
FORESTER: From Heap Shapes to Automata Predicates
(Competition Contribution)

Lukáš Holı́k, Martin Hruška?, Ondřej Lengál,
Adam Rogalewicz, Jiřı́ Šimáček, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. This paper describes the participation of FORESTER in the SV-COMP
2017 competition on software verification. We briefly present the verification
procedure used by FORESTER, the architecture of FORESTER, and changes in
FORESTER done since the previous year of SV-COMP, in particular the fully-
automatically refinable abstraction for hierarchical forest automata.

1 Verification Approach
FORESTER implements an automated shape analysis that uses forest automata (FAs) to
represent sets of reachable shapes of the heap of the analysed program. In particular,
heap configurations are viewed as (directed) graphs, decomposed into tuples of trees,
and sets of such decompositions are encoded by FAs that themselves have the form
of tuples of tree automata (TAs). The tree decomposition is based on detecting the
so-called cut-points of the heap graphs, which are nodes either pointed by a variable
or having more than one incoming edge. The tree decomposition is then obtained by
cutting a heap graph at the cut-points and redirecting each incoming edge of a cut-point
to a new leaf node labelled by a reference to the tree with the cut-point as the root.

In order to allow for representing data structures with an unbounded number of cut-
points, a notion of hierarchical FAs (HFAs) is introduced. An example of a structure
for whose representation plain FAs are insufficient and HFAs are needed is the doubly-
linked list (DLL). Indeed, each internal DLL node is a cut-point since it is pointed to by
its predecessor and successor nodes. An HFA can use other HFAs, called nested HFAs
or boxes, as symbols of its alphabet. Boxes can represent (repeating) sub-graphs of heap
graphs, possibly encapsulating (hiding) an unbounded number of cut-points. A special
folding operation is then used to pack a part of an HFA into a box and add the box to
the alphabet of the resulting HFA. On the contrary, when an analysed program accesses
a part of a heap folded into a box, the box is unfolded by plugging its content back to the
wrapping HFA. A more detailed description of these operations can be found in [1,2].

The verification procedure implemented in FORESTER symbolically executes the
program in the abstract domain of HFAs. At loop points, HFAs are abstracted, imple-
menting the idea of abstract regular model checking [3]. The abstraction is applied
component-wise, i.e., to individual TAs, collapsing some of their states, which over-
approximates the set of reachable heap configurations. The abstraction speeds up the
reachability analysis and enables termination on infinite state spaces, but can also yield
spurious counterexamples. To recognize them, FORESTER was, in the previous SV-
COMP [8], modified to run backwards (not using any abstraction) along a suspected er-
ror trace. Together with using predicate language abstraction of TAs—which collapses
? Jury member



TA states intersecting with the same predicate languages, and which can be refined
by adding more predicate languages—a counterexample-guided abstraction refinement
(CEGAR) [6] loop is obtained.

The backward run is performed over a trace consisting of micro-instructions used
by FORESTER. The trace leads from the beginning of the analysed program to a line
where the given specification was found broken. FORESTER then precisely reverts all
micro-instructions along the trace starting from its end. For example, when a new state
of an FA was created in the forward run, FORESTER removes it in the backward run.
The abstraction is reverted by intersecting FAs from the forward and backward run. If
the intersection is empty, FORESTER reports a spurious counterexample, derives new
predicates to refine the abstraction, and restarts the analysis. The new predicate lan-
guages are encoded by TAs selected from the FA obtained in the backward run at the
point where the empty intersection with the forward run was detected. Otherwise, if the
backward run reaches the beginning of the trace, the counterexample is reported as real.

For SV-COMP 2017, we extended the backward run and predicate language ab-
straction from plain FAs (done in [8]) to HFAs, which requires one to take into account
boxes. In particular, if the original algorithms were used, it may happen that some sub-
graphs would be folded into a box in the forward run, while they would not be folded
into this box in the backward run, meaning that the general structure of the FAs would be
different. The intersection operation (which does not consider the semantics of boxes)
would then determine that languages of the corresponding HFAs do not intersect. This
would significantly decrease the precision of the operation. One option how to address
this issue and increase the precision would be to modify the intersection operation to
take into account the semantics of boxes and make it try to unfold them on the fly. We
take a different approach, which enables us to successfully a larger class of programs.

Our way of dealing with the issue is to keep the HFAs obtained during the back-
ward run compatible with the HFAs in the forward run. The compatibility intuitively
means that the two HFAs partition the same heaps in the same way, in other words,
if a heap is accepted by both HFAs, it is decomposed into the same components and
the same boxes in both HFAs. When compatibility is enforced, we can (i) avoid in-
ner inspection of boxes during the intersection operation, (ii) enable precise reversion
of micro-instructions, and, as a side-effect, (iii) use a simple standard TA intersection
operation performed component-wise on the HFAs. To maintain the HFAs in the back-
ward compatible, we needed to significantly alter instructions used therein (previously,
no structural constraints were imposed on the FAs; in order to deal with their different
interconnection structure, a more complex intersection operation was needed).

The operations that are the most challenging to revert in the backward run are the
following: folding (which is, in fact, performed together with abstraction in a loop of the
form fold, abstract, fold, abstract, and so on until a fixpoint is reached), unfolding, and
normalization. The normalization removes cut-points that are no longer needed, glues
together TAs that stop being separated by cut-points, and orders component TAs in an
FA in order to transforms the given HFA into a so-called canonicity-respecting form
needed for testing inclusion. The reversion of folding then needs to guarantee that the
sub-graphs in the folded box will appear in the correct components after the operation
(taking into account that folding can be done multiple times during a single abstraction).

2



On the other hand, the reversion of unfolding needs to guarantee that the unfolded box
will be folded back into a box within the correct component. Lastly, the reversion of
normalization needs to cut and re-order components into correct places. A more precise
description of the described methods can be found in [7].

2 Tool Architecture

FORESTER is implemented in C++11 as a GCC plugin using the Code Listener frame-
work [4]. The representation of a program obtained through Code Listener is translated
into FORESTER’s own internal microcode, which is symbolically executed. FORESTER
uses the VATA library [5] for representation and manipulation with nondeterministic
TAs (NTAs). VATA contains an optimized implementation of efficient algorithms for
dealing with TAs, including operations such as state reduction of NTAs and testing
their language inclusion, which is a crucial operation in FORESTER for determining
whether an execution branch has reached a fixpoint.

3 Strengths and Weaknesses

One of the most important features of Forester is that it is sound (wrt the intermediate
code obtained from GCC, which may have already removed some possible behaviours
of the original code; e.g., GCC already fixes the order of evaluation of a function’s pa-
rameters), i.e., if it answers TRUE, there is indeed no bug in the program. Moreover, due
to the recent improvements in FORESTER regarding counterexample-based abstraction
refinement [7], the number of false positives (i.e., wrong answers FALSE) on the bench-
mark of SV-COMP 2017 is significantly reduced. Concretely, the new version gets no
false positives, which gives us approximately 40 % more points than we would have
obtained with the version of FORESTER from SV-COMP 2016, in particular on exam-
ples that contain DLLs and need to perform abstraction refinement. FORESTER can also
output UNKNOWN if it establishes that it cannot give a correct answer. This happens
when the tool exceeds the time given by the SV-COMP rules—e.g., when searching for
a shape invariant not expressible using HFAs—or upon detection of an unsupported fea-
ture of C. FORESTER specialises almost exclusively in pointer manipulations and infer-
ence of complex shape properties of pointer structures. It does not implement advanced
syntactic features such as function pointers, heavily used in the LDV benchmark, but
also more basic features such as arrays, unions, recursion, arithmetic, or bit operations.

The formalism of HFAs allows FORESTER to represent in a quite precise way the
invariant of rather complex data structures, such as skip lists of 2 or 3 levels, various
flavours of nested lists, or trees with parent and root pointers. The used representation
is, moreover, quite compact, and kept small via simulation-based reduction of NTAs.

4 Tool Setup, Configuration, and Witnesses

The distribution of FORESTER for SV-COMP 2017 is available from the web page of
FORESTER1 from the link highlighted as the SV-COMP 2017 binary version. The tool is

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

3

http://www.fit.vutbr.cz/research/groups/verifit/tools/forester


provided in the form of a shared object library libfa.so together with a Python wrap-
per sv comp run.py. The file README-FORESTER-SVCOMP-2017 describes the
dependencies of FORESTER and parameters of the Python script.

The sv comp run.py script is run as follows:
sv comp run.py [--help] <source>

--properties <prp> --trace <trace>

where <trace> is the output file for a (violation/correctness) witness, <prp> is the
path to the property file, and <source> is the verified program. When FORESTER is
run within the BenchExec framework, most of the parameters are set automatically by
its BenchExec wrapper script. The only exception is the parameter --trace, which
must be defined manually in an option node of the XML input file of BenchExec.

The format of a violation witness is an automaton, represented using GraphML (an
XML schema), that represents a buggy trace through the program, while the format
of a correctness witness is (again) a GraphML automaton whose states correspond to
loop points in the program, and are further annotated (using an XML node with the
key automaton) by a representation of the set of FAs over-approximating the set of
reachable program configurations at the given state. FORESTER participates only in the
MemSafety-Heap and ReachSafety-Heap categories and opts out from the rest.

5 Software Project and Contributors
FORESTER has been under development at Brno University of Technology since 2010.
FORESTER and the VATA library are both licensed under GPLv3. The source code
of FORESTER is available at https://github.com/martinhruska/forester/.
The authors of this paper are currently the only people involved in its development.
Acknowledgement. Supported by the Czech Science Foundation (project 17-12465S),
the BUT FIT project FIT-S-17-4014, and the IT4IXS: IT4Innovations Excellence in
Science project (LQ1602). Martin Hruška is a holder of the Brno Ph.D. Talent Scholar-
ship, funded by the Brno City Municipality.

References
1. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest Automata for Veri-

fication of Heap Manipulation. Formal Methods in System Design, 41(1), Springer, 2012.
2. Holı́k, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully Automated Shape Anal-

ysis Based on Forest Automata. In Proc. of CAV’13, LNCS 8044, Springer, 2013.
3. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular (Tree) Model

Checking. STTT 14(2), Springer, 2012.
4. Dudka, K., Peringer, P., Vojnar, T.: An Easy to Use Infrastructure for Building Static Analysis

Tools. In Proc. of EUROCAST’11, Part I, LNCS 6927, Springer, 2011.
5. Lengál, O., Šimáček, J., Vojnar, T.: VATA: A Library for Efficient Manipulation of Non-

deterministic Tree Automata. In Proc. of TACAS’12, LNCS 7214, Springer, 2012.
6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction

Refinement. In Proc. of CAV’02, LNCS 1855, Springer, 2000.
7. Holı́k, L., Hruška, M., Lengál, O., Rogalewicz, A., Vojnar, T.: Counterexample Validation and

Interpolation-Based Refinement for Forest Automata. In Proc. of VMCAI’17, LNCS 10145,
Springer, 2017.

8. Holı́k, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Run Forester, Run
Backwards! (Competition Contribution). In Proc. of TACAS’16, LNCS 9636, Springer, 2016.

4

https://github.com/martinhruska/forester/

	Forester: From Heap Shapes to Automata Predicates (Competition Contribution)

