
Run Forester, Run Backwards! (Competition Contribution)

Lukáš Holı́k1, Martin Hruška1, Ondřej Lengál2,
Adam Rogalewicz1, Jiřı́ Šimáček1, and Tomáš Vojnar1

1 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic
2 Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. This paper briefly describes the Forester tree automata-based shape
analyser and its participation in the SV-COMP’16 competition on software ver-
ification. In particular, it summarizes the verification approach used by Forester,
its architecture and setup for the competition, as well as its strengths and weak-
nesses observed in the competition run. The paper highlights the newly added
counterexample validation and use of refinable predicate language abstraction.

1 Verification Approach
Forest Automata. Forester implements a fully automated and sound shape analysis
based on the notion of forest automata (FAs) [1]. FAs can represent sets of reachable
configurations of programs with complex dynamic linked data structures (such as vari-
ous kinds of lists, trees, skip lists, as well as combinations of such data structures). They
have a form of tuples of tree automata (TAs). These tuples of TAs encode sets of heap
graphs decomposed into tuples of tree components, whose leaves may refer back to the
roots of the components (including roots of other components). The decomposition is
based on cutting a heap graph at each cut-point, i.e., a node which is either pointed by
some pointer variable or which has multiple incoming pointer edges.

In order to encode complex heap graphs, FAs may be hierarchically structured in
such a way that a higher-level FA may use other, lower-level FAs as alphabet sym-
bols. These nested automata, called boxes, encode repetitive graph patterns and can be
automatically learned using the approach proposed in [2].

In order to be as efficient as possible, Forester never determinises the TAs it works
with. All needed operations, including inclusion checking and size reduction, are there-
fore implemented on non-deterministic TAs. For that, techniques such as antichain-
based inclusion checking and simulation-based reduction are used.

Counterexample Analysis and Refinement. In Forester, FAs are used within the
framework of abstract regular tree model checking (ARTMC) [3]. ARTMC acceler-
ates the computation of sets of reachable program configurations, represented by FAs,
by abstracting their component TAs, which is done by collapsing some of their states.

For deciding which TA states should be collapsed when performing ARTMC, multi-
ple approaches have been proposed in the literature [3]. When Forester first participated
in SV-COMP in 2015, it supported the simplest of these approaches based on collaps-
ing states accepting the same languages of trees up to some height only. No checking
of validity of counterexamples and no abstraction refinement was implemented then.

In the version of Forester participating in SV-COMP’16, an approach for checking
validity of counterexamples was added. It is based on a backward execution of the
program being verified along the suspected counterexample. For that, it was needed
to add a support for reverse execution of all program statements over FAs. Moreover,



a support for intersection of FAs, not needed before, had to be added. Intersection of
FAs is a feature needed to either derive a concrete program trace from the forward
and backward symbolic executions, or determine that no such a trace exists since the
intersection gets empty at some point in the traces. It turns out that intersecting FAs
is a quite complex task, which has to, e.g., deal with the fact that the two FAs being
intersected may use a different decomposition of the heap graphs they represent.

Moreover, Forester has also been extended with the most advanced abstraction
mechanism known in the context of ARTMC, namely predicate language abstraction.
In its case, one collapses those TA states whose languages intersect the same predicate
languages (represented also by TAs). The predicate languages to be used are learned
in a counterexample guided refinement (CEGAR) loop from the TAs that are generated
within backward executions of the program along spurious counterexample traces. Cur-
rently, the first execution of Forester uses the finite height abstraction, which is then
refined in the further runs by combining it with the predicate language abstraction.

More details on the mentioned checking of validity of counterexamples and the
refinable predicate language abstraction used in the context of FAs are still to be pub-
lished, but a preliminary description can be found in [6].

2 Tool Architecture
Forester is implemented as a GCC plugin using the interface over GCC provided by
the Code Listener infrastructure [4]. GIMPLE instructions used in the intermediate
GCC code are translated to instructions of a specialised register machine that Forester
uses to symbolically execute programs in the abstract domain of FAs. Forester uses
the VATA [5] library to handle non-deterministic TAs from which FAs are built. Both
Forester and VATA are implemented in C++.

3 Strengths and Weaknesses
The strengths of Forester are the following: (1) Forester is based on a sound verification
approach, (2) its abstract domain allows one to analyse a large variety of classes of
shape graphs, ranging from various kinds of (nested) lists, trees, to skip lists, and their
combinations, (3) it can provide the user with error witnesses, (4) it newly analyses the
counterexamples and refines the abstraction based one them, and (5) its internals (e.g.,
entailment checking) are built upon a well-understood automata theory and technology,
which is constantly being developed by a wide community of researchers. Compared to
the previous participation of Forester in SV-COMP in 2015, due to our enhancements,
we were able to correctly mark 4 new bug-free benchmarks and 12 new erroneous
benchmarks from the challenging Heap Data Structures category.

Among the main weaknesses of Forester is its weak support of handling non-pointer
data such as integers or arrays. Therefore it participates in the Heap Data Structures
category only, but even in this category it still loses some points due to not handling
non-pointer features properly. Another weakness of Forester is that it does not sup-
port some advanced C language constructions. In particular, Forester currently loses
the most points in the Heap Data Structures category by not implementing any support
for pointers to functions. Due to this, Forester cannot analyse nearly 80 test cases. An-
other feature of C not fully supported by Forester are pointers to unstructured memory.
Although a basic support for handling them is in place, Forester still has problems in
tracking the size of an allocated unstructured memory block.



4 Tool Setup and Configuration

An archive with the SV-COMP’16 version of Forester is available at the web page of
Forester3. The archive contains the source code of Forester and VATA. Instructions for
compiling and running Forester are in the file README-FORESTER-SVCOMP-2016
in the root directory of the archive. After compilation, the directory fa build with
scripts for running Forester is created. The script for running Forester in SV-COMP is
named sv comp run.py. It is also used in the BenchExec wrapper script of Forester.

The parameters of sv comp run.py are the following. The mandatory parameter
of the script is the path to the file with the program under verification. The file for storing
the witness leading to a counterexample is specified by the parameter --trace. The
path to the property file is defined by the parameter --properties.

When Forester is run within the BenchExec framework, most of the parameters are
set automatically by its wrapper script. The only exception is the parameter --trace,
which must be defined manually in the forester.xml file used as the input of
BenchExec. The wrapper script of Forester for BenchExec is called forester.py.
Both files are available from the official page for SV-COMP’16 results reproduction
(http://sv-comp.sosy-lab.org/2016/systems.php).

The output of Forester printed to the standard output has a similar format to the
specification given by the rules of SV-COMP’16, specified in detail in the mentioned
README file. Forester participates only in the Heap Data Structures category.

5 Software Project and Contributors

Forester has been developed at Brno University of Technology since 2010. The authors
of this paper are currently the only people involved to development of Forester. Forester
and the VATA library are both licensed under GPL.
Acknowledgement. This work was supported by the Czech Science Foundation under
the project 14-11384S. Martin Hruška is a holder of the Brno Ph.D. Talent Scholarship,
funded by the Brno City Municipality.

References

1. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest Automata for Veri-
fication of Heap Manipulation. Formal Methods in System Design, 41(1), Springer, 2012.

2. Holı́k, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully Automated Shape Anal-
ysis Based on Forest Automata. In Proc. of CAV’13, LNCS 8044, Springer, 2013.

3. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular (Tree) Model
Checking. Software Tools for Technology Transfer, 14(2), Springer, 2012.

4. Dudka, K., Peringer, P., Vojnar, T.: An Easy to Use Infrastructure for Building Static Analysis
Tools. In Proc. of EUROCAST’11, Part I, LNCS 6927, Springer, 2011.

5. Lengál, O., Šimáček, J., Vojnar, T.: VATA: A Library for Efficient Manipulation of Non-
deterministic Tree Automata. In Proc. of TACAS’12, LNCS 7214, Springer, 2012.

6. Hruška, M.: Verification of Pointer Programs Based on Forest Automata, MSc. thesis, Brno
University of Technology, 2015.

3 http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

https://github.com/sosy-lab/sv-comp/tree/svcomp16/benchmark-defs-2016/forester.xml
https://github.com/sosy-lab/benchexec/tree/1.7/benchexec/tools/forester.py
http://sv-comp.sosy-lab.org/2016/systems.php
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

	Run Forester, Run Backwards! (Competition Contribution)

