
Nested Antichains for WS1S

Tomáš Fiedor, Lukáš Holı́k, Ondřej Lengál, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. We propose a novel approach for coping with alternating quantifica-
tion as the main source of nonelementary complexity of deciding WS1S formu-
lae. Our approach is applicable within the state-of-the-art automata-based WS1S
decision procedure implemented, e.g. in MONA. The way in which the standard
decision procedure processes quantifiers involves determinization, with its worst
case exponential complexity, for every quantifier alternation in the prefix of a for-
mula. Our algorithm avoids building the deterministic automata—instead, it con-
structs only those of their states needed for (dis)proving validity of the formula. It
uses a symbolic representation of the states, which have a deeply nested structure
stemming from the repeated implicit subset construction, and prunes the search
space by a nested subsumption relation, a generalization of the one used by the
so-called antichain algorithms for handling nondeterministic automata. We have
obtained encouraging experimental results, in some cases outperforming MONA
by several orders of magnitude.

1 Introduction

Weak monadic second-order logic of one successor (WS1S) is a powerful, concise, and
decidable logic for describing regular properties of finite words. Despite its nonele-
mentary worst case complexity [1], it has been shown useful in numerous applications.
Most of the successful applications were due to the tool MONA [2], which implements
a finite automata-based decision procedure for WS1S and WS2S (a generalization of
WS1S to finite binary trees). The authors of MONA list a multitude of its diverse ap-
plications [3], ranging from software and hardware verification through controller syn-
thesis to computational linguistics, and further on. Among more recent applications,
verification of pointer programs and deciding related logics [4,5,6,7,8] can be men-
tioned, as well as synthesis from regular specifications [9]. MONA is still the standard
tool and the most common choice when it comes to deciding WS1S/WS2S. There are
other related automata-based tools that are more recent, such as jMosel [10] for a logic
M2L(Str), and other than automata-based approaches, such as [11]. They implement
optimizations that allow to outperform MONA on some benchmarks, however, none
provides an evidence of being consistently more efficient. Despite many optimizations
implemented in MONA and the other tools, the worst case complexity of the problem
sometimes strikes back. Authors of methods using the translation of their problem to
WS1S/WS2S are then forced to either find workarounds to circumvent the complexity
blowup, such as in [5], or, often restricting the input of their approach, give up translat-
ing to WS1S/WS2S altogether [12].

The decision procedure of MONA works with deterministic automata; it uses de-
terminization extensively and relies on minimization of deterministic automata to sup-
press the complexity blow-up. However, the worst case exponential complexity of de-
terminization often significantly harms the performance of the tool. Recent works on



efficient methods for handling nondeterministic automata suggest a way of alleviating
this problem, in particular works on efficient testing of language inclusion and univer-
sality of finite automata [13,14,15] and size reduction [16,22] based on a simulation
relation. Handling nondeterministic automata using these methods, while avoiding de-
terminization, has been shown to provide great efficiency improvements in [24] (ab-
stract regular model checking) and also [23] (shape analysis). In this paper, we make
a major step towards building the entire decision procedure of WS1S on nondetermin-
istic automata using similar techniques. We propose a generalization of the antichain
algorithms of [13] that addresses the main bottleneck of the automata-based decision
procedure for WS1S, which is also the source of its nonelementary complexity: elimi-
nation of alternating quantifiers on the automata level.

More concretely, the automata-based decision procedure translates the input WS1S
formula into a finite word automaton such that its language represents exactly all mod-
els of the formula. The automaton is built in a bottom-up manner according to the
structure of the formula, starting with predefined atomic automata for literals and ap-
plying a corresponding automata operation for every logical connective and quantifier
(∧,∨,¬,∃). The cause of the nonelementary complexity of the procedure can be ex-
plained on an example formula of the form ϕ′ = ∃Xm∀Xm−1 . . . ∀X2∃X1 : ϕ0.
The universal quantifiers are first replaced by negation and existential quantification,
which results in ϕ = ∃Xm¬∃Xm−1 . . .¬∃X2¬∃X1 : ϕ0. The algorithm then builds
a sequence of automata for the sub-formulae ϕ0, ϕ

]
0, . . . , ϕm−1, ϕ

]
m−1 of ϕ where for

0 ≤ i < m, ϕ]i = ∃Xi+1 : ϕi, and ϕi+1 = ¬ϕ]i . Every automaton in the sequence
is created from the previous one by applying the automata operations corresponding to
negation or elimination of the existential quantifier, the latter of which may introduce
nondeterminism. Negation applied on a nondeterministic automaton may then yield an
exponential blowup: given an automaton for ψ, the automaton for ¬ψ is constructed
by the classical automata-theoretic construction consisting of determinization by the
subset construction followed by swapping of the sets of final and non-final states. The
subset construction is exponential in the worst case. The worst case complexity of the
procedure run on ϕ is then a tower of exponentials with one level for every quantifier
alternation in ϕ; note that we cannot do much better—this non-elementary complexity
is an inherent property of the problem.

Our new algorithm for processing alternating quantifiers in the prefix of a formula
avoids the explicit determinization of automata in the classical procedure and signifi-
cantly reduces the state space explosion associated with it. It is based on a generalization
of the antichain principle used for deciding universality and language inclusion of fi-
nite automata [14,15]. It generalizes the antichain algorithms so that instead of being
used to process only one level of the chain of automata, it processes the whole chain
of quantifications with i alternations on-the-fly. This leads to working with automata
states that are sets of sets of sets . . . of states of the automaton representing ϕ0 of the
nesting depth i (this corresponds to i levels of subset construction being done on-the-
fly). The algorithm uses nested symbolic terms to represent sets of such automata states
and a generalized version of antichain subsumption pruning which descends recursively
down the structure of the terms while pruning on all its levels.

Our nested antichain algorithm can be in its current form used only to process
a quantifier prefix of a formula, after which we return the answer to the validity query,

2



but not an automaton representing all models of the input formula. That is, we cannot
use the optimized algorithm for processing inner negations and alternating quantifiers
which are not a part of the quantifier prefix. However, despite this and the fact that our
implementation is far less mature than that of MONA, our experimental results still
show significant improvements over its performance, especially in terms of generated
state space. We consider this a strong indication that using techniques for nondetermin-
istic automata to decide WS1S (and WSkS) is highly promising. There are many more
opportunities of improving the decision procedure based on nondeterministic automata,
by using techniques such as simulation relations or bisimulation up-to congruence [17],
and applying them to process not only the quantifier prefix, but all logical connectives
of a formula. We consider this paper to be the first step towards a decision procedure
for WS1S/WSkS with an entirely different scalability than the current state-of-the-art.

Plan of the paper. We define the logic WS1S in Section 2. In Sections 3 and 4, we
introduce finite word automata and describe the classical decision procedure for WS1S
based on finite word automata. In Section 5, we introduce our method for dealing with
alternating quantifiers. Finally, we give an experimental evaluation and conclude the
paper in Sections 6 and 7.

2 WS1S

In this section we introduce the weak monadic second-order logic of one successor
(WS1S). We introduce only its minimal syntax here, for the full standard syntax and
a more thorough introduction, see Section 3.3 in [18].

WS1S is a monadic second-order logic over the universe of discourse N0. This
means that the logic allows second-order variables, usually denoted using upper-case
letters X,Y, . . . , that range over finite subsets of N0, e.g. X = {0, 3, 42}. Atomic
formulae are of the form (i) X ⊆ Y , (ii) Sing(X), (iii) X = {0}, and (iv) X =
Y + 1, where X and Y are variables. The atomic formulae are interpreted in turn as
(i) standard set inclusion, (ii) the singleton predicate, (iii) X is a singleton containing
0, and (iv) X = {x} and Y = {y} are singletons and x is the successor of y, i.e.
x = y + 1. Formulae are built from the atomic formulae using the logical connectives
∧,∨,¬, and the quantifier ∃X (for a second-order variable X).

Given a WS1S formula ϕ(X1, . . . , Xn) with free variablesX1, . . . , Xn, the assign-
ment ρ = {X1 7→ S1, . . . , Xn 7→ Sn}, where S1, . . . , Sn are finite subsets of N0,
satisfies ϕ, written as ρ |= ϕ, if the formula holds when every variable Xi is replaced
with its corresponding value Si = ρ(Xi). We say that ϕ is valid, denoted as |= ϕ, if it
is satisfied by all assignments of its free variables to finite subsets of N0. Observe the
limitation to finite subsets of N0 (related to the adjective weak in the name of the logic);
a WS1S formula can indeed only have finite models (although there may be infinitely
many of them).

3 Preliminaries and Finite Automata

For a set D and a set S ⊆ 2D we use ↓S to denote the downward closure of S, i.e.
↓S = {R ⊆ D | ∃S ∈ S : R ⊆ S}, and ↑S to denote the upward closure of S,
i.e. ↑S = {R ⊆ D | ∃S ∈ S : R ⊇ S}. The set S is in both cases called the
set of generators of ↑S or ↓S respectively. A set S is downward closed if it equals

3



its downward closure, S = ↓S, and upward closed if it equals to its upward closure,
S = ↑S. The choice operator

∐
(sometimes called the unordered Cartesian product)

is an operator that, given a set of sets D = {D1, . . . , Dn}, returns the set of all sets
{d1, . . . , dn} obtained by taking one element di from every set Di. Formally,∐

D =
{
{d1, . . . , dn} | (d1, . . . , dn) ∈

n∏
i=1

Di

}
(1)

where
∏

denotes the Cartesian product. Note that for a set D,
∐
{D} is the set of all

singleton subsets of D, i.e.
∐
{D} = {{d} | d ∈ D}. Further note that if any Di is the

empty set ∅, the result is
∐
D = ∅.

Let X be a set of variables. A symbol τ over X is a mapping of all variables in X to
either 0 or 1, e.g. τ = {X1 7→ 0, X2 7→ 1} for X = {X1, X2}. An alphabet over X
is the set of all symbols over X, denoted as ΣX. For any X (even empty), we use 0 to
denote the symbol which maps all variables from X to 0, 0 ∈ ΣX.

A (nondeterministic) finite (word) automaton (abbreviated as FA) over a set of vari-
ables X is a quadruple A = (Q,∆, I, F) where Q is a finite set of states, I ⊆ Q is a set
of initial states, F ⊆ Q is a set of final states, and ∆ is a set of transitions of the form
(p, τ, q) where p, q ∈ Q and τ ∈ ΣX. We use p τ−→ q ∈ ∆ to denote that (p, τ, q) ∈ ∆.
Note that for an FA A over X = ∅, A is a unary FA with the alphabet ΣX = {0}.

A run r of A over a word w = τ1τ2 . . . τn ∈ Σ∗X from the state p ∈ Q to the
state s ∈ Q is a sequence of states r = q0q1 . . . qn ∈ Q+ such that q0 = p, qn = s
and for all 1 ≤ i ≤ n there is a transition qi−1

τi−→ qi in ∆. If s ∈ F, we say that
r is an accepting run. We write p w

=⇒ s to denote that there exists a run from the
state p to the state s over the word w. The language accepted by a state q is defined
by LA(q) = {w | q w

=⇒ qf , qf ∈ F}, while the language of a set of states S ⊆ Q is
defined as LA(S) =

⋃
q∈S LA(q). When it is clear which FA A we refer to, we only

write L(q) or L(S). The language of A is defined as L(A) = LA(I). We say that the
state q accepts w and that the automaton A accepts w to express that w ∈ LA(q) and
w ∈ L(A) respectively. We call a language L ⊆ Σ∗X universal iff L = Σ∗X.

For a set of states S ⊆ Q, we define post [∆,τ ](S) =
⋃
s∈S{t | s

τ−→ t ∈ ∆},
pre [∆,τ ](S) =

⋃
s∈S{t | t

τ−→ s ∈ ∆}, and cpre [∆,τ ](S) = {t | post [∆,τ ]({t}) ⊆ S}.
The complement of A is the automaton AC = (2Q, ∆C , {I}, ↓{Q \ F}) where

∆C =
{
P

τ−→ post [∆,τ ](P )
∣∣∣ P ⊆ Q}; this corresponds to the standard procedure that

first determinizes A by the subset construction and then swaps its sets of final and non-
final states, and ↓{Q \ F} is the set of all subsets of Q that do not contain a final state
ofA. The language ofAC is the complement of the language ofA, i.e. L(AC) = L(A).

For a set of variables X and a variable X , the projection of X from X, denoted
as π[X](X), is the set X \ {X}. For a symbol τ , the projection of X from τ , denoted
π[X](τ), is obtained from τ by restricting τ to the domain π[X](X). For a transition
relation ∆, the projection of X from ∆, denoted as π[X](∆), is the transition relation{
p
π[X](τ)−−−−−→ q | p τ−→ q ∈ ∆

}
.

4 Deciding WS1S with Finite Automata
The classical decision procedure for WS1S [19] (as described in Section 3.3 of [18])
is based on a logic-automata connection and decides validity (satisfiability) of a WS1S

4



formula ϕ(X1, . . . , Xn) by constructing the FA Aϕ over {X1, . . . , Xn} which recog-
nizes encodings of exactly the models of ϕ. The automaton is built in a bottom-up
manner, according to the structure of ϕ, starting with predefined atomic automata for
literals and applying a corresponding automata operation for every logical connective
and quantifier (∧,∨,¬,∃). Hence, for every sub-formula ψ of ϕ, the procedure will
compute the automaton Aψ such that L(Aψ) represents exactly all models of ψ, termi-
nating with the result Aϕ.

The alphabet of Aϕ consists of all symbols over the set X = {X1, . . . , Xn} of
free variables of ϕ (for a, b ∈ {0, 1} and X = {X1, X2}, we use X1 : a

X2 : b
to denote the

symbol {X1 7→ a,X2 7→ b}). A word w from the language of Aϕ is a sequence of
these symbols, e.g. X1 : ε

X2 : ε
, X1 : 011
X2 : 101

, or X1 : 01100
X2 : 10100

. We denote the i-th symbol of w as

w[i], for i ∈ N0. An assignment ρ : X→ 2N0 mapping free variables X of ϕ to subsets
of N0 is encoded into a word wρ of symbols over X in the following way: wρ contains
1 in the j-th position of the row for Xi iff j ∈ Xi in ρ. Formally, for every i ∈ N0 and
Xj ∈ X, if i ∈ ρ(Xj), then wρ[i] maps Xj 7→ 1. On the other hand, if i 6∈ ρ(Xj), then
either wρ[i] maps Xj 7→ 0, or the length of w is smaller than or equal to i. Notice that
there exist an infinite number of encodings of ρ. The shortest one is wsρ of the length
n + 1, where n is the largest number appearing in any of the sets that is assigned to
a variable of X in ρ, or −1 when all these sets are empty. The rest of the encodings are
all those corresponding towsρ extended with an arbitrary number of 0 symbols appended
to its end. For example, X1 : 0

X2 : 1
, X1 : 00
X2 : 10

, X1 : 000
X2 : 100

, X1 : 000 . . . 0
X2 : 100 . . . 0

are all encodings of the
assignment ρ = {X1 7→ ∅, X2 7→ {0}}. For the soundness of the decision procedure, it
is important that Aϕ always accepts either all encodings of ρ or none of them.

The automata Aϕ∧ψ and Aϕ∨ψ are constructed from Aϕ and Aψ by standard
automata-theoretic union and intersection operations, preceded by the so-called cylin-
drification which unifies the alphabets ofAϕ andAψ . Since these operations, as well as
the automata for the atomic formulae, are not the subject of the contribution proposed
in this paper, we refer the interested reader to [18] for details.

The part of the procedure which is central for this paper is processing negation
and existential quantification; we will therefore describe it in detail. The FA A¬ϕ is
constructed as the complement ofAϕ. Then, all encodings of the assignments that were
accepted byAϕ are rejected byA¬ϕ and vice versa. The FAA∃X:ϕ is obtained from the
FAAϕ = (Q,∆, I, F) by first projecting X from the transition relation ∆, yielding the
FAA′ϕ = (Q, π[X](∆), I, F). However,A′ϕ cannot be directly used asA∃X:ϕ. The rea-
son is that A′ϕ may now be inconsistent in accepting some encodings of an assignment
ρ while rejecting other encodings of ρ. For example, suppose thatAϕ accepts the words
X1 : 010
X2 : 001

, X1 : 0100
X2 : 0010

, X1 : 0100 . . . 0
X2 : 0010 . . . 0

and we are computing the FA for ∃X2 : ϕ. When we
remove X2 from all symbols, we obtain A′ϕ that accepts the words X1 : 010 , X1 : 0100 ,
X1 : 0100 . . . 0 , but does not accept the word X1 : 01 that encodes the same assignment
(because X1 : 01

X2 : ??
6∈ L(Aϕ) for any values in the places of “?”s). As a remedy for this

situation, we need to modify A′ϕ to also accept the rest of the encodings of ρ. This is
done by enlarging the set of final states of A′ϕ to also contain all states that can reach
a final state ofA′ϕ by a sequence of 0 symbols. Formally,A∃X:ϕ = (Q, π[X](∆), I, F ])

5



is obtained from A′ϕ = (Q, π[X](∆), I, F) by computing F ] from F using the fixpoint
computation F ] = µZ . F ∪ pre [π[X](∆),0](Z). Intuitively, the least fixpoint denotes the
set of states backward-reachable from F following transitions of π[X](∆) labelled by 0.

The procedure returns an automaton Aϕ that accepts exactly all encodings of the
models of ϕ. This means that the language ofAϕ is (i) universal iff ϕ is valid, (ii) non-
universal iff ϕ is invalid, (iii) empty iff ϕ is unsatisfiable, and (iv) non-empty iff ϕ is
satisfiable. Notice that in the particular case of ground formulae (i.e. formulae without
free variables), the language of Aϕ is either L(Aϕ) = {0}∗ in the case ϕ is valid, or
L(Aϕ) = ∅ in the case ϕ is invalid.

5 Nested Antichain-based Approach for Alternating Quantifiers

We now present our approach for dealing with alternating quantifiers in WS1S formu-
lae. We consider a ground formula ϕ of the form

ϕ = ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : ϕ0(X)︸ ︷︷ ︸
ϕ1

. .
.︸ ︷︷ ︸

ϕm

(2)

where each Xi is a set of variables {Xa, . . . , Xb}, ∃Xi is an abbreviation for a non-
empty sequence ∃Xa . . . ∃Xb of consecutive existential quantifications, and ϕ0 is an
arbitrary formula called the matrix of ϕ. Note that the problem of checking validity or
satisfiability of a formula with free variables can be easily reduced to this form.

The classical procedure presented in Section 4 computes a sequence of automata
Aϕ0 ,Aϕ]0 , . . . ,Aϕ]m−1

,Aϕm where for all 0 ≤ i ≤ m − 1, ϕ]i = ∃Xi+1 : ϕi and

ϕi+1 = ¬ϕ]i . The ϕi’s are the subformulae of ϕ shown in Equation 2. Since elimi-
nating existential quantification on the automata level introduces nondeterminism (due
to the projection on the transition relation), every Aϕ]i may be nondeterministic. The
computation of Aϕi+1

then involves subset construction and becomes exponential. The
worst case complexity of eliminating the prefix is therefore the tower of exponentials
of the height m. Even though the construction may be optimized, e.g. by minimizing
every Aϕi (which is implemented by MONA), the size of the generated automata can
quickly become intractable.

The main idea of our algorithm is inspired by the antichain algorithms [13] for
testing language universality of an automatonA. In a nutshell, testing universality ofA
is testing whether in the complement A of A (which is created by determinization via
subset construction, followed by swapping final and non-final states), an initial state can
reach a final state. The crucial idea of the antichain algorithms is based on the following:
(i) The search can be done on-the-fly while constructing A. (ii) The sets of states that
arise during the search are closed (upward or downward, depending on the variant of the
algorithm). (iii) The computation can be done symbolically on the generators of these
closed sets. It is enough to keep only the extreme generators of the closed sets (maximal
for downward, minimal for upward closed). The generators that are not extreme (we say
that they are subsumed) can be pruned away, which vastly reduces the search space.

6



We notice that individual steps of the algorithm for constructingAϕ are very similar
to testing universality. Automaton Aϕi arises by subset construction from Aϕ]i−1

, and

to compute Aϕ]i , it is necessary to compute the set of final states F ]i . Those are states
backward reachable from the final states of Aϕi via a subset of transitions of ∆i (those
labelled by symbols projected to 0 by πi+1). To compute F ]i , the antichain algorithms
could be actually taken off-the-shelf and run with Aϕ]i−1

in the role of the input A and

Aϕ]i in the role of A. However, this approach has the following two problems. First,

antichain algorithms do not produce the automaton A (here Aϕ]i ), but only a symbolic

representation of a set of (backward) reachable states (here of F ]i ). Since Aϕ]i is the
input of the construction of Aϕi+1

, the construction of Aϕ could not continue. The
other problem is that the size of the input Aϕ]i−1

of the antichain algorithm is only
limited by the tower of exponentials of the height i − 1, and this might be already far
out of reach.

The main contribution of our paper is an algorithm that alleviates the two problems
mentioned above. It is based on a novel way of performing not only one, but all the 2m
steps of the construction of Aϕ on-the-fly. It uses a nested symbolic representation of
sets of states and a form of nested subsumption pruning on all levels of their structure.
This is achieved by a substantial refinement of the basic ideas of antichain algorithms.

5.1 Structure of the Algorithm
Let us now start explaining our on-the-fly algorithm for handling quantifier alterna-
tion. Following the construction of automata in Section 4, the structure of the automata
from the previous section,Aϕ0 ,Aϕ]0 , . . . ,Aϕ]m−1

,Aϕm , can be described using the fol-
lowing recursive definition. We use πi(C) for any mathematical structure C to denote
projection of all variables in X1 ∪ · · · ∪ Xi from C.

Let Aϕ0 = (Q0, ∆0, I0, F0) be an FA over X. Then, for each 0 ≤ i < m, Aϕ]i and
Aϕi+1

are FAs over πi+1(X) that have from the construction the following structure:

Aϕ]i = (Qi, ∆
]
i , Ii, F

]
i ) where Aϕi+1

= (Qi+1, ∆i+1, Ii+1, Fi+1) where
∆]i =πi+1(∆i) and ∆i+1 =

{
R
τ−→post[∆]i ,τ ](R)

∣∣∣R∈Qi+1

}
,

F ]i =µZ . Fi∪pre[∆]i ,0](Z). Qi+1 =2Qi , Ii+1={Ii}, and Fi+1=↓{Qi\F ]i }.

We recall thatAϕ]i directly corresponds to existential quantification (cf. Section 4), and
Aϕi+1

directly corresponds to the complement of Aϕ]i (cf. Section 3).
A crucial observation behind our approach is that, because ϕ is ground, Aϕ is an

FA over an empty set of variables, and, therefore, L(Aϕ) is either the empty set ∅ or the
set {0}∗. Therefore, we need to distinguish between these two cases only. To determine
which of them holds, we do not need to explicitly construct the automatonAϕ. Instead,
it suffices to check whetherAϕ accepts the empty string ε. This is equivalent to checking
existence of a state that is at the same time final and initial, that is

|= ϕ iff Im ∩ Fm 6= ∅. (3)
To compute Im from I0 is straightforward (it equals {{. . . {{I0}} . . .}} nested m-
times). In the rest of the section, we will describe how to compute Fm (its symbolic
representation), and how to test whether it intersects with Im.

7



The algorithm takes advantage of the fact that to represent final states, one can use
their complement, the set of non-final states. For 0 ≤ i ≤ m, we write Ni and N ]

i

to denote the sets of non-final states Qi \ Fi of Ai and Qi \ F ]i of A]i respectively.
The algorithm will then instead of computing the sequence of automata Aϕ0

, Aϕ]0 , . . . ,

Aϕ]m−1
, Aϕm compute the sequence F0, F

]
0 , N1, N

]
1 , . . . up to either Fm (if m is even)

or Nm (if m is odd), which suffices for testing the validity of ϕ. The algorithm starts
with F0 and uses the following recursive equations:

(i) Fi+1 = ↓{N ]
i }, (ii) F ]i = µZ . Fi ∪ pre [∆]i ,0](Z),

(iii) Ni+1 = ↑
∐
{F ]i }, (iv) N ]

i = νZ .Ni ∩ cpre [∆]i ,0](Z).
(4)

Intuitively, Equations (i) and (ii) are directly from the definition of Ai and A]i . Equa-
tion (iii) is a dual of Equation (i): Ni+1 contains all subsets of Qi that contain at least
one state from F ]i . Finally, Equation (iv) is a dual of Equation (ii): in the k-th iteration
of the greatest fixpoint computation, the current set of states Z will contain all states
that cannot reach an Fi state over 0 within k steps. In the next iteration, only those states
of Z are kept such that all their 0-successors are in Z. Hence, the new value of Z is the
set of states that cannot reach Fi over 0 in k + 1 steps, and the computation stabilises
with the set of states that cannot reach Fi over 0 in any number of steps.

In the next two sections, we will show that both of the above fixpoint computations
can be carried out symbolically on representatives of upward/downward closed sets.
Particularly, in Sections 5.2 and 5.3, we show how the fixpoints from Equations (ii) and
(iv) can be computed symbolically, using subsets of Qi−1 as representatives (genera-
tors) of upward/downward closed subsets of Qi. Section 5.4 explains how the above
symbolic fixpoint computations can be carried out using nested terms of depth i as
a symbolic representation of computed states of Qi. Section 5.5 shows how to test
emptiness of Im ∩ Fm on the symbolic terms, and Section 5.6 describes the subsump-
tion relation used to minimize the symbolic term representation used within computa-
tions of Equations (ii) and (iv). Proofs of the lemmas and used equations can be found
in [25].

5.2 Computing N ]
i on Representatives of ↑

∐
R-sets

Computing N ]
i at each odd level of the hierarchy of automata is done by computing the

greatest fixpoint of the function from Equation 4(iv):

fN]i
(Z) = Ni ∩ cpre [∆]i ,0](Z). (5)

We will show that the whole fixpoint computation from Equation 4(iv) can be carried
out symbolically on the representatives of Z. We will explain that: (a) All intermediate
values of Z have the form ↑

∐
R, R ⊆ Qi, so the sets R can be used as their symbolic

representatives. (b) cpre and ∩ can be computed on such a representation efficiently.
Let us start with the computation of cpre [∆]i ,τ ](Z) where τ ∈ πi+1(X), assuming

that Z is of the form ↑
∐
R, represented by R = {R1, . . . , Rn}. Observe that a set

of symbolic representatives R stands for the intersection of denotations of individual
representatives, that is

↑
∐
R =

⋂
Rj∈R

↑
∐
{Rj}. (6)

8



Z can thus be written as the cpre-image cpre [∆]i ,τ ](
⋂
S) of the intersection of the ele-

ments of a set S having the form ↑
∐
{Rj}, Rj ∈ R. Further, because cpre distributes

over ∩, we can compute the cpre-image of an intersection by computing intersection of
the cpre-images, i.e.

cpre [∆]i ,τ ](
⋂
S) =

⋂
S∈S

cpre [∆]i ,τ ](S). (7)

By the definition of ∆]
i (where ∆]

i = πi+1(∆i)), cpre [∆]i ,τ ](S) can be computed using
the transition relation ∆i for the price of further refining the intersection. In particular,

cpre [∆]i ,τ ](S) =
⋂

ω∈π−1
i+1(τ)

cpre [∆i,ω](S). (8)

Intuitively, cpre [∆]i ,τ ](S) contains states from which every transition labelled by any
symbol that is projected to τ by πi+1 has its target in S. Using Equations 6, 7, and 8,
we can write cpre [∆]i ,τ ](Z) as

⋂
S∈S,ω∈π−1

i+1(τ)
cpre [∆i,ω](S).

To compute the individual conjuncts cpre [∆i,ω](S), we take advantage of the fact
that every S is in the special form ↑

∐
{Rj}, and that ∆i is, by its definition (deter-

minization via subset construction), monotone w.r.t. ⊇. That is, if P ω−→ P ′ ∈ ∆i for
some P, P ′ ∈ Qi, then for every R ⊇ P , there is R′ ⊇ P ′ s.t. R ω−→ R′ ∈ ∆i. Due
to monotonicity, the cpre [∆i,ω]-image of an upward closed set is also upward closed.
Moreover, we observe that it can be computed symbolically using pre on elements of
its generators. Particularly, for a set of singletons S = ↑

∐
{Rj}, we get the following

equation:
cpre [∆i,ω](↑

∐
{Rj}) = ↑

∐{
pre [∆]i−1,ω](Rj)

}
. (9)

Intuitively, the sets with post-images above a singleton set {p} ∈
{
{p} | p ∈ Rj

}
=

↑
∐
{Rj} are those that contain at least one state q ∈ Qi−1 such that q ω−→ p ∈

∆]
i−1. Using Equation 9, the set cpre [∆]i ,τ ](Z) can then be rewritten as the intersec-

tion
⋂
R∈R,ω∈π−1

i+1(τ)
↑
∐{

pre [∆]i−1,ω](Rj)
}

. By applying Equation 6, we get the final
formula for cpre [∆]i ,τ ] shown in the lemma below.

Lemma 1. cpre [∆]i ,τ ](↑
∐
R) = ↑

∐{
pre [∆]i−1,ω](Rj) | ω ∈ π−1i+1(τ), Rj ∈ R

}
.

To compute fN]i (Z), it remains to intersect cpre [∆]i ,0](Z), computed using Lemma 1,

with Ni. By Equation 4(iii), Ni equals ↑
∐
{F ]i−1}, and, by Equation 6, the intersection

can be done symbolically as

fN]i
(Z) = ↑

∐(
{F ]i−1} ∪

{
pre [∆]i−1,ω](Rj) | ω ∈ π−1i+1(0), Rj ∈ R

})
. (10)

Finally, note that a symbolic application of fN]i to Z = ↑
∐
R represented as the set R

reduces to computing pre-images of the elements ofR, which are then put next to each
other, together with F ]i−1. The computation starts from Ni = ↑

∐
{F ]i−1}, represented

by {F ]i−1}, and each of its steps, implemented by Equation 10, preserves the form of
sets ↑

∐
R, represented byR.

9



5.3 Computing F ]
i on Representatives of ↓R-sets

Similarly as in the previous section, computation of F ]i at each even level of the au-
tomata hierarchy is done by computing the least fixpoint of the function

fF ]i
(Z) = Fi ∪ pre [∆]i ,0](Z). (11)

We will show that the whole fixpoint computation from Equation 4(ii) can be carried out
symbolically. We will explain the following: (a) All intermediate values of Z are of the
form ↓R,R ⊆ Qi, so the setsR can be used as their symbolic representatives. (b) pre
and ∪ can be computed efficiently on such a symbolic representation. The computation
is a simpler analogy of the one in Section 5.2.

We start with the computation of pre [∆]i ,τ ](Z) where τ ∈ πi+1(X), assuming that Z
is of the form ↓R, represented byR = {R1, . . . , Rn}. A simple analogy to Equations 6
and 7 of Section 5.2 is that the union of downward closed sets is a downward closed
set generated by the union of their generators, i.e. ↓R =

⋃
Rj∈R ↓{Rj} and that pre

distributes over union, i.e. pre [∆]i ,τ ](
⋃
R) =

⋃
Rj∈R pre [∆]i ,τ ](↓{Rj}). An analogy of

Equation 8 holds too:

pre [∆]i ,τ ](S) =
⋃

ω∈π−1
i+1(τ)

pre [∆i,ω](S). (12)

Intuitively, pre [∆]i ,τ ](S) contains states from which at least one transition labelled by
any symbol that is projected to τ by πi+1 leaves with the target in S. Using Equation 12,
we can write pre [∆]i ,τ ](Z) as

⋃
Rj∈R,ω∈π−1

i+1(τ)
pre [∆i,ω](↓{Rj}).

To compute the individual disjuncts pre [∆i,ω](↓{Rj}), we take advantage of the fact
that every ↓{Rj} is downward closed, and that ∆i is, by definition (determinization by
subset construction), monotone w.r.t.⊆. That is, if P ω−→ P ′ ∈ ∆i for some P, P ′ ∈ Qi,
then for every R ⊆ P , there is R′ ⊆ P ′ s.t. R ω−→ R′ ∈ ∆i. Due to monotonicity, the
pre [∆i,ω]-image of a downward closed set is downward closed. Moreover, we observe
that it can be computed symbolically using cpre on elements of its generators. In par-
ticular, for a set ↓{Rj}, we get the following equation, which is a dual of Equation 9:

pre [∆i,ω](↓{Rj}) = ↓{cpre [∆]i−1,ω](Rj)}. (13)

Intuitively, the sets with the post-images below Rj are those which do not have an
outgoing transition leading outside Rj . The largest such set is cpre [∆]i−1,ω](Rj). Using
Equation 13, pre [∆]i ,τ ](Z) can be rewritten as

⋃
Rj∈R,ω∈π−1

i+1(τ)
↓{cpre [∆]i−1,ω](Rj)},

which gives us the final formula for pre [∆]i ,τ ] described in Lemma 2.

Lemma 2. pre [∆]i ,τ ](↓R) = ↓{cpre [∆]i−1,ω](Rj) | ω ∈ π−1i+1(τ), Rj ∈ R}.
To compute fF ]i (Z), it remains to unite pre [∆]i ,0](Z), computed using Lemma 2, with

Fi. From Equation 4(i), Fi equals ↓{N ]
i−1}, so the union can be done symbolically as

fF ]i
(Z) = ↓

(
{N ]

i−1} ∪
{
cpre [∆]i−1,ω](Rj) | ω ∈ π−1i+1(0), Rj ∈ R

})
. (14)

Therefore, a symbolic application of fF ]i to Z = ↓R represented using the set R re-
duces to computing cpre-images of elements ofR, which are put next to each other, to-
gether withN ]

i−1. The computation starts from Fi = ↓{N ]
i−1}, represented by {N ]

i−1},

10



and each of its steps, implemented by Equation 14, preserves the form of sets ↓R,
represented byR.

5.4 Computation of F ]
i and N ]

i on Symbolic Terms

Sections 5.2 and 5.3 show how sets of states arising within the fixpoint computations
from Equations 4(ii) and 4(iv) can be represented symbolically using representatives
which are sets of states of the lower level. The sets of states of the lower level will be
again represented symbolically. When computing the fixpoint of level i, we will work
with nested symbolic representation of states of depth i. Particularly, sets of states of
Qk, 0 ≤ k ≤ i, are represented by terms of level k where a term of level 0 is a subset
of Q0, a term of level 2j + 1, j ≥ 0, is of the form ↑

∐
{t1, . . . , tn} where t1, . . . , tn

are terms of level 2j, and a term of level 2j, j > 0, is of the form ↓{t1, . . . , tn} where
t1, . . . , tn are terms of level 2j − 1.

The computation of cpre and fN]2j+1
on a term of level 2j + 1 and computation of

pre and fF ]2j on a term of level 2j then becomes a recursive procedure that descends via
the structure of the terms and produces again a term of level 2j + 1 or 2j respectively.
In the case of cpre and fN]2j+1

called on a term of level 2j + 1, Lemma 1 reduces
the computation to a computation of pre on its sub-terms of level 2j, which is again
reduced by Lemma 2 to a computation of cpre on terms of level 2j − 1, and so on until
the bottom level where the algorithm computes pre on the terms of level 0 (subsets of
Q0). The case of pre and fF ]2j called on a term of level 2j is symmetrical.

Example. We will demonstrate the run of our algorithm on the following abstract ex-
ample. Consider a ground WS1S formula ϕ = ¬∃X3¬∃X2¬∃X1 : ϕ0 and an FA A0 =
(Q0, ∆0, I0 = {a}, F0 = {a, b}) that represents ϕ0. Recall that our method decides
validity of ϕ by computing symbolically the sequence of sets F ]0 , N1, N

]
1 , F2, F

]
2 , N3,

each of them represented using a symbolic term, and then checks if I3 ∩N3 6= ∅. In the
following paragraph, we will show how such a sequence is computed and interleave the
description with examples of possible intermediate results.

The fixpoint computation from Equation 4(ii) of the first set in the sequence, F ]0 , is
an explicit computation of the set of states backward-reachable from F0 via 0 transitions
of ∆]

0. It is done using Equation 11, yielding, e.g. the term

t[F ]0 ] = F ]0 = {a, b, c}.
The fixpoint computation ofN ]

1 from Equation 4(iv) is done symbolically. It starts from
N1 represented using Equation 4(iii) as the term t[N1] = ↑

∐{
{a, b, c}

}
, and each of

its iterations is carried out using Equation 10. Equation 10 transforms the problem of
computing cpre [∆1,ω

′]-image of a term into a computation of a series of pre [∆]0,ω]-
images of its sub-terms, which is carried out using Equation 11 in the same way as
when computing t[F ]0 ], ending with, e.g. the term

t[N]1 ] = ↑
∐{
{a, b, c}, {b, c}, {c, d}

}
.

The term representing F2 is then t[F2] = ↓{t[N]1 ]}, due to Equation 4(i). The symbolic
fixpoint computation of F ]2 from Equation 4(ii) then starts from t[F2], in our example

t[F2] = ↓
{
↑
∐{
{a, b, c}, {b, c}, {c, d}

}}
.

11



Its steps are computed using Equation 14, which transforms the computation of the
image of pre [∆]2,ω′′] into computations of a series of cpre [∆]1,ω′]-images of sub-terms.
These are in turn transformed by Lemma 1 into computations of pre [∆]0,ω]-images of
sub-sub-terms, subsets of Q0, in our example yielding, e.g. the term

t[F ]2 ] = ↓
{
↑
∐{
{a, b, c}, {b, c}, {c, d}

}
, ↑
∐{
{b}, {d}

}
, ↑
∐{
{a}, {c, d}

}}
.

Using Equation 4(iv), the final term representing N3 is then

t[N3] = ↑
∐{
↓
{
↑
∐{
{a, b, c}, {b, c}, {c, d}

}
, ↑
∐{
{b}, {d}

}
, ↑
∐{
{a}, {c, d}

}}}
.

In the next section, we will describe how we check whether I3 ∩ F3 6= ∅ using the
computed term t[N3].

5.5 Testing Im ∩ Fm

?

6= ∅ on Symbolic Terms
Due to the special form of the set Im (every Ii, 1 ≤ i ≤ m, is the singleton {Ii−1}),
the test Im ∩ Fm 6= ∅ can be done efficiently over the symbolic terms representing
Fm. Because Im = {Im−1} is a singleton set, testing Im ∩ Fm 6= ∅ is equivalent to
testing Im−1 ∈ Fm. If m is odd, our approach computes the symbolic representation
of Nm instead of Fm. Obviously, since Nm is the complement of Fm, it holds that
Im−1 ∈ Fm ⇐⇒ Im−1 6∈ Nm. Our way of testing Im−1 ∈ Ym on a symbolic
representation of the set Ym of level m is based on the following equations:

{x} ∈ ↓Y ⇐⇒ ∃Y ∈ Y : x ∈ Y (15)
{x} ∈ ↑

∐
Y ⇐⇒ ∀Y ∈ Y : x ∈ Y (16)

and for i = 0, I0 ∈ ↑
∐
Y ⇐⇒ ∀Y ∈ Y : I0 ∩ Y 6= ∅. (17)

Given a symbolic term t[X] of levelm representing a setX ⊆ Qm, testing emptiness
of Im ∩ Fm or Im ∩Nm can be done over t[X] by a recursive procedure that descends
along the structure of t[X] using Equations 15 and 16, essentially generating an AND-
OR tree, terminating the descent by the use of Equation 17.
Example. In the example of Section 5.4, we would test whether {{{{a}}}} ∩N3 = ∅
over t[N3]. This is equivalent to testing whether I2 = {{{a}}} ∈ N3. From Equation 16
we get that I2 ∈ N3 ⇐⇒ I1 = {{a}} ∈ F ]2 because F ]2 is the denotation of the only
sub-term t[F ]2 ] of t[N3]. Equation 15 implies that I1 = {{a}} ∈ F ]2 ⇐⇒ {a} ∈
N ]

1 ∨ {a} ∈ ↑
∐{
{b}, {d}

}
∨ {a} ∈ ↑

∐{
{a}, {c, d}

}
. Each of the disjuncts could

then be further reduced by Equation 16 into a conjunction of membership queries on
the base level which would be solved by Equation 17. Since none of the disjuncts is
satisfied, we conclude that I1 6∈ F ]2 , so I2 6∈ N3, implying that I2 ∈ F3 and thus obtain
the result |= ϕ.

5.6 Subsumption of Symbolic Terms

Although the use of symbolic terms instead of an explicit enumeration of sets of states
itself considerably reduces the searched space, an even greater degree of reduction can
be obtained using subsumption inside the symbolic representatives to reduce their size,
similarly as in the antichain algorithms [14]. For any set of sets X containing a pair of
distinct elements Y,Z ∈ X s.t. Y ⊆ Z, it holds that

↓X = ↓(X \ Y ) and ↑
∐
X = ↑

∐
(X \ Z). (18)

12



Therefore, if X is used to represent the set ↓X, the element Y is subsumed by Z and can
be removed from X without changing its denotation. Likewise, if X is used to represent
↑
∐
X, the element Z is subsumed by Y and can be removed from X without changing

its denotation. We can thus simplify any symbolic term by pruning out its sub-terms
that represent elements subsumed by elements represented by other sub-terms, without
changing the denotation of the term.

Computing subsumption on terms can be done using the following two equations:
↓X ⊆ ↓Y ⇐⇒ ∀X ∈ X∃Y ∈ Y : X ⊆ Y (19)

↑
∐
X ⊆ ↑

∐
Y ⇐⇒ ∀Y ∈ Y∃X ∈ X : X ⊆ Y. (20)

Using Equations 19 and 20, testing subsumption of terms of level i reduces to testing
subsumption of terms of level i − 1. The procedure for testing subsumption of two
terms descends along the structure of the term, using Equations 19 and 20 on levels
greater than 0, and on level 0, where terms are subsets of Q0, it tests subsumption by
set inclusion.
Example. In the example from Section 5.4, we can use the inclusion {b, c} ⊆ {a, b, c}
and Equation 18 to reduce t[N]1 ] = ↑

∐{
{a, b, c}, {b, c}, {c, d}

}
to the term

t[N1]
′ = ↑

∐{
{b, c}, {c, d}

}
.

Moreover, Equation 20 implies that ↑
∐{
{b, c}, {c, d}

}
is subsumed by the symbolic

term ↑
∐{
{b}, {d}

}
, and, therefore, we can reduce the term t[F ]2 ] to the term

t[F ]2 ]
′ = ↓

{
↑
∐{
{b}, {d}

}
, ↑
∐{
{a}, {c, d}

}}
.

6 Experimental Evaluation
We implemented a prototype of the presented approach in the tool dWiNA [20] and
evaluated it in a benchmark of both practical and generated examples. The tool uses the
frontend of MONA to parse input formulae and also for the construction of the base
automaton Aϕ0

, and further uses the MTBDD-based representation of FAs from the
libvata [21] library. The tool supports the following two modes of operation.

In mode I, we use MONA to generate the deterministic automatonAϕ0
correspond-

ing to the matrix of the formula ϕ, translate it to libvata and run our algorithm for
handling the prefix of ϕ using libvata. In mode II, we first translate the formula ϕ
into the formula ϕ′ in prenex normal form (i.e. it consists of a quantifier prefix and
a quantifier-free matrix) where the occurence of negation in the matrix is limited to lit-
erals, and then construct the nondeterministic automatonAϕ0

directly using libvata.
Our experiments were performed on an Intel Core i7-4770@3.4 GHz processor with

32 GiB RAM. The practical formulae for our experiments that we report on here were
obtained from the shape analysis of [5] and evaluated using mode I of our tool; the
results are shown in Table 1 (see [20] for additional experimental results). We mea-
sure the time of runs of the tools for processing only the prefix of the formulae. We
can observe that w.r.t. the speed, we get comparable results; in some cases dWiNA
is slower than MONA, which we attribute to the fact that our prototype implementa-
tion is, when compared with MONA, quite immature. Regarding space, we compare
the sum of the number of states of all automata generated by MONA when process-
ing the prefix of ϕ with the number of symbolic terms generated by dWiNA for pro-
cessing the same. We can observe a significant reduction in the generated state space.

13



Table 1. Results for practical examples

Benchmark Time [s] Space [states]
MONA dWiNA MONA dWiNA

reverse-before-loop 0.01 0.01 179 47
insert-in-loop 0.01 0.01 463 110
bubblesort-else 0.01 0.01 1 285 271
reverse-in-loop 0.02 0.02 1 311 274
bubblesort-if-else 0.02 0.23 4 260 1 040
bubblesort-if-if 0.12 1.14 8 390 2 065

We also tried to run dWiNA
on the modified formulae in
mode II but ran into the
problem that we were not
able to construct the non-
deterministic automaton for
the quantifier-free matrix ϕ0.
This was because after trans-
formation of ϕ into prenex
normal form, if ϕ0 contains many conjunctions, the sizes of the automata generated
using intersection grow too large (one of the reasons for this is that libvata in its
current version does not support efficient reduction of automata).

Table 2. Results for generated formulae
Time [s] Space [states]

k MONA dWiNA MONA dWiNA

2 0.20 0.01 25 517 44
3 0.57 0.01 60 924 50
4 1.79 0.02 145 765 58
5 4.98 0.02 349 314 70
6 ∞ 0.47 ∞ 90

To better evaluate the scalability of our ap-
proach, we created several parameterized fami-
lies of WS1S formulae. We start with basic for-
mulae encoding interesting relations among sub-
sets of N0, such as existence of certain transitive
relations, singleton sets, or intervals (their full
definition can be found in [20]). From these we
algorithmically create families of formulae with
larger quantifier depth, regardless of the meaning of the created formulae (though their
semantics is still nontrivial). In Table 2, we give the results for one of the families where
the basic formula expresses existence of an ascending chain of n sets ordered w.r.t. ⊂.
The parameter k stands for the number of alternations in the prefix of the formulae:

∃Y : ¬∃X1¬ . . .¬∃Xk, . . . , Xn :
∧

1≤i<n

(
Xi ⊆ Y ∧Xi ⊂ Xi+1

)
⇒ Xi+1 ⊆ Y.

We ran the experiments in mode II of dWiNA (the experiment in mode I was not suc-
cessful due to a costly conversion of a large base automaton from MONA to libvata).

7 Conclusion and Future Work

We presented a new approach for dealing with alternating quantifications within the
automata-based decision procedure for WS1S. Our approach is based on a generaliza-
tion of the idea of the so-called antichain algorithm for testing universality or language
inclusion of finite automata. Our approach processes a prefix of the formula with an
arbitrary number of quantifier alternations on-the-fly using an efficient symbolic rep-
resentation of the state space, enhanced with subsumption pruning. Our experimental
results are encouraging (our tool often outperforms MONA) and show that the direc-
tion started in this paper—using modern techniques for nondeterministic automata in
the context of deciding WS1S formulae—is promising.

An interesting direction of further development seems to be lifting the symbolic
pre/cpre operators to a more general notion of terms that allow working with general
sub-formulae (that may include logical connectives and nested quantifiers). The algo-
rithm could then be run over arbitrary formulae, without the need of the transformation
into the prenex form. This would open a way of adopting optimizations used in other
tools as well as syntactical optimizations of the input formula such as anti-prenexing.

14



Another way of improvement is using simulation-based techniques to reduce the gen-
erated automata as well as to weaken the term-subsumption relation (an efficient algo-
rithm for computing simulation over BDD-represented automata is needed). We also
plan to extend the algorithms to WSkS and tree-automata, and perhaps even further to
more general inductive structures.
Acknowledgement. This work was supported by the Czech Science Foundation (projects
14-11384S and 202/13/37876P), the BUT FIT project FIT-S-14-2486, and the
EU/Czech IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.

References
1. Meyer, A.R.: Weak monadic second order theory of successor is not elementary-recursive. In Proc. of

Logic Colloquium—Symposium on Logic Held at Boston. LNCS 453, Springer, 1972.
2. Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: new techniques for WS1S and WS2S. In Proc. of

CAV’98. LNCS 1427, Springer, 1998.
3. Klarlund, N., Møller, A.: MONA Ver. 1.4 Manual. Available from http://www.brics.dk/mona/.
4. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures and data. In Proc. of

POPL’11. ACM, 2011.
5. Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND. In Proc. of SAS’11.

LNCS 6887, Springer, 2011.
6. Iosif, R., Rogalewicz, A., Šimáček, J.: The tree width of separation logic with recursive definitions. In

Proc. of CADE’13. LNCS 7898, Springer, 2013.
7. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag properties

via user-defined predicates in separation logic. Science of Computer Programing 77(9), 2012.
8. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In Proc. of

POPL’08. ACM, 2008.
9. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over unbounded domains. In

Proc. of FMCAD’10. IEEE, 2010.
10. Topnik, Ch., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: A stand-alone tool and jABC plugin for

M2L(Str). In Proc. of SPIN’06. LNCS 3925, Springer, 2006.
11. Ganzow, T., Kaiser, L.: New algorithm for weak monadic second-order logic on inductive structures. In

Proc. of CSL’10. LNCS 6247, Springer, 2010.
12. Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative tree data structures. In

Proc. of CADE’11. LNCS 6803, Springer, 2011.
13. Doyen, L., Raskin, J.F.: Antichain algorithms for finite automata. In Proc. of TACAS’10. LNCS 6015,

Springer, 2010.
14. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new algorithm for checking uni-

versality of finite automata. In Proc. of CAV’06. LNCS 4144, Springer, 2006.
15. Abdulla, P.A., Chen, Y.F., Holı́k, L., Mayr, R., Vojnar, T.: When simulation meets antichains (on check-

ing language inclusion of NFAs). In Proc. of TACAS’10. LNCS 6015 , Springer, 2010.
16. Bustan, D., Grumberg, O.: Simulation based minimization. In Proc. of CADE’00. LNCS 1831, 2000.
17. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In Proc. of

POPL’13. ACM, 2013.
18. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:

Tree Automata Techniques and Applications, 2008.
19. Büchi, J.R.: Weak second-order arithmetic and finite automata. Technical report, The University of

Michigan (1959) Available at URL: http://hdl.handle.net/2027.42/3930, 2010.
20. Fiedor, T., Holı́k, L., Lengál, O., Vojnar, T.: dWiNA, 2014. Available from http://www.fit.

vutbr.cz/research/groups/verifit/tools/dWiNA/.
21. Lengál, O., Šimáček, J., Vojnar, T.: VATA: A library for efficient manipulation of non-deterministic tree

automata. In Proc. of TACAS’12. LNCS 7214, Springer, 2012.
22. Abdulla, P.A., Bouajjani, A., Holı́k, L., Kaati, L., Vojnar, T.: Computing simulations over tree automata:

Efficient techniques for reducing tree automata. In Proc. of TACAS’08. LNCS 4963, Springer, 2008.
23. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata for verification of

heap manipulation. Formal Methods in System Design 41(1), 2012.
24. Bouajjani, A., Habermehl, P., Holı́k, L., Touili, T., Vojnar, T.: Antichain-based universality and inclusion

testing over nondeterministic finite tree automata. In Proc. of CIAA’08. LNCS 5148, Springer, 2008.
25. Fiedor, T., Holı́k, L., Lengál, O., Vojnar, T.: Nested Antichains for WS1S. Technical report FIT-TR-

2014-06. http://www.fit.vutbr.cz/˜ilengal/pub/FIT-TR-2014-06.pdf.

15

http://www.brics.dk/mona/
http://hdl.handle.net/2027.42/3930
http://www.fit.vutbr.cz/research/groups/verifit/tools/dWiNA/
http://www.fit.vutbr.cz/research/groups/verifit/tools/dWiNA/
http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2014-06.pdf

	Nested Antichains for WS1S

