithm for
checking universality of finite automata. In: CAV’06. Volume 4144 of LNCS., Springer
(2006) 17–30

11. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. International
Journal of Foundations of Computer Science 13(4) (2002) 571–586

12. Klarlund, N.: A theory of restrictions for logics and automata. In: Proc. of CAV’99. Volume
1633 of LNCS., Springer (1999) 406–417

13. Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: A stand-alone tool and jABC
plugin for M2L(Str). In Valmari, A., ed.: 13th International SPIN Workshop. Volume 3925
of Lecture Notes in Computer Science., Springer Berlin Heidelberg (2006) 293–298

14. Margaria, T., Steffen, B., Topnik, C.: Second-order value numbering. In: Proc. of GraMoT
2010. Volume 30 of ECEASST., EASST (2010) 1–15

15. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: In Proc. of POPL’14.
(2014) 541–554

16. Doyen, L., Raskin, J.F.: Antichain algorithms for finite automata. In: Proc. of TACAS’10.
Volume 6015 of LNCS., Springer (2010) 2–22

17. Abdulla, P.A., Chen, Y.F., Holı́k, L., Mayr, R., Vojnar, T.: When simulation meets antichains
(on checking language inclusion of NFAs). In: Proc. of TACAS’10. Volume 6015 of LNCS.,
Springer (2010) 158–174

18. Fiedor, T., Holı́k, L., Lengál, O., Vojnar, T.: Nested antichains for WS1S. In: Proc. of
TACAS’15. Volume 9035 of LNCS., Springer (2015)

19. Ganzow, T., Kaiser, L.: New algorithm for weak monadic second-order logic on inductive
structures. In: CSL 2010. Volume 6247 of Lecture Notes in Computer Science., Springer
(2010) 366–380

16

20. Traytel, D.: A coalgebraic decision procedure for WS1S. In Kreutzer, S., ed.: 24th EACSL
Annual Conference on Computer Science Logic (CSL 2015). Volume 41 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs)., Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik (2015) 487–503

21. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree Automata Techniques and Applications. (2008)

22. Fiedor, T., Holı́k, L., Janků, P., Lengál, O., Vojnar, T.: GASTON (2016) Avail-
able from http://www.fit.vutbr.cz/research/groups/verifit/tools/
gaston/.

23. Madhusudan, P., Parlato, G., Qiu, X.: Strand benchmark. http://web.engr.
illinois.edu/˜qiu2/strand/ Accessed: 2014-01-29.

24. Zhou, M., He, F., Wang, B., Gu, M., Sun, J.: Array theory of bounded elements and its
applications. J. Autom. Reasoning 52(4) (2014) 379–405

17

http://www.fit.vutbr.cz/research/groups/verifit/tools/gaston/
http://www.fit.vutbr.cz/research/groups/verifit/tools/gaston/
http://web.engr.illinois.edu/~qiu2/strand/
http://web.engr.illinois.edu/~qiu2/strand/

	Lazy Automata Techniques for WS1S*-3mm

