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Abstract. Forester is a tool for shape analysis of programs with complex dy-
namic data structures—including various flavours of lists (such as singly/doubly
linked lists, nested lists, or skip lists) as well as trees and other complex data
structures—that uses an abstract domain based on finite tree automata. This pa-
per gives a brief description of the verification approach of Forester and discusses
its strong and weak points revealed during its participation in SV-COMP’15.

1 Verification Approach
Forester is a tool for (sound) shape analysis of programs with complex dynamic data
structures, such as various flavours of lists (including singly/doubly linked lists, nested
lists, or skip lists) as well as trees and other complex data structures. The used abstract
domain contains forest automata, a generalization of finite tree automata, described
in [1,2]. The approach attempts to combine the strong points of two other approaches:
(i) the scalability of separation logic [3], which is due to the concept of separation
allowing local reasoning about disjoint parts of the program heap, and (ii) the flexibility
of abstract regular tree model checking (ARTMC) [4], which uses finite tree automata
for symbolic representation of the sets of reachable heap graphs.

The heap representation is based on the forest decomposition of the heap. This is
a representation of the heap by a tuple of trees such that the roots of the trees corre-
spond to the cut-points of the graph. A cut-point is a node that is either referenced from
a program variable or that has more than one incoming edge. The trees in the tuple are
free of cut-points and their leaves contain either non-pointer values or explicit refer-
ences to roots of other trees. To represent sets of heaps—the elements of the concrete
domain—instead of a tuple of trees Forester uses a tuple of tree automata, the so-called
forest automaton. Each tree automaton represents a set of cut-point-free trees; the heap
graphs represented by a forest automaton can be constructed from the forest automaton
by taking a tree from the language of every tree automaton and connecting the refer-
ences in the leaves of the trees to the roots of the referenced trees.

We associate an abstract transformer manipulating forest automata with every con-
crete operation. Joins are handled precisely (we split the execution and proceed in the
verification run for each branch independently). The abstraction operator, called on loop
points, is based on the finite height abstraction from ARTMC [4], and its main idea is
to introduce loops in the tree automata to allow for a representation of infinite sets of
trees with regular structure.

In order to be able to verify programs manipulating heaps where the number of cut-
points is unbounded, we use hierarchical forest automata. These are forest automata



that can use other (lower-level) forest automata as symbols, in a hierarchy of a finite
height. These lower-level forest automata are called boxes. A box is essentially used
to represent a repeated structure of the heap graph that contains some cut-points. The
boxes to be used in a verification run are devised using the learning algorithm from [2].

In order to use Forester, it is necessary to properly model all external functions;
Forester itself implements models of the two basic functions for memory allocation,
malloc and free.

2 Tool Architecture

Forester is implemented in C++ as a GCC plugin that uses the Code Listener [5] infras-
tructure as the front-end for preprocessing the intermediate representation used in GCC
(called GIMPLE) into a compiler-independent representation. Further, it uses the VATA
library [6] as the back-end for manipulating tree automata. Forester translates the input
program obtained from Code Listener into its internal representation, in which every
program statement is represented by a sequence of abstract transformers that manipu-
late the symbolic representation of the program. The translated program is then subject
to symbolic execution, during which Forester detects memory errors (invalid derefer-
ences or frees, occurrence of garbage) and reachability of an error line.

3 Strengths and Weaknesses

The main strong point of Forester is that it gives sound results on all verification tasks
that we run. In particular, Forester was able to find shape invariants for the most difficult
programs in the Memory Safety category, i.e. programs manipulating 2 and 3 level skip
lists, trees (including the Deutsch-Schorr-Waite tree traversal algorithm), and (nested)
singly/doubly linked lists.

However, the overall performance of Forester on the benchmarks of SV-COMP’15
was significantly hindered by the following two causes. The first cause is the still quite
high degree of immaturity of Forester in dealing with real-life C code with all its
caveats—in the case Forester encounters some unsupported feature of C (such as the
union data type, function pointers, or the use of arrays), it returns the UNKNOWN
answer. The other cause is the incompleteness of the verification procedure and the cur-
rent inability of the tool to distinguish spurious counterexamples from real ones; if a po-
tentially spurious counterexample is found by Forester, it again returns UNKNOWN.
However, it is possible to use the option --false to switch Forester into a mode in
which it reports all found counterexamples and allows their subsequent analysis, either
by a user or by e.g. a bug hunter.

4 Tool Setup and Configuration

An archive with the source code of the Forester competition release1 can be down-
loaded from the project web page. The file README-FORESTER-SVCOMP-2015 in
the root directory of the archive contains information about how to build and run the
tool. After Forester is successfully built, the fa build directory contains a Python

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/
forester/download/forester-2014-10-31-9d3ad64.tar.gz
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script sv comp run.py that executes the tool and transforms its output to the format
expected by SV-COMP. The script expects the path to the file with the program under
verification as an argument; further, the path to a file with a description of the prop-
erties to be verified can be specified using the --properties option. For the case
the answer of Forester is FALSE (i.e. a real error is encountered in the program under
verification), Forester returns the name of the property that has been violated. More-
over, a mandatory --trace option is required to specify the path to the file where
the witness leading from the entry point to the statement that caused the violation is to
be saved. On the other hand, if Forester finds a shape invariant of the program without
encountering a property violation, it returns TRUE.

Furthermore, if the --time option is given, Forester also writes to the standard
output the CPU time that the verification run took. It is also possible to generate graph-
ical representations of abstract program configurations at some line of code into a se-
quence of files named according to the template filename-XXXX.dot by inserting
the statement VERIFIER plot("filename") to the desired line of code in the
processed program.

Forester participates in the following two categories of SV-COMP’15: Heap Ma-
nipulation and Memory Safety.

5 Software Project and Conclusion
Forester is developed by the VeriFIT group at Brno University of Technology and dis-
tributed under the GNU General Public License version 3. The source code of Forester
is in a git repository shared with Predator (a memory analyzer based on symbolic
memory graphs [7]), which is developed in the same group.

This is the first submission of Forester to SV-COMP. In the future, we wish to focus
on the following two points: (a) extending the set of the supported features of C, and
(b) developing the ability to properly identify spurious counterexamples and to use them
to refine the abstraction used.
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