
296

Solving String Constraints with Lengths by Stabilization

YU-FANG CHEN, Academia Sinica, Taiwan
DAVID CHOCHOLATÝ, Brno University of Technology, Czech Republic
VOJTĚCH HAVLENA, Brno University of Technology, Czech Republic
LUKÁŠ HOLÍK, Brno University of Technology, Czech Republic
ONDŘEJ LENGÁL, Brno University of Technology, Czech Republic
JURAJ SÍČ, Brno University of Technology, Czech Republic

We present a new algorithm for solving string constraints. The algorithm builds upon a recent method for
solving word equations and regular constraints that interprets string variables as languages rather than
strings and, consequently, mitigates the combinatorial explosion that plagues other approaches. We extend
the approach to handle linear integer arithmetic length constraints by combination with a known principle
of equation alignment and splitting, and by extension to other common types of string constraints, yielding
a fully-fledged string solver. The ability of the framework to handle unrestricted disequalities even extends
one of the largest decidable classes of string constraints, the chain-free fragment. We integrate our algorithm
into a DPLL-based SMT solver. The performance of our implementation is competitive and even significantly
better than state-of-the-art string solvers on several established benchmarks obtained from applications in
verification of string programs.

CCS Concepts: • Theory of computation → Automated reasoning; Logic and verification; Regular
languages.

Additional Key Words and Phrases: string constraints, stabilization, word equations, SMT solving, length
constraints, regular languages

ACM Reference Format:
Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč. 2023. Solv-
ing String Constraints with Lengths by Stabilization. Proc. ACM Program. Lang. 7, OOPSLA2, Article 296
(October 2023), 30 pages. https://doi.org/10.1145/3622872

1 INTRODUCTION

String constraint solving has been receiving much attention in recent years, particularly in the
context of analyzing web programs. The main source of motivation has been verification of the
absence of security vulnerabilities, especially against SQL injection or cross-site scripting (XSS)
attacks, which are still considered to be among the most frequent and problematic sources of
security bugs related to web applications [OWASP 2013, 2017, 2021]. String constraint solving is
useful in verification of programs that manipulate strings in general, particularly programs written
in scripting languages like Python or JavaScript, where strings are a primary data type.

Authors’ addresses: Yu-Fang Chen, Academia Sinica, Institute of Information Science, Taiwan, yfc@iis.sinica.edu.tw; David
Chocholatý, Faculty of Information Technology, Brno University of Technology, Czech Republic, xchoch08@stud.fit.vutbr.cz;
Vojtěch Havlena, Faculty of Information Technology, Brno University of Technology, Czech Republic, ihavlena@fit.vutbr.cz;
Lukáš Holík, Faculty of Information Technology, Brno University of Technology, Czech Republic, holik@fit.vutbr.cz; Ondřej
Lengál, Faculty of Information Technology, Brno University of Technology, Czech Republic, lengal@fit.vutbr.cz; Juraj Síč,
Faculty of Information Technology, Brno University of Technology, Czech Republic, sicjuraj@fit.vutbr.cz.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART296
https://doi.org/10.1145/3622872

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

HTTPS://ORCID.ORG/0000-0003-2872-0336
HTTPS://ORCID.ORG/0009-0006-5614-1592
HTTPS://ORCID.ORG/0000-0003-4375-7954
HTTPS://ORCID.ORG/0000-0001-6957-1651
HTTPS://ORCID.ORG/0000-0002-3038-5875
HTTPS://ORCID.ORG/0000-0001-7454-3751
https://doi.org/10.1145/3622872
https://orcid.org/0000-0003-2872-0336
https://orcid.org/0009-0006-5614-1592
https://orcid.org/0009-0006-5614-1592
https://orcid.org/0000-0003-4375-7954
https://orcid.org/0000-0001-6957-1651
https://orcid.org/0000-0002-3038-5875
https://orcid.org/0000-0002-3038-5875
https://orcid.org/0000-0001-7454-3751
https://doi.org/10.1145/3622872

296:2 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

In addition, string constraints are a natural and general formalism that is likely to keep find-
ing new applications, similarly as, e.g., regular expressions. A recent and prominent example
of this claim is Amazon Web Service’s use of a portfolio of string solvers to analyze user poli-
cies controlling access to cloud resources. String solvers are in AWS solving billions of queries
a day [Backes et al. 2018; Liana Hadarean 2019; Rungta 2022]. Other emergent applications of
string solving can be found in analyzing smart contracts [Alt et al. 2022], Microsoft Azure resource
manager policies [Microsoft 2020; Stanford et al. 2021], graph databases [Barceló and Muñoz 2017],
or regular document spanners [Freydenberger and Peterfreund 2021].
Numerous approaches to string solving and string solving tools have been developed in recent

years. cvc4/5 [Barbosa et al. 2022; Barrett et al. 2016b; Liang et al. 2014, 2016, 2015; Nötzli et al.
2022; Reynolds et al. 2020, 2017] and Z3 [Bjørner et al. 2009; de Moura and Bjørner 2008; Stanford
et al. 2021] are mature and reliable solvers used in industrial applications. Other tools, such as
OSTRICH [Chen et al. 2018, 2022, 2020a, 2019; Lin and Barceló 2016], Trau [Abdulla et al. 2021,
2017, 2018, 2019], Noodler [Blahoudek et al. 2023], Z3Str/2/3/4/3RE [Berzish et al. 2023, 2017, 2021;
Berzish, Murphy 2021; Zheng et al. 2015, 2013], and Slog [Wang et al. 2016] challenge the state of
the art with their innovative approaches. Many other solvers have also been developed, such as
Norn [Abdulla et al. 2014, 2015], S3 [Trinh et al. 2014], Kepler22 [Le and He 2018], Sloth [Holík
et al. 2018], Stranger [Yu et al. 2010, 2014, 2011], ABC [Aydin et al. 2015; Bultan et al. [n. d.]],
HAMPI [Kiezun et al. 2012], Kaluza/Kudzu [Saxena et al. 2010], Retro [Chen et al. 2020b, 2023b],
Woorpje [Day et al. 2019], PASS [Li and Ghosh 2013], to name a few, and many others [Amadini
et al. 2017; Cox and Leasure 2017; Fu and Li 2010; Hooimeijer et al. 2011; Hooimeijer and Weimer
2012; Scott et al. 2017; Trinh et al. 2016; Veanes et al. 2012; Wang et al. 2018].
String solvers have evolved to handle a diverse range of string constraints, including not only

basic string constraints such as word equations, regular, and length constraints, but also a rich palette
of extended constraints such as string transformations (given in various forms, e.g. as transducers),
replace-all/substring/index-of functions, and conversions between integers and strings. The best
industrial-strength solvers are now capable of handling most of these constraints in most of the
cases encountered in known benchmarks coming from practical applications.
Nevertheless, dealing with basic constraints remains a central and challenging task. Not only

do basic constraints appear most frequently, but extended constraints are often transformed into
combinations of basic ones. The worst-case complexity of basic constraints is high, already equa-
tions with regular constraints are PSPACE-complete [Jeż 2016; Plandowski 1999]. Moreover, despite
general algorithms for solving equations exist, namely Makanin’s [Makanin 1977] and Jeż’s re-
compression [Jeż 2016], their efficient implementation seems problematic and remains an open
challenge. String solvers have therefore resorted to implementing partial algorithms that work in
practical cases, such as chain-free [Abdulla et al. 2019], straight-line [Lin and Barceló 2016], and
quadratic forms [Chen et al. 2020b; Le and He 2018; Nielsen 1917]. Nevertheless, these fragments
are still PSPACE-hard, already due to boolean combinations of regular constraints, and remain
difficult to solve. Despite ongoing efforts to improve the efficiency of string solving, the handling
of basic constraints continues to be a limiting factor in practice, particularly for solvers that rely on
a large number of specialized heuristics. These solvers often struggle when dealing with complex
combinations of regular constraints and equations, particularly on benchmarks for which they
were not optimized.

Addition of length constraints to equations and regular constraints brings another layer of
complexity. Despite promising attempts reported in [Le and He 2018; Lin and Majumdar 2021], the
decidability of word equations combined with length constraints has remained an open problem for
many years, even when restricted to quadratic word equations (word equations with at most two
occurrences of each variable). Some approaches, such as [Abdulla et al. 2014, 2019; Lin and Barceló

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:3

2016], extract lengths from regular constraints and solve them using a linear integer arithmetic (LIA)
solver after solving word equations and regular constraints. Other approaches, such as [Abdulla
et al. 2018; Berzish et al. 2023, 2021; Mora et al. 2021; Reynolds et al. 2019], manage to even take
advantage of input length constraints to simplify reasoning about regular properties and equations
in some cases. Integrating reasoning about lengths into string solving in a general way, however,
remains a complex problem.

This paper presents a novel string constraint solving algorithm that integrates reasoning about
length constraints with a recent technique [Blahoudek et al. 2023], called Stabilization, which
excels in solving equations and regular constraints. Unlike most other solvers, which attempt
to avoid complex questions about equations and regular expressions, Stabilization works with
equations and regular constraints from the beginning. Equations are approached as equivalences
of concatenated languages of the variables on the left-hand side and variables on the right-hand
side. The variable languages are iteratively refined until the equations stabilise (hence the name),
that is, the concatenated languages of their sides become equivalent. If all the languages are still
non-empty, then a solution of the original string equation exists. This approach significantly reduces
the combinatorial blow-up that other algorithms suffer from when tackling equations and regular
constraints separately.

Our principal technical contribution lies in extending Stabilization with reasoning about string
lengths. Since Stabilization is in its basic form incompatible with other methods for reasoning
about lengths, we had to merge it with an older approach called Align&Split. First implemented
in the string solver Norn [Abdulla et al. 2014, 2015] and later used in the approaches behind the
solvers OSTRICH [Chen et al. 2018, 2022, 2020a, 2019; Lin and Barceló 2016], Z3str3RE [Berzish
et al. 2023, 2021], Sloth [Holík et al. 2018], and, to some extent, Trau [Abdulla et al. 2021, 2017,
2018, 2019], it splits automata and enumerates equation alignments. Align&Split may be slower,
but it can convert regular constraints into length constraints using standard automata techniques.
The obtained length constraints can then be solved alongside the input length constraint by an
off-the-shelf LIA solver. We designed a fine-grained interaction between the two approaches,
preserving most of the efficiency of Stabilization. In the essence, variables are eliminated from
equations using Align&Split only when they are related to the length constraint.
Secondly, we observed that by including length constraints into regular constraints and word

equations, we can solve word disequalities more generally than in previous approaches, such
as [Abdulla et al. 2014, 2015]. Those approaches reduce a disequality between the left-hand and the
right-hand side to saying that after a common (potentially empty) prefix, the next characters differ.
We propose a modified encoding saying that the differing characters appear after (not necessarily
identical) prefixes of the same length. This approach allows to extend one of the largest decidable
fragments of string constraints, the chain-free fragment of [Abdulla et al. 2019]. The chain-free
fragment prohibits cycles in a graph constructed based on the equations. As the disequalities
are transformed into length constraints (unlike [Abdulla et al. 2014, 2015], where they spawn
new equations), they do not affect the graph. Thus, we can extend the chain-free fragment with
unrestricted disequalities while preserving decidability.
Third, we show how our new algorithm can be efficiently incorporated into an SMT solver.

Utilising a relatively simple but efficient implementation of nondeterministic finite automata, we
have implemented it within Z3 and obtained a new fully-fledged string solver. The integration of our
algorithm in Z3 includes some design choices that are quite different from other fast solvers such
as cvc5, Z3, or Z3str4/3RE. The different design comes with unique optimization opportunities.
Since, as mentioned earlier, a large part of the efficiency of established string solvers comes from
a large number of heuristics and optimizations tuned to characteristics of existing benchmarks,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

296:4 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

the fact that our approach offers different optimization opportunities is highly practically relevant
(we indeed confirm experimentally that it is performance-wise orthogonal to the best solvers).

After implementing some of these optimizations, we arrived at a solver with good performance.
We compared it with most SMT string solvers, such as Z3, cvc5, Trau, Z3str3RE, Z3str4, and
OSTRICH, on the benchmark from SMT-COMP. We provide a transparent evaluation of the compar-
ison and do not generate new benchmarks tailored to the strengths of our tool. From 10 benchmark
sets of SMT-COMP’22, our solver is clearly the best on three, by a large margin, and second best
on one. This success is mainly due to the superior handling of equations and regular constraints.
Our tool has the least timeouts and its weaknesses seem orthogonal to those of the other tools.
This result is the main selling point of our method. The tool is also the best on a recent benchmark
of [Stanford et al. 2021] targeting boolean combinations of regular properties.

The benchmarks where our tool is worse are generally of two kinds: (1) our tool does not support
some of the used string constraints, such as string-integer conversion or the replace-all function,
or (2) the benchmark contains many similar examples that are hard for a generic algorithm but
easy for a specialized heuristic, which we have not implemented yet. Some of these weaknesses
represent interesting engineering or research problems, they are not principal weaknesses of our
approach, and we briefly outline how they can be eliminated. Moreover, when the best solvers
are combined into a portfolio solver (as used, e.g., in Amazon [Backes et al. 2018; Rungta 2022]),
inclusion of our solver significantly improves the overall performance. Considering also the relative
infancy of our solver, its relatively small size, and apparent space for optimization, we believe that
this experiment demonstrates a significant shift in the state of the art of practical string solving.

We summarize our contribution into the following four points:
(1) A string solving algorithm extending the algorithm of [Blahoudek et al. 2023] with handling

length constraints, via a fine-grained combination with the principles behind [Abdulla et al.
2014]. It allows to turn the algorithm of [Blahoudek et al. 2023] into a fully-fledged string
solver, while preserving most of its efficiency.

(2) Extension of one of the largest decidable fragments of string constraints, the chain-free
fragment, with unrestricted disequalities.

(3) An integration of the algorithm into the SMT solver Z3, with a number of practical heuristics
and optimizations, some of them unique to our approach.

(4) An experimental evaluation showing that our approach significantly improves the state of
the art of string solving technology in practice.

2 PRELIMINARIES

Sets and strings. We use N to denote the set of natural numbers (including 0). We fix a finite
alphabet Σ of symbols/letters (usually denoted 𝑎, 𝑏, 𝑐, . . .) for the rest of the paper. A sequence of
symbols𝑤 = 𝑎1 · · ·𝑎𝑛 from Σ is a word or a string over Σ, with its length 𝑛 denoted by |𝑤 |. The set
of all words over Σ is denoted as Σ∗. 𝜖 ∉ Σ is the empty word with |𝜖 | = 0. The concatenation of
words 𝑢 and 𝑣 is denoted 𝑢 · 𝑣 , 𝑢𝑣 for short (𝜖 is the neutral element). A set of words over Σ is
a language, the concatenation of languages is 𝐿1 · 𝐿2 = {𝑢 · 𝑣 | 𝑢 ∈ 𝐿1 ∧ 𝑣 ∈ 𝐿2}, 𝐿1𝐿2 for short.
Bounded iteration 𝑥𝑖 , for 𝑖 ∈ N, of a word or a language 𝑥 is defined by 𝑥0 = 𝜖 for a word, 𝑥0 = {𝜖}
for a language, and 𝑥𝑖+1 = 𝑥𝑖 · 𝑥 . Then 𝑥∗ =

⋃
𝑖∈N 𝑥

𝑖 for languages and 𝑥∗ = {𝑥}∗ for words.
The shuffle of languages 𝐿1 and 𝐿2 is the language 𝐿1

∃

𝐿2 of words 𝑎1 . . . 𝑎𝑛 for which there exists
a set 𝑃 = {𝑖1, . . . , 𝑖𝑘 } ⊆ {1, . . . , 𝑛} such that 𝑎𝑖1 . . . 𝑎𝑖𝑘 ∈ 𝐿1 with 𝑖1 < . . . < 𝑖𝑘 and 𝑎 𝑗1 . . . 𝑎 𝑗ℓ ∈ 𝐿2
with { 𝑗1, . . . , 𝑗ℓ } = {1, . . . , 𝑛} \ 𝑃 and 𝑗1 < . . . < 𝑗ℓ . We denote regular languages using regular
expressions 𝐸 with the following standard notation:

𝐸 ::= 𝜖 | 𝑎 | (𝐸) | 𝐸𝐸 | 𝐸 + 𝐸 | 𝐸∗ | 𝐸+ | 𝐸𝑛 | 𝐸? (1)
for 𝑎 ∈ Σ, 𝑛 ∈ N (in particular, 𝐸+ is a syntactic sugar for 𝐸𝐸∗ and 𝐸? is a syntactic sugar for 𝜖 + 𝐸).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:5

Automata. A (nondeterministic) finite automaton (NFA) over Σ is a tuple𝐴 = (𝑄,Δ, 𝐼 , 𝐹) where𝑄 is
a finite set of states, Δ is a set of transitions of the form 𝑞−{𝑎}→𝑟 with 𝑞, 𝑟 ∈ 𝑄 and 𝑎 ∈ Σ∪{𝜖}, 𝐼 ⊆ 𝑄 is
the set of initial states, and 𝐹 ⊆ 𝑄 is the set of final states. A run of𝐴 over a word𝑤 ∈ Σ∗ is a sequence
𝑝0−{𝑎1}→𝑝1−{𝑎2}→ . . .−{𝑎𝑛}→𝑝𝑛 where for all 1 ≤ 𝑖 ≤ 𝑛 it holds that 𝑎𝑖 ∈ Σ ∪ {𝜖}, 𝑝𝑖−1−{𝑎𝑖 }→𝑝𝑖 ∈ Δ, and
𝑤 = 𝑎1 · 𝑎2 · · ·𝑎𝑛 . The run is accepting if 𝑝0 ∈ 𝐼 and 𝑝𝑛 ∈ 𝐹 , and the language 𝐿(𝐴) of 𝐴 is the
set of all words for which 𝐴 has an accepting run. A language 𝐿 is called regular if it is accepted
by some NFA. Two NFAs with the same language are called equivalent. An automaton without 𝜖-
transitions is called 𝜖-free. An automatonwith each state belonging to some accepting run is trimmed.
To concatenate languages of two NFAs 𝐴 = (𝑄,Δ, 𝐼 , 𝐹) and 𝐴′ = (𝑄 ′,Δ′, 𝐼 ′, 𝐹 ′) with a symbol ♯, we
construct their ♯-concatenation𝐴♯𝐴′ = (𝑄 ⊎𝑄 ′,Δ⊎Δ′ ⊎ {𝑝−{♯}→𝑞 | 𝑝 ∈ 𝐹, 𝑞 ∈ 𝐼 ′}, 𝐼 , 𝐹 ′). To intersect
the languages of two automata, we construct their product 𝐴 ∩ 𝐴′ = (𝑄 × 𝑄 ′,Δ×, 𝐼 × 𝐼 ′, 𝐹 × 𝐹 ′)
where (𝑞, 𝑞′)−{𝑎}→(𝑟, 𝑟 ′) ∈ Δ× iff 𝑎 ∈ Σ, 𝑞−{𝑎}→𝑟 ∈ Δ, 𝑞′−{𝑎}→𝑟 ′ ∈ Δ′. Finally, the shuffle of the two
automata is the automaton 𝐴

∃

𝐴′ = (𝑄 ×𝑄 ′,Δ
∃

, 𝐼 × 𝐼 ′, 𝐹 × 𝐹 ′) where (𝑞, 𝑞′)−{𝑎}→(𝑟, 𝑟 ′) ∈ Δ

∃

iff
𝑎 ∈ Σ and either 𝑞′ = 𝑟 ′ and 𝑞−{𝑎}→𝑟 ∈ Δ or 𝑞 = 𝑟 and 𝑞′−{𝑎}→𝑟 ′ ∈ Δ′.

Basic string constraints. The basic string constraints are word equations, regular membership
constraints, and arithmetic relations over lengths of strings. That is, given a set X of string variables
(denoted 𝑢, 𝑣, . . . , 𝑧), fixed for the rest of the paper, basic string constraints are boolean combinations
of atomic constraints of the following three types: (i) a word equation of the form 𝑠 = 𝑡 where 𝑠 and 𝑡
are string terms, i.e., words1 fromX∗, (ii) an atomic regular constraint of the form 𝑥 ∈ 𝐿, where 𝑥 ∈ X
and 𝐿 is a regular language, and (iii) an atomic length constraint: an atomic linear integer arithmetic

(LIA) predicate containing length terms |𝑥 | (for 𝑥 ∈ X) for variables2. An equation/regular/length

constraint is a boolean combination of constraints of the respective type. Given a constraint, term,
or generally any object 𝛼 , we use Var(𝛼) to denote the set of variables occurring in 𝛼 .

A string assignment is a map 𝜈 : X→ Σ∗. The assignment is a solution for a word equation 𝑠 = 𝑡

if 𝜈 (𝑠) = 𝜈 (𝑡) where 𝜈 (𝑡 ′) for a term 𝑡 ′ = 𝑥1 . . . 𝑥𝑛 is defined as 𝜈 (𝑥1) · · ·𝜈 (𝑥𝑛), it is a solution for an
atomic regular constraint 𝑥 ∈ 𝐿 if 𝜈 (𝑥) ∈ 𝐿, and it is a solution of an atomic length constraint 𝜑 if
the map {|𝑥 | ↦→ |𝜈 (𝑥) | : 𝑥 ∈ Var(𝜑)} is its (integer) solution. A solution of a boolean combination Φ
of atomic constraints is then defined inductively as usual. We denote by 𝜈 |= Φ that 𝜈 is a solution
of Φ and we use ⟦Φ⟧ to denote the set of all solutions of Φ. We say that Φ is satisfiable if ⟦Φ⟧ ≠ ∅.
A substitution is a map 𝜎 : X→ X∗ of string variables X to terms over variables. The image of

a string constraint under𝜎 , denoted as𝜎 (Φ), is the constraint in which every occurrence of every 𝑥 ∈
X is replaced by 𝜎 (𝑥). We use Φ[𝑥/𝑦] to represent constraint Φ in which every 𝑥 is replaced by 𝑦.
We will sometimes abuse notation and treat conjunctive constraints Φ as sets of their con-

juncts, i.e., atomic string constraints 𝜑 , and write, for instance, 𝜑 ∈ Φ. A language assignment is
a function R : X→ P(Σ∗) assigning to every variable a regular language over Σ. Given a string
term 𝑡 = 𝑥1 . . . 𝑥𝑛 , we define R(𝑡) = R(𝑥1) · · · R(𝑥𝑛). We say that a language assignment R1
is a refinement of a language assignment R2 iff

∧
𝑥∈X R1 (𝑥) ⊆ R2 (𝑥), and R is called feasible

iff
∧

𝑥∈X R(𝑥) ≠ ∅ and infeasible otherwise. A normalized regular constraint is a conjunction∧
𝑥∈X 𝑥 ∈ R(𝑥) where R is a language assignment (any regular constraint can be normalized

by using the standard intersection/union/complement operations on the corresponding regular
languages). We often treat a normalized regular constraint as its language assignment and the other
way around.

1Note that terms with string literals from Σ∗, sometimes used in our examples, can be encoded by replacing each occurrence 𝑜
of a string literal ℓ by a fresh variable 𝑥𝑜 and a regular constraint 𝑥𝑜 ∈ {ℓ }.
2Generally, length constraints can contain length terms |𝑡 | for 𝑡 = 𝑥1 · · · 𝑥𝑛 ; we replace them with |𝑥1 | + · · · + |𝑥𝑛 | .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

296:6 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

3 TWOMETHODS FOR SOLVING EQUATIONS WITH REGULAR CONSTRAINTS

In this section, we explain the two basic algorithms for solving string constraints composed of
word equations and regular constraints that we combine in our new algorithm later. The first one,
Stabilization from [Blahoudek et al. 2023], is faster, but cannot be easily combined with reasoning
about length constraints. The second one, called Align&Split, originates from the algorithms
of [Abdulla et al. 2014] and is more expensive. On the other hand, it completely eliminates word
equations from the constraint and leaves only regular constraints, which can then be used to obtain
a LIA formula precisely characterizing lengths of their solutions.
We will first discuss the basics of the two algorithms, after which we describe our combined

approach in Sec. 4.2. For the rest of this section, assume a string constraint Φ : E ∧ R where E is
a conjunction of word equations and R is a normalized regular constraint.

3.1 Stabilization

The Stabilization algorithm of [Blahoudek et al. 2023] is based on Theorem 3.1 (Theorem 1
in [Blahoudek et al. 2023]) stated below that refers to stability of equations. Given a word equation
𝑠 = 𝑡 , we say that a language assignment R is stable for 𝑠 = 𝑡 if R(𝑠) = R(𝑡) and, for a set of word
equations E, we say that R is stable for E iff it is stable for every equation in E.
Theorem 3.1. Consider a string constraint Φ : E ∧ R where E is a conjunction of word equations

and R is a normalized regular constraint. If R is stable for E, then Φ is satisfiable.

Proof. (Sketch of the proof in [Blahoudek et al. 2023]) The proof gives a backtracking procedure
that constructs a model of a word equation by choosing minimum-length words from R for every
variable. It is possible to encode a set of word equations into a single equation whose left-hand
(right-hand) side is obtained by concatenating left-hand (right-hand) sides of all equations in E,
separated by delimiters. □

Theorem 3.1 essentially allows to test satisfiability of a string constraint while interpreting its
variables in the domain of languages instead of the domain of strings. Equations are interpreted as
equalities of concatenated languages of the variables on the respective sides, regular constraints as
inclusions of the variable values in the specified regular languages. The stability of the constraint
in the domain of languages corresponds to satisfiability in the domain of words.

Usually, the language assignment given by the input constraint R is not stable for E and needs
to be refined first. For refinement, Stabilization looks at each equation 𝑠 = 𝑡 as a pair of inclu-
sions/inclusion terms 𝑠⊆𝑡 and 𝑡 ⊆𝑠 (remember that now we are looking at 𝑠 and 𝑡 as languages) that
all need to be satisfied; the whole system of equations becomes a set of inclusion terms I. We use
R |= 𝑠⊆𝑡 to denote that R(𝑠) ⊆ R(𝑡) and, given a string assignment 𝜈 , we write 𝜈 |= 𝑠⊆𝑡 to denote
𝜈 |= 𝑠 = 𝑡 (in the algorithm, we only work with inclusion terms). A single refinement step of Stabi-
lization takes one inclusion 𝑠⊆𝑡 s.t.R ̸|= 𝑠⊆𝑡 fromI and refinesR for every variable from 𝑠 intoR′

so that R′ (𝑠) ⊆ R(𝑡). Refinement is performed using the intersection R(𝑠) ∩ R(𝑡) as follows.
Consider the inclusion term 𝑠 ⊆ 𝑡 and assume that 𝑠 = 𝑥1𝑥2 . . . 𝑥𝑛 and 𝑡 = 𝑦1𝑦2 . . . 𝑦𝑚 . We first

construct, for the left-hand side of the inclusion term, the language R(𝑥1)◁R(𝑥2)◁ · · ·◁R(𝑥𝑛),
where ◁ ∉ Σ is a special symbol marking the boundaries between languages corresponding to
occurrences of variables. Similarly, for the right-hand side of the inclusion term, we construct
the language R(𝑦1)R(𝑦2) · · · R(𝑦𝑚) (note that no markers are present on the right-hand side).
Both of these languages will be represented by NFAs. We then compute the product NFA l-prod
of R(𝑥1)◁R(𝑥2)◁ · · ·◁R(𝑥𝑛) and R(𝑦1)R(𝑦2) · · · R(𝑦𝑚) where ◁ is treated as an 𝜖-symbol (but
preserved in the output). This can be seen formally as computing an NFA for the following language:

l-prod =
(
R(𝑥1)◁R(𝑥2)◁ · · ·◁R(𝑥𝑛)

)
∩

(
R(𝑦1)R(𝑦2) · · · R(𝑦𝑚)

∃

◁𝑛−1
)

(2)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:7

Example 3.2. Assume a single equation 𝑥𝑢𝑦 = 𝑦𝑧𝑥 and the regular constraint R : 𝑥 ∈ 𝑑?(𝑎+𝑏)+∧
𝑦 ∈ 𝑐 + (𝑎𝑏)+ ∧ 𝑢 ∈ 𝑑 ∧ 𝑧 ∈ 𝑑? (with 𝑎, 𝑏, 𝑐, 𝑑 ∈ Σ). The equation can be seen as a pair of inclusion
terms 𝑥𝑢𝑦⊆𝑦𝑧𝑥 and 𝑦𝑧𝑥⊆𝑥𝑢𝑦. We start with the language assignment R from the initial regular
constraint. Suppose we start processing the inclusion term 𝑥𝑢𝑦⊆𝑦𝑧𝑥 . For this, a refinement step of
Stabilization will create the following pair of NFAs:
(i) The first one will be 𝐴RHS obtained by concatenating the NFAs for the regular languages on

the right-hand side of the inclusion term, i.e., 𝑐 + (𝑎𝑏)+ (for 𝑦), 𝑑? (for 𝑧), and 𝑑?(𝑎 +𝑏)+ (for 𝑥).
That is, the language of 𝐴RHS will be (𝑐 + (𝑎𝑏)+)𝑑?𝑑?(𝑎 + 𝑏)+.

(ii) The second one will be 𝐴LHS obtained by concatenating the NFAs for the regular languages
on the left-hand side of the inclusion, i.e., 𝑑?(𝑎 + 𝑏)+, 𝑑 , and 𝑐 + (𝑎𝑏)+, respectively, using ◁.
In our case, the language of 𝐴LHS will be 𝑑?(𝑎 + 𝑏)+◁𝑑◁(𝑐 + (𝑎𝑏)+).

Then, the two obtained NFAs, i.e., 𝐴LHS and 𝐴RHS, are intersected in an NFA l-prod by the product
construction described above. The language of l-prod will be (𝑎𝑏)+◁𝑑◁(𝑎𝑏)+. □

After l-prod is computed, we extract from it new language assignments R′
𝑖 in four steps (there

will potentially be a disjunction of several language assignments).
(1) First, we split l-prod into several NFAs 𝐴1, . . . , 𝐴𝑘 (without useless states) so that each 𝐴𝑖

contains exactly 𝑛 − 1 ◁-transitions and the union of languages of 𝐴1, . . . , 𝐴𝑘 gives 𝐿(l-prod).
We call 𝐴1, . . . , 𝐴𝑘 noodles; each of them represents one possible way how the languages of
variables occuring in 𝑠 change by the intersection with 𝑡 .

(2) Second, for each NFA 𝐴𝑖 , we split it into NFAs 𝐴𝑖,1, . . . , 𝐴𝑖,𝑛 by treating the source states of
◁-transitions as final states and the target states of ◁-transitions as initial states. As a re-
sult, for every occurrence of a variable 𝑥 𝑗 in the left-hand side 𝑠 = 𝑥1 . . . 𝑥𝑛 , there will be
a corresponding NFA 𝐴𝑖, 𝑗 .

(3) Third, for a sequence of NFAs 𝐴𝑖,1, . . . , 𝐴𝑖,𝑛 and every variable 𝑥 ∈ Var(𝑠) (there might, in
general, be multiple occurrences of 𝑥 in 𝑠), we take the intersection of all NFAs that correspond
to 𝑥 and obtain 𝐴𝑖

𝑥 =
⋂{𝐴𝑖, 𝑗 | 𝑥 𝑗 = 𝑥}.

(4) Finally, for the given 𝐴𝑖 , we obtain R′
𝑖 from R by changing the NFA for the language of every

variable 𝑥 ∈ Var(𝑠) to 𝐴𝑖
𝑥 .

We have obtained 𝑘 new language assignments R′
1, . . . ,R′

𝑘
(which can, again, be interpreted as

regular language constraints) such that they together represent the refinement of R. This new set
of language assignments will be called L-noodlify(𝑠⊆𝑡,R) = {R′

1, . . . ,R′
𝑘
}. The following lemma

states that the refinement operation preserves the solutions of a string constraint.

Lemma 3.3. 𝜈 |= 𝑠⊆𝑡 ∧ R iff 𝜈 |= 𝑠⊆𝑡 ∧ R′
for some R′ ∈ L-noodlify(𝑠⊆𝑡,R).

Example 3.4. Continuing in refining the inclusion 𝑥𝑢𝑦 ⊆𝑦𝑧𝑥 from Example 3.2, the obtained
language (𝑎𝑏)+◁𝑑◁(𝑎𝑏)+ can be represented by the following NFA l-prod:

𝑎
𝑏

𝑎

◁ 𝑑 ◁ 𝑎
𝑏

𝑎

The NFA is a noodle 𝐴1 itself, so it does not need to be split into noodles (we would need to perform
splitting in the case that, e.g., the target state of the 𝑑-transition had several outgoing ◁-transitions).
Next, we need to split 𝐴1 into NFAs for each occurrence of a variable on the left-hand side of the
inclusion (marked by the ◁-transitions). We obtain the following three NFAs:

𝑎
𝑏

𝑎

𝑑 𝑎
𝑏

𝑎
𝐴1,1 𝐴1,2 𝐴1,3

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

296:8 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

Finally, we refine R into R′: both variables 𝑥 and 𝑦 (corresponding to𝐴1,1 and𝐴1,3 respectively) will
be assigned the language (𝑎𝑏)+ in R′ and the language of 𝑢 (corresponding to 𝐴1,2) will still be 𝑑
(we do not touch the language of 𝑧 since 𝑧 does not occur on the left-hand side of the inclusion). □

The top-level algorithm of Stabilization starts with a language assignment R from the input
constraint Φ : E ∧ R and keeps refining R using unsatisfied inclusion terms from I, potentially
spawning multiple branches of the computational tree. The procedure terminates when either
(i) one branch of the computational tree stabilizes with a feasible language assignment (for a satis-
fiable constraint) or (ii) all branches of the computational tree stabilize with infeasible language
assignments (for an unsatisfiable constraint).

Example 3.5. Continuing in Example 3.4, we can proceed to another refinement using, e.g., the
inclusion term 𝑦𝑧𝑥 ⊆ 𝑥𝑢𝑦), which will change the language of 𝑧 from 𝑑? to 𝑑 (the rest will stay
the same). After that, further refinements will not change the language assignment any more—the
constraint is stable. A possible solution might be, e.g., 𝑥 ↦→ 𝑎𝑏, 𝑦 ↦→ 𝑎𝑏, 𝑢 ↦→ 𝑑 , and 𝑧 ↦→ 𝑑 . □

The presented procedure is correct, but in practice often inefficient. In particular, the termination
condition (stabilization on the set of all inclusion terms) is in many cases too restrictive and can be
weakened. For this, we work with the inclusion graph of a set of word equations E.

An inclusion graph for E is given as a set of inclusion terms I where the edge relation is induced
by I as follows: there is an edge 𝑠 ⊆ 𝑡 to 𝑠′ ⊆ 𝑡 ′ iff 𝑠 and 𝑡 ′ share a variable. For I to induce an
inclusion graph, the following three conditions need to hold:
(IG1) For each 𝑠 = 𝑡 in E, 𝑠⊆𝑡 ∈ I or 𝑡 ⊆𝑠 ∈ I.
(IG2) If 𝑠⊆𝑡 ∈ I s.t. 𝑡 has a variable with multiple occurrences on right-hand sides of inclusions in

I, then also 𝑡 ⊆𝑠 ∈ I.3
(IG3) If 𝑠⊆𝑡 ∈ I lies on a cycle in the graph consisting of edges induced by I, then also 𝑡 ⊆𝑠 ∈ I.
We use I(𝑠⊆𝑡) for the set of successors of a node 𝑠⊆𝑡 w.r.t. the edge relation induced by I.

𝑢⊆𝑧

𝑣⊆𝑢 𝑢⊆𝑣

𝑥𝑦⊆𝑥𝑢𝑣 𝑥𝑢𝑣⊆𝑥𝑦

(a) Inclusion graph for E1

𝑢⊆𝑧

𝑣⊆𝑢

𝑦⊆𝑥𝑢𝑣

(b) Inclusion graph for E2

Fig. 1. Examples of inclusion graphs. (a) A cyclic inclu-

sion graph for E1 : 𝑧 = 𝑢 ∧ 𝑢 = 𝑣 ∧ 𝑥𝑦 = 𝑥𝑢𝑣 . E1 does
not have an acyclic inclusion graph. (b) An acyclic

inclusion graph for E2 : 𝑧 = 𝑢 ∧𝑢 = 𝑣 ∧𝑦 = 𝑥𝑢𝑣 . Both

inclusion graphs in (a) and (b) are induced by a set of

inclusions of the smallest size.

Given a set of word equations E, there might
exist several sets I that induce an inclusion
graph using the definition above (e.g., the con-
ditions are trivially satisfied by taking for ev-
ery word equation both corresponding inclusion
terms).We, however, try to take a set of the small-
est size that satisfies the conditions and is acyclic
(or at least contains as few cycles as possible;
see [Blahoudek et al. 2023] for an algorithm for
selecting a suitable I). Examples of inclusion
graphs are shown in Fig. 1.

We say that a language assignment R is stable
for a set of inclusions I if it satisfies its every
inclusion. The following theorem (Theorem 3
from [Blahoudek et al. 2023]) states that it is
sufficient to stabilize a language assignment w.r.t.
a set of inclusions that induce an inclusion graph. We say that a string constraint E is chain-free if
there exists at least one acyclic inclusion graph for E.4

3E.g., I = {𝑥𝑥 ⊆𝑦𝑦} does not induce an inclusion graph (it can be fixed by adding 𝑦𝑦⊆𝑥𝑥). Similarly for {𝑢⊆𝑥, 𝑣⊆𝑥 }
(it can be fixed by either adding 𝑥 ⊆𝑢 and 𝑥 ⊆𝑣 or by inverting all inclusions, i.e., I′ = {𝑥 ⊆𝑢, 𝑥⊆𝑣}).
4The equivalence of this definition with the original definition of chain-free constraints from [Abdulla et al. 2019] was
shown in [Blahoudek et al. 2023].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:9

Theorem 3.6. A string constraint Φ : E∧R is satisfiable iff there exists a set of inclusions I inducing

an inclusion graph for E such that R is stable for I.
Given I, edges in the induced inclusion graph tell us the sufficient order of refinements that need

to be performed. If the inclusion graph is acyclic, then the algorithm is guaranteed to terminate
(cf. Theorems 6 and 7 in [Blahoudek et al. 2023]).

3.2 Align&Split

Align&Split is an algorithm from [Abdulla et al. 2014] that transforms a system Φ of word
equations and regular constraints into a purely regular constraint. From this regular constraint,
it is then possible to extract a precise LIA formula characterizing lengths of strings in satisfying
assignments to the variables of Φ by standard means (in particular, we use the lasso automaton
construction, used, e.g., in [Abdulla et al. 2014; Berzish et al. 2023, 2021; Chen et al. 2019]; an
alternative is the computation of the Parikh image of the languages [Esparza 1997; Parikh 1966]).
Equation alignment and automata splitting introduced in [Abdulla et al. 2014] transform the
constraint into a purely regular one. In a nutshell, when Align&Split is called on a conjunction
Φ : E ∧ R of a word equation constraint E and a regular constraint R, it performs the following
three steps: (1) It transforms E into the so-called solved form [Ganesh et al. 2012], a disjunction of
conjunctions

∧
𝑥∈Var(E) 𝑥 = 𝑡𝑥 where the terms 𝑡𝑥 are concatenations of fresh variables (not in Φ),

(2) each 𝑥 ∈ Var(E) is in R substituted by 𝑡𝑥 and the equations are removed. The substitution
𝜎 = {𝑥 ↦→ 𝑡𝑥 | 𝑥 ∈ Var(E)} can be understood as an alignment of the equations that specifies
the relative positions of borders in their left and right-hand side variables (for instance, one
possible disjunct of the solved form of 𝑥𝑦 = 𝑢𝑧 would be 𝑥 = 𝑣1𝑣2 ∧ 𝑦 = 𝑣3 ∧ 𝑢 = 𝑣1 ∧ 𝑧 = 𝑣2𝑣3,
corresponding to aligning 𝑢 as a prefix of 𝑥). The substitution transforms atomic regular constraints
𝑥 ∈ 𝐿𝑥 into regular constraints over terms: 𝑥1 . . . 𝑥𝑛 ∈ 𝐿. (3) The last step, automata splitting,
transforms these term-regular constraints back into ordinary regular constraints as follows: each
term-regular constraint is transformed into a disjunction

∨
𝑞0,...,𝑞𝑛∈𝑄,𝑞0∈𝐼 ,𝑞𝑛∈𝐹

∧𝑛−1
𝑖=0 𝑥𝑖 ∈ 𝐿(𝐴𝑞𝑖+1

𝑞𝑖),
where 𝐴 = (𝑄, 𝛿, 𝐼 , 𝐹) is an NFA accepting 𝐿𝑥 and 𝐴𝑞

𝑟 is the NFA (𝑄, 𝛿, {𝑞}, {𝑟 }) (intuitively, 𝑥𝑖 is
given the language between states 𝑞𝑖 and 𝑞𝑖+1 of 𝐴).

The alignment and splitting combines two expensive case splits, computing the full solved form
with all alignments and then splitting over all 𝑛-tuples of automata states. In Sec. 4.2, we will
therefore propose a fine grained integration of steps from Stabilization and Align&Split, where
the latter are used only when absolutely necessary. For that, let us first formulate a version of
Align&Split that is more compatible with Stabilization.

Align&Split step. The basic Align&Split step is similar to a refinement step for one inclusion of
Stabilization. In the presentation here, on top of the functionality of Stabilization, it also makes
the alignment of the borders between left and right-hand side variables explicit in the product of
the left and the right-hand side languages (in Eq. (2), we only tracked borders of left-hand side
variables), and applies the alignment substitution that fixes the alignment of the inclusion for
the rest of the computation. Over several Align&Split steps, these substitutions converge to an
alignment for all inclusions.

In particular, for 𝑠⊆𝑡 with 𝑠 = 𝑥1 . . . 𝑥𝑛 and 𝑡 = 𝑦1 . . . 𝑦𝑚 , we compute an NFA for the intersection
of languages of 𝑠 and 𝑡 with marked borders between left-hand as well as right-hand side variables:

lr-prod =
(
R(𝑥1)◁R(𝑥2)◁ · · ·◁R(𝑥𝑛)

∃

▷𝑚−1) ∩ (
R(𝑦1)▷R(𝑦2)▷ · · ·▷R(𝑦𝑚)

∃

◁𝑛−1
)

(3)
The product lr-prod is then decomposed into a set of noodles (using the vocabulary of Stabiliza-
tion), automata with languages

𝐿1 |||1 𝐿2 |||2 · · · |||𝑛+𝑚 𝐿𝑛+𝑚 where each |||𝑖 is ◁ or ▷ and each 𝐿𝑖 is in Σ∗

such that union of the languages of the noodles is the original language 𝐿(lr-prod).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

296:10 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

Example 3.7. As in Example 3.2, we again start processing the inclusion term 𝑥𝑢𝑦⊆𝑦𝑧𝑥 with
𝑥 ∈ 𝑑?(𝑎 + 𝑏)+ ∧ 𝑦 ∈ 𝑐 + (𝑎𝑏)+ ∧ 𝑢 ∈ 𝑑 ∧ 𝑧 ∈ 𝑑?. Align&Split creates the following pair of NFAs:
(i) 𝐴RHS is obtained by concatenating the right-hand side languages, divided by the right-hand

side separator symbol ▷. The language of 𝐴RHS is (𝑐 + (𝑎𝑏)+)▷𝑑?▷𝑑?(𝑎 + 𝑏)+.
(ii) 𝐴LHS is obtained by concatenating the left-hand side languages, divided by the left-hand side

separator symbol ◁. The language of 𝐴LHS is 𝑑?(𝑎 + 𝑏)+◁𝑑◁(𝑐 + (𝑎𝑏)+).
The 𝐴LHS and 𝐴RHS are intersected in NFA lr-prod by a specialized product construction that treats
the separator symbols ◁ and ▷ as 𝜖 and remembers their position. lr-prod accepts the union of the
two languages that correspond to 𝑧 on the right-hand side of the inclusion being either 𝑑 or 𝜖 :(

(𝑎𝑏)+◁▷𝑑◁▷(𝑎𝑏)+
)
∪
(
(𝑎𝑏)+◁▷▷𝑑◁(𝑎𝑏)+

)
(4)

The two languages then become two noodles. Recall that in Stabilization, only the left-hand side
separators ◁ were used and only one noodle was created, illustrating that Align&Split generates
larger case splits. □

From each noodle, we infer an alignment substitution 𝜎 and a refinement R′ of languages of
variables. Intuitively, each occurrence of a variable will be split into several segments by the
separators ◁ and ▷. Each of the segments will be represented by a fresh variable and the original
variables will be substituted by the sequences of the fresh variables.

Consider the sequence
𝑣1 |||1 𝑣2 |||2 · · · |||𝑛+𝑚 𝑣𝑛+𝑚 (5)

where the 𝑣𝑖 ’s are fresh variables, called alignment variableswithR′ (𝑣𝑖) = 𝐿𝑖 (for original variables 𝑥 ,
R′ (𝑥) = R(𝑥)). For every index 𝑗 of a left-hand side position of 𝑠 , with 1 ≤ 𝑗 ≤ 𝑛, let s𝑗 denote
the sequence 𝑣𝑘𝑣𝑘+1 . . . 𝑣𝑙 of the fresh variables in between the 𝑗-th and the (𝑗 + 1)-th occurrence
of ◁ (corresponding to 𝑥 𝑗 on the left-hand side of the inclusion), and for 1 ≤ 𝑗 ≤ 𝑚, let t𝑗 be
the sequence of the fresh variables 𝑣𝑘𝑣𝑘+1 . . . 𝑣𝑙 in between the 𝑗-th and the (𝑗 + 1)-th occurrence
of ▷ (corresponding to 𝑦 𝑗 on the right-hand side of the inclusion). As an optimization, segments
with languages equivalent to 𝜖 can be omitted (the corresponding fresh variables are removed
from Eq. (5)). Then, the set Align of alignment inclusions will consist of, for every index 1 ≤ 𝑗 ≤ 𝑚

on the right-hand side, the inclusion s𝑗 ⊆𝑦 𝑗 , and for every index 1 ≤ 𝑗 ≤ 𝑛 on the left-hand side,
the inclusion 𝑥 𝑗 ⊆t𝑗 .

Example 3.8. Let us continue processing the inclusion 𝑥𝑢𝑦⊆𝑦𝑧𝑥 from Example 3.7 and consider
the noodle (𝑎𝑏)+ ◁▷▷𝑑 ◁ (𝑎𝑏)+ obtained from the right-hand side operand of Eq. (4). This noodle
corresponds to the following alignment of variables:

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑥 𝑢 𝑦

𝑦 𝑧 𝑥

{ 𝑣1 𝜖 𝜖 𝑣4 𝑣5

𝑥 𝑢 𝑦

𝑦 𝑧 𝑥

Note that 𝑣2 and 𝑣3 were removed because the subsequence . . .◁▷▷ . . . in the noodle assigns
them to 𝜖 . Therefore, we obtain the set Align = {𝑥⊆𝑣1, 𝑢⊆𝑣4, 𝑦⊆𝑣5, 𝑣1⊆𝑦, 𝜖⊆𝑧, 𝑣4𝑣5⊆𝑥}. □

The new string assignment together with the alignment inclusions preserve solutions in the sense
formalised in the following lemma. Let LR-noodlify(𝑠⊆𝑡,R) be the set of pairs

{
(Align𝑖 ,R𝑖)

}𝑘
𝑖=1.

Lemma 3.9. 𝜈 |= 𝑠⊆𝑡 ∧ R iff 𝜈 ′ |= Align𝑖 ∧ R𝑖 for some (Align𝑖 ,R𝑖) ∈ LR-noodlify(𝑠⊆𝑡,R) and
some 𝜈 ′ extending 𝜈 to Var(Align𝑖 ∧ R𝑖).

Now, for every variable 𝑥 ∈ Var(𝑠 ⊆ 𝑡), we choose one alignment inclusion in Align, called
a substitution inclusion, of the form either 𝑥⊆𝑡𝑥 or 𝑡𝑥 ⊆𝑥 (mind that 𝑥 can occur in 𝑠 ⊆ 𝑡 multiple

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:11

times, leading to multiple alignment inclusions with 𝑥). The selected substitution inclusions are
removed from Align, resulting in the set Align′, and we define the alignment substitution based
on them as 𝜎 = {𝑥 ↦→ 𝑡𝑥 | 𝑥 ∈ Var(𝑠 = 𝑡)}. The original inclusion is replaced by Align

′, and the
alignment substitution is applied on the entire string constraint Φ. The Align&Split steps continue
until all inclusions are eliminated (transformed to trivial inclusions and removed).

Example 3.10. Continuing in Example 3.8, we can take 𝜎 = {𝑦 ↦→ 𝑣1, 𝑧 ↦→ 𝜖,𝑢 ↦→ 𝑣4, 𝑥 ↦→ 𝑣4𝑣5}
as an alignment substitution and then Align

′ = {𝑥⊆𝑣1, 𝑦⊆𝑣5}. After applying the substitution and
removing trivial inclusions (such as 𝑣1⊆𝑣1), we obtain from Align

′ inclusions {𝑣4𝑣5⊆𝑣1, 𝑣1⊆𝑣5}
and language assignment {𝑣1 ↦→ (𝑎𝑏)+, 𝑣4 ↦→ 𝑑, 𝑣5 ↦→ (𝑎𝑏)+}. A follow-up Align&Split applied
on 𝑣4𝑣5⊆𝑣1 would terminate with an empty intersection of the left-hand and the right-hand side
languages (𝑑 (𝑎𝑏)+ ∩ (𝑎𝑏)+ = ∅). This means that the right-hand side operand of Eq. (4), which we
chose for the presentation, does not lead to a solution.
If we continued from the left-hand side operand of Eq. (4) with Align&Split steps, we would

obtain Align = {𝑥 ⊆ 𝑣1, 𝑢 ⊆ 𝑣3, 𝑦 ⊆ 𝑣5, 𝑣1 ⊆ 𝑦, 𝑣3 ⊆ 𝑧, 𝑣5 ⊆ 𝑥}. We can select, e.g., the alignment
substitution𝜎 = {𝑥 ↦→ 𝑣1, 𝑢 ↦→ 𝑣3, 𝑦 ↦→ 𝑣5, 𝑧 ↦→ 𝑣3}, leavingAlign′ = {𝑣1⊆𝑦, 𝑣5⊆𝑥}. From this, after
applying the substitution, we would obtain inclusions {𝑣1⊆𝑣5, 𝑣5⊆𝑣1} and language assignment
R′ = {𝑣1 ↦→ (𝑎𝑏)+, 𝑣3 ↦→ 𝑑, 𝑣5 ↦→ (𝑎𝑏)+}. After one more Align&Split step, we would terminate
with no equations and language assignment R′. □

As mentioned at the beginning of this section, since Align&Split returns a purely regular
constraint, it is possible to return a formula that precisely characterises the lengths of all solutions
of the original constraint. We can compute the arithmetic formula expressing the lengths of solution
assignments for every variable and take their conjunction (by computing the Parikh images of the
automata [Esparza 1997] or the lasso automaton construction used, e.g., in [Abdulla et al. 2014]).
Align&Split is costlier than Stabilization because (1) it introduces more variables, creating

larger equations and (2) it generates noodles with explicit boundaries of variables on both sides.
The number of noodles generated by splitting is thus higher. In the following section, we therefore
propose a combined algorithm that uses splitting only when necessary and uses Stabilization
refinement steps instead whenever possible.

4 SOLVING BASIC STRING CONSTRAINTS

We will now explain our string solving algorithm that handles basic string constraints: equations,
regular, and length constraints. Concretely, it takes a conjunctionΦ : E∧R∧L on the input, where E
is a conjunction of equations, R is a normalized regular constraint, and L is a length constraint.
The algorithm reduces the word equations and regular constraints to a LIA formula, which is then
solved (together with L) by a LIA solver using the DPLL(𝑇) framework for combining theories.

4.1 The Overall Structure of the Basic String Solver

Essentially, the string solver generates the strongest length constraint 𝜓 on the variables of L
implied by E ∧ R, and the LIA solver solves it in conjunction with L. The string solver for basic
constraints, discussed in detail in Sec. 4.2, takes on the input constraints E, R, and a set of length
variables Len = Var(L). In order to be able to generate𝜓 from the input, the solver first “solves”
the equations and regular constraints by transforming them to the disjunction∨𝑛

𝑖=1 E𝑖 ∧ R𝑖 , (6)

where each E𝑖 is a conjunction of equations and each R𝑖 is a normalised regular constraint. Every
disjunct E𝑖 ∧ R𝑖 is paired with an alignment substitution 𝜎𝑖 , which substitutes variables of E

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

296:12 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

by fresh variables appearing in E𝑖 ∧ R𝑖 . We call ⟨E𝑖 ,R𝑖 , 𝜎𝑖⟩ a candidate solution triple. The set of
candidate solution triples is required to satisfy the following two properties:
(1) Triples in the set are together equivalent to E ∧ R modulo the substitutions, i.e.,

⟦E ∧ R⟧ =
⋃𝑛

𝑖=1 𝜎
•
𝑖 (⟦E𝑖 ∧ R𝑖⟧), (7)

where for a substitution 𝜎 and an assignment 𝜈 , 𝜎• denotes the assignment 𝜎• (𝜈) = {𝑥 ↦→
𝜈 (𝑣1) · · ·𝜈 (𝑣ℓ) | 𝑥 ∈ X, 𝜎 (𝑥) = 𝑣1 . . . 𝑣ℓ } (𝜎• is extended to sets of assignments as usual).

(2) In each triple ⟨E𝑖 ,R𝑖 , 𝜎𝑖⟩, the word equation constraint E𝑖 does not restrict length variables,
i.e., variables from the set Len𝑖 = Var(𝜎𝑖 (L)). In other words, in any solution of E𝑖 , the value
of any length variable 𝑥 can be replaced by an arbitrary value from R𝑖 (𝑥) and the resulting
assignment will still be a solution of E𝑖 . Formally, it holds when the formula ∀Len𝑖∃Len𝑖 : E𝑖

is valid, where Len𝑖 = Var(E𝑖) \ Len𝑖 are the non-length variables in E𝑖 (note that, generally
speaking, the variables in each E𝑖 will be different from those in E; in particular some
non-length variables will be split using the alignment rule and their parts substituted by
length variables).

For each triple ⟨E𝑖 ,R𝑖 , 𝜎𝑖⟩, we generate for each variable 𝑥 of 𝜎𝑖 (L) the precise length char-
acterisation of R𝑖 (𝑥). This is a LIA formula 𝜓𝑥

𝑖 with only one free variable 𝑥 (used in the length
term |𝑥 |) such that it has a solution ℓ𝑥 if and only if R𝑖 (𝑥) contains a word of the length ℓ𝑥 . The LIA
formula 𝜓𝑥

𝑖 is generated from R𝑖 (𝑥) by well-known automata constructions, such as the Parikh
image construction [Esparza 1997; Parikh 1966], or from one-letter deterministic lasso automaton
construction, see, e.g., [Abdulla et al. 2014] (we use the latter as it seems faster and generates
simpler formulae). For the 𝑖-th candidate solution triple, the string solver returns the formula

L𝑖 :
∧

𝑥∈Len𝑖 𝜓
𝑥
𝑖 ∧∧

𝑥∈Len,𝜎𝑖 (𝑥)=𝑥1 · · ·𝑥𝑚 |𝑥 | = |𝑥1 | + · · · + |𝑥𝑚 |. (8)

The first conjunction describes the lengths derived from R𝑖 and the second conjunct links the
lengths of the original variables with the new variables substituting them. Note that L𝑖 ∧ L is
satisfiable if and only if E𝑖 ∧ R𝑖 ∧ 𝜎𝑖 (L) is satisfiable. A naive implementation of this translation
would return the entire conjunction

∧𝑛
𝑖=1 L𝑖 at once. In Sec. 7, we discuss a way of generating the

conjuncts lazily on demand.

4.2 Combined Algorithm for Solving Equations and Regular Constraints

The core of our technical contribution is the string solving algorithm. It takes E, R, and the set
of length variables Len = Var(L) on the input. The set of length variables is used to keep track
of variables directly involved in L or possibly influencing their value. The algorithm works with
equations represented again as a set of inclusions I, which are initially obtained from equations E
to satisfy the requirements for an inclusion graph in Sec. 3.1. The algorithm builds a proof tree
by repeatedly applying the proof rules below. The nodes of the proof tree are tuples of the form
(I,R,𝑊 , 𝜎, Len) consisting of inclusions I, language assignment R : Var(I) → P(Σ∗), a worklist
of inclusions𝑊 ⊆ I, a partial alignment substitution 𝜎 , and a set of length variables Len ⊆ Var(I).
Essentially, on every branch of the proof tree, the inclusions and languages of variables are

updated by a combination of Stabilization and Align&Split in order to achieve stability of
inclusions not relevant to length constraints and elimination of inclusions that are relevant. Every
branch of the proof tree uses its worklist𝑊 to track its progress in stabilization of its inclusions.5
For the worklist, we use the notation 𝑠⊆𝑡 ::𝑊 to denote that 𝑠⊆𝑡 is at the top of the worklist (whose
tail is𝑊) and the notation 𝑆 ::𝑊 for a set 𝑆 to denote a worklist obtained by pushing all elements

5Strictly speaking, the worklist is used for efficiency purposes; its omission does not affect soundness. A simple alternative
would be to use any rule enabled by its side condition.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:13

from 𝑆 on the top of𝑊 in an arbitrary order. Applying substitution 𝜎 on a worklist substitutes all
occurrences of the variables within elements of the worklist.
A leaf (I,R, ∅, 𝜎, Len) with the empty worklist and a feasible language assignment R will be

guaranteed to have R stable for I and so denote satisfiability of the input constraint. The candidate
solution triple of Eq. (6) for the given branch is obtained as ⟨EI,R, 𝜎⟩ where EI is obtained from I
by replacing inclusion signs by equality. On the other hand, all leafs of a complete proof tree having
an infeasible language assignment R will denote unsatisfiability of the constraint.

We write the inference rules in the form Name : 𝑃

{𝐶𝑖 }𝑘𝑖=1
cond, where Name is the rule’s name, 𝑃 is

the premise, cond is a side condition on 𝑃 necessary for the rule to be applicable, and {𝐶𝑖 }𝑘𝑖=1 is a set
of conclusions of the rule. Each application consumes a premise and produces a set of conclusions,
each conclusion spawning a new branch of the tree.
To simplify the proof rules, we will take advantage of that only lenght variables need to be

completely eliminated from equations by means of Align&Split, but not the non-lenght variables.
Hence, before the algorithm starts, we substitute every occurrence of a maximal sequence 𝑧1 · · · 𝑧𝑛
of non-length variables in all inclusions in I by a fresh (non-length) variable 𝑦 and add into I
the inclusion 𝑦 ⊆ 𝑧1 · · · 𝑧𝑛 (if the sequence occurred on the left-hand side) or 𝑧1 · · · 𝑧𝑛 ⊆𝑦 (if the
sequence occurred on the right-hand side). This establishes the following invariant, which will be
preserved by the proof rules:

If the right-hand side of an inclusion in I contains a length variable,
then neither of its sides contains two non-length variables next to each other. (9)

Note that after replacing sequences of non-lenght variables in an equaion, LR-noodlify of the
Align&Split algorithm produces less and shorter noodles (we will also comment on the role
of the invariant from Eq. (9) where it is relevant). The output of the preprocessing satisfied the
invariant because (i) all non-trivial sequences of non-length variables in the original inclusions
were substituted by a new variable and (ii) the newly introduced inclusions do not contain any
length variables.

Stabilization rules. We now formulate proof rules that combine Stabilization and Align&Split
to solve equations in a way minimizing the use of Align&Split steps but still creating a constraint
where the length constraint is separated from equations and restricted only by regular constraints.
We will first describe the more straightforward rules corresponding to the steps in Stabilization,
which do not deal with length variables.

The first rule, Refine, is easily explained as one refinement step of Stabilization. It is applied on
inclusions that are not yet satisfied and have no length variables on the right-hand side. One proof
tree child is generated for each of the 𝑘 noodles obtained by decomposing l-prod (cf. Sec. 3.1), each
child with a different update of the regular constraint. The inclusion is in the worklist replaced by
its successors. Refinement neither aligns equation sides nor substitutes variables, hence I and 𝜎
remain unchanged.

Refine :
(I, 𝑠⊆𝑡 ::𝑊, R, 𝜎, Len){
(I, I(𝑠⊆𝑡)::𝑊, R′

𝑖
, 𝜎, Len)

}𝑘
𝑖=1

𝜑Refine

where 𝜑Refine
def.⇔ Len ∩ Var(𝑡) = ∅ ∧ R ̸|= 𝑠⊆𝑡 ∧ L-noodlify(𝑠⊆𝑡,R) = {R′

𝑖 }
𝑘
1 .

Rule Skip simply allows to skip processing of an inclusion that is already stable, i.e., satisfied in
the current language assignment R, if it does not contain length variables on its right-hand side.

Skip : (I, 𝑠⊆𝑡 ::𝑊, R, 𝜎, Len)
{(I, 𝑊 , R, 𝜎, Len)} Len ∩ Var(𝑡) = ∅ ∧ R |= 𝑠⊆𝑡

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

296:14 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

Rule Stable applies when the worklist is empty and the language assignment is feasible. By the
construction of the rules, the inclusions are stable w.r.t. the language assignment, and the current
inclusions, assignment, and substitution represent one candidate solution triple.

Stable : (I, ∅, R, 𝜎, Len)
SAT(⟨I,R, 𝜎⟩) R is feasible

Rule Infeasible applies when the assignment is infeasible, and it terminates the proof tree
branch as unsuccessful.

Infeasible : (I, 𝑊 , R, 𝜎, Len)
UNSAT

R is infeasible

Combined rules. The next set of rules is used for inclusions with length variables. The rules are
only used if the stabilization rules above do not apply. Note that the rules are not just a reformulation
of the Align&Split algorithm of Sec. 3.2 but, instead, they are a fine-grained combination of
Align&Split and Stabilization that introduces as few new alignment variables as possible.

Rule AlignSplit encapsulates the first part of the Align&Split step. It aligns the left-hand
and right-hand side variables, generating the set Align of alignment inclusions. Rule AlignSplit
is the purpose of intruducing Eq. (9): it reduces sequences of non-length variables into a single
variable, which in turn reduces the number of newly introduced variables (corresponding to the
“length” of noodles) and the number of noodles produced by LR-noodlify(𝑠 ⊆ 𝑡,R) used within
AlignSplit. The second part of Align&Split, which turns alignment equations into substitutions,
is then implemented by rules LSubst, LSubstLen, and RSubstLen.

AlignSplit :
(I ⊎ {𝑠⊆𝑡}, 𝑠⊆𝑡 ::𝑊, R, 𝜎, Len){
(I ∪ Align𝑖 , Align𝑖 ::𝑊, R′

𝑖
, 𝜎, Len)

}𝑘
𝑖=1

LR-noodlify(𝑠⊆𝑡,R) =
{
(R′

𝑖 ,Align𝑖)
}𝑘
𝑖=1

When one side of the processed inclusion contains a single variable 𝑥 , then 𝑥 is, after refinement
of the languages into noodles, substituted by the term on the other side. Rule LSubst is applied
when the 𝑥 is on the left-hand side and it is not a length variable.

LSubst :
(I ⊎ {𝑥⊆𝑡}, 𝑥⊆𝑡 ::𝑊, R, 𝜎, Len){
(𝜎′

𝑖
(I ∪ Align), 𝜎′

𝑖
(Align::𝑊), R′

𝑖
, 𝜎′

𝑖
∪ 𝜎, Len)

}𝑘
𝑖=1

𝜑LSubst

where 𝜑LSubst
def.⇔ 𝑥 ∉ Len ∧ LR-noodlify(𝑥⊆𝑡,R) =

{
(R′

𝑖
,Align ⊎ {𝑡 ′

𝑖
⊆𝑥})

}𝑘
𝑖=1 ∧

∧𝑘
𝑖=1 𝜎

′
𝑖
= {𝑥 ↦→ 𝑡 ′

𝑖
}.

Rule LSubstLen is the same as LSubst, but 𝑥 is a length variable now, in which case the variables
of the term on the right-hand side become length variables too (a change of their values influences
a length variable). LSubstLen takes precedence before AlignSplit.

LSubstLen :
(I ⊎ {𝑥⊆𝑡}, 𝑥⊆𝑡 ::𝑊, R, 𝜎, Len){
(𝜎′

𝑖
(I ∪ Align), 𝜎′

𝑖
(Align::𝑊), R′

𝑖
, 𝜎′

𝑖
∪ 𝜎, Len ∪ Var(𝑡 ′

𝑖
))

}𝑘
𝑖=1

𝜑LSubstLen

where 𝜑LSubstsLen
def.⇔ 𝑥 ∈ Len ∧ LR-noodlify(𝑥⊆𝑡,R) =

{
(R′

𝑖
,Align ⊎ {𝑥⊆𝑡 ′

𝑖
})
}𝑘
𝑖=1 ∧

∧𝑘
𝑖=1 𝜎

′
𝑖
= {𝑥 ↦→ 𝑡 ′

𝑖
}.

Rule RSubstLen is symmetrical to LSubstLen, the difference is that 𝑡 ⊆𝑥 is replaced by 𝑥⊆𝑡 . Note
that there is no symmetrical counterpart of LSubst. This is because the case with a non-length 𝑥

on the right-hand side is handled by Refine from stabilization rules.

Local soundness and completeness of the rules. A proof rule is called sound if satisfiability of the
premise implies satisfiability of one of the conclusions and it is locally complete if satisfiability of
one of the conclusions implies satisfiability of the premise. If all proof rules are locally complete,
and if Φ or one of the produced conclusions turns out to be satisfiable, then Φ is also satisfiable. If all
the proof rules are sound and none of the produced conclusions is satisfiable, then Φ is unsatisfiable.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:15

Soundness and local completeness of our rules can be concretized as follows. Let a rule produce
for a premise (I,𝑊 ,R, 𝜎, Len) the set of conclusions {(I𝑖 ,𝑊𝑖 ,R𝑖 , 𝜎𝑖 ◦ 𝜎, Len𝑖)}𝑘𝑖=1. The rule is sound
and locally complete if 𝜈 |= 𝜎𝑖 (I ∧ R) if and only if 𝜈 |= I𝑖 ∧ R𝑖 for some 1 ≤ 𝑖 ≤ 𝑘 .

Lemma 4.1. All rules of the combined algorithm are sound and locally complete.

Proof. (sketch) Soundness and completeness of Refine and AlignSplit follow directly from
Lemma 3.3 and Lemma 3.9, respectively. Similarly, soundness and completeness LSubst, LSubstLen,
and RSubstLen follow from Lemma 3.9 and from the fact that substituting 𝑥 by 𝑡 ′𝑖 and removing
𝑥 ⊆ 𝑡 ′𝑖 or 𝑡

′
𝑖 ⊆ 𝑥 , depending on the rule, preserves solutions modulo the substitution 𝜎 ′

𝑖 since 𝑡
′
𝑖

consists of fresh variables. Soundness and completeness of the rest of the rules is trivial. □

We also argue that upon termination, the variables in the remaining equations (inclusions) do not
influence the length constraints. This means that we can indeed obtain a precise characterisation
of the lengths of length variables.

Lemma 4.2. When SAT(⟨I′,R′, 𝜎 ′⟩) is derived, I′
does not restrict 𝜎 ′ (L).

Proof. (sketch) The lemma’s statement follows from the fact that upon termination (achieving
stability), length variables can appear only on the left-hand sides of the inclusions. This means that
any combination of values from languages of the length variables can be completed into a (string)
solution of the inclusions (equations).
The claim that no length variable can appear on the right-hand side of any inclusion upon

termination can be argued as follows: Processing an inclusion with a single variable on the right-
hand side eliminates that inclusion (by processing, we mean removing the inclusion as the head of
the worklist in a premise of a rule). Indeed, the used rule must be either AlignSplit or RSubstLen.
ForAlignSplit, the inclusion is replaced by the alignment equations, where it holds that if a variable
occurs in the right-hand side, then it appears there alone. RSubstLen then eliminates inclusions
with a single length variable 𝑥 on the right-hand side.

RSubstLen, however, also substitutes 𝑥 by 𝑡 ′𝑖 , and makes all its variables into length variables.
We need to make sure that also the variables of 𝑡 ′𝑖 will not remain on the right-hand side of some
inclusion until stabilisation. Intuitively, RSubstLen is sending length awareness of variables along
paths in the inclusion graph. The worklist mechanism ensures that inclusions are processed along
the paths in the graph. The variables of 𝑡 ′𝑖 in right-hand sides of inclusions will therefore be
eventually eliminated by processing those inclusions. □

Finally, we argue that the algorithm terminates whenever the initial set of equations E is chain-
free, which gives us completeness for the chain-free fragment of equations, regular constraints,
and length constraints.

Theorem 4.3. If E is chain-free, then the combined algorithm terminates.

Proof. (sketch) The inclusions obtained from the equations form an acyclic inclusion graph.
The combined algorithm essentially explores the graph in the depth-first manner using the work-
list𝑊 . Since there are no cycles, the exploration terminates. □

5 EXTENDED CONSTRAINTS

Established string constraint benchmarks contain a large amount of extended string constraints,
hence we extend our algorithm with a basic handling of a minimal set of these extensions in order
to be able to compare and compete with other solvers. We handle the extended constraints almost
exclusively by generic translations to the basic constraints. Interesting is the case of disequalities,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

296:16 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

where a slight modification of a known translation allows us to extend the decidable chain-free
fragment of string constraints with unrestricted disequalities.

5.1 Disequalities

Disequalities 𝑠 ≠ 𝑡 occur sometimes in real-word benchmarks and they are generated by rewriting
of extended string functions and predicates. Treating them efficiently is therefore important.

Consider a disequality of the form 𝑠 ≠ 𝑡 . Already [Abdulla et al. 2014] noticed that the disequality
can be converted to equations, namely, to∨

𝑎∈Σ (𝑠 = 𝑡𝑎𝑥 ∨ 𝑡 = 𝑠𝑎𝑥) ∨∨
𝑎1,𝑎2∈Σ,𝑎1≠𝑎2 (𝑠 = 𝑥𝑎1𝑦1 ∧ 𝑡 = 𝑥𝑎2𝑦2). (10)

Such a formula, however, involves large disjunctions over all characters. It was improved upon
in [Abdulla et al. 2015], which eliminates the large disjunction and uses length constraints and
a special disequality of the so-called witness variables and with lengths restricted to length one:

|𝑠 | ≠ |𝑡 | ∨ (𝑠 = 𝑥𝑎1𝑦1 ∧ 𝑡 = 𝑥𝑎2𝑦2 ∧ |𝑎1 | = |𝑎2 | = 1 ∧ |𝑦1 | = |𝑦2 | ∧ 𝑎1 ≠ 𝑎2) (11)

where 𝑥,𝑦1, 𝑦2, 𝑎1, 𝑎2 are fresh string variables. The latter approach is more efficient, but the newly
created equations could potentially create a cycle in the inclusion graph. The original disequalities
𝑠 ≠ 𝑡 must hence be taken into account in the definition of the chain-free fragment in the same
way as equations.

Here, we notice that this dependence of chain-freeness on disequalities can be completely
removed by using yet another translation of disequalities. Essentially, the different 𝑎1 and 𝑎2 do not
have to appear after a common prefix 𝑥 , but after any two prefixes 𝑥1 and 𝑥2 of the same length.
Then, instead of new equations, the disequality is reduced to essentially only length constraints,
which do not impact chain-freeness:

|𝑠 | ≠ |𝑡 | ∨
(disstr(𝑥1,𝑥2,𝑦1,𝑦2,𝑎1,𝑎2)︷ ︸︸ ︷
𝑠 = 𝑥1𝑎1𝑦1 ∧ 𝑡 = 𝑥2𝑎2𝑦2 ∧ |𝑥1 | = |𝑥2 | ∧ 𝑎1 ∈ Σ ∧ 𝑎2 ∈ Σ∧

dist(𝑎1,𝑎2)︷ ︸︸ ︷
𝑎1 ≠ 𝑎2

)
.

(12)

Here, 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑎1, and 𝑎2 are fresh variables. The formula is then processed by the SAT solver
of a DPLL(𝑇) procedure. The procedure may produce a query to our string solver in the form of
a conjunction of basic string constraints, along with character disequalities dist(𝑎1, 𝑎2).

Our string solver leaves processing dist(𝑎1, 𝑎2) after it solves the conjunction of the basic string
constraints by the combined algorithm of Sec. 4.2 and obtains a stable language assignment R and
an alignment substitution 𝜎 . During the algorithm, 𝑎1 and 𝑎2 are handled as length variables so
that we get the precise set of symbols in R and 𝜎 for 𝑎1 and 𝑎2. This also means that if 𝑎1 and 𝑎2
are substituted in 𝜎 , then they can each be only susbtituted by one variable, as they contain exactly
one symbol. Let 𝑎′1 and 𝑎

′
2 that are substituted instead of 𝑎1 and 𝑎2 by 𝜎 . The solver then checks

that the disequality is satisfiable by transforming it into the arithmetic constraint

𝑖𝑎′1 ≠ 𝑖𝑎′2 ∧
∨

𝑎∈R(𝑎′1) 𝑖𝑎
′
1
= code(𝑎) ∧∨

𝑎∈R(𝑎′2) 𝑖𝑎
′
2
= code(𝑎) (13)

where 𝑖𝑣 is a fresh integer variable corresponding to the string variable 𝑣 and code(𝑎) is the Unicode
code point of the character 𝑎. As we use substituted variables, this transformation works even for
multiple disequalities.

Lemma 5.1. If 𝜑 is a chain-free string constraint, then 𝜑 ∧ disstr(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑎1, 𝑎2) is chain-free.

Proof. Let 𝜑 be a chain-free constraint. Since all variables on the right side of the newly added
string equations are fresh, we can conclude that the constraint 𝜑 ∧ disstr(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑎1, 𝑎2) from
Eq. (12) is also chain-free. Indeed, adding the equations 𝑠 = 𝑥1𝑎1𝑦1 and 𝑡 = 𝑥2𝑎2𝑦2 cannot introduce

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:17

a cycle in the inclusion graph since the variables on the right-hand sides 𝑥1𝑎1𝑦1 and 𝑥2𝑎2𝑦2 have
only the single occurrence, hence they cannot have incoming edges. □

Overall, the disequality is reduced to length equations, word equations that cannot occur in
a cycle of the inclusion graph, and a character disequality constraint that is easy to solve. This gives
us a decidable extension of the chain-free fragment with unrestricted disequalities.

Theorem 5.2. Chain-free constraints with unrestricted disequalities are decidable.

5.2 String Functions and Predicates

Apart from disequalities, we currently support the following extended string predicates and func-
tions from the SMT-LIB format [Barrett et al. 2016a]: (i) str.at, (ii) str.substr, (iii) str.replace,
(iv) str.indexof, (v) str.contains, (vi) str.prefixof, and (vii) str.suffixof. These constraints
are reduced to the basic constraints by generic constructions. We use a similar way of rewriting
predicates as is implemented, e.g., in Z3 [de Moura and Bjørner 2008]. We illustrate the translation
on the example of str.substr(𝑠, 𝑖, 𝑛). The function is supposed to return the longest substring of 𝑠
of the length at most 𝑛 starting at position 𝑖 . It evaluates to the empty string if 𝑛 is negative or 𝑖
is not in the interval [0, |𝑠 | − 1]. We substitute all occurrences of str.substr(𝑠, 𝑖, 𝑛) in the input
constraint by a fresh string variable 𝑣 and add a conjunction of the following formulae (where 𝑥1, 𝑥2
are fresh string variables):

(1) 𝑣 = str.substr(𝑠, 𝑖, 𝑛)
(2) 0 ≤ 𝑖 ≤ |𝑠 | ⇒ 𝑥1𝑣𝑥2 = 𝑠

(3) 0 ≤ 𝑖 ≤ |𝑠 | ⇒ |𝑥1 | = 𝑖

(4) (0 ≤ 𝑖 ≤ |𝑠 | ∧ 0 ≤ 𝑛 ≤ |𝑠 | − 𝑖) ⇒ |𝑣 | = 𝑛

(5) (0 ≤ 𝑖 ≤ |𝑠 | ∧ |𝑠 | − 𝑖 < 𝑛) ⇒ |𝑣 | = |𝑠 | − 𝑖

(6) 𝑖 ≥ |𝑠 | ⇒ 𝑣 = 𝜖

(7) 𝑖 < 0 ⇒ 𝑣 = 𝜖

(8) 𝑛 ≤ 0 ⇒ 𝑣 = 𝜖

The negative form, ¬str.contains is supported only in the case when the parameter expressing
what should be checked is an explicit string (not a variable or other more complicated term).
For instance, we support ¬str.contains(𝑠, "𝑎𝑏𝑐") expressing that 𝑠 does not contain the string
"𝑎𝑏𝑐" (which we reduce to the regular non-membership constraint 𝑠 ∉ Σ∗𝑎𝑏𝑐Σ∗ and change to
membership constraint by NFA complementation), but we do not support ¬str.contains(𝑠, 𝑥)
where 𝑥 is a string variable. The unrestricted form of ¬str.contains involves universal quantifi-
cation over strings. Theory of strings with universal quantification is generally undecidable [Day
et al. 2018]. Although ¬str.contains may be a simpler problem, its decidability is currently not
known, and, together with practical methods for solving this type of constraint, is an area of active
research (see, e.g. [Abdulla et al. 2021]).

6 PREPROCESSING

Before running the combined algorithm from Sec. 4.2, we apply series of preprocessing steps.
The aim is to simplify the equations and hence reduce the number of cases generated from
Align&Split steps by converting equations and disequalities to regular and length constraints.

The preprocessing steps are formulated using rewriting rules (with a notation similar to the
proof rules in Sec. 4.2), which work on the level of a whole string constraint, a conjunction of
word equations and disequalities E, a normalised regular constraint R, and a length constraint L.
Seeing the full context of the whole conjunction allows us to use optimizations that do not seem
to be easily available in solvers that use the eager approach, such as cvc5 [Nötzli et al. 2022],
where equations and disequalities are processed separately. We use 𝑥,𝑦, 𝑥𝑖 , . . . ∈ X for variables
and 𝑆, 𝑆𝐿, 𝑆𝑅, 𝑆𝑖 , . . . ∈ X∗ for concatenations of variables. The rewriting rules follow.

The first rule eliminates simple equations of the form 𝑥 = 𝑦 by substituting 𝑦 by 𝑥 , intersecting
the language of 𝑥 with that of 𝑦, and generating the length constraint |𝑥 | = |𝑦 |. Note that in the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

296:18 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

preprocessing rules, we conjunct newly generated length constraints instead of a direct modification
of L (as for |𝑥 | = |𝑦 | where we could replace 𝑥 with 𝑦 in L) because we want to get as close as
possible to the employment of our procedure in the SMT framework.

PropVars : E ⊎ {𝑥 = 𝑦} R ⊎ {𝑥 ↦→ 𝐿𝑥 , 𝑦 ↦→ 𝐿𝑦} L
E[𝑦/𝑥] R ∪ {𝑥 ↦→ 𝐿𝑥 ∩ 𝐿𝑦} L ∧ |𝑥 | = |𝑦 |

If the language of one side contains only 𝜖 , we can propagate it to each variable on the other
side (by multiple applications of the rule PropEps).

PropEps : E ⊎ {𝑆1𝑥𝑆2 = 𝑆𝑅} R ⊎ {𝑥 ↦→ 𝐿𝑥 } L
E ⊎ {𝑆1𝑥𝑆2 = 𝑆𝑅} R ∪ {𝑥 ↦→ 𝐿𝑥 ∩ {𝜖}} L R(𝑆𝑅) = {𝜖}

A variable 𝑥 whose language is just the empty word 𝜖 can be safely removed. Rule RemoveEps
is applied after the rule PropEps saturates the set of 𝜖-variables. The length constraint |𝑥 | = 0
propagates the changes to lengths.

RemoveEps : E R ⊎ {𝑥 ↦→ {𝜖}} L
E[𝑥/𝜖] R L ∧ |𝑥 | = 0

Trivial equations, i.e., equations with identical sides, can be removed. This is especially useful
after applying PropEps and RemoveEps, which often create trivial equations.

RemoveTrivial : E ⊎ {𝑆 = 𝑆} R L
E R L

Regular equations, i.e., equations of the form 𝑥 = 𝑥1 · · · 𝑥𝑛 , where 𝑥1, . . . , 𝑥𝑛 have exactly one
occurrence in the constraint (so they do not occur in the length constraint either), can be transformed
into the regular constraint 𝑥 ∈ R(𝑥1) · · · R(𝑥𝑛). Then, we only need to intersect the language of 𝑥
with R(𝑥1) · · · R(𝑥𝑛).

RemoveReg :
E ⊎ {𝑥 = 𝑥1 · · · 𝑥𝑛} R ⊎ {𝑥 ↦→ 𝐿𝑥 } ⊎ {𝑥𝑖 ↦→ 𝐿𝑖 }𝑛𝑖=1 L

E R ⊎ {𝑥 ↦→ (𝐿𝑥 ∩ (𝐿1 · · · 𝐿𝑛))} L 𝜑RemoveReg

where 𝜑RemoveReg
def.⇔ ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛(𝑖 ≠ 𝑗 ⇒ 𝑥 ≠ 𝑥𝑖 ∧ 𝑥𝑖 ≠ 𝑥 𝑗 ∧ 𝑥𝑖 ∉ Var(E ∧ L))

Equations 𝑆𝐿 = 𝑥1 · · · 𝑥𝑛 , where variables 𝑥1, . . . , 𝑥𝑛 have no restriction on their languages
(all are Σ∗) and have only the single occurrence in E can be removed. This is because if we find
a satisfying solution for other variables, we can always complete it with values for each 𝑥𝑖 , as there
are no restrictions on them except the one equation. This works even if these variables occur in the
length constraints L, but in this case, we have to add the length constraint |𝑆𝐿 | = |𝑥1 | + · · · + |𝑥𝑛 |
to propagate the equation to L.

RemoveLenSat :
E ⊎ {𝑆𝐿 = 𝑥1 · · · 𝑥𝑛} R ⊎ {𝑥𝑖 ↦→ Σ∗}𝑛

𝑖=1 L
E R L ∧ |𝑆𝐿 | = |𝑥1 | + · · · + |𝑥𝑛 |

𝜑RemoveLenSat

where 𝜑RemoveLenSat
def.⇔ ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛(𝑖 ≠ 𝑗 ⇒ 𝑥𝑖 ≠ 𝑥 𝑗 ∧ 𝑥𝑖 ∉ Var(E) ∪ Var(𝑆𝐿))

We can remove disequalities whose sides have disjoint languages, as these disequalities will
always hold under R or any refinement of R.

RemoveDis1 : E ⊎ {𝑆𝐿 ≠ 𝑆𝑅} R L
E R L R(𝑆𝐿) ∩ R(𝑆𝑅) = ∅

For the special case of a disequality 𝑥 ≠ 𝑆𝑅 that contains only one variable on one side, we
can improve upon RemoveDis1 by using equations in E. Specifically, if an equation 𝑥 = 𝑆 ′

𝑅
is

in E and R(𝑆𝑅) and R(𝑆 ′
𝑅
) are disjoint, then the disequality 𝑥 ≠ 𝑆𝑅 must hold. We can take

even more general rule where we take all equations 𝑥 = 𝑆1, . . . , 𝑥 = 𝑆𝑛 , and check whether
R(𝑆𝑅) ∩ R(𝑆1) ∩ · · · ∩ R(𝑆𝑛) ∩ R(𝑥) is empty.

RemoveDis2 :
E ⊎ {𝑥 ≠ 𝑆𝑅} ⊎ {𝑥 = 𝑆𝑖 }𝑛𝑖=1 R L

E ⊎ {𝑥 = 𝑆𝑖 }𝑛𝑖=1 R L R(𝑆𝑅) ∩ R(𝑆1) ∩ · · · ∩ R(𝑆𝑛) ∩ R(𝑥) = ∅

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:19

RuleGenIdent generates the identity 𝑥 = 𝑦 from equations 𝑆1𝑥𝑆2 = 𝑆 and 𝑆1𝑦𝑆2 = 𝑆 . The identity
can be then propagated by the rule PropVars. Note that this is also applied for the case of one
equation 𝑆1𝑥𝑆2 = 𝑆1𝑦𝑆2 in which case after the rule PropVars we can apply RemoveTrivial to
remove the equation.

GenIdent : E ⊎ {𝑆1𝑥𝑆2 = 𝑆, 𝑆1𝑦𝑆2 = 𝑆} R L
E ∪ {𝑆1𝑥𝑆2 = 𝑆, 𝑆1𝑦𝑆2 = 𝑆, 𝑥 = 𝑦} R L

If R is infeasible (the language of some variable is empty), we can immediately finish with UNSAT
without even running the combined algorithm.

Unsat : E R ⊎ {𝑥 ↦→ ∅} L
UNSAT

The last rule SatLang is an underapproximating rule applicable if a variable 𝑥 is assigned a co-
finite language, i.e., a language whose complement is a finite set 𝑇 . The rule removes the regular
constraint on 𝑥 and replaces it with length contraints excluding all words with the same length
as one of the words from 𝑇 . Removing regular constraints helps the combined algorithm stabilize
faster and the rule may also enable RemoveLenSat.
Unlike the previous rules, SatLang underapproximates the set of solutions. It often leads to

a faster identification of SAT. However, an UNSAT answer after using the rule is inconclusive, and
we have to run the procedure from the beginning without SatLang.

SatLang : E R ⊎ {𝑥 ↦→ 𝐿𝑥 } L
E R ⊎ {𝑥 ↦→ Σ∗} L ∧∧𝑛

𝑖=1 |𝑥 | ≠ |ℓ𝑖 |
Σ∗ \ 𝐿𝑥 = {ℓ1, . . . , ℓ𝑛}

Length variables. Rules PropVars, RemoveEps, and RemoveLenSat introduce new length con-
straints, and, consequently, more length variables. Having more length variables, however, harms
the combined algorithm of Sec. 4.2. Fortunately, it can be argued that length variables that were
introduced by the rewriting rules above can safely be removed from the set Len of length variables
used in the combined algorithm (except 𝑥 from PropVars for 𝑥 = 𝑦 in case 𝑦 was a length variable).

Preference of regular constraints. In our implementation, we take advantage of the efficiency
of our decision procedure in handling of regular constraints. Unlike length constraints, whose
feasibility is being checked after obtaining a stable assignment, regular constraints are used from
the start to prune the state space. Moreover, length constraints bring length variables, which may
cause more splitting in the combined procedure of Sec. 4.2. Therefore, during rewriting of string
functions and predicates, we prefer to use regular constraints. For instance, instead of |𝑐 | = 1,
we use the equivalent regular constraint 𝑐 ∈ Σ.

7 IMPLEMENTATION IN Z3

We implemented our decision procedure into the DPLL(𝑇)-based SMT solver Z3 [de Moura and
Bjørner 2008] (version 4.11.2) as a plugin for the theory of strings. The DPLL(𝑇) framework
combines a SAT solver with multiple theory solvers for conjunctions of constraints in certain
theories. The SAT solver is responsible for computing a model of the boolean skeleton of the input
SMT formula. Based on the propositional model, the theory checks satisfiability and, in the negative
case, returns a conflict clause (true in the theory but violating the propositional model), which
forces the SAT solver to provide another solution. Our theory implementation checks satisfiability
of the string constraint after the whole propositional model is constructed (referred to as the
lazy approach [Nieuwenhuis et al. 2006]). The lazy reasoning enables us to use more aggressive
preprocessing utilizing the information about the whole constraint (cf. Sec. 6). When we obtain
a propositional model (which assigns a truth value to every boolean variable of the skeleton),
we remove from it assignments that are irrelevant to satisfiability. For instance, if the input formula

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

296:20 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

Table 1. Results of experiments on all benchmarks. For each benchmark and tool, we give the number of

unsolved instances categorized by the number of timeouts (“TOs”), errors (“Es”), and unknowns (“Us”), the

total runtime (in seconds), and the runtime without timeouts (“Time−TOs”). Results for tools with the lowest

number of unsolved instances (the sum of columns TOs, Es, Us) and lowest runtime (with and without

timeouts) on the given benchmark are in bold. Number of errors with
∗
contain also wrongly solved instances.

Sygus-Qgen (343) Norn (1 027) Slent (1 128)
TOs Es Us Time Time−TOs TOs Es Us Time Time−TOs TOs Es Us Time Time−TOs

Z3-Noodler 0 0 0 5.7 5.7 0 0 0 18.7 18.7 7 0 0 982.3 142.3
cvc5 0 0 0 188.2 188.2 84 0 0 10 883.3 803.3 28 0 0 4 763.7 1 403.7
Z3 0 0 0 34.2 34.2 127 0 0 15 318.7 78.7 73 0 0 9 313.0 553.0
Z3str3RE 1 0 0 163.9 43.9 133 0 0 15 986.2 26.2 87 0 0 10 457.3 17.3
Z3-Trau 2 41 0 6 065.8 5 825.8 N/A 5 ∗53 4 662.2 62.2
Z3str4 0 0 0 65.9 65.9 75 0 0 9 113.6 113.6 77 0 0 9 271.5 31.5
OSTRICH 0 0 0 962.1 962.1 0 0 0 8 985.7 8 985.7 155 1 0 23 547.0 4 827.0

Slog (1 976) Leetcode (2 652) Kaluza (19 432)
TOs Es Us Time Time−TOs TOs Es Us Time Time−TOs TOs Es Us Time Time−TOs

Z3-Noodler 0 0 0 36.2 36.2 35 0 0 4 779.2 579.2 192 0 0 24 226.9 1 186.9
cvc5 0 0 0 12.1 12.1 0 0 0 149.3 149.3 6 0 0 1 914.4 1 194.4
Z3 33 0 0 4 297.1 337.1 0 0 0 142.4 142.4 188 0 0 23 418.5 858.5
Z3str3RE 58 0 0 8 279.5 1 319.5 2 0 190 275.3 35.3 132 0 8 16 133.1 293.1
Z3-Trau 45 0 1 7 827.6 2 427.6 0 0 0 162.0 162.0 125 0 0 20 587.7 5 587.7
Z3str4 22 0 0 3 816.3 1 176.3 2 0 2 400.9 160.9 132 0 46 17 752.9 1 912.9
OSTRICH 6 ∗5 0 9 323.7 8 603.7 185 26 0 33 308.9 8 108.9 305 0 0 88 056.3 51 456.3

is 𝑠1 = 𝑡1 ∨ 𝑠2 = 𝑡2, then a boolean model might be, e.g., the assignment [𝑠1 = 𝑡1] ∧ ¬[𝑠2 = 𝑡2].
Such an assignment would make us solve the constraint 𝑠1 = 𝑡1 ∧ 𝑠2 ≠ 𝑡2, where the disequality
𝑠2 ≠ 𝑡2 is irrelevant for the satisfiability of the input formula, so we remove it. This has the following
two benefits: (i) in each call of our solver, we solve easier constraints and (ii) the conflict clause we
output is more general, which restricts the total number of calls.
As a specific feature, we use iterative computation of feasible solutions together with a tight

cooperation with the LIA solver. A naive approach is to generate a length formula describing
possible lengths of all solutions of a string formula and then use the LIA solver to check if the
length formula is satisfiable w.r.t. the input length constraints. This would mean to explore the
entire proof tree of the combined algorithm of Sec. 4.2. It might, however, happen that already
the first solution satisfies the length constraints, making the computation of the remaining ones
redundant. Therefore, we iteratively generate solutions of the string equations and eagerly check if
their lengths are feasible in conjunction with the input length formula.

Efficient Automata Representation. A foundation stone of our decision procedure is efficient
handling of finite automata. We use nondeterministic automata instead of the deterministic ones
since they allow more concise representation, which is beneficial particularly for the noodlification
(the procedures L-noodlify and LR-noodlify discussed in Sec. 3). As the background automata
library we use eNfa, a simple yet surprisingly competitive implementation of NFAs [Fiedor et al.
2023]. In order to keep automata as small as possible, we use simulation-based minimization [Bustan
and Grumberg 2003]. We apply the reduction eagerly on every result of a noodlification. We also
try to keep the alphabet as small as possible by using only the symbols used in the input formula.
For this to work correctly, we, however, need to add a dummy symbol for each disequality and
regular non-membership constraint, to allow these negative constraints be satisfied with symbols
not used in the input.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:21

8 EXPERIMENTAL EVALUATION

Used tools and environment. We compared the performance of our implementation, called Z3-
Noodler6, with the following state-of-the-art tools: cvc5 [Barbosa et al. 2022] (version 1.0.5),
Z3 [de Moura and Bjørner 2008] (version 4.12.1), Z3str3RE [Berzish et al. 2023, 2021], Z3-Trau [Ab-
dulla et al. 2020] (version 1.1), Z3str4 [Mora et al. 2021], and OSTRICH [Chen et al. 2019] (ver-
sion 1.2). The experiments were executed on a workstation with an Intel Core i5 661 CPU at
3.33GHz with 16GiB of RAM running Debian GNU/Linux. The timeout was set to 120 s.
Benchmarks. For the comparison, we used supersets of several benchmark sets that were used

in SMT-COMP’22 [SMT-COMP’22 2022] (it seems some benchmarks in the repository were not
used for competition runs). In particular, we took datasets from division QF_Strings that use the
following two logics:

QF_S [SMTLib 2023a] containing only string constraints without explicit length constraints.
• Slog ([Wang et al. 2016], 1,976 formulae): formulae obtained from real web applications
using static analysis tools JSA [Christensen et al. 2003] and Stranger [Yu et al. 2010].

• Sygus-Qgen (343 formulae): formulae with equations, disequalities, and regular constraints.

QF_SLIA [SMTLib 2023b] containing also length constraints.
• Norn ([Abdulla et al. 2014, 2015], 1,027 formulae): formulae representing queries generated
during verification of string-processing programs [Abdulla et al. 2014].

• Slent ([Wang et al. 2018], 1,128 formulae): formulae generated from Kaluza [Saxena et al.
2023] and Stranger [Yu et al. 2010] benchmarks; they cover security analysis of string
manipulating web applications.

• Leetcode (2,652 formulae): formulae generated by concolic execution engines Conpy [Chen
et al. 2014] and PyExZ3 [Ball and Daniel 2015] from interview questions at https://leetcode.
com.

• Kaluza ([Liang et al. 2016; Saxena et al. 2023], 19,432 formulae): formulae obtained from
JavaScript operations on real-world AJAX web applications generated by Kudzu, a symbolic
executor for JavaScript [Saxena et al. 2010].

The benchmarks contain a wide range of complex string equations, disequalities, regular constraints
(all benchmarks), length constraints (QF_SLIA), together with string functions and predicates.
In particular, str.replace (Slog, Slent) and str.indexof, str.substr, and str.at (Leetcode).
In our experiments, we did not use all datasets from QF_SLIA. Namely, we did not use Kepler
as it contains only hand-crafted quadratic equations (many of them easily solvable by Nielsen
transformation [Nielsen 1917]), Full-str-int as it contains unsupported functions (conversions
between strings and integers), and Pyex and Str-small-rw as they consist mostly of combinations
of string functions and predicates. Although we support a general way of handling these functions
and predicates (see Sec. 5.2), the aim of this paper is not an optimization of these specific features.
We leave their optimizations as a future work (see the discussion below).

Results. The results of the experiments are shown in Table 1. We show the total number of
unsolved instances divided by timeouts, errors (segfaults for Z3-Trau or problems with model
extraction for OSTRICH and wrong results), and unknown results, the total runtime, and the
total runtime without timeouts. We do not show the results of Z3-Trau on Norn as nearly all
formulae in this benchmark contain the string constraint re.range, which Z3-Trau does not
support correctly. This constraint also occurs in Slent benchmark, but less frequently, where
Z3-Trau gave 6 incorrect results. Furthermore, OSTRICH, whose version 1.2 should work even on
6The tool is available at https://github.com/VeriFIT/z3-noodler.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

https://leetcode.com
https://leetcode.com
https://github.com/VeriFIT/z3-noodler

296:22 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

cv
c5

(a) Z3-Noodler vs. cvc5 on selection

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

z3

(b) Z3-Noodler vs. Z3 on selection

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

cv
c5

(c) Z3-Noodler vs. cvc5 on all

Fig. 2. Comparison of Z3-Noodler with cvc5 (a), Z3 (b) on benchmarks Sygus-Qgen, Slog, Slent, and Norn;

and cvc5 on all benchmarks (c). Times are in seconds, axes are logarithmic. Dashed lines represent timeouts

(120 s). Colors distinguish benchmarks: • Slog, • Slent, •Norn, • Sygus-Qgen, • Leetcode, and •Kaluza.

6600 6731 6863 6994 7126
Instances

0

500

1000

1500

2000

2500

Ru
nt

im
e

[s
]

(a) The hardest 526 formulae without Kaluza

26000 26139 26279 26418 26558
Instances

0

1000

2000

3000

Ru
nt

im
e

[s
]

(b) The hardest 558 formulae with Kaluza

Fig. 3. Cactus plots of solvers and portfolio solvers. The 𝑦-axis is the cumulative time taken on benchmarks,

the 𝑥-axis denotes the number of solved benchmarks ordered by runtime. Colors distinguish solvers: • cvc5,
•Z3, •Z3str3RE, •Z3str4, •Z3-Noodler, and portfolio solvers: • cvc5 + Z3 + Z3str3RE + Z3str4, • cvc5 +
Z3 + Z3str3RE + Z3str4 + Z3-Noodler, and • cvc5 + Z3-Noodler.

formulae outside the straight-line fragment [Lin and Barceló 2016], gave 5 incorrect results on the
Slog benchmark.
The results show that Z3-Noodler outperforms other tools on Sygus-Qgen, Norn, and Slent

benchmarks by a large margin, while being closely behind the best tool (cvc5) on Slog. On the last
two benchmarks, performance of Z3-Noodler is weaker, however, on Kaluza, the performance is
still comparable with Z3.

In Fig. 2, we show scatter plots comparing the performance of Z3-Noodlerwith cvc5 and Z3. We
selected cvc5 and Z3, as they are heavily used in industry, cvc5 behaves better than the remaining
tools we compare with, and Z3 takes the second place together with Z3str3RE and Z3str4,
which have a similar performance. Moreover, Z3-Noodler is built on Z3. Figs. 2a and 2b show
the comparison on Sygus-Qgen, Slog, Slent, and Norn, on which Z3-Noodler has the best
performance. Z3-Noodler is here clearly much faster than its competitors. Fig. 2c compares Z3-
Noodler with cvc5 on all benchmarks (comparisons with other tools look mostly similar or better
for Z3-Noodler). The plot shows that these two tools behave complementary to each other, each
formula can be usually solved by either Z3-Noodler or cvc5 under one second and there are only
8 formulae in the whole benchmark set that neither can solve.
The cactus plots in Fig. 3 compare the sorted cumulative runtimes of all tools (except Z3-Trau

and OSTRICH, as they give wrong results) and portfolio solvers, which run these tools in parallel
and take the best result. The cactus plot in Fig. 3a shows the hardest 526 instances of all benchmarks
except Kaluza as it is much larger than other benchmarks and would dominate the figure. It also

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:23

shows that, without Kaluza, Z3-Noodler is better than a portfolio solver composed of all the
other tools. In Fig. 3b, we provide the cactus plot of the hardest 558 instances of all benchmarks,
including Kaluza. In both cactus plots, the portfolio solver composed of only Z3-Noodler and
cvc5 is already nearly as good as the portfolio solver composed of all solvers. Moreover, it is evident
that the portfolio solver with Z3-Noodler significantly improves the performance of the portfolio
solver without Z3-Noodler.

Table 2. Results of experiments on Regex.

The notation is the same as in Table 1.

Regex (265)
TOs Es Us Time Time−TOs

Z3-Noodler 5 4 7 1992.7 1392.7
Z3 47 0 1 6031.3 391.3
cvc5 69 9 0 8648.4 368.4
Z3str3RE 30 ∗5 158 3921.2 321.2
Z3-Trau N/A
Z3str4 25 0 158 3238.4 238.4
OSTRICH 1 ∗31 0 1302.9 1182.9

Regex-heavy benchmark. To showcase the strength of our
algorithm on formulae that contain only regex operations,
we add results from one more benchmark, which was not
used in SMT-COMP’22, but was used to show the strengths
of the derivation-based solving method used in Z3 [Stan-
ford et al. 2021]. This benchmark contains 110 handwritten
formulae encoding date and password problems, problems
where boolean operations interact with concatenation and
iteration, and problems with exponential determinization
and 155 problems encoding intersection and containment
of regexes from https://regexlib.com. Table 2 shows the results for this benchmark. We do not show
results for Z3-Trau as the benchmark contains operations that were not standardized during the
development of Z3-Trau and it cannot support them. Furthermore, Z3str3RE and OSTRICH re-
turned 5 and 6 wrong results, respectively. The benchmark also contains some formulae containing
comparison of regular languages, which is not supported by cvc5 or Z3-Noodler (the errors and
unknowns are all from these formulae). As Z3-Noodler is automata-based, implementing support
for these constraints will not be hard, and we plan to add support for them in the future.

The results show that Z3-Noodler has the lowest number of unsolved instances and, disregarding
results of OSTRICH (whose errors are not included in total time), has the best total solving time.

Discussion. We can see from the experiments that our approach applies best on complex combina-
tions of (dis)equalities with regular and length constraints having just a few other string functions
and predicates (i.e., benchmarks Slog, Sygus-Qgen,Norn, Slent, andRegex). On these benchmarks,
Z3-Noodler works better compared to all other tools, including the industrial tools cvc5 and Z3.
A weakness of Z3-Noodler currently is handling of combined (especially nested) string func-

tions and predicates (as it is the case for Leetcode). Although we generally support them, we
have not yet implemented heuristics needed to handle frequent special cases efficiently. For in-
stance, the predicate str.substr(𝑠, 2, 3) where 𝑠 is a string variable can be rewritten to a simpler
formula than the general case of str.substr(𝑠, 𝑖, 𝑛) where 𝑖 and 𝑛 are integer variables. On top
of that, str.substr(𝑠, 2, 3) allows replacement of some lengths with regular constraints. Careful
instantiation may significantly improve the performance on predicate-intensive formulae.
Performance of Z3-Noodler on Kaluza can in principle be improved also. The difficult string

constraints we have inspected are rather simple straight-line constraints with many variables,
unrestricted by regular constraints, that occur also in length constraints—a scenario in which our
general algorithm is weak as it must generate many noodles. Solving these constraints however
can be broken down into enumerating shuffles of two or several short words where each letter
corresponds to either a literal or an unrestricted segment. Knowing the length of the literals, each
case can be easily converted to a length constraint. The examples we tried can be quickly solved
this way on a whiteboard. Generally, Z3-Noodler can be combined with a plethora of techniques
used in other mature solvers as cvc5 or Z3Str4/3RE, such as pruning the solutions of equations
and regular constraints through input length constraints and their models, approximation using
lengths, etc. Implementing such heuristics and fine tuning the tool is a part of our future work.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

https://regexlib.com

296:24 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

9 RELATEDWORK

Approaches and tools for string solving are numerous and diverse, with various representations
of constraints, algorithms, or sorts of inputs. Many approaches use automata, e.g., Stranger [Yu
et al. 2010, 2014, 2011], Norn [Abdulla et al. 2014, 2015], OSTRICH [Chen et al. 2018, 2022, 2020a,
2019; Lin and Barceló 2016], Trau [Abdulla et al. 2021, 2017, 2018, 2019], Sloth [Holík et al.
2018], Slog [Wang et al. 2016], Slent [Wang et al. 2018], Z3str3RE [Berzish et al. 2023, 2021],
Retro [Chen et al. 2020b, 2023b], ABC [Aydin et al. 2015; Bultan et al. [n. d.]], Qzy [Cox and
Leasure 2017], BEK [Hooimeijer et al. 2011], or [Zhu et al. 2019]. Around word equations are
centered tools such as cvc4/5 [Barrett et al. 2016b; Liang et al. 2014, 2016, 2015; Nötzli et al. 2022;
Reynolds et al. 2020, 2017], Z3 [Bjørner et al. 2009; de Moura and Bjørner 2008], S3 [Trinh et al.
2014], Kepler22 [Le and He 2018], StrSolve [Hooimeijer and Weimer 2012], Woorpje [Day et al.
2019]; bit vectors are (among other things) used in Z3Str/2/3/4 [Berzish et al. 2017; Mora et al.
2021; Zheng et al. 2015, 2013], HAMPI [Kiezun et al. 2012]; PASS uses arrays [Li and Ghosh 2013];
G-strings [Amadini et al. 2017] and GECODE+S [Scott et al. 2017] use a SAT solver. With regard
to equations and regular constraints, the fragment of chain-free constraints [Abdulla et al. 2019],
which we extend, handled also by Trau, is the largest for which any string solver offers formal
completeness guarantees, with the exception of quadratic equations, handled, e.g., by [Chen et al.
2020b, 2023b; Le and He 2018], which are incomparable but of a smaller practical relevance (although
some tools implement Nielsen’s algorithm [Nielsen 1917] to handle simple quadratic cases). The
other solvers guarantee completeness on smaller fragments, notably that of OSTRICH (straight-
line), Norn, and Z3str3RE; or use incomplete heuristics that work in practice (giving up guarantees
of termination, over-/under-approximating by various means). Most string solvers tend to avoid
handling regular expressions by postponing them as much as possible or abstracting them into
arithmetic/length and other constraints (e.g., Trau, Z3str3RE, Z3str4, cvc4/5, S3). An important
point of our work is that taking the opposite approach may work even better if automata are
approached from the right angle and implemented carefully, although heuristics that utilise length
information or Parikh images would probably speed up our algorithm too.
The algorithm of [Blahoudek et al. 2023], which we extend with lengths, is an improvement

of the automata-based algorithm first proposed in [Abdulla et al. 2014], which is, at least in
part, used as the basis of several string solvers, namely, Norn [Abdulla et al. 2014, 2015, 2019],
Trau [Abdulla et al. 2020, 2021, 2017, 2018], OSTRICH [Chen et al. 2018, 2019; Lin and Barceló
2016], and Z3str3RE [Berzish et al. 2023, 2021]. The original algorithm first transforms equations to
the disjunction of their solved forms [Ganesh et al. 2012] through generating alignments of variable
boundaries on the equation sides (essentially an incomplete version of Makanin’s algorithm).
Second, it eliminates concatenation from regular constraints by automata splitting. Trau uses this
algorithm within its unsatisfiability check. Trau’s main solution finding algorithm also performs
a step similar to our refinement, though with languages underapproximated as arithmetic formulae
(representing Parikh images of the languages). Sloth [Holík et al. 2018] implements a compact
version of automata splitting through alternating automata. OSTRICH has a way of avoiding the
variable boundary alignment for the straight-line formulae, but still uses it for formulae outside
the fragment. Z3str3RE optimises the algorithm of [Abdulla et al. 2014] heavily by the use of
length-aware heuristics.
The approaches descending from equation alignment and automata splitting generally derive

lengths from regular/transducer constraints by means of deterministic lasso automata or Parikh
image construction [Abdulla et al. 2014; Esparza 1997; Parikh 1966]. Z3str3RE [Berzish et al.
2021] improves this by a fine-grained integration of reasoning about lengths with reasoning about

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

Solving String Constraints with Lengths by Stabilization 296:25

equations and regular properties, utilising the information from input length constraints to prune
automata constructions.
Z3str4 also extensively uses heuristics that reduce the decision problem to reasoning about

lengths, including approximation and concrete length assignments. cvc5/cvc4 handles length
constraints in the congruence-based approach. Their algorithm eagerly builds equivalence classes
of length terms and uses a LIA solver to detect inconsistencies (yielding UNSAT). Length equivalence
classes are saturated during the computation by length axioms and other consequences derived by
rules handling string (dis)equalities [Liang et al. 2014; Nötzli et al. 2022]. The information about Z3’s
string solver is limited, but to the best of our knowledge, it also uses principles behind congruence-
based reasoning with a similar handling of lengths, based partially on an earlier solver S3 [Trinh
et al. 2014] (descendant of Z3-str [Zheng et al. 2013]). The recent work [Stanford et al. 2021]
enriches Z3 with techniques of symbolic derivatives of regular expressions and alternating/boolean
automata to handle combinations of regular properties. Slent [Wang et al. 2016] reduces string
constraints to alternating automata and tests their language emptiness by model checking tools.
Slent is extended for lengths in [Wang et al. 2018], which augments the automata with counting
on transitions. The approach is interesting, but the tool does not take SMT-LIB format on the input
and so we were not able to include it into the comparison.
Altogether, a comprehensive overview of techniques would be difficult to provide due to the

width of and the fast pace of evolution in the field. The mentioned solvers use plethora of heuristics
and implementation techniques, accumulated over long lines of publications, which interact and
influence each other. A comparison beyond the overall performance of the tools would be difficult.

10 CONCLUSIONS

We have presented a new string solving algorithm that generalises a recent algorithm for solv-
ing equations and regular constraints with reasoning about string lengths and other extensions.
Implementing the approach in Z3, we have obtained a string solver that can compete with the
best industrial-strength solvers on established benchmarks. The solver is significantly better than
all other tools on several benchmark sets from SMT-COMP and on a benchmark used recently to
evaluate techniques specialising on combinations of regular constraints. In the context of years of
development and stacks of publications leading to the current state of the other solvers, our tool
is still an infant. There clearly are many possibilities for optimization. Techniques that leverage
reasoning about lengths used in other tools can most probably be adapted to our framework, the
implementation of non-deterministic automata can be optimized, very promising are possibilities
of using automata with registers to integrate reasoning about lengths directly with automata
algorithms, or represent compactly disjunctions of noodles. We will also work on integrating the
so-far unsupported string constraints into the framework.

DATA-AVAILABILITY STATEMENT

An environment with the tools and data used for the experimental evaluation in the current study
is available at [Chen et al. 2023a].

ACKNOWLEDGEMENT

We thank the anonymous reviewers of the paper and the artifact on their comments on how to
improve the quality of the paper (and the artifact) and we thank Michal Hečko for his help with the
artifact’s testing. This work was supported by the Czech Ministry of Education, Youth and Sports
project LL1908 of the ERC.CZ programme, the Czech Science Foundation project GA23-07565S,
the FIT BUT internal project FIT-S-23-8151, and the project 109-2628-E-001-001-MY3 from National
Science and Technology Council, Taiwan.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

296:26 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

REFERENCES

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Julian Dolby, Petr Janků, Hsin-Hung Lin, Lukáš
Holík, and Wei-Cheng Wu. 2020. Efficient handling of string-number conversion. In Proc. of PLDI’20. ACM, 943–957.
https://doi.org/10.1145/3385412

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš Holík, Denghang Hu, Wei-Lun Tsai, Zhilin
Wu, and Di-De Yen. 2021. Solving not-substring constraint with flat abstraction. In Programming Languages and Systems -

19th Asian Symposium, APLAS 2021, Chicago, IL, USA, October 17-18, 2021, Proceedings (Lecture Notes in Computer Science),
Hakjoo Oh (Ed.), Vol. 13008. Springer, 305–320. https://doi.org/10.1007/978-3-030-89051-3_17

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš Holík, Ahmed Rezine, and Philipp Rümmer.
2017. Flatten and conquer: A framework for efficient analysis of string constraints. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017,
Albert Cohen and Martin T. Vechev (Eds.). ACM, 602–617. https://doi.org/10.1145/3062341.3062384

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš Holík, Ahmed Rezine, and Philipp
Rümmer. 2018. Trau: SMT solver for string constraints. In 2018 Formal Methods in Computer Aided Design, FMCAD

2018, Austin, TX, USA, October 30 - November 2, 2018, Nikolaj S. Bjørner and Arie Gurfinkel (Eds.). IEEE, 1–5. https:
//doi.org/10.23919/FMCAD.2018.8602997

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukáš Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman.
2014. String constraints for verification. In Computer Aided Verification - 26th International Conference, CAV 2014, Held as

Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in Computer

Science), Armin Biere and Roderick Bloem (Eds.), Vol. 8559. Springer, 150–166. https://doi.org/10.1007/978-3-319-08867-
9_10

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukáš Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman.
2015. Norn: An SMT solver for string constraints. In Computer Aided Verification - 27th International Conference, CAV

2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I (Lecture Notes in Computer Science), Daniel Kroening
and Corina S. Pasareanu (Eds.), Vol. 9206. Springer, 462–469. https://doi.org/10.1007/978-3-319-21690-4_29

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bui Phi Diep, Lukáš Holík, and Petr Janků. 2019. Chain-Free String Constraints.
In Automated Technology for Verification and Analysis - 17th International Symposium, ATVA 2019, Taipei, Taiwan, October

28-31, 2019, Proceedings (Lecture Notes in Computer Science), Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza (Eds.),
Vol. 11781. Springer, 277–293. https://doi.org/10.1007/978-3-030-31784-3_16

Leonardo Alt, Martin Blicha, Antti E. J. Hyvärinen, and Natasha Sharygina. 2022. SolCMC: Solidity compiler’s model
checker. In Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022,

Proceedings, Part I (Lecture Notes in Computer Science), Sharon Shoham and Yakir Vizel (Eds.), Vol. 13371. Springer,
325–338. https://doi.org/10.1007/978-3-031-13185-1_16

Roberto Amadini, Graeme Gange, Peter J. Stuckey, and Guido Tack. 2017. A novel approach to string constraint solving. In
Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC, Australia,

August 28 - September 1, 2017, Proceedings (Lecture Notes in Computer Science), J. Christopher Beck (Ed.), Vol. 10416.
Springer, 3–20. https://doi.org/10.1007/978-3-319-66158-2_1

Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. 2015. Automata-based model counting for string constraints. In Computer

Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part

I (Lecture Notes in Computer Science), Daniel Kroening and Corina S. Pasareanu (Eds.), Vol. 9206. Springer, 255–272.
https://doi.org/10.1007/978-3-319-21690-4_15

John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek, Kasper Søe Luckow, Neha Rungta, Oksana
Tkachuk, and Carsten Varming. 2018. Semantic-based automated reasoning for AWS access policies using SMT. In
2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, Nikolaj S.
Bjørner and Arie Gurfinkel (Eds.). IEEE, 1–9. https://doi.org/10.23919/FMCAD.2018.8602994

Thomas Ball and Jakub Daniel. 2015. Deconstructing Dynamic Symbolic Execution. 40 (2015), 26–41. https://doi.org/10.
3233/978-1-61499-495-4-26

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A versatile and industrial-strength SMT solver. In Tools and Algorithms

for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part

I (Lecture Notes in Computer Science), Dana Fisman and Grigore Rosu (Eds.), Vol. 13243. Springer, 415–442. https:
//doi.org/10.1007/978-3-030-99524-9_24

Pablo Barceló and Pablo Muñoz. 2017. Graph Logics with Rational Relations: The Role of Word Combinatorics. ACM Trans.

Comput. Log. 18, 2 (2017), 10:1–10:41. https://doi.org/10.1145/3070822

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

https://doi.org/10.1145/3385412
https://doi.org/10.1007/978-3-030-89051-3_17
https://doi.org/10.1145/3062341.3062384
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1007/978-3-319-66158-2_1
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.3233/978-1-61499-495-4-26
https://doi.org/10.3233/978-1-61499-495-4-26
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/3070822

Solving String Constraints with Lengths by Stabilization 296:27

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016a. The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-
LIB.org.

Clark W. Barrett, Cesare Tinelli, Morgan Deters, Tianyi Liang, Andrew Reynolds, and Nestan Tsiskaridze. 2016b. Efficient
solving of string constraints for security analysis. In Proceedings of the Symposium and Bootcamp on the Science of

Security, Pittsburgh, PA, USA, April 19-21, 2016, William L. Scherlis and David Brumley (Eds.). ACM, 4–6. https:
//doi.org/10.1145/2898375.2898393

Murphy Berzish, Joel D. Day, Vijay Ganesh, Mitja Kulczynski, Florin Manea, Federico Mora, and Dirk Nowotka. 2023.
Towards More Efficient Methods for Solving Regular-expression Heavy String Constraints. Theor. Comput. Sci. 943 (2023),
50–72. https://doi.org/10.1016/j.tcs.2022.12.009

Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A string solver with theory-aware heuristics. In 2017

Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, Daryl Stewart and Georg
Weissenbacher (Eds.). IEEE, 55–59. https://doi.org/10.23919/FMCAD.2017.8102241

Murphy Berzish, Mitja Kulczynski, Federico Mora, Florin Manea, Joel D. Day, Dirk Nowotka, and Vijay Ganesh. 2021. An SMT
solver for regular expressions and linear arithmetic over string length. In Computer Aided Verification - 33rd International

Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II (Lecture Notes in Computer Science), Alexandra
Silva and K. Rustan M. Leino (Eds.), Vol. 12760. Springer, 289–312. https://doi.org/10.1007/978-3-030-81688-9_14

Berzish, Murphy. 2021. Z3str4: A Solver for Theories over Strings. Ph.D. Dissertation. http://hdl.handle.net/10012/17102
Nikolaj S. Bjørner, Nikolai Tillmann, and Andrei Voronkov. 2009. Path feasibility analysis for string-manipulating programs.

In Tools and Algorithms for the Construction and Analysis of Systems, 15th International Conference, TACAS 2009, Held

as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.

Proceedings (Lecture Notes in Computer Science), Stefan Kowalewski and Anna Philippou (Eds.), Vol. 5505. Springer,
307–321. https://doi.org/10.1007/978-3-642-00768-2_27

František Blahoudek, Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč. 2023.
Word equations in synergy with regular constraints. In Formal Methods - 25th International Symposium, FM 2023, Lübeck,

Germany, March 6-10, 2023, Proceedings (Lecture Notes in Computer Science), Marsha Chechik, Joost-Pieter Katoen, and
Martin Leucker (Eds.), Vol. 14000. Springer, 403–423. https://doi.org/10.1007/978-3-031-27481-7_23

Tevfik Bultan et al. [n. d.]. ABC string solver. https://github.com/vlab-cs-ucsb/ABC
Doron Bustan and Orna Grumberg. 2003. Simulation-based Minimization. ACM Trans. Comput. Log. 4, 2 (2003), 181–206.

https://doi.org/10.1145/635499.635502
Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu. 2018. What is decidable about string constraints

with the ReplaceAll function. Proc. ACM Program. Lang. 2, POPL (2018), 3:1–3:29. https://doi.org/10.1145/3158091
Taolue Chen, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu, Shuanglong Kan, Anthony W. Lin,

Philipp Rümmer, and Zhilin Wu. 2022. Solving string constraints with Regex-dependent functions through transducers
with priorities and variables. Proc. ACM Program. Lang. 6, POPL (2022), 1–31. https://doi.org/10.1145/3498707

Taolue Chen, Matthew Hague, Jinlong He, Denghang Hu, Anthony Widjaja Lin, Philipp Rümmer, and Zhilin Wu. 2020a. A
decision procedure for path feasibility of string manipulating programs with integer data type. In Automated Technology

for Verification and Analysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings

(Lecture Notes in Computer Science), Dang Van Hung and Oleg Sokolsky (Eds.), Vol. 12302. Springer, 325–342. https:
//doi.org/10.1007/978-3-030-59152-6_18

Taolue Chen, Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. 2019. Decision procedures for path
feasibility of string-manipulating programswith complex operations. Proc. ACM Program. Lang. 3, POPL (2019), 49:1–49:30.
https://doi.org/10.1145/3290362

Ting Chen, Xiao-song Zhang, Rui-dong Chen, Bo Yang, and Yang Bai. 2014. Conpy: Concolic execution engine for Python
applications. In Algorithms and Architectures for Parallel Processing - 14th International Conference, ICA3PP 2014, Dalian,

China, August 24-27, 2014. Proceedings, Part II (Lecture Notes in Computer Science), Xian-He Sun, Wenyu Qu, Ivan
Stojmenovic, Wanlei Zhou, Zhiyang Li, Hua Guo, Geyong Min, Tingting Yang, Yulei Wu, and Lei (Chris) Liu (Eds.),
Vol. 8631. Springer, 150–163. https://doi.org/10.1007/978-3-319-11194-0_12

Yu-Fang Chen, Vojtěch Havlena, Ondřej Lengál, and Andrea Turrini. 2020b. A symbolic algorithm for the case-split rule in
string constraint solving. In Programming Languages and Systems - 18th Asian Symposium, APLAS 2020, Fukuoka, Japan,

November 30 - December 2, 2020, Proceedings (Lecture Notes in Computer Science), Bruno C. d. S. Oliveira (Ed.), Vol. 12470.
Springer, 343–363. https://doi.org/10.1007/978-3-030-64437-6_18

Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč. 2023a. Artifact for the
OOPSLA’23 paper "Solving String Constraints with Lengths by Stabilization". https://doi.org/10.5281/zenodo.8289595

Yu-Fang Chen, Vojtěch Havlena, Ondřej Lengál, and Andrea Turrini. 2023b. A symbolic algorithm for the case-split rule in
solving word constraints with extensions. Journal of Systems and Software 201 (2023), 111673. https://doi.org/10.1016/j.
jss.2023.111673

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1145/2898375.2898393
https://doi.org/10.1145/2898375.2898393
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1007/978-3-030-81688-9_14
http://hdl.handle.net/10012/17102
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-031-27481-7_23
https://github.com/vlab-cs-ucsb/ABC
https://doi.org/10.1145/635499.635502
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3498707
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1145/3290362
https://doi.org/10.1007/978-3-319-11194-0_12
https://doi.org/10.1007/978-3-030-64437-6_18
https://doi.org/10.5281/zenodo.8289595
https://doi.org/10.1016/j.jss.2023.111673
https://doi.org/10.1016/j.jss.2023.111673

296:28 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. 2003. Precise analysis of string expressions. In Static

Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings (Lecture Notes in

Computer Science), Radhia Cousot (Ed.), Vol. 2694. Springer, 1–18. https://doi.org/10.1007/3-540-44898-5_1
Arlen Cox and Jason Leasure. 2017. Model Checking Regular Language Constraints. CoRR abs/1708.09073 (2017).

arXiv:1708.09073 http://arxiv.org/abs/1708.09073
Joel D. Day, Thorsten Ehlers, Mitja Kulczynski, Florin Manea, Dirk Nowotka, and Danny Bøgsted Poulsen. 2019. On solving

word equations using SAT. In Reachability Problems - 13th International Conference, RP 2019, Brussels, Belgium, September

11-13, 2019, Proceedings (Lecture Notes in Computer Science), Emmanuel Filiot, Raphaël M. Jungers, and Igor Potapov
(Eds.), Vol. 11674. Springer, 93–106. https://doi.org/10.1007/978-3-030-30806-3_8

Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, and Dirk Nowotka. 2018. The Satisfiability of Extended Word Equations:
The Boundary Between Decidability and Undecidability. CoRR abs/1802.00523 (2018). arXiv:1802.00523 http://arxiv.org/
abs/1802.00523

Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the

Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings

(Lecture Notes in Computer Science), C. R. Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963. Springer, 337–340. https:
//doi.org/10.1007/978-3-540-78800-3_24

Javier Esparza. 1997. Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes. Fundam. Informaticae

31, 1 (1997), 13–25. https://doi.org/10.3233/FI-1997-3112
Tomáš Fiedor, Lukáš Holík, Martin Hruška, Adam Rogalewicz, Juraj Síč, and Pavol Vargovčík. 2023. Reasoning about

regular properties: A comparative study. In Automated Deduction - CADE 29 - 29th International Conference on Automated

Deduction, Rome, Italy, July 1-4, 2023, Proceedings (Lecture Notes in Computer Science), Brigitte Pientka and Cesare Tinelli
(Eds.), Vol. 14132. Springer, Cham, 286–306. https://doi.org/10.1007/978-3-031-38499-8_17

Dominik D. Freydenberger and Liat Peterfreund. 2021. The theory of concatenation over finite models. In 48th International

Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference)

(LIPIcs), Nikhil Bansal, Emanuela Merelli, and James Worrell (Eds.), Vol. 198. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 130:1–130:17. https://doi.org/10.4230/LIPIcs.ICALP.2021.130

Xiang Fu and Chung-Chih Li. 2010. Modeling regular replacement for string constraint solving. In Second NASA Formal

Methods Symposium - NFM 2010, Washington D.C., USA, April 13-15, 2010. Proceedings (NASA Conference Proceedings),
César A. Muñoz (Ed.), Vol. NASA/CP-2010-216215. 67–76.

Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin C. Rinard. 2012. Word equations with length constraints:
What’s decidable?. In Hardware and Software: Verification and Testing - 8th International Haifa Verification Conference,

HVC 2012, Haifa, Israel, November 6-8, 2012. Revised Selected Papers (Lecture Notes in Computer Science), Armin Biere,
Amir Nahir, and Tanja E. J. Vos (Eds.), Vol. 7857. Springer, 209–226. https://doi.org/10.1007/978-3-642-39611-3_21

Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar. 2018. String constraints with concatenation
and transducers solved efficiently. Proc. ACM Program. Lang. 2, POPL (2018), 4:1–4:32. https://doi.org/10.1145/3158092

Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Margus Veanes. 2011. Fast and precise sanitizer
analysis with BEK. In 20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011, Proceedings. USENIX
Association. http://static.usenix.org/events/sec11/tech/full_papers/Hooimeijer.pdf

Pieter Hooimeijer and Westley Weimer. 2012. StrSolve: solving string constraints lazily. Autom. Softw. Eng. 19, 4 (2012),
531–559. https://doi.org/10.1007/s10515-012-0111-x

Artur Jeż. 2016. Recompression: A Simple and Powerful Technique for Word Equations. J. ACM 63, 1, Article 4 (feb 2016),
51 pages. https://doi.org/10.1145/2743014

Adam Kiezun, Vijay Ganesh, Shay Artzi, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst. 2012. HAMPI: A solver for
word equations over strings, regular expressions, and context-free grammars. ACM Trans. Softw. Eng. Methodol. 21, 4
(2012), 25:1–25:28. https://doi.org/10.1145/2377656.2377662

Quang Loc Le and Mengda He. 2018. A decision procedure for string logic with quadratic equations, regular expressions
and length constraints. In Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New

Zealand, December 2-6, 2018, Proceedings (Lecture Notes in Computer Science), Sukyoung Ryu (Ed.), Vol. 11275. Springer,
350–372. https://doi.org/10.1007/978-3-030-02768-1_19

Guodong Li and Indradeep Ghosh. 2013. PASS: String solving with parameterized array and interval automaton. In Hardware

and Software: Verification and Testing - 9th International Haifa Verification Conference, HVC 2013, Haifa, Israel, November

5-7, 2013, Proceedings (Lecture Notes in Computer Science), Valeria Bertacco and Axel Legay (Eds.), Vol. 8244. Springer,
15–31. https://doi.org/10.1007/978-3-319-03077-7_2

Liana Hadarean. 2019. String Solving at Amazon. https://mosca19.github.io/program/index.html. Presented at MOSCA’19.
Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett, and Morgan Deters. 2014. A DPLL(T) theory solver for a

theory of strings and regular expressions. In Computer Aided Verification - 26th International Conference, CAV 2014, Held

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

https://doi.org/10.1007/3-540-44898-5_1
https://arxiv.org/abs/1708.09073
http://arxiv.org/abs/1708.09073
https://doi.org/10.1007/978-3-030-30806-3_8
https://arxiv.org/abs/1802.00523
http://arxiv.org/abs/1802.00523
http://arxiv.org/abs/1802.00523
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.3233/FI-1997-3112
https://doi.org/10.1007/978-3-031-38499-8_17
https://doi.org/10.4230/LIPIcs.ICALP.2021.130
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1145/3158092
http://static.usenix.org/events/sec11/tech/full_papers/Hooimeijer.pdf
https://doi.org/10.1007/s10515-012-0111-x
https://doi.org/10.1145/2743014
https://doi.org/10.1145/2377656.2377662
https://doi.org/10.1007/978-3-030-02768-1_19
https://doi.org/10.1007/978-3-319-03077-7_2
https://mosca19.github.io/program/index.html

Solving String Constraints with Lengths by Stabilization 296:29

as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in Computer

Science), Armin Biere and Roderick Bloem (Eds.), Vol. 8559. Springer, 646–662. https://doi.org/10.1007/978-3-319-08867-
9_43

Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark W. Barrett, and Morgan Deters. 2016. An efficient
SMT solver for string constraints. Formal Methods Syst. Des. 48, 3 (2016), 206–234. https://doi.org/10.1007/s10703-016-
0247-6

Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli, and Clark W. Barrett. 2015. A decision procedure for
regular membership and length constraints over unbounded strings. In Frontiers of Combining Systems - 10th International

Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings (Lecture Notes in Computer Science), Carsten
Lutz and Silvio Ranise (Eds.), Vol. 9322. Springer, 135–150. https://doi.org/10.1007/978-3-319-24246-0_9

Anthony Widjaja Lin and Pablo Barceló. 2016. String solving with word equations and transducers: Towards a logic
for analysing mutation XSS. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar
(Eds.). ACM, 123–136. https://doi.org/10.1145/2837614.2837641

Anthony W. Lin and Rupak Majumdar. 2021. Quadratic Word Equations with Length Constraints, Counter Systems, and
Presburger Arithmetic with Divisibility. Log. Methods Comput. Sci. 17, 4 (2021). https://doi.org/10.46298/lmcs-17(4:4)2021

G. S. Makanin. 1977. The problem of solvability of equations in a free semigroup. Matematicheskii Sbornik 32, 2 (1977),
147–236. (in Russian).

Microsoft. 2020. Azure ResourceManager documentation. https://docs.microsoft.com/en-us/azure/azure-resource-manager/
Federico Mora, Murphy Berzish, Mitja Kulczynski, Dirk Nowotka, and Vijay Ganesh. 2021. Z3str4: A Multi-armed string

solver. In Formal Methods - 24th International Symposium, FM 2021, Virtual Event, November 20-26, 2021, Proceedings

(Lecture Notes in Computer Science), Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan (Eds.), Vol. 13047. Springer,
389–406. https://doi.org/10.1007/978-3-030-90870-6_21

Jakob Nielsen. 1917. Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden. Math. Ann. 78, 1
(1917), 385–397.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. 2006. Solving SAT and SAT Modulo Theories: From an Abstract
Davis–Putnam–Logemann–Loveland Procedure to DPLL(T). J. ACM 53, 6 (nov 2006), 937–977. https://doi.org/10.1145/
1217856.1217859

Andres Nötzli, Andrew Reynolds, Haniel Barbosa, Clark W. Barrett, and Cesare Tinelli. 2022. Even faster conflicts and lazier
reductions for string solvers. In Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August

7-10, 2022, Proceedings, Part II (Lecture Notes in Computer Science), Sharon Shoham and Yakir Vizel (Eds.), Vol. 13372.
Springer, 205–226. https://doi.org/10.1007/978-3-031-13188-2_11

OWASP. 2013. Top 10. https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf.
OWASP. 2017. Top 10. https://owasp.org/www-project-top-ten/2017/.
OWASP. 2021. Top 10. https://owasp.org/Top10/.
Rohit J. Parikh. 1966. On Context-Free Languages. J. ACM 13, 4 (oct 1966), 570–581. https://doi.org/10.1145/321356.321364
Wojciech Plandowski. 1999. Satisfiability of word equations with constants is in NEXPTIME. In Proceedings of the Thirty-First

Annual ACM Symposium on Theory of Computing (STOC ’99). Association for Computing Machinery, New York, NY,
USA, 721–725. https://doi.org/10.1145/301250.301443

Andrew Reynolds, Andres Nötzli, ClarkW. Barrett, and Cesare Tinelli. 2019. High-level abstractions for simplifying extended
string constraints in SMT. In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA,

July 15-18, 2019, Proceedings, Part II (Lecture Notes in Computer Science), Isil Dillig and Serdar Tasiran (Eds.), Vol. 11562.
Springer, 23–42. https://doi.org/10.1007/978-3-030-25543-5_2

Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli. 2020. Reductions for strings and regular expressions
revisited. In 2020 Formal Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020. IEEE,
225–235. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_30

Andrew Reynolds, Maverick Woo, Clark W. Barrett, David Brumley, Tianyi Liang, and Cesare Tinelli. 2017. Scaling up
DPLL(T) string solvers using context-dependent simplification. In Computer Aided Verification - 29th International

Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II (Lecture Notes in Computer Science),
Rupak Majumdar and Viktor Kuncak (Eds.), Vol. 10427. Springer, 453–474. https://doi.org/10.1007/978-3-319-63390-9_24

Neha Rungta. 2022. A billion SMT queries a day (invited paper). In Computer Aided Verification - 34th International Conference,

CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I (Lecture Notes in Computer Science), Sharon Shoham and
Yakir Vizel (Eds.), Vol. 13371. Springer, 3–18. https://doi.org/10.1007/978-3-031-13185-1_1

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, StephenMcCamant, and Dawn Song. 2010. A symbolic execution
framework for JavaScript. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,

California, USA. IEEE Computer Society, 513–528. https://doi.org/10.1109/SP.2010.38

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/s10703-016-0247-6
https://doi.org/10.1007/s10703-016-0247-6
https://doi.org/10.1007/978-3-319-24246-0_9
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.46298/lmcs-17(4:4)2021
https://docs.microsoft.com/en-us/azure/azure-resource-manager/
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1007/978-3-031-13188-2_11
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/Top10/
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/301250.301443
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_30
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1109/SP.2010.38

296:30 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn Song. 2023. Kaluza web site.
https://webblaze.cs.berkeley.edu/2010/kaluza/

Joseph D. Scott, Pierre Flener, Justin Pearson, and Christian Schulte. 2017. Design and implementation of bounded-length
sequence variables. In Integration of AI and OR Techniques in Constraint Programming - 14th International Conference,

CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings (Lecture Notes in Computer Science), Domenico Salvagnin and
Michele Lombardi (Eds.), Vol. 10335. Springer, 51–67. https://doi.org/10.1007/978-3-319-59776-8_5

SMT-COMP’22. 2022. https://smt-comp.github.io/2022/.
SMTLib. 2023a. https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_S.
SMTLib. 2023b. https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA.
Caleb Stanford, Margus Veanes, and Nikolaj Bjørner. 2021. Symbolic Boolean derivatives for efficiently solving extended

regular expression constraints. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 620–635.
https://doi.org/10.1145/3453483.3454066

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A symbolic string solver for vulnerability detection in web
applications. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,

AZ, USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM, 1232–1243. https://doi.org/10.
1145/2660267.2660372

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2016. Progressive reasoning over recursively-defined strings. In
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,

Part I (Lecture Notes in Computer Science), Swarat Chaudhuri and Azadeh Farzan (Eds.), Vol. 9779. Springer, 218–240.
https://doi.org/10.1007/978-3-319-41528-4_12

Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj S. Bjørner. 2012. Symbolic finite state
transducers: Algorithms and applications. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, John Field and Michael Hicks
(Eds.). ACM, 137–150. https://doi.org/10.1145/2103656.2103674

Hung-En Wang, Tzung-Lin Tsai, Chun-Han Lin, Fang Yu, and Jie-Hong R. Jiang. 2016. String analysis via automata
manipulation with logic circuit representation. In Computer Aided Verification - 28th International Conference, CAV 2016,

Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science), Swarat Chaudhuri and
Azadeh Farzan (Eds.), Vol. 9779. Springer, 241–260. https://doi.org/10.1007/978-3-319-41528-4_13

Hung-En Wang, Shih-Yu Chen, Fang Yu, and Jie-Hong R. Jiang. 2018. A symbolic model checking approach to the analysis
of string and length constraints. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering (ASE 2018). Association for Computing Machinery, New York, NY, USA, 623–633. https://doi.org/10.1145/
3238147.3238189

Fang Yu, Muath Alkhalaf, and Tevfik Bultan. 2010. Stranger: An automata-based string analysis tool for PHP. In Tools

and Algorithms for the Construction and Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part

of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.

Proceedings (Lecture Notes in Computer Science), Javier Esparza and Rupak Majumdar (Eds.), Vol. 6015. Springer, 154–157.
https://doi.org/10.1007/978-3-642-12002-2_13

Fang Yu, Muath Alkhalaf, Tevfik Bultan, and Oscar H. Ibarra. 2014. Automata-based symbolic string analysis for vulnerability
detection. Formal Methods Syst. Des. 44, 1 (2014), 44–70. https://doi.org/10.1007/s10703-013-0189-1

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. 2011. Relational String Verification Using Multi-Track Automata. Int. J. Found.
Comput. Sci. 22, 8 (2011), 1909–1924. https://doi.org/10.1142/S0129054111009112

Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Julian Dolby, and Xiangyu Zhang. 2015. Effective search-space
pruning for solvers of string equations, regular expressions and length constraints. In Computer Aided Verification - 27th

International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I (Lecture Notes in Computer

Science), Daniel Kroening and Corina S. Pasareanu (Eds.), Vol. 9206. Springer, 235–254. https://doi.org/10.1007/978-3-
319-21690-4_14

Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A Z3-based string solver for web application analysis. In
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013, Bertrand Meyer, Luciano
Baresi, and Mira Mezini (Eds.). ACM, 114–124. https://doi.org/10.1145/2491411.2491456

Qizhen Zhu, Hitoshi Akama, and Yasuhiko Minamide. 2019. Solving String Constraints with Streaming String Transducers.
J. Inf. Process. 27 (2019), 810–821. https://doi.org/10.2197/ipsjjip.27.810

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 296. Publication date: October 2023.

https://webblaze.cs.berkeley.edu/2010/kaluza/
https://doi.org/10.1007/978-3-319-59776-8_5
https://smt-comp.github.io/2022/
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_S
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/2660267.2660372
https://doi.org/10.1145/2660267.2660372
https://doi.org/10.1007/978-3-319-41528-4_12
https://doi.org/10.1145/2103656.2103674
https://doi.org/10.1007/978-3-319-41528-4_13
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1142/S0129054111009112
https://doi.org/10.1007/978-3-319-21690-4_14
https://doi.org/10.1007/978-3-319-21690-4_14
https://doi.org/10.1145/2491411.2491456
https://doi.org/10.2197/ipsjjip.27.810

	Abstract
	1 Introduction
	2 Preliminaries
	3 Two Methods for Solving Equations with Regular Constraints
	3.1 Stabilization
	3.2 Align&Split

	4 Solving Basic String Constraints
	4.1 The Overall Structure of the Basic String Solver
	4.2 Combined Algorithm for Solving Equations and Regular Constraints

	5 Extended Constraints
	5.1 Disequalities
	5.2 String Functions and Predicates

	6 Preprocessing
	7 Implementation in Z3
	8 Experimental Evaluation
	9 Related Work
	10 Conclusions
	References

