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We introduce a new paradigm for analysing and finding bugs in quantum circuits. In our approach, the problem
is given by a triple {%}� {&} and the question is whether, given a set % of quantum states on the input of
a circuit � , the set of quantum states on the output is equal to (or included in) a set & . While this is not
suitable to specify, e.g., functional correctness of a quantum circuit, it is sufficient to detect many bugs in
quantum circuits. We propose a technique based on tree automata to compactly represent sets of quantum
states and develop transformers to implement the semantics of quantum gates over this representation. Our
technique computes with an algebraic representation of quantum states, avoiding the inaccuracy of working
with floating-point numbers. We implemented the proposed approach in a prototype tool and evaluated its
performance against various benchmarks from the literature. The evaluation shows that our approach is quite
scalable, e.g., we managed to verify a large circuit with 40 qubits and 141,527 gates, or catch bugs injected
into a circuit with 320 qubits and 1,758 gates, where all tools we compared with failed. In addition, our work
establishes a connection between quantum program verification and automata, opening new possibilities to
exploit the richness of automata theory and automata-based verification in the world of quantum computing.
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1 INTRODUCTION

The concept of quantum computing appeared around 1980 with the promise to solve many problems
challenging for classical computers. Quantum algorithms for such problems started appearing
later, such as Shor’s factoring algorithm [Shor 1994], a solution to the hidden subgroup problem by
Ettinger et al. [Ettinger et al. 2004], Bernstein-Vazirani’s algorithm [Bernstein and Vazirani 1993],
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or Grover’s search [Grover 1996]. For a long time, no practical implementation of these algorithms
has been available due to the missing hardware. Recent years have, however, seen the advent of
quantum chips claiming to achieve quantum supremacy [Arute et al. 2019], i.e., the ability to solve
a problem that a state-of-the-art supercomputer would take thousands of years to solve. As it seems
that quantum computers will occupy a prominent role in the future, systems and languages for
their programming are in active development (e.g., [Altenkirch and Grattage 2005; Green et al. 2013;
Wille et al. 2019]), and efficient quantum algorithms for solutions of real-world problems, such as
machine learning [Biamonte et al. 2017; Ciliberto et al. 2018], optimization [Moll et al. 2018], or
quantum chemistry [Cao et al. 2019], have started appearing.

The exponential size of the underlying computational space and the probabilistic nature makes
it, however, extremely challenging to reason about quantum programs—both for human users and
automated analysis tools. Currently, existing automated analysis approaches are mostly unable to
handle large-scale circuits [Feng et al. 2017, 2015; Ying 2021; Ying and Feng 2021; Ying et al. 2014],
inflexible in checking user-specified properties [Amy 2018; Burgholzer and Wille 2020; Coecke and
Duncan 2011; Fagan and Duncan 2019; Green et al. 2013; Niemann et al. 2016; Pednault et al. 2017;
Samoladas 2008; Tsai et al. 2021; Viamontes et al. 2009; Wecker and Svore 2014; Zulehner et al. 2019;
Zulehner and Wille 2019], or imprecise and unable to catch bugs [Perdrix 2008; Yu and Palsberg
2021]. Scalable and flexible automated analysis tools for quantum circuits are indeed missing.

In this paper, we propose a new paradigm for analysing and finding bugs in quantum circuits. In
our approach, the problem is given by a triple {%}� {&}, where� is a quantum circuit and % and&
are sets of quantum states. The verification question that we address is whether the set of output
quantum states obtained by running � on all states from % is equal to (or included in) the set & .
While this kind of property is not suitable to specify, e.g., functional correctness of a quantum
circuit, it is sufficient to obtain a lot of useful information about a quantum circuit, such as finding
constants (will a circuit evaluate to the same quantum state for all inputs in % ) or detecting bugs.
We create a framework for analysing the considered class of properties based on (finite) tree

automata (TAs) [Comon et al. 2008]. Languages of TAs are set of trees; in our case, we consider TAs
whose languages contain full binary trees with the height being the number of qubits in the circuit.
Each branch (a path from a root to a leaf) in such a tree corresponds to one computational basis state

(e.g., |0000⟩ or |0101⟩ for a four-qubit circuit), and the corresponding leaf represents the complex

amplitude of the state (we use an algebraic encoding of complex numbers by tuples of integers to
have a precise representation and avoid possible inaccuracies when dealing with floating-point
numbers1; this encoding is sufficient for a wide variety of quantum gates, including the Clifford+T
universal set [Boykin et al. 2000]). Sets of such trees can be in many cases encoded compactly using
TAs, e.g., storing the output of Bernstein-Vazirani’s algorithm [Bernstein and Vazirani 1993] over
= qubits requires a vector of 2= complex numbers, but can be encoded by a linear-sized TA. For each
quantum gate, we construct a transformation that converts the input states TA to a TA representing
the gate’s output states, in a similar way as classical program transformations are represented
in [D’Antoni et al. 2015]. Testing equivalence and inclusion between the TA representing the set of
outputs of a circuit and the postcondition & (from {%}� {&}) can then be done by standard TA
language inclusion/equivalence testing algorithms [Abdulla et al. 2008, 2007; Comon et al. 2008;
Lengál et al. 2012]. If the test fails, the framework generates a witness for diagnosis.
One application of our framework is as a quick underapproximation of a quantum circuit non-

equivalence test. Our approach can switch to a lightweight specification when equivalence checkers
fail due to insufficient resources and still find bugs in the design. Quantum circuit (non-)equivalence
testing is an essential part of the quantum computing toolkit. Its prominent use is in verifying

1Integer numbers of an arbitrary precision can be handled, e.g., by the popular GMP [GMP 2022] package.
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results of circuit optimization, which is a necessary part of quantum circuit compilation in order to
achieve the expected fidelity of quantum algorithms running on real-world quantum computers,
which are heavily affected by noise and decoherence [Amy 2019; Hattori and Yamashita 2018;
Hietala et al. 2019; Itoko et al. 2020; Moll et al. 2018; Nam et al. 2018; Peham et al. 2022; Soeken et al.
2010; Xu et al. 2022b]. Already in the world of classical programs, optimizer bugs are being found
on a regular basis in compilers used daily by tens of thousands of programmers (see, e.g., [Livinskii
et al. 2020]). In the world of quantum, optimization is much harder than in the classical setting, with
many opportunities to introduce subtle and hard-to-discover bugs into the optimized circuits. It is
therefore essential to be able to check that an output of an optimizer is functionally equivalent to
its input. Moreover, global optimization techniques, such as genetic algorithms [Massey et al. 2005;
Spector 2006], may use (somehow quantified) circuit (non-)equivalence as the fitness function.

Testing quantum circuit (non-)equivalence is, however, a challenging task (QMA-complete [Janz-
ing et al. 2005]). Due to its complexity, approaches that can quickly establish circuit non-equivalence
are highly desirable to be used, e.g., as a preliminary check before a more heavy-weight procedure,
such as [Burgholzer and Wille 2020; Peham et al. 2022; Viamontes et al. 2007; Wei et al. 2022; Ya-
mashita andMarkov 2010], is used. One currently employed fast non-equivalence check is to use ran-
dom stimuli generation [Burgholzer et al. 2021]. Finding subtle bugs by random testing is, however,
challengingwith no guarantees due to the immense (in general uncountable) underlying state space.

Our approach can be used as follows: we start with a TA encoding the set of possible input states
(created by the user or automatically) and run our analysis of the circuit over it, obtaining a TA A
representing the set of all outputs. Then, we take the optimized circuit, run it over the same TA
with inputs and obtain a TA A′. Finally, we check whether L(A) = L(A′). If the equality does
not hold, we can conclude that the circuits are not functionally equivalent (if the equality holds,
there can, however, still be some bug that does not manifest in the set of output states).

We implemented our technique in a prototype called AutoQ and evaluated it over a wide range
of quantum circuits, including some prominent quantum algorithms, randomly generated circuits,
reversible circuits from RevLib [Wille et al. 2008], and benchmarks from the tool Feynman [Amy
2018]. The results show that our approach is quite scalable. We did not find any tool with the
same functionality with ours and hence pick the closest state-of-the art tools: a circuit simulator
SliQSim [Tsai et al. 2021] and circuit equivalence checkers Feynman [Amy 2018] (based on path-
sum) and Qcec [Burgholzer and Wille 2020] (combining ZX-calculus, decision diagrams, and
random stimuli generation), as the baseline tools to compare with. In the first experiments, we
evaluated AutoQ’s capability in verification against pre- and post-conditions. We managed to
verify the functional correctness (w.r.t. one input state) of a circuit implementing Grover’s search
algorithm with 40 qubits and 141,527 gates. We then evaluated AutoQ on circuits with injected
bugs. The results confirm our claim—AutoQ was able to find injected bugs in various huge-scale
circuits, including one with 320 qubits and 1,758 gates, which the other tools failed to find.

In addition to the practical utility, our work also bridges the gap between quantum and classical
verification, particularly automata-based approaches such as regular (tree) model checking [Bouajjani
et al. 2012, 2000; Neider and Jansen 2013] or string manipulation verification [Yu et al. 2008, 2011].
As far as we know, our approach to verification of quantum circuits is the first based on automata.
The enabling techniques and concepts involved in this work are, e.g., the use of TAs to represent sets
of quantum states and express the pre- and post-conditions, the compactness of the TA structure
enabling efficient gate operations, and our TA transformation algorithms enabling the execution of
quantum gates over TAs. We believe that the connection of automata theory with the quantum
world we establish can start new fruitful collaborations between the two rich fields.
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@ G1 (@1, @0)
@0 G2 (@2, @2) @2 0 ()
@1 G2 (@3, @2) @3 1 ()

(a) The TA of |00⟩.

@ G1 (@0, @1)
@1 G2 (@2, @3) @2 0 ()
@0 G2 (@3, @2) @3 1/

√
2 ()

(b) The TA of 1√
2
( |00⟩ + |11⟩).

|G1⟩ �

|G2⟩

(c) The EPR circuit

Fig. 1. Constructing the Bell state

Overview: We use a concrete example to demonstrate how to use our approach. Assume that we
want to design a circuit constructing the Bell state, i.e., a 2-qubit circuit converting a basis state
|00⟩ to a maximally entangled state 1√

2
( |00⟩ + |11⟩). We first prepare TAs corresponding to the

precondition (Fig. 1a) and postcondition (Fig. 1b). Both TAs use @ as the root state and accept only
one tree. One can see the correspondence between quantum states and TAs by traversing their
structure. The precise definition will be given in Section 2 and Section 3. Our approach will then
use the transformers from Sections 4 to 6 to construct a TA A recognizing the quantum states after
executing the EPR circuit (Fig. 1c) from the precondition TA (Fig. 1a). We will then use TA language
inclusion/equivalence tool VATA [Lengál et al. 2012] to check A against the postcondition TA. If
the circuit is buggy, our approach will return a witness quantum state that is reachable from the
precondition, but not allowed by the postcondition. From our experience of preparing benchmark
examples, in many cases, this approach helps us finding out bugs from incorrect designs.

2 PRELIMINARIES

We assume basic knowledge of linear algebra and quantum circuits. Below, we only give a short
overview and fix notation; see, e.g., the textbook [Nielsen and Chuang 2011] for more details.
By default, we work with vectors and matrices over complex numbers C. In particular, we use

C
<×= to denote the set of all< × = complex matrices. Given a : × ℓ matrix (0G~), its transpose

is the ℓ × : matrix (0G~)) = (0~G ) obtained by flipping (0G~) over its diagonal. A 1 × : matrix is
called a row vector and a : × 1 matrix is called a column vector. To save vertical space, we often
write a column vector E using its row transpose E) . We use � to denote the identity matrix of any
dimension (which should be clear from the context). The conjugate of a complex number 0+18 is the
complex number 0 − 18 , and the conjugate transpose of a matrix � = (0G~) is the matrix �†

= (2~G )

where 2~G is the conjugate of 0~G . For instance,
(
1 + 8 2 − 28 3

4 − 78 0 0

)†
=
©­
«
1 − 8 4 + 78

2 + 28 0

3 0

ª®
¬
. The inverse

of a matrix � is denoted as �−1. A square matrix � is unitary if �†
= �−1. The Kronecker product of

� = (0G~) ∈ C:×ℓ and � ∈ C<×= is the :< × ℓ= matrix � ⊗ � = (0G~�), for instance,

(
1 + 8 3

4 − 78 0

)
⊗
(

1
2 1

− 1
2 0

)
=

©­­­­«

(1 + 8) ·
(

1
2 1

− 1
2 0

)
3 ·

(
1
2 1

− 1
2 0

)

(4 − 78) ·
(

1
2 1

− 1
2 0

)
0 ·

(
1
2 1

− 1
2 0

)
ª®®®®¬
=

©­­­­«

1
2 + 1

2 8 1 + 8 3
2 3

− 1
2 − 1

2 8 0 − 3
2 0

2 − 7
2 8 4 − 78 0 0

−2 + 7
2 8 0 0 0

ª®®®®¬
. (1)

2.1 �antum Circuits

Quantum states. In a quantum system with = qubits, the qubits can be entangled, and its quantum
state can be a quantum superposition of computational basis states {| 9⟩ | 9 ∈ {0, 1}=}. For instance,
given a system with three qubits G1, G2, and G3, the computational basis state |011⟩ denotes a state
where qubit G1 is set to 0 and qubits G2 and G3 are set to 1. The superposition is then denoted in the
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Dirac notation as a formal sum
∑

9∈{0,1}= 0 9 · | 9⟩, where 00, 01, . . . , 02=−1 ∈ C are complex amplitudes2

satisfying the property that
∑

9∈{0,1}= |0 9 |2 = 1. Intuitively, |0 9 |2 is the probability that when we
measure the state in the computational basis, we obtain the state | 9⟩; these probabilities need to
sum up to 1 for all computational basis states. We note that the quantum state can alternatively be
represented by a 2=-dimensional column vector3 (00, . . . , 02=−1)) or by a function ) : {0, 1}= → C,
where ) ( 9) = 0 9 for all 9 ∈ {0, 1}= . In the following, we will work mainly with the function
representation, which we will see as a mapping from the domain of assignments to Boolean
variables (corresponding to qubits) to C. For instance, the quantum state 1√

2
· |00⟩ + 1√

2
· |01⟩ can be

represented by the vector ( 1√
2
, 1√

2
, 0, 0)) or the function ) = {00 ↦→ 1√

2
, 01 ↦→ 1√

2
, 10 ↦→ 0, 11 ↦→ 0}.

Quantum gates. Operations in quantum circuits are represented using quantum gates. A :-qubit
quantum gate (i.e., a quantum gate with : inputs and : outputs) can be described using a 2: × 2:

unitary matrix. When computing the effect of a :-qubit quantum gate* on the qubits Gℓ , . . . , Gℓ+:−1
of an =-qubit quantum state represented using a 2=-dimensional vector E , we proceed as follows.
First, we compute an auxiliary matrix* ′

= �=−(ℓ+:−1) ⊗* ⊗�ℓ−1 where � 9 denotes the 29 -dimensional
identity matrix. Note that if* is unitary, then* ′ is also unitary. Then, the new quantum state is
computed as E ′ = * ′ × E . For instance, let = = 2 and* be the Pauli-- gate applied to the qubit G1.

- ′
= - ⊗ � =

(
0 1

1 0

)
⊗
(
1 0

0 1

)
=

©­­­­«

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

ª®®®®¬
, E ′ = - ′ × E =

©­­­­«

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

ª®®®®¬
×
©­­­­«

200

201

210

211

ª®®®®¬
=

©­­­­«

210

211

200

201

ª®®®®¬
(2)

Representation of complex numbers. In order to achieve accuracy with no loss of precision, in this
paper, when working with C, we consider only a subset of complex numbers that can be expressed
by the following algebraic encoding proposed in [Zulehner and Wille 2019] (and also used in [Tsai
et al. 2021]): ( 1

√
2

)
: (0 + 1l + 2l2 + 3l3), (3)

where 0, 1, 2, 3, : ∈ Z and l = 4
8c
4 , the unit vector that makes an angle of 45◦ with the positive

real axis in the complex plane). A complex number is then represented by a five-tuple (0, 1, 2, 3, :).
Although the considered set of complex numbers is only a small subset of C (it is countable, while
the set C is uncountable), the subset is already sufficient to describe a set of quantum gates that
can implement universal quantum computation (cf. Section 4 for more details). The algebraic
representation also allows efficient encoding of some operations. For example, because l4

= −1,
the multiplication of (0, 1, 2, 3, :) by l can be carried out by a simple right circular shift of the first
four entries and then taking the opposite number for the first entry, namely (−3, 0, 1, 2, :), which
represents the complex number

(
1√
2

)
: (−3 + 0l + 1l2 + 2l3). In the rest of the paper, we use 0

and 1 to denote the tuples for zero and one, i.e., (0, 0, 0, 0, 0) and (1, 0, 0, 0, 0), respectively. Using
such an encoding, we represent quantum states by functions of the form ) : {0, 1}= → Z5.

Qubit Measurement. After executing a quantum circuit, one can measure the final quantum
state in the computational basis. The probability that the qubit G 9 of a quantum state

∑
8∈{0,1}= 08 ·

|8⟩ is measured as the basis state |0⟩ can be computed from the amplitude: Prob[G 9 = |0⟩] =∑
8∈{0,1}=− 9×{0}×{0,1} 9−1 |08 |2 . When G 9 collapses to |0⟩ after the measurement, amplitudes of states

with G 9 = |1⟩ become 0 and amplitudes of states with G 9 = |0⟩ are normalized using 1√
Prob[G 9= |0⟩ ]

.

2We abuse notation and sometimes identify a binary string with its (unsigned) integer value in the most significant bit first

(MSBF) encoding, e.g., the string 0101 with the number 5.
3Observe that in order to satisfy the requirement for the amplitudes of quantum states, it must be a unit vector.
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2.2 Tree Automata

5

5 6

21 22 5 21

22 23

Binary Trees. We use a ranked alphabet Σ with binary symbols 5 , 6, . . . and
constant symbols 21, 22, . . . . A binary tree is a ground term over Σ. For instance,
) = 5 (5 (21, 22), 6(5 (22, 23), 21)), shown in the right, represents a binary tree.
The set of nodes of a binary tree ) , denoted as #) , is defined inductively as
a set of words over {0, 1} such that for every constant symbol 2 , we define
#2 = {n}, and for every binary symbol 5 , we define #5 ()0,)1 ) = {n} ∪ {0.F |
0 ∈ {0, 1} ∧F ∈ #)0 }, where n is the empty word and ‘.’ is concatenation. Each binary tree ) is
associated with a labeling function !) : {0, 1}∗ → Σ, which maps a node in) to its label in Σ. A tree
is single-valued if it contains only one constant symbol.

Tree Automata. We focus on tree automata on binary trees and refer the interested reader
to [Comon et al. 2008] for a general definition. A (nondeterministic finite) tree automaton (TA)
is a tuple A = ⟨&, Σ,Δ,R⟩ where & is a finite set of states, Σ is a ranked alphabet, R ⊆ & is
the set of root states, and Δ = Δ8 ∪ Δ; is a set of tree transitions consisting of the set Δ8 of
internal transitions of the form @ 5 (@0, @1) (for a binary symbol 5 ) and the set Δ; of leaf tran-

sitions of the form @ 2 () (for a constant symbol 2), for @, @0, @1 ∈ & . W.l.o.g., to simplify our
correctness proof, we assume every leaf transition of TAs has a unique parent state, namely,
for any two leaf transitions @ 2 (), @′ 2′ () ∈ Δ, it holds that 2 ≠ 2′ =⇒ @ ≠ @′. We
can conveniently describe TAs by providing only the set of root states R and the set of tran-
sitions Δ. The alphabet and states are implicitly defined as those that appear in Δ. For exam-
ple, Δ = {@ G1 (@1, @0), @ G1 (@0, @1), @0 0 (), @1 1 ()} implies that Σ = {G1, 0, 1} and
& = {@, @0, @1}.

Run and Language. A run of A on a tree ) is another tree d labeled with & such that (i) ) and d

have the same set of nodes, i.e., #) = #d , (ii) for all leaf nodesD ∈ #) , we have !d (D) !) (D) () ∈
Δ, and (iii) for all non-leaf nodes E ∈ #) , we have !d (D) !) (D) (!d (0.D), !d (1.D)) ∈ Δ. The
run d is accepting if !d (n) ∈ R. The language L(A) of A is the set of trees accepted by A, i.e.,
L(A) = {) | there exists an accepting run of A over ) }. A TA is (top-down) deterministic if it has
at most one root state and for any of its transitions @ G (@; , @A ) and @ G (@′

;
, @′A ) it holds that

@; = @′
;
and @A = @′A . Any tree from the language of a deterministic TA has a unique run in the TA.

Example 2.1 (Accepted tree and its run). Assume a TA A3 with @ as its single root state and the
following transitions:

@ G1 (@10, @11) @11 G2 (@20, @21) @21 G3 (@0, @1) @0 0 ()
@ G1 (@11, @10) @11 G2 (@21, @20) @21 G3 (@1, @0) @1 1 ()

@10 G2 (@20, @20) @20 G3 (@0, @0)

G1

G2 G2

G3 G3 G3 G3

1 0 0 0 0 0 0 0

@

@11 @10

@21 @20 @20 @20

@1 @0 @0 @0 @0 @0 @0 @0

Among others, A3 accepts the above tree (in the left) with the run (in the right). Observe that all
tree nodes satisfy the requirement of a valid run. E.g., the node 111 corresponds to the transition

@0 0 (), 01 to @20 G3 (@0, @0), and n to @ G1 (@11, @10), etc.
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In A3, we use states named @=0 to denote only subtrees with all zeros (0) in leaves that can be
generated from here, and states named @=1 to denote only subtrees with a single 1 in the leaves that
can be generated from it. Intuitively, the TA accepts all trees of the height three with exactly one 1
leaf and all other leaves 0 (in our encoding of quantum states, this might correspond to saying
that A3 encodes an arbitrary computational basis state of a three-qubit system). □

3 ENCODING SETS OF QUANTUM STATES WITH TREE AUTOMATA

Observe that we can use (full) binary trees to encode functions {0, 1}= → Z
5, i.e., the function

representation of quantum states. For instance, the tree

G1 (G2 (G3 (1, 0), G3 (0, 0)), G2 (G3 (0, 0), G3 (0, 0))) (4)

encodes the function ) where ) (000) = 1 and ) (8) = 0 for all 8 ∈ {0, 1}3 \ {000}. Since TAs can
concisely represent sets of binary trees, they can be used to encode sets of quantum states.

Example 3.1 (Concise representation of sets of quantum states by TAs). Here we consider the
set of =-qubit quantum states &= = {|8⟩ | 8 ∈ {0, 1}=}, i.e., the set of all basis states. Note that
|&= | = 2= , which is exponential. Representing all possible basis states naively would require storing
22

=

complex numbers. TAs can, however, represent such a set much more efficiently.
For the case when = = 3, the set &3 can be represented by the TA A3 from Example 2.1 with

3= + 1 transitions (i.e., linear-sized). The TA A3 can be generalized to encode the set of all =-qubit
states &= = {|8⟩ | 8 ∈ {0, 1}=} for each = ∈ N by setting the transitions to

@ G1 (@10, @11) @11 G2 (@20, @21) . . . @=−11 G= (@0, @1) @0 0 ()
@ G1 (@11, @10) @11 G2 (@21, @20) . . . @=−11 G= (@1, @0) @1 1 ()

@10 G2 (@20, @20) . . . @=−10 G= (@0, @0)
We denote the resulting TA by A= . Notice that although &= has 2= quantum states, A= has only
2= + 1 states and 3= + 1 transitions. □

Formally a TA A recognizing a set of quantum states is a tuple ⟨&, Σ,Δ,R⟩, whose alphabet Σ
can be partitioned into two classes of symbols: binary symbols G1, . . . , G= and a finite set of leaf
symbols Σ2 ⊆ Z5 representing all possible amplitudes of quantum states in terms of computational
bases. By slightly abusing the notation, for a full binary tree ) ∈ L(A), we also use ) to denote
the function {0, 1}= → Z5 that maps a computational basis to the corresponding amplitude of ) ’s
quantum state. The two meanings of ) are used interchangeably throughout the paper.

Remark. Note that TAs allow representation of infinite languages, yet we only use them for
finite sets, which might seem like the model is overly expressive. We, however, stick to TAs for the
following two reasons: (i) there is an existing rich toolbox for TA manipulation and minimization,
e.g., [Abdulla et al. 2008, 2007; Comon et al. 2008; Lengál et al. 2012], and (ii) we want to have
a robust formal model for extending our framework to parameterized verification, i.e., proving that
an =-qubit algorithm is correct for any =, which will require us to deal with infinite languages (c.f.,
the framework of regular tree model checking [Abdulla et al. 2002; Bouajjani et al. 2012]).

Moreover, we chose full binary trees as the representation of quantum states. We thought about
using a more compact structure, e.g., allowing jump over a transition with common left and right
children (similar to ROBDD’s elimination of a node with isomorphic subtrees [Bryant 1986]). We
decided against that because TAs already allow an efficient representation of common children
via a transition to the same left and right states, e.g., @ G (@′, @′). The benefit of using a more
compact tree representation is thus limited. Using a more efficient data structure would also make
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|G1⟩ -

|G2⟩

(a) - gate applied
to qubit G1

- =

(
0 1

1 0

)

(b) Matrix of
the - gate

|G1⟩

|G2⟩

(c) CNOT2
1 gate with target

qubit G1 and control qubit G2

CNOT =

©­­­
«

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®¬
(d) Matrix of the CNOT

gate

Fig. 2. Applications of - and CNOT gates and their matrices

the algorithms in the following sections harder to understand. We therefore leave the investigation
of designing a more efficient data structure to our future work.

4 SYMBOLIC REPRESENTATION OF QUANTUM GATES

With TAs used to concisely represent sets of quantum states, the next task is to capture the effects
of applying quantum gates on this representation. When quantum states are represented as vectors,
gates are represented as matrices and gate operations are matrix multiplications. When states are
represented as binary trees, we need a new representation for quantum gates and their operations.
Inspired by the work of [Tsai et al. 2021], we introduce symbolic update formulae, which are formulae
that describe how a gate transforms a tree representing a quantum state. Later, we will lift the tree
update operation to a set of trees encoded in a TA.
We use the algebraic representation of quantum states from Eq. (3) also for their symbolic

handling. For instance, consider a system with qubits G1, G2 and its state

) = 200 · |00⟩ + 201 · |01⟩ + 210 · |10⟩ + 211 · |11⟩ (5)

for 200, 201, 210, 211 ∈ Z5, four complex numbers represented in the algebraic way. The result of ap-
plying the- gate (the quantum version of the NOT gate) on qubit G1 (cf. Fig. 2a) is (210, 211, 200, 201))
(cf. Eq. (2)). Intuitively, we observe that the effect of the gate is a permutation of the computational
basis states that swaps the amplitudes of states where the G1’s value is 1 with states where the G1’s
value is 0 (and the values of qubits other than G1 stay the same). Concretely, it swaps the amplitudes
of the pairs ( |00⟩ , |10⟩) and (|01⟩ , |11⟩) to obtain the quantum state

- () ) = 210 · |00⟩ + 211 · |01⟩ + 200 · |10⟩ + 201 · |11⟩ . (6)

Instead of executing the quantum gate by performing a matrix-vector multiplication, we will
capture its semantics symbolically by directly manipulating the tree function ) : {0, 1}= → Z5. For
this, we will use the following operators on ) , parameterized by a qubit GC (C for “target”):

)GC (1= . . . 1C . . . 11) = ) (1= . . . 1 . . . 11) �GC (1= . . . 1C . . . 11) = 1C

)GC (1= . . . 1C . . . 11) = ) (1= . . . 0 . . . 11) �GC (1= . . . 1C . . . 11) = 1C .

(Projection) (Restriction)

In the previous, 1C denotes the complement of the bit 1C (i.e., 0 = 1 and 1 = 0). Intuitively, )GC and
)GC fix the value of qubit GC to be 1 and 0 respectively. On the other hand, �GC and �GC just take the
value of qubit GC (or its negation) in the computational basis state.

Equipped with the operators, we can now proceed to express the semantics of - symbolically.
Let us first look at the first two summands on the right-hand side of Eq. (6):) 0

= 210 · |00⟩ +211 · |01⟩.
These summands can be obtained by manipulating the input function ) in the following way:

) 0
= �G1 ·)G1 . (7)
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Table 1. Symbolic update formulae for the considered quantum gates; G2 and G ′2 denote control bits (if they
exist), and GC denotes the target bit.

Gate Update
XC �GC ·)GC + �GC ·)GC
YC l2 · (�GC ·)GC − �GC ·)GC )
ZC �GC ·) − �GC ·)
HC ()GC + �GC ·)GC − �GC ·) )/

√
2

SC �GC ·) + l2 · �GC ·)
TC �GC ·) + l · �GC ·)

Rx(c
2
)C () − l2 · (�GC ·)GC + �GC ·)GC ))/

√
2

Ry(c
2
)C ()GC + �GC ·) − �GC ·)GC )/

√
2

CNOT2C �G2 ·) + �G2 · (�GC ·)GC + �GC ·)GC )
CZ2C �G2 ·) + �G2 · (�GC ·) − �GC ·) )

Toffoli2,2
′

C �G2 ·) + �G2 · (�G2′ ·) + �G2′ · (�GC ·)GC + �GC ·)GC ))

Here,) 0
= �G1 ·)G1 is a shorthand for) 0 (11 . . . 1=) = �G1 (11 . . . 1=) ·)G1 (11 . . . 1=). When we view)

as a tree, the operation )G1 essentially copies the right subtree of every G1-node to its left subtree,
and �G1 ·)G1 makes all leaves in every right subtree of )G1 ’s G1-node zero. This would give us

) 0
= 210 · |00⟩ + 211 · |01⟩ + 0 · |10⟩ + 0 · |11⟩ = 210 · |00⟩ + 211 · |01⟩ . (8)

On the other hand, the last two summands in the right-hand side of Eq. (6), i.e.,) 1
= 200·|10⟩+201·|11⟩,

could be obtained by manipulating ) as follows:

) 1
= �G1 ·)G1 . (9)

The tree view of �G1 ·)G1 is symmetric to �G1 ·)G1 , which would give us the following state:

) 1
= 0 · |00⟩ + 0 · |01⟩ + 200 · |10⟩ + 201 · |11⟩ = 200 · |10⟩ + 201 · |11⟩ . (10)

Finally, by summing) 0 and) 1, we obtain Eq. (6):) 0+) 1
= 210 · |00⟩+211 · |01⟩+200 · |10⟩+201 · |11⟩ .

That is, the semantics of the - gate could be expressed using the following symbolic formula:

-1 () ) = �G1 ·)G1 + �G1 ·)G1 . (11)

Observe that the sum effectively swaps the left and right subtrees of each G1-node.
For multi-qubit gates, the update formulae get more complicated, since they involve more

than one qubit. Consider, e.g., the “controlled-NOT” gate CNOT
2
C (see Fig. 2c for the graphical

representation and Fig. 2d for its semantics). The CNOT
2
C gate uses GC and G2 as the target and

control qubit respectively. Intuitively, it “flips” the target qubit’s value when the control qubit’s
value is 1 and keeps the original value if it is 0. Similarly, as for the- gate, we can deduce a symbolic
formula for the update done by a CNOT gate:

CNOT
2
C () ) = �G2 ·) + �G2 · (�GC ·)GC + �GC ·)GC ). (12)

The sum consists of the following two summands:

• The summand �G2 ·) says that when the control qubit is 0, GC and G2 stay the same.
• The summand �G2 · (�GC · )GC + �GC · )GC ) handles the case when G2 is 1. In such a case, we
apply the - gate on GC (observe that the inner term is the update formula of -C in Eq. (11)).

One can obtain symbolic update formulae for other quantum gates in a similar way. In Table 1
we give the formulae for the gates supported by our framework (see [Chen et al. 2023b] for their
usual definition using matrices).
For a gate G, we use the superscripts 2 and 2′ to denote that G2 and G ′2 are the gate’s control

qubits (if they exist) and the subscript C to denote that GC is the target bit (e.g., G
2,2′

C ). We note
that the supported set of gates is much larger than is required to achieve (approximate) universal
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quantum computation (for which it suffices to have, e.g., (i) Clifford gates (� , ( , and CNOT ) and )
(see [Boykin et al. 2000]) or (ii) Toffoli and � (see [Aharonov 2003])).

Theorem 4.1. The symbolic update formulae in Table 1 are correct (w.r.t. the standard semantics of

quantum gates, cf. [Nielsen and Chuang 2011]).

A note on expressivity. The expressivity of our framework is affected by the following factors:

(1) Algebraic complex number representation (0, 1, 2, 3, :): This representation can arbitrarily
closely approximate any complex number: First, note that l = cos 45◦ + 8 sin 45◦ = 1√

2
+ 8 1√

2

and when 1 = 3 = 0, we have (0, 0, 2, 0, :) = 1√
2
: (0 + 2l2) = 0√

2
: + 28√

2
: . Then any complex

number can be approximated arbitrarily closely by picking suitable 0, 2 , and : .
(2) Supported quantum gates: We covered all standard quantum gates supported in modern quan-

tum computers except parameterized rotation gate. From Solovay-Kitaev theorem [Dawson
and Nielsen 2006], gates performing rotations by c

2:
can be approximated with an error rate

n with O(log3.97 ( 1
n
))-many gates that we support.

(3) Tree automata structure: We use non-deterministic transitions of tree automata to represent
a set of trees compactly. Nevertheless, we can currently encode only a finite set of states, so
encoding, e.g., all quantum states that satisfy | |10⟩ | = | |01⟩ | is future work.

In the next two sections, we discuss how to lift the tree update operation to a set of trees encoded
in a TA. Our framework allows different instantiations. We will introduce two in this paper, namely
the (i) permutation-based (Section 5) and (ii) composition-based (Section 6) approach. The former
is simple, efficient, and works for all but the HC , Rx(

c
2
)C , and Ry(c

2
)C gates from Table 1 (those

whose effect is a permutation of tree leaves, i.e., for gates whose matrix contains only one non-zero
element in each row, potentially with a constant scaling of amplitude), while the latter supports all
gates in the table but is less efficient. The two approaches are compatible with each other, so one
can, e.g., choose to use the permutation-based approach by default and for unsupported gates fall
back on the composition-based approach.

5 PERMUTATION-BASED ENCODING OF QUANTUM GATES

Let us first look at the simplest gate XC () ) = �GC ·)GC +�GC ·)GC . Recall that in Section 4, we showed
that the formula essentially swaps the left and right subtrees of each GC -labeled node. For a TA A,
we can capture the effect of applying XC to all states in L(A) by swapping the left and the right
children of all GC -labeled transitions @ GC (@0, @1), i.e., update them to @ GC (@1, @0). We use
XC (A) to denote the TA constructed following this procedure.

Theorem 5.1. L(XC (A)) = {XC () ) | ) ∈ L(A)}.

The update formulae of gates ZC , SC , and TC are all in the form 01 ·�GC ·) +00 ·�GC ·) for 01, 00 ∈ C.
Intuitively, the formulae scale the left and right subtrees of ) with scalars 00 and 01, respectively.
Their construction (Algorithm 1) can be done by (1) making one primed copy of A whose leaf
labels are multiplied with 01 (Line 3), (2) multiplying all leaf labels of A with 00 (Line 4), and
(3) updating all GC -labeled transitions @ GC (@0, @1) to @ GC (@0, @′1), i.e., for the right child,
jump to the primed version (Line 4). In the algorithms, we define & ′

= {@′ | @ ∈ &} for any set of
state & and Δ

′
= {@′ G (@′

;
, @′A ) | @ G (@; , @A ) ∈ Δ} for any set of transitions Δ. The case of

YC is similar, but we need both constant scaling (Lines 1-4) and swapping (Lines 7-9) (the left-hand
side and right-hand side scalars being l2 and −l2, respectively).

Theorem 5.2. L(U(A)) = {U() ) | ) ∈ L(A)}, for U ∈ {YC ,ZC , SC ,TC }.
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Algorithm 1: Algorithm for constructing U(A), for U ∈ {-C , .C , /C , (C ,)C }
Input: A TA A = ⟨&, Σ,Δ,R⟩ and a gate U
Output: The TA U(A)

1 if U ∈ {.C , /C , (C ,)C } then // need constant scaling

2 Let 01 and 00 be the left and right scalar in U() ) = 01 · �GC ·)1 + 00 · �GC ·)0;
3 A1 := ⟨& ′, Σ,Δ1,R′⟩, where Δ1 = Δ

′
8 ∪ {@′ 01 · 2 () | @ 2 () ∈ Δ; };

4 A' := ⟨& ∪& ′, Σ,Δ' ∪ Δ1,R⟩, where
Δ
'
= {@ 00 · 2 () | @ 2 () ∈ Δ; } ∪
{@ G: (@0, @1) | @ G: (@0, @1) ∈ Δ8 ∧ : ≠ C} ∪
{@ G: (@0, @′1) | @ G: (@0, @1) ∈ Δ8 ∧ : = C}

5 else

6 A' := A; // when U = XC

7 if U ∈ {-C , .C } then // need swapping

8 Assume A'
= ⟨&', Σ,Δ',R⟩;

9 A' := ⟨&', Σ,Δ'
1 ,R⟩, where

Δ
'
1 = {@ G: (@0, @1) | @ G: (@0, @1) ∈ Δ

'
8 ∧ : ≠ C} ∪

{@ G: (@1, @0) | @ G: (@0, @1) ∈ Δ
'
8 ∧ : = C} ∪ {C | C ∈ Δ

'
; }

10 return A' ;

The cases of multi-qubit gates CNOT2C , CZ
2
C , and Toffoli

2,2′

C can be handled when C is the lowest of
the three qubits, i.e., 2 < C ∧ 2′ < C . We can assume w.l.o.g. that 2 < 2′. Output of these gates can be
constructed recursively following Algorithm 2. Let us look at the corresponding update formulae:

CNOT2C () ) = �G2 ·) + �G2 · (�GC ·)GC + �GC ·)GC )

CZ2C () ) = �G2 ·) + �G2 · (�GC ·) − �GC ·) )

Toffoli2,2
′

C () ) = �G2 ·) + �G2 · (�G2′ ·) + �G2′ · (�GC ·)GC + �GC ·)GC ))

Wefirst construct the TA of the inner term, the shaded area , which are TAs for XC , ZC , or CNOT2
′
C .

We call it the primed version here (cf. A′
1 at Line 4). We then update all G2-labeled transitions

@ G2 (@0, @1) to @ G2 (@0, @′1), i.e., jump to the primed version in the right subtree.

Theorem 5.3. L(U(A)) = {U() ) | ) ∈ L(A)}, for U ∈ {CNOT2C ,CZ2C ,Toffoli2,2
′

C }.

6 COMPOSITION-BASED ENCODING OF QUANTUM GATES

We introduce the composition-based approach in this section. The task is to develop TA operations
that handle the update formulae in Table 1 compositionally. The idea is to lift the basic tree
operations, such as projection )G: , restriction � · ) , and binary operation ± to operations over
TAs and then compose them to have the desired gate semantics. The update formulae in Table 1
are always in the form of term1 ± term2. For example, for the -C gate, term1 = �GC · )GC and
term2 = �GC ·)GC . Our idea is to first construct TAs Aterm1 and Aterm2 , recognizing quantum states
of term1 and term2, and then combine them using binary operation ± to produce a TA recognizing

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.



156:12 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

Algorithm 2: Algorithm for constructing U(A), for U ∈ {CNOT2C ,CZ2C ,Toffoli2,2
′

C }
Input: A TA A = ⟨&, Σ,Δ,R⟩ and a gate U
Output: The TA U(A)

1 if U = CNOT2C then A1 := XC (A);
2 if U = CZ2C then A1 := ZC (A);
3 if U = Toffoli2,2

′

C then A1 := CNOT2
′
C (A);

4 Let A′
1 = ⟨& ′

1, Σ,Δ
′
1,R′⟩ be obtained from A1 by priming all occurrences of states;

5 A' := ⟨& ∪& ′
1, Σ,Δ

' ∪ Δ
′
1,R⟩, where

Δ
'
={@ G: (@0, @1) | @ G: (@0, @1) ∈ Δ8 ∧ : ≠ 2} ∪
{@ G: (@0, @′1) | @ G: (@0, @1) ∈ Δ8 ∧ : = 2} ∪ {C | C ∈ Δ; }

return A' ;

the quantum states of term1 ± term2. The TAs Aterm1 , Aterm2 would be constructed using TA
versions of basic operations introduced later in this section.

For a TA accepting the trees {)1,)2}, a correct construction would produce a TA with the
language {) ′

1 ±) ′′
1 ,)

′
2 ±) ′′

2 }, for) ′
8 = term1 [) ↦→ )8 ] and) ′′

8 = term2 [) ↦→ )8 ], where [) ↦→ )8 ] is
a substitution defined in the standard way. Obtaining this result is, however, not straightforward. If
we just performed the ± operation pairwise between all elements of) ′

8 and) ′′
8 , we would obtain the

language {) ′
1 ±) ′′

1 ,)
′
2 ±) ′′

2 ,)
′
1 ±) ′′

2 ,)
′
2 ±) ′′

1 }, which is wrong, since we are losing the information
that ) ′

1 and ) ′′
1 are related (and so are ) ′

2 and ) ′′
2 ).

In the rest of the section, we will describe implementation of the necessary operations for the
composition-based approach.

6.1 Tree Tag

We introduce the concept of tree tags to keep track of the origins of trees. For any tree ) , its
tag Tag() ) is the tree obtained from ) by replacing all leaf symbols with a special symbol □. E.g.,
for the tree )1 = G1 (G2 (1, 0), G2 (0, 0)), its tag is Tag()1) = G1 (G2 (□,□), G2 (□,□)). Our construction
needs to maintain the following invariants: (1) each tree in a TA has a unique tag, (2) all derived
trees should have the same tag, and (3) binary operations over two sets of trees represented by TAs
only combine trees with the same tag. When we say ) ′ is derived from ) , it means ) ′ is obtained
by applying basic tree operations on ) . E.g., the tree �G1 ·)G1 is derived from ) .

Example 6.1. Let A be a TA with root states R = {@} and transitions

@ G1 (@; , @A ) @; G2 (@1, @0) @0 0 ()
@; G2 (@0, @1) @1 1 ()
@A G2 (@0, @0)

Observe that L(A) = {G1 (G2 (1, 0), G2 (0, 0)), G1 (G2 (0, 1), G2 (0, 0))}. In Dirac notation, this is the set
{|00⟩ , |01⟩}. The tag of both trees is G1 (G2 (□,□), G2 (□,□)), which violates invariant (1) above. □

In general, invariant (1) does not hold, as we can see from Example 6.1. Our solution to this
is introducing the tagging procedure (cf. Algorithm 3). The idea of tagging is simple: for each
transition, we assign to its function symbol a unique number. After tagging a TA, every transition
has a different symbol. Let Untag() ) be a function that removes the number 9 (added by the tagging
procedure) from each symbol G 9

:
in ) ’s labels.
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Algorithm 3: The tagging procedure Tag(A).
Input: A TA A = ⟨&, Σ,Δ,R⟩
Output: A tagged TA ⟨&, Σ′,Δ′,R⟩

1 Δ1 := {@ 2 () | @ 2 () ∈ Δ};
2 Δ2 := {@ G

9

:
(@1, @2) | X = (@ G: (@1, @2)) ∈ Δ, ord (X) = 9}, where ord : Δ → N is an

arbitrary injection (e.g., an ordering of the transitions);
3 Δ

′ := Δ1 ∪ Δ2;
4 Σ

′ is the set of all symbols appearing in Δ
′;

5 return ⟨&, Σ′,Δ′,R⟩;

Example 6.2. After tagging A from Example 6.1, we obtain the TA ATag with the root state @
and the following transitions:

@ G11 (@; , @A ) @; G22 (@1, @0) @0 0 ()
@; G32 (@0, @1) @1 1 ()
@A G42 (@0, @0)

Here L(ATag) = {)1,)2}, where )1 = G11 (G22 (1, 0), G42 (0, 0)) and )2 = G11 (G32 (0, 1), G42 (0, 0)). The two
trees )1 and )2 have different tags now. □

Lemma 6.3. All non-single-valued trees in a tagged TA have different tags.

Definition 6.4 (Tag preservation). Given a tagged TA ATag and an operation* over binary trees,
a TA construction procedure $ transforming ATag to $ (ATag) is called tag-preserving if there is
a bijection ( : L(ATag) → L($ (ATag)) such that Tag() ) = Tag(( () )) for all) ∈ L(ATag). In such
a case, we write ATag ≃Tag $ (ATag). Further, if the above correspondence satisfies* (Untag() )) =
Untag(( () )) for each ) , we say that the TA construction procedure $ is tag-preserving over * .

6.2 The Complete Picture of the�antum Gate Application Procedure

Tagging a TA is the first step in applying a quantum gate. In the second step, for each term in the
update formulae (cf. Table 1), we make a copy of the tagged TA and apply the operations that we are
going to introduce (projection, restriction, and multiplication) to construct the corresponding TA.
Notice that the operations are tag-preserving, i.e., they will keep the tag of all accepted trees. Then
we use the binary operation to merge trees with the same tag and complete the update formula
compositionally. In the end, we remove the TA’s tag to finish the quantum gate application4.

4This is a design choice. Another possibility is to keep the tag until finishing all gate operations. Untagging after finishing
a gate has the advantage that it allows a more aggressive state space reduction.

Tagging:
AT

Projection:
A)G1

Projection:
A)G1

Restriction:
A�G1 ·)G1

Restriction:
A�G1

·)G1

Multiplication:
Al2 ·�G1 ·)G1

Multiplication:
Al2 ·�G1

·)G1

Binary Operation:
Al2 ·�G1 ·)G1−l2 ·�G1

·)G1

Untagging:
Al2 ·�G1 ·)G1−l2 ·�G1

·)G1

duplicate

duplicate

Fig. 3. Constructions performed when applying the gate .1 to ATag
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Algorithm 4: Restriction operation on GC , Res(A, GC , 1)
Input: A tagged TA A = {&, Σ,Δ,R},
Output: A tagged TA A′ such that L(A′) = {1 ? �GC ·) : �GC ·) | ) ∈ L(A)}

1 Δ
′
8 := {@′0 G89 (@′1, @′2) | @0 G89 (@1, @2) ∈ Δ};

2 Δ
′
;
:= {@′0 0 () | @0 (0, 1, 2, 3, :) () ∈ Δ};

3 Δ
′ := Δ

′
8 ∪ Δ

′
;
;

4 Δadd := Δrm := ∅;
5 foreach @ G8C (@; , @A ) ∈ Δ do

6 if 1 then Δadd := Δadd ∪ {@ G8C (@′
;
, @A )} else Δadd := Δadd ∪ {@ G8C (@; , @′A )};

7 Δrm := Δrm ∪ {@ G8C (@; , @A )};
8 return {& ∪& ′, Σ ∪ {0}, ((Δ ∪ Δ

′) \ Δrm) ∪ Δadd,R};

Example 6.5. From Table 1, we have

.1 () ) = l2 · �G1 ·)G1 − l2 · �G1 ·)G1 .

For applying the gate .1 to a tagged TA AT, we perform the constructions shown in Fig. 3. □

6.2.1 Restriction Operation: ConstructingA�GC ·) andA�GC
·) fromA) . Observe that the tree �GC ·)

can be obtained by changing all leaf labels of the GC -subtrees in ) to (0, 0, 0, 0, 0). In Algorithm 4
we show the procedure for constructing the restriction operation based on this observation. Here
1 ? B1 : B2 is a shorthand for “if 1 is true then B1 else B2.” Intuitively, when encountering a transition
with variants of GC as its label, in case 1 = true, we reconnect its zero (left) child to the primed
version (Line 6 of Algorithm 4), so the leaves of this subtree would be all zero. The case when
1 = false is symmetric. Note that the structure of the original and the primed versions are identical,
so this modification will not change the tags of accepted trees.

Theorem 6.6. Let A be a tagged TA. Then it holds that Res(A, GC , 1) ≃Tag A and, moreover,

L(Res(A, GC , 1)) = {1 ? �GC ·) : �GC ·) | ) ∈ L(A)}.

6.2.2 Multiplication Operation: Constructing AE ·) from A) . Algorithm 5 gives the multiplication
operation that works on both tagged and non-tagged version.

Algorithm 5:Multiplication operation, Mult(A, E)
Input: A tagged TA A = {&, Σ,Δ,R} and a constant value E (either l or 1√

2
)

Output: A tagged TA A′ such that L(A′) = {E ·) | ) ∈ L(A)}
1 Δadd := Δrm := ∅;
2 foreach @ (0, 1, 2, 3, :) () ∈ Δ do

3 if E = l then

4 Δadd := Δadd ∪ {@ (−3, 0, 1, 2, :) ()};
5 else // E =

1√
2

6 Δadd := Δadd ∪ {@ (0, 1, 2, 3, : + 1) ()};
7 Δrm := Δrm ∪ {@ (0, 1, 2, 3, :) ()};
8 return {&, Σ, (Δ \ Δrm) ∪ Δadd,R};

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.



An Automata-Based Framework for Verification and Bug Hunting in�antum Circuits 156:15

Algorithm 6: Subtree copying procedure on GC , s.copy(A, GC , 1).
Input: A tagged TA A = ⟨&, Σ,Δ,R⟩, variable GC to copy, and a Boolean value 1 to indicate

which branch to copy
Output: The tagged TA ⟨&, Σ,Δ′,R⟩

1 Δrm := Δadd := ∅;
2 foreach @ G8C (@; , @A ) ∈ Δ do

3 if 1 then @2 := @A else @2 := @; ;

4 Δadd := Δadd ∪ {@ G8C (@2 , @2 )};
5 Δrm := Δrm ∪ {@ G8C (@; , @A )};
6 return ⟨&, Σ, (Δ \ Δrm) ∪ Δadd,R⟩;

Theorem 6.7. Let A be a tagged TA. Then it holds that Mult(A, E) ≃Tag A and, moreover,

L(Mult(A, E)) = {E ·) | ) ∈ L(A)}.

6.2.3 Projection Operation: Constructing A)GC
and A)GC

from A) . Recall that )GC is obtained from
) by fixing the C-th input bit to be 1, i.e., )GC (11 . . . 1C . . . 1=) = ) (11 . . . 1 . . . 1=) . Intuitively, the
construction of A)GC

from A) can be done by copying all right subtrees of G8C (i.e., corresponding
to G8C = 1) to replace its left (G8C = 0) subtrees. A seemingly correct construction can be found
in Algorithm 6. For short, we use s.copyt (A) to denote s.copy(A, GC , true) and s.copyt (A) to
denote s.copy(A, GC , false).
However, this construction has two issues (1) it would change the tag of accepting trees and

(2) when there are more than one possible subtrees below @A (or @; ), say, for example, )1 and )2, it
might happen that the resulting TA accepts a tree such that one subtree below the symbol G8C is )1
while another subtree is )2, i.e., they are still not equal and hence not the result after copying.

Although the procedure is incorrect in general, it is correct when C = =, i.e., the layer just above
the leaf. Notice that constant symbols are irrelevant to a tree’s tag (all constant symbols will be
replaced with □ in a tag). So copying one subtree to the other will not affect the tag at the leaf
transition. Moreover, recall that from TA’s definition, all leaf transitions have unique starting states.
So it will not encounter the issue (2) mentioned above.

Lemma 6.8. Subtree copying s.copyt is tag-preserving over the tree projection operation ) → )GC
and s.copyt is tag-preserving over ) → )GC when C = =.

From the lemma above, we get the hint that the copy subtree procedure works only at the layer
directly above leaf transitions, i.e., when applied to G= . However, if we can reorder the variable
without changing the set of quantum states encoded in a TA, then the projection procedure can be
applied to any qubit. Below we will demonstrate a procedure for variable reordering (it is similar
to a BDD variable reordering procedure [Felt et al. 1993]), but with an additional effort to preserve
tree tags.

Example 6.9. Consider the following tree with the variable order G1 > G2

G1 (G2 (200, c01), G2 (c10, 211)),
here 28 9 is the amplitude of |8 9⟩, which intuitively means G1 takes value 8 and G2 takes 9 . If we
swap the variable order of the two variables, one can construct the tree below to capture the same
quantum state

G2 (G1 (200, c10), G1 (c01, 211)) .
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Algorithm 7: Forward variable order swapping procedure on GC , f .swapC (A)
Input: A tagged TA A = ⟨&, Σ,Δ,R⟩
Output: The tagged TA ⟨& ′, Σ′,Δ′,R⟩

1 Δrm := Δadd := ∅, & ′ := &, Σ′ := Σ;

2 foreach @ GℎC (@0, @1), @0 G8
;

(@00, @01), @1 G
9

;
(@10, @11) ∈ Δ do

3 Δadd := Δadd ∪ {@ G
8, 9

;
(@′0, @′1), @′0 GℎC (@00, q10), @′1 GℎC (q01, @11)};

4 Δrm := Δrm ∪ {@ GℎC (@0, @1), @0 G8
;

(@00, q01), @1 G
9

;
(q10, @11)};

5 & ′ := & ′ ∪ {@′0, @′1};
6 Σ

′ := Σ
′ ∪ {G8, 9

;
};

7 return ⟨& ′, Σ′, (Δ \ Δrm) ∪ Δadd,R⟩;

Notice the main difference of the two trees is that the two leaf labels 210 and 201 are swapped. This is
because the second tree first picks the value of G2 and then G1, so the 01 node should be labeled 210,
which denotes G1 takes value 1 and G2 takes value 0. □

Inspired by the example, we can swap the order of two consecutive variables by modifying the
transitions of a TA. One difficulty is that we want to keep trees’ tags, so we introduce two procedures
forward variable order swapping (Algorithm 7) and backward variable order swapping (Algorithm 8)
to modify a variable’s order while maintaining the trees’ tag.

Algorithm 7 swaps the variable order of GC and its succeeding symbol G; , assuming the variable
order is . . . > GC > G; > . . .. We assume that before running forward variable swapping, all symbols
corresponding to qubits GC and G; are assigned unique numbers by the tagging procedure. After
running the forward swapping procedure, we remember the unique numbers of both succeeding
symbols G8

;
and G 9

;
at the new upper layer’s symbol G8, 9

;
(Line 3). So the trees’ tag can be recovered

in the backward variable order swapping procedure (Line 3 of Algorithm 8).
Then, the projection is computed as follows:

Prj(A, GC , 1) = b.swap=−CC (s.copy(f .swap=−CC (A), GC , 1)), (13)

where a superscript 8 denotes repetition of the procedure 8 times. Each time when the forward
swapping procedure is triggered, we move GℎC one layer lower in all trees accepted by A. We
can move GℎC to the layer above the leaf by repeatedly applying the forward swapping procedure,
which fulfills the requirement for executing the subtree copying procedure. Then we use the
backward swap procedure to return the variables to the original order. This procedure is potentially

Algorithm 8: Backward variable order swapping procedure on GC , b.swapC (A)
Input: A tagged TA A = ⟨&, Σ,Δ,R⟩
Output: The tagged TA ⟨& ′, Σ′,Δ′,R⟩

1 Δrm := Δadd := ∅, & ′ := &, Σ′ := Σ;

2 foreach @ G
8, 9

;
(@′0, @′1), @′0 GℎC (@00, @10), @′1 GℎC (@01, @11) ∈ Δ do

3 Δadd := Δadd ∪ {@ GℎC (@′′0 , @′′1 ), @′′0 G8
;

(@00, q01), @′′1 G
9

;
(q10, @11)};

4 Δrm := Δrm ∪ {@ G
8, 9

;
(@′0, @′1), @′0 GℎC (@00, q10), @′1 GℎC (q01, @11)};

5 & ′ := & ′ ∪ {@′′0 , @′′1 };
6 Σ

′ := Σ
′ \ {G8, 9

;
};

7 return ⟨& ′, Σ′, (Δ \ Δrm) ∪ Δadd,R⟩;
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expensive, but TA minimization algorithms [Abdulla et al. 2008, 2007; Comon et al. 2008] can help
to significantly reduce the cost.

Example 6.10. Here we demonstrate how the projection operations works with a concrete
example. We assume that A is a tagged TA with the root state @ and the following transitions:

@ G11 (@; , @A ) @; G22 (@1, @0) @0 0 ()
@; G32 (@0, @1) @1 1 ()
@A G42 (@0, @0)

Observe that L(A) = {)1,)2}, where
)1 = G11 (G22 (1, 0), G42 (0, 0)) and )2 = G11 (G32 (0, 1), G42 (0, 0)).

Then f .swap: (A) produces a TA with a single root state @ and the following transitions

@ G2,42 (@2, @3) @2 G11 (@1, @0) @4 G11 (@0, @0) @0 0 ()
@ G3,42 (@4, @5) @3 G11 (@0, @0) @5 G11 (@1, @0) @1 1 ()

The language L(f .swap: (A)) is {) ′
1 ,)

′
2 }, where

) ′
1 = G2,42 (G11 (1, 0), G11 (0, 0)) and ) ′

2 = G3,42 (G11 (0, 0), G11 (1, 0)).
Note that) ′

1 and)
′
2 represent the same quantum states as)1 and)2 above. Then s.copy1 (f .swap1 (A))

produces the following TA with the root state @:

@ G2,42 (@2, @3) @2 G11 (@0, @0) @4 G11 (@0, @0) @0 0 ()
@ G3,42 (@4, @5) @3 G11 (@0, @0) @5 G11 (@0, @0) @1 1 ()

Next we apply the backward swapping procedure to obtain A)G1
, the final result of applying

projection on A. More concretely, A)G1
= b.swap1 (s.copy1 (f .swap1 (A)) produces a TA with the

root state @ and the following transitions:

@ G11 (@′2, @′3) @′2 G22 (@0, @0) @′4 G32 (@0, @0) @0 0 ()
@ G11 (@′4, @′5) @′3 G42 (@0, @0) @′5 G42 (@0, @0) @1 1 ()

Observe that the language after projection is

L(A)G1
) = {G1 (G22 (0, 0), G42 (0, 0)), G1 (G32 (0, 0), G42 (0, 0))},

which is the expected result. □

Theorem 6.11. Let A be a tagged TA. Then it holds that Prj(A, GC , 1) ≃Tag A and, moreover,

L(Prj(A, GC , 1)) = {1 ? )GC : )GC | ) ∈ L(A)}.
6.2.4 Binary Operation: A)1±)2 . Binary operation can be done by a modified product construction
(cf. Algorithm 9). Notice that since we apply binary operations only over TAs derived from the
same source TA, i.e., initially they have the same : at the leaf transitions, and the only possibility
of changing the : part of a leaf symbol is the multiplication with 1√

2
, which is done only after all

binary operations in Table 1, we can safely assume without loss of generality that :1 = :2.

Theorem 6.12. Let A)1 and A)2 be two tagged TAs. Then it holds that L(Bin(A1,A2,±)) =

{)1 ±)2 | )1 ∈ L(A)1 ) ∧)2 ∈ L(A)2 ) ∧ Tag()1) = Tag()2)}.
Corollary 6.13. The composition-based encoding of quantum gate operations is correct.

Proof. Follows by Theorems 6.6, 6.7, 6.11 and 6.12. □
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Algorithm 9: Binary operation, Bin(A1,A2,±)
Input: Two tagged TAs A1 = ⟨&1, Σ,Δ1, {@1}⟩ and A2 = ⟨&2, Σ,Δ2, {@2}⟩.
Output: The tagged TA A′ such that L(A′) = ⟨)1 ±)2 | )1 ∈ L(A1) ∧)2 ∈ L(A2⟩)

1 Δ
′
8 := {(@1, @2) G89 ((@1

;
, @2

;
), (@1A , @2A )) | @1 G89 (@1

;
, @1A ) ∈ Δ1 ∧ @2 G89 (@2

;
, @2A ) ∈ Δ2};

2 Δ
′
;
:= {(@1, @2) (01 ± 02, 11 ± 12, 21 ± 22, 31 ± 32, :1) () | @1 (01, 11, 21, 31, :1) () ∈

Δ1 ∧ @2 (02, 12, 22, 32, :2) () ∈ Δ2};
3 return ⟨&1 ×&2, Σ

′,Δ′, {(@1, @2)}⟩;

7 EXPERIMENTAL EVALUATION

We implemented the proposed TA-based algorithm as a prototype tool named AutoQ in C++.
We provide two settings: Hybrid, which uses the permutation-based approach (Section 5) to
handle supported gates and switches to the composition-based approach for the other gates, and
Composition, which handles all gates using the composition-based approach (Section 6). For
checking language equivalence between the TA representing the set of reachable configurations
and the TA for the post-condition, we use the Vata library [Lengál et al. 2012]. We use a lightweight
simulation-based reduction [Bustan and Grumberg 2003] after finishing the Y, Z, S, T, CNOT, CZ,
and Tofolli gate operations to keep the obtained TAs small.5 All experiments were conducted on
a server with an AMD EPYC 7742 64-core processor (1.5 GHz), 1,152GiB of RAM (24GiB for each
process), and a 1 TB SSD running Ubuntu 20.04.4 LTS. Further details (pre- and post-conditions,
circuits, etc.) can be found in [Chen et al. 2023b].

Data sets. We use the following set of benchmarks with quantum circuits:

• BV: Bernstein-Vazirani’s algorithm with one hidden string of length = [Bernstein and Vazirani
1993],

• MCToffoli: circuits implementing multi-controlled Toffoli gates of size = using a variation
of Nielsen and Chuang’s decomposition [Nielsen and Chuang 2011] with standard Toffoli
gates,

• Grover-Sing and Grover-All: implementation of Grover’s search [Grover 1996] for a single
oracle and for all possible oracles of length = (we encode the oracle’s answer to be taken from
the input; cf. [Chen et al. 2023b] for more details),

• FeynmanBench: 45 benchmarks from the tool suite Feynman [Amy 2018],
• RevLib: 80 benchmarks of reversible and quantum circuits [Wille et al. 2008], and
• Random: 20 randomly generated quantum circuits (10 circuits with 35 qubits and 105 gates
and 10 circuits with 70 qubits and 210 gates).

We note that the benchmarks did not contain any unsupported gates.

Other tools. Since no existing work follows the same approach as we do, we compared AutoQ

with representatives of the following approaches:

• Quantum circuit simulators: These compute the output of a quantum circuit for a given input
quantum state. As a representative, we selected SliQSim [Tsai et al. 2021], a state-of-the-art
quantum circuit simulator based on decision diagrams, which also works with a precise
algebraic representation of complex numbers. We also tried the simulator from Qiskit [ANIS

5Our technique computes a non-maximum simulation by only checking whether states have the same successors. The
results are in many cases the same as if the maximum simulation were computed, but the performance is much better.
Further evaluation of this optimization of simulation is a future work.
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Table 2. Verification of quantum algorithm. Here, = denotes the parameter value for the circuit, #q denotes the
number of qubits, #G denotes the number of gates in the circuit. For AutoQ , the columns before and a�er

have the format “states (transitions)” denoting the number of states and transitions in TA in the pre-condition
and the output of our analysis respectively. The column analysis contains the time it took AutoQ to derive
the TA for the output states and = denotes the time it took Vata to test equivalence. The timeout was 12min.
We use colours to distinguish the best result in each row and timeouts .

AutoQ-Hybrid AutoQ-Composition SliQSim Feynman

= #q #G before after analysis = before after analysis = time verdict time

B
V

95 96 241 193 (193) 193 (193) 6.0s 0.0s 193 (193) 193 (193) 7.1s 0.0s 0.0s equal 0.5s
96 97 243 195 (195) 195 (195) 5.9s 0.0s 195 (195) 195 (195) 7.1s 0.0s 0.0s equal 0.5s
97 98 246 197 (197) 197 (197) 6.3s 0.0s 197 (197) 197 (197) 7.4s 0.0s 0.0s equal 0.6s
98 99 248 199 (199) 199 (199) 6.5s 0.0s 199 (199) 199 (199) 7.7s 0.0s 0.0s equal 0.6s
99 100 251 201 (201) 201 (201) 6.7s 0.0s 201 (201) 201 (201) 7.8s 0.0s 0.0s equal 0.6s

G
r
o
v
e
r
-S
in
g 12 24 5,215 49 (49) 71 (71) 11s 0.0s 49 (49) 71 (71) 49s 0.0s 2.8s timeout

14 28 12,217 57 (57) 83 (83) 31s 0.0s 57 (57) 83 (83) 2m26s 0.0s 18s timeout
16 32 28,159 65 (65) 95 (95) 1m29s 0.0s 65 (65) 95 (95) 6m59s 0.0s 1m41s timeout
18 36 63,537 73 (73) 107 (107) 4m1s 0.0s timeout 9m27s timeout
20 40 141,527 81 (81) 119 (119) 10m56s 0.0s timeout timeout timeout

M
C
T
o
f
f
o
li

8 16 15 33 (42) 104 (149) 0.0s 0.0s 33 (42) 404 (915) 2.8s 0.0s 1.6s equal 0.0s
10 20 19 41 (52) 150 (216) 0.0s 0.0s 41 (52) 1,560 (3,607) 27s 0.0s 6.1s equal 0.1s
12 24 23 49 (62) 204 (295) 0.0s 0.0s 49 (62) 6,172 (14,363) 6m48s 0.1s 25s equal 0.1s
14 28 27 57 (72) 266 (386) 0.1s 0.0s timeout 1m40s equal 0.1s
16 32 31 65 (82) 336 (489) 0.2s 0.0s timeout timeout equal 0.2s

G
r
o
v
e
r
-A

ll

6 18 357 37 (43) 252 (315) 3.3s 0.0s 37 (43) 510 (573) 12s 0.0s 1.7s timeout
7 21 552 43 (50) 481 (608) 10s 0.0s 43 (50) 1,123 (1,250) 42s 0.0s 5.4s timeout
8 24 939 49 (57) 934 (1,189) 39s 0.1s 49 (57) 2,472 (2,727) 2m40s 0.0s 26s timeout
9 27 1,492 55 (64) 1,835 (2,346) 2m17s 0.4s 55 (64) 5,421 (5,932) 10m13s 0.1s 2m5s timeout
10 30 2,433 61 (71) 3,632 (4,655) 9m48s 2.1s timeout 11m31s timeout

et al. 2021] (which does not provide a precise representation of numbers), but it was slower
than SliQSim so we do not include it in the results.

• Quantum circuit equivalence checkers: We selected the following equivalence checkers: the ver-
ifier from the Feynman6 tool suite [Amy 2018] (based on the path sum) andQcec7 [Burgholzer
and Wille 2020] (combining decision diagrams, the ZX-calculus [Coecke and Duncan 2011],
and random stimuli generation [Burgholzer et al. 2021]).

We evaluated AutoQ in two use cases, described in detail below.

7.1 Verification Against Pre- and Post-Conditions

In the first experiment, we compared how fast AutoQ computes the set of output quantum states
and checks whether the set satisfies a given post-condition. We compared against the simulator
SliQSim in the setting when we ran it over all states encoded in the pre-condition of the quantum
algorithm and accumulated the times. We note that we did not include the time for comparing the
result of SliQSim against a post-condition specification due to the following limitation of the tool:
it can produce the state after executing the circuit in the vector form, but this step is not optimized
and is quite time-consuming. Since the step of accumulating the obtained states could possibly be
done in a more efficient way, avoiding transforming them first into the vector form, we do not
include it in the runtime to not give SliQSim an unfair disadvantage. The timeout was 12min.
We also include the time taken by Feynman to check the equivalence of the circuits with

themselves. Although checking equivalence of quantum circuits is a harder problem than what we
are solving (so the results cannot be used for direct comparison with AutoQ), we include these
results in order to give an idea about hardness of the circuits for path-sum-based approaches.

6Git commit 56e5b771
7Version 2.0.0

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 156. Publication date: June 2023.



156:20 Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen

Table 3. Results for bug finding. The notation is the same as in Table 2. In addition, the column bug? indicates
if the tool caught the injected bug: T denotes that the bug was found, F denotes that the tool gave an

incorrect result, and — means unknown result (includes the tool reporting unknown, crash, or not enough
resources). AutoQ finds all bugs within the time limit, and we provide the number of iterations needed to
catch the bug (column iter). The timeout was 30min.

AutoQ Feynman Qcec AutoQ Feynman Qcec

circuit #q #G time iter time bug? time bug? circuit #q #G time iter time bug? time bug?

F
e
y
n
m
a
n
B
e
n
c
h csum_mux_9 30 141 0.8s 1 6.5s — 44.0s F hwb10 16 31,765 1m42s 1 timeout 30.2s T

gf2^10_mult 30 348 2.0s 1 0.6s — 42.7s F hwb11 15 87,790 4m23s 1 timeout 35.9s T
gf2^16_mult 48 876 11s 1 4.8s — 58.5s T hwb12 20 171,483 13m43s 1 timeout 1m3s T
gf2^32_mult 96 3,323 2m4s 1 48.1s — 1m58s T hwb8 12 6,447 15s 1 timeout 23.4s T
ham15-high 20 1,799 8.0s 1 3m51s — 30.2s T qcla_adder_10 36 182 2.8s 1 1.3s — 46.6s F
mod_adder_1024 28 1,436 10s 1 9.2s — 31.9s T qcla_mod_7 26 295 2.6s 1 1m24s — 38.4s F

R
a
n
d
o
m

35a 35 106 3.2s 1 0.2s — 45.7s F 70a 70 211 16s 1 1.1s — 1m18s T
35b 35 106 1.4s 1 0.2s T 47.8s F 70b 70 211 14s 1 0.8s T 1m11s T
35c 35 106 1.3s 1 0.2s T 47.5s T 70c 70 211 12s 1 0.9s — 1m24s T
35d 35 106 1.3s 1 0.2s T 48.2s T 70d 70 211 29m29s 36 1.2s T 1m26s T
35e 35 106 1.3s 1 0.1s — 50.6s T 70e 70 211 17s 1 1.0s — 1m30s T
35f 35 106 2.4s 1 0.3s T 49.7s F 70f 70 211 33s 1 0.9s T 1m26s F
35g 35 106 4.0s 3 0.2s — 55.3s T 70g 70 211 14m42s 44 1.2s — 1m35s T
35h 35 106 1.0s 1 0.2s — 0.6s — 70h 70 211 13s 1 1.2s — 1m36s T
35i 35 106 1.3s 1 0.2s T 54.8s T 70i 70 211 23s 1 1.2s — 1m36s T
35j 35 106 1.8s 1 0.2s — 51.4s F 70j 70 211 2m5s 1 1.4s — 1m34s T

R
e
v
L
ib

add16_174 49 65 2.6s 1 timeout 1m8s T urf1_149 9 11,555 30s 1 timeout 35.8s T
add32_183 97 129 17s 1 timeout 2m4s T urf2_152 8 5,031 11s 1 21m33s T 32.5s T
add64_184 193 257 1m55s 1 timeout 0.6s — urf3_155 10 26,469 1m19s 1 timeout 33.0s T
avg8_325 320 1,758 21m18s 1 timeout 0.5s — urf4_187 11 32,005 1m57s 1 timeout 31.4s T
bw_291 87 308 10s 1 11.7s T 1m55s T urf5_158 9 10,277 27s 1 timeout 26.6s T
cycle10_293 39 79 0.5s 1 0.4s T 1m7s T urf6_160 15 10,741 1m6s 1 timeout 36.2s T
e64-bdd_295 195 388 36s 1 timeout 0.5s — hwb6_301 46 160 2.0s 1 2.7s T 1m7s T
ex5p_296 206 648 1m52s 1 1m29s T 0.4s — hwb7_302 73 282 8.3s 1 10.9s T 1m38s T
ham15_298 45 154 0.6s 1 0.6s T 1m14s T hwb8_303 112 450 27s 1 37.9s T 2m22s T
mod5adder_306 32 97 0.5s 1 0.7s T 1m1s T hwb9_304 170 700 1m33s 1 2m20s T 0.6s —
rd84_313 34 105 0.5s 1 1.1s T 1m2s T

We ran this experiment on the benchmarks where the semantics was known to us so that we
could construct TAs with pre- and post-conditions. These were the following: BV, MCToffoli,
Grover-Sing, and Grover-All. We give the results in Table 2. Both BV and Grover-Sing work
with only one input state, which should be most favourable for simulators. Surprisingly, for the
case of Grover-Sing, AutoQ outperforms SliQSim on large cases (out of curiosity, we tried to run
SliQSim on Grover-Sing (==20) without a timeout; the running time was 51m43s). We attribute
the good performance of AutoQ to the compactness of the TA representation of Grover’s state
space. On the other hand, bothMCToffoli and Grover-All consider 2= input states and we can
observe the exponential factor emerging; hence AutoQ outperforms SliQSim in large cases. All
tools perform pretty well on BV, even cases with 100 qubits can be easily handled. We can also see
that Hybrid is consistently faster than Composition.

7.2 Finding Bugs

In the following experiment, we compared AutoQ with the equivalence checkers Feynman and
Qcec and evaluated the ability of the tools to determine that two quantum circuits are non-
equivalent (this is to simulate the use case of verifying the output of an optimizer). We took circuits
from the benchmarks FeynmanBench, Random, and RevLib, and for each circuit, we created
a copy and injected an artificial bug (one additional randomly selected gate at a random location).
Then we ran the tools and let them check circuit equivalence; for AutoQ, we let it compute two
TAs representing sets of output states for both circuits for the given set of input states and then
checked their language equivalence with Vata.

Our strategy for finding bugs with AutoQ (we used the Hybrid setting) was the following: We
started with a TA representing a single basis state, i.e., a TA with no top-down nondeterminism,
and gradually added more non-deterministic transitions (in each iteration one randomly chosen
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transition) into the TA, making it represent a larger set of states, running the analysis for each of
the TAs, until we found the bug. This proved to be a successful strategy, since running the analysis
with an input TA representing, e.g., all possible basis states, might be too challenging (generally
speaking, the larger is the TA representing the set of states, the slower is the analysis).
We present the results in Table 3. We exclude trivial cases (all tools can finish within 5 s) and

difficult cases that no tool can handle within the timeout period (30min). We can see that many
of the cases were so tricky that equivalence checkers failed to conclude anything, while AutoQ
succeeded in finding the bug with just the first few TAs. For two instances from Random (70d
and 70g), we found the bug after trying 36 TAs after 29m29s and 44 TAs after 14m42s, respectively.
For a few cases (e.g., csum_mux_9), Qcec did not find the bug and reported that the circuits were
equivalent (F)8, while AutoQ reported it (T). For these cases, we fed the witness produced by
AutoQ to SliQSim and confirmed the two circuits are different.

The results show that our approach to hunting for bugs in quantum circuits is beneficial, par-
ticularly for larger circuits where equivalence checkers do not scale. For such cases, AutoQ can
still find bugs using a weaker specification. For instance, AutoQ was able to find bugs in some
large-scale instances from RevLib with hundreds of qubits, e.g., add64_184 and avg_8_325, while
both Feynman and Qcec fail.
We note that the area of quantum circuit equivalence checking is rapidly advancing. When

preparing the final version, we became aware of SliQEC [Chen et al. 2022; Wei et al. 2022], a recent
tool that outperforms the other equivalence checkers that we tried on this benchmark.

8 RELATED WORK

Circuit equivalence checkers are often very efficient but less flexible in specifying the desired property
(only equivalence). Our approach can switch to a lightweight specification when verification fails
due to insufficient resources and still find bugs in the design. Often equivalence checking is done by
a reduction to normal form using a set of rewriting rules. Path-sum is a recent approach proposed
in [Amy 2018], whose rewrite rules can solve the equivalence problem of Clifford group circuits
in polynomial time. The ZX-calculus [Coecke and Duncan 2011] is a graphical language that is
particularly useful in circuit optimization and proving equivalence. The works of [Hietala et al.
2019] ensures correctness of the rewrite rules with a theorem prover. Quartz [Xu et al. 2022b] is
a circuit optimization framework consisting of an equivalence checker based on some precomputed
equivalence sets. We pick Feynman [Amy 2018], a state-of-the-art equivalence checker based on
path-sum, and Qcec [Burgholzer and Wille 2020], based on decision diagrams and ZX-calculus, as
the baseline tools for comparison. Quantum circuit simulators, e.g. SliQSim [Tsai et al. 2021], can be
used as equivalence checkers for a finite number of inputs by trying all basis states.

Quantum abstract interpretation [Perdrix 2008; Yu and Palsberg 2021] is particularly efficient in
processing large-scale circuits, but it over-approximates state space and cannot conclude anything
when verification fails. For instance, the work in [Yu and Palsberg 2021] can only distinguish
quantum states with zero and non-zero probability (and cannot derive exact boundary probabilities).
In contrast, our approach precisely represents reachable states and can reveal bugs. One can consider
our approach to be an instantiation of classical abstract interpretation [Cousot and Cousot 1977] that
is precise, and our approach to non-equivalence testing as comparing output abstract contexts of
two programs. Quantum model checking supports a rich specification language (flavors of temporal
logic [Feng et al. 2013; Mateus et al. 2009; Xu et al. 2022a]). It can be seen as an extension of
probabilistic model checking [Feng et al. 2017, 2015, 2013; Xu et al. 2022a; Ying 2021; Ying and
Feng 2021; Ying et al. 2014] and is more suitable for verifying high-level protocols due to the

8This bug has been confirmed by the Qcec team and fixed later, cf. [QCE 2022].
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limited scalability [Anticoli et al. 2016]. Techniques based on quantum simulation [Green et al.
2013; Niemann et al. 2016; Pednault et al. 2017; Samoladas 2008; Tsai et al. 2021; Viamontes et al.
2009; Wecker and Svore 2014; Zulehner et al. 2019; Zulehner and Wille 2019] allow only one input
quantum state and thus have limited analyzing power.
Quantum Hoare logic [Feng and Ying 2021; Liu et al. 2019; Unruh 2019; Ying 2012; Zhou et al.

2019]) allows verification against complex correctness properties and rich program constructs
such as branches and loops, but requires significant manual work. On the other hand, quantum
incorrectness logic [Yan et al. 2022] is a dual of quantum Hoare logic that allows showing the
existence of a bug, but cannot prove its absence. The Qbricks [Chareton et al. 2021] approach
alleviates the difficulty of proof search by combining state-of-the-art theorem provers with decision
procedures, but, according to their experiments, still requires a significant amount of human
intervention. For instance, their experiments show that it requires 125 times intervention during
verification of Grover’s search w.r.t. an arbitrary number of qubits.

9 CONCLUDING REMARKS

We have introduced a new paradigm for quantum circuit analysis that is exciting from both practical
and theoretical lenses. We demonstrated one of its potential applications—circuit non-equivalence
checking, but we believe there could be much more. In our own experience of using the method to
prepare the benchmarks, its role is similar to a static assertion checker (like software model checkers

for classical programs [Chen et al. 2016; Heizmann et al. 2018]); it helped us greatly to find several
problems while composing the circuits. The connection to automata-based verification is also quite
exciting. A series of approaches from the classical world should also be helpful in the quantum case.
For instance, the idea of regular tree model checking could be leveraged to verify parameterized
quantum circuits (w.r.t. an arbitrary number of qubits) [Abdulla et al. 2002; Bouajjani et al. 2012].
For this, one would need to deal with TAs with loops, where tagging cannot be done anymore to
impose relations among trees (one would need to use an unbounded number of tags)—new ideas
are needed. Automata-learning can be used for automatic loop invariant inference [Chen et al.
2017a]. Symbolic automata [D’Antoni and Veanes 2017] and register automata [Chen et al. 2017b]
would allow using variables to describe amplitude (instead of a fixed alphabet as we use now). We
believe there are many other techniques from the automata world that could be used to extend our
framework and be applied in the area of analysing quantum circuits.
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