
SPEN: A Solver for Separation Logic

Constantin Enea1, Ondřej Lengál2, Mihaela Sighireanu1, and Tomáš Vojnar2

1 Univ. Paris Diderot, IRIF CNRS UMR 7089, France
2 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. SPEN is a solver for a fragment of separation logic (SL) with
inductively-defined predicates covering both (nested) list structures as well as
various kinds of trees, possibly extended with data. The main functionalities of
SPEN are deciding the satisfiability of a formula and the validity of an entailment
between two formulas, which are essential for verification of heap manipulating
programs. The solver also provides models for satisfiable formulas and diagno-
sis for invalid entailments. SPEN combines several concepts in a modular way,
such as boolean abstractions of SL formulas, SAT and SMT solving, and tree au-
tomata membership testing. The solver has been successfully applied to a rather
large benchmark of various problems issued from program verification tools.

1 Introduction

For analyzing programs with dynamic memory, separation logic (SL) is an established
and fairly popular logic introduced by Reynolds [11]. The high expressivity of SL, its
ability to generate compact proofs, and its support for local reasoning motivated devel-
opment of many tools for automatic reasoning about programs with complex dynamic
linked data structures. These tools aim at establishing memory safety properties and/or
inferring shape properties of the heap. The tools often build on (semi-)decision proce-
dures for checking satisfiability and entailment problems in SL.

Our tool SPEN3 provides (semi-)decision procedures for the most commonly con-
sidered symbolic heaps fragment of SL, extended with user-defined inductive predicates
to specify data structures of an unbounded size. Because unrestricted definitions of in-
ductive predicates make the entailment problem for the fragment undecidable [3], only
semi-decision procedures have been proposed, e.g., in [2,4]. Iosif et al. [10] identified a
rather large class of inductive definitions for which the entailment problem is decidable,
although with a high complexity. SPEN focuses on a smaller class of inductive defini-
tions that is, however, expressive enough to specify complex dynamic data structures,
such as skip lists, lists of circular lists, AVL trees, or binary search trees.

The chosen class of inductive definitions enables the design of efficient
(semi-)decision procedures for satisfiability and entailment [6,8]. The key idea used
for satisfiability checking in SPEN is to exploit the semantics of restricted inductive
definitions and of separating conjunction to build an equisatisfiable boolean abstraction
of the formula. For entailment checking, the idea is to reduce the problem of checking
ϕ ⇒ ψ to the problem of checking a set of simple entailments where the right-hand
side is an inductive predicate atom. The compositionality of this reduction leads to high
efficiency (the simple entailments can be checked independently) and to a capability to
provide fine diagnosis for invalid entailments.

3 https://github.com/mihasighi/spen

https://github.com/mihasighi/spen

2

The current version of SPEN improves on the ones reported in [6,8] in several direc-
tions. First, we introduced caching of constructions and results obtained from checking
simple entailments in order to increase its efficiency. Second, the wrappers calling the
SAT and SMT solvers have been refined to generate smaller formulas and to exploit
the incrementality feature of underlying solvers. Third, we improved the diagnosis pro-
duced by SPEN. For satisfiability checking, SPEN now provides either a model of a
satisfiable formula or an unsatisfiable core; for entailment checking, SPEN provides
a proof witness for valid entailments and a diagnostic information otherwise.

SPEN has been successfully tested on a quite large benchmark. The first version of
SPEN participated in the SL-COMP’14 contest [15] where it won one of its divisions
and was second in another one. The later extensions now allow SPEN to handle a richer
fragment than those considered in the competition. Moreover, the improvements above
lead to better execution times (e.g., by 10 % within the SL-COMP’14 division won by
the first version of SPEN and by 30 % on the division where SPEN was the second).

SPEN is not the only solver for SL. The existing solvers differ in the fragment
considered (CYCLIST [2], SLIDE [9]) and/or the techniques used (ASTERIX [12],
DRYAD [14], GRASSHOPPER [13], SLEEK [4]). A detailed comparison with these
solvers is beyond the scope of this paper—we refer the reader to the survey in [6,8,15].

2 Logic Fragment

SPEN deals with decision problems in a fragment of SL, denoted as SLID, that combines
the symbolic heaps fragment of SL [1] with user-defined inductive predicates describing
various kinds of lists (possibly nested, cyclic, or equipped with skip links) or trees,
possibly extended with data constraints.
Syntax: We write X,Y, Z to denote location variables, d to denote data variables, and
x, y, z for both kinds of variables. We use the vector notation ~x to abbreviate tuples.
We denote by ρ the tuples built from pairs of field labels and variables that specify
structured values. We assume a finite set P = {P1, . . . , Pn} of predicate symbols, each
with an associated arity, and a special location variable nil. A symbolic heap formula ψ
is a formula of the form ∃~x · Π ∧ Σ where Π is a pure formula and Σ is a spatial
formula with the following syntax:
Π ::= X = Y | X 6= Y | ∆ | Π∧Π Σ ::= emp | X 7→ ρ | P (X,~x) | Σ∗Σ
Here,∆ is a constraint over data variables. We let it unspecified, though SPEN presently
supports the first-order theory over multisets of integers with integer linear constraints.
The spatial atoms (i.e., the empty heap, the heap cell allocated at X , resp. the heap
region shaped by some predicate P ∈ P) are composed by the separating conjunction
“∗”. An SLID formula ϕ is a set of symbolic heaps interpreted as a disjunction ∨i ψi.

Predicates P ∈ P are defined by a set of inductive rules of the form ψ ⇒ P (X,~x)
where (X,~x) is a tuple of distinct variables including all free variables in the symbolic
heap ψ (the rule body). X is called the root node of the heap segment defined by P .
A rule is called a base rule if its spatial part is emp, i.e., an empty heap; otherwise, it is
an inductive rule.
Fragments: SPEN considers a restricted class of inductive rules such that the defined
predicates specify (possibly empty) heap segments connecting (by location fields) the

3

root location X with all locations in the heap or nil. The restrictions have been defined
formally in [6,8]. They mainly require, for each inductive predicate P , the presence
of a unique base rule and inductive rules where the root X points to a memory cell
that contains at least one field from which another heap specified by P starts. The
fragment defined in [6], called SLIDL , can describe various kinds of lists that can be
singly- or doubly-linked, cyclic, nested, and can have skip links. It does not permit data
constraints and inductive tree structures. On the other hand, the fragment SLIDD defined
in [8] permits data constraints and can describe tree structures of bounded width, such
as sorted list segments, AVL trees, binary search trees, but not nested cyclic lists.

Decision problems: For both fragments above, SPEN considers the problems of check-
ing satisfiability of a formula, i.e., checking whether |= ϕ holds, and the validity of an
entailment ϕ ⇒ ϕ′ where the symbolic heaps of ϕ′ can be quantified only over data
variables. A simple example of an entailment problem in SLIDL considered by SPEN is:

∃Y,W. X 6= Z ∧ X 7→ {(next, Y)}∗sll(Y,W)∗W 7→ {(next, Z)} ?⇒ sll(X, Z),

which, intuitively, checks whether a composition of two memory cells specified by
the points-to atoms X 7→ {(next, Y)} and W 7→ {(next, Z)} and the predicate atom
sll(Y,W) describes a set of heaps that are all also models of the predicate sll(X, Z)
defining an acyclic singly-linked list segment between X and Z.

3 Satisfiability Checking

Spen

{P1, . . . , Pn}, ψ

Parsing and typing

PiPi ψ

Boolean abstraction

B[ψ]

Normalization

sat

ψ′

Build shape
+ data model

Build
unsat core

unsat

SAT solver

unsat core
of B[ψ]

SMT solver

unsat core of ψ

model of ψ

Fig. 1: SPEN workflow for satisfiability checking

Given a set of inductive definitions
P and a symbolic heap ψ, the pro-
cedures for checking satisfiability
in SPEN follow the workflow given
in Fig. 1. The satisfiability check-
ing of an SLID formula ϕ makes
a classic use of this basic proce-
dure. The crux of the procedures
for both fragments is the definition
of a boolean formula B[ψ], called
boolean abstraction, such that the
data-free part of ψ is satisfiable iff
B[ψ] is satisfiable [6,7].

Once the boolean abstraction
B[ψ] is computed, SPEN queries a
SAT solver (currently, MINISAT4)
for the satisfiability of B[ψ]. If
B[ψ] is unsatisfiable, SPEN can re-
turn an unsatisfiable core of ψ, deduced from an unsatisfiable core of B[ψ]. If B[ψ] is
satisfiable and ψ ∈ SLIDL , SPEN has the option of returning a model of ψ obtained from
a model of B[ψ] by unfolding predicate atoms corresponding to non-empty heap seg-
ments. The unfolding of predicate atoms is done twice to emphasize the non-emptiness

4 Available at http://minisat.se.

http://minisat.se

4

of the segment. For ψ ∈ SLIDD , the satisfiability checking continues by constructing a for-
mula ∆ψ that conjuncts the data part of ψ with the data parts obtained by unfolding the
non-empty heap segments given by the model of B[ψ]. To check the satisfiability of
∆ψ , SPEN queries an SMT solver for the theory of multisets with integer data (cur-
rently, SPEN implements a wrapper for the UFLIA theory of Z3 [5]).

If the boolean abstraction B[ψ] is satisfiable, it is then used to normalize the spatial
part of ψ, which is a step used by entailment checking too. This process saturates the
pure part of ψ with (dis-)equalities between locations variables and removes predicate
atoms that correspond to empty heap segments, producing a normalized formula ψ′.

4 Entailment Checking

Spen

{P1, . . . , Pn}, ψ1 ⇒ ψ2

Parsing and typing

ψ1
PiPi

Build tree
automata

ψ2

Boolean abstraction

B[ψ1] B[ψ2]

Normalization &
building SL graphs

G[ψ1] G[ψ2]

TAi

Solving
simple entl.

Reduction to
simple entl.

SAT solver





Proof witness

or failure
diagnostics

Vata tree
automata library

Fig. 2: SPEN workflow for entailment in SLIDL

To check the validity of an entail-
mentϕ1 ⇒ ϕ2, SPEN uses a sound
procedure to deal with disjunctive
formulas: it checks that for every
disjunct ψ1 in ϕ1, there is a dis-
junct ψ2 of ϕ2 such that ψ1 ⇒ ψ2.
The procedure for deciding the va-
lidity of entailments between sym-
bolic heaps follows the workflows
given in Fig. 2 and Fig. 3 (the the-
oretical foundations were estab-
lished in [6,8]). The two formu-
las are first checked for satisfiabil-
ity and normalized using the pro-
cedures from Section 3. If one of
the two formulas is unsatisfiable,
then the validity of the entailment
can be already determined, e.g., if
ψ1 is unsatisfiable then the entail-
ment is valid. When both formulas
are satisfiable, SPEN offers two different procedures tuned for each fragment of SLID.

For the fragment SLIDL , SPEN reduces the entailment problem ψ1 ⇒ ψ2 to a set of
entailment queries of the form ψ1[a] ⇒ a, called simple entailments, where ψ1[a] is
a sub-formula of ψ1 and a is a (points-to or inductive) spatial atom of ψ2 (there will be
one such entailment for each spatial atom a in ψ2). Intuitively, the sub-formula ψ1[a]
describes the region of a heap modelled by ψ1 that should satisfy a. The procedures
for computing ψ1[a] and testing simple entailments use an intermediary graph repre-
sentation of symbolic heap formulas, called an SL-graph and denoted G[ψ]. Basically,
nodes of G[ψ] represent sets of aliased variables according to the pure part of ψ, and
edges represent dis-equalities and spatial atoms of ψ, e.g., a spatial atom P (X,Y, ~x) is
represented by a directed edge from X to Y labeled by P (~x). Thus, when a is a predi-
cate atom P (X,Y, ~x), ψ1[a] is obtained from the SL-graph of ψ1 by selecting the edges
reachable fromX and co-reachable from Y . The graph selected for ψ1[a] is transformed

5

Table 1: Experimental results on an Intel(R) Core(TM) i7-2600 CPU at 1.60GHz
Fragments Time [s] SL-COMP’14 results
SLIDL SLIDD Benchmark Size SPENL SPEND Time [s] StarExec/solver
X X sll0 sat 110 11.20 11.28 (I) 1.06 / Asterix, (II) 3.27 / SPEN

X X sll0 entl 292 34.45 34.94 (I) 2.98 / Asterix, (II) 7.58 / SPEN

X X FDB entl 43 1.08 1.00 (I) 0.61 / SPEN, (II) 43.65 / SLEEK

X FDB entl+ 55 0.65 — —

into a tree t1, which is tested for membership in the language of a tree automaton built
from the rules defining P for the atom a = P (X,Y, ~x).

Spen

{P1, . . . , Pn}, ψ1 ⇒ ψ2

Parsing and typing

ψ1
PiPi

Build
lemmas

ψ2

Boolean abstraction

B[ψ1] B[ψ2]

Normalization

Proof search

SAT solver

SMT solver





Proof witness

or failure
diagnostics

Fig. 3: SPEN workflow for entailment in SLIDD

For the fragment SLIDD , SPEN
implements a proof search strat-
egy for the entailment problem
ψ1 ⇒ ∃~d. ψ2. The strategy
computes a sequence of formulas
∃~d1. ψ1

1 , . . . ,∃~dn. ψn1 such that
(1) ∃~di. ψi1 ⇒ ∃~di+1. ψi+1

1 and
(2) ∃~dn. ψn1 is syntactically equiv-
alent to ∃~d. ψ2. The entailments
in point (1) are obtained by ap-
plying the inductive rules and lem-
mas obtained automatically thanks
to restriction required on inductive
definitions. The procedure requires
to check entailments between data
constraints, which is done using the previously mentioned wrapper to the SMT solver.

For both procedures, when the input entailment ψ1 ⇒ ∃~d. ψ2 holds, SPEN has the
option of providing a proof witness that either indicates the fact that ψ1 is unsatisfiable
or it consists of the normalized forms of ψ1 and ψ2 and the mapping of sub-fomulas in
ψ1 to atoms of ψ2. When the input entailment is not valid and the procedure terminates,
SPEN provides a diagnosis that explains why the entailment fails.

5 Experimental Results
SPEN has been applied to a benchmark of 578 problems (available in the repository),
90 % obtained from verification conditions of iterative programs on complex dynamic
data structures. The remaining problems are crafted to test the capabilities of the solver.
Tables 1 and 2 provide an overview of results obtained by SPEN on this benchmark.

The benchmark of SLIDL problems includes three divisions of SL-COMP’14: sat-
isfiability and entailment problems for acyclic singly linked lists (sll0 sat resp.
sll0 entl), and entailment checking for formulas describing more complicated types
of linked lists, e.g., doubly-linked lists, skip lists, and nested lists (FDB entl). SPEN
spends less than 0.05 s on 90 % of the problems with the maximum time of 0.5 s; these
times include calls to a SAT solver. The benchmark FDB entl+ includes the problems
not in the SL-COMP’14 benchmark (e.g., formulas describing lists of cyclic lists). The
reported times in the last column have been obtained in 2014 on the StarExec5 platform.

5 www.starexec.org, an Intel(R) Xeon(R) CPU E5-2609 at 2.40GHz of and 10 MB cache.

www.starexec.org

6

Table 2: Results for SLIDD
Benchmark Size Time [s]
sll0 sorted 16 0.45
BST 45 1.67
AVL 22 1.21
RBT 21 3.61

The benchmark of SLIDD problems (see Table 2) in-
cludes verification conditions for proving the correct-
ness of iterative procedures (delete, insert, search) over
recursive data structures storing integer data: sorted lists,
binary search trees, AVL trees, and red-black trees.
SPEN spends less than 0.4 s on each problem, includ-
ing calls to SAT and SMT solvers. The first three lines
of Table 1 demonstrate that the two approaches implemented in SPEN (based on tree
automata—column “SPENL”—and on proof search—column “SPEND”) are not only
complementary but also comparable on the common fragment. The improvements dis-
cussed in this paper reduce the execution times by 10 % within the division sll0 entl
and by 30 % within FDB entl w.r.t. the old version [6].
Acknowledgement. This work was supported by the French ANR project Vecolib, the
Czech Science Foundation (project 17-12465S), the BUT FIT project FIT-S-17-4014,
the IT4IXS: IT4Innovations Excellence in Science project (LQ1602), and by the Euro-
pean Research Council (ERC) under the European Unions Horizon 2020 research and
innovation programme (grant agreement No 678177).

References
1. J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation logic. In Proc.

FSTTCS’04, LNCS 3328, Springer, 2004.
2. J. Brotherston, N. Gorogiannis, and R. L. Petersen. A Generic Cyclic Theorem Prover. In

Proc. of APLAS’12, LNCS 7705, Springer, 2012.
3. C. Calcagno, H. Yang, P. O’Hearn. Computability and Complexity Results for a Spatial As-

sertion Language for Data Structures. In Proc. of FSTTCS’01, LNCS 2245, Springer, 2001.
4. W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated Verification of Shape, Size

and Bag Properties via User-defined Predicates in Separation Logic. Science of Computer
Programming, 77(9):1006–1036, Elsevier, 2012.

5. L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. of TACAS’08, LNCS
4963, Springer, 2008.

6. C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. Compositional Entailment Checking for
a Fragment of Separation Logic. In Proc. of APLAS’14, LNCS 8858, Springer, 2014.

7. C. Enea, V. Saveluc, and M. Sighireanu. Compositional Invariant Checking for Overlaid and
Nested Linked Lists. In Proc. of ESOP’13, LNCS 7792, Springer, 2013.

8. C. Enea, M. Sighireanu, and Z. Wu. On Automated Lemma Generation for Separation Logic
with Inductive Definitions. In Proc. of ATVA’15, LNCS 9364, Springer, 2015.

9. R. Iosif, A. Rogalewicz, and T. Vojnar. Deciding Entailments in Inductive Separation Logic
with Tree Automata. In Proc. of ATVA’14, LNCS 8837, Springer, 2014.

10. R. Iosif, A. Rogalewicz, and J. Šimáček. The Tree Width of Separation Logic with Recursive
Definitions. In Proc. of CADE-24, LNCS 7898, Springer, 2013.

11. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local Reasoning about Programs that Alter
Data Structures. In Proc. of CSL’01, LNCS 2142, Springer, 2001.

12. J. A. N. Pérez and A. Rybalchenko. Separation Logic Modulo Theories. In Proc. of
APLAS’13, LNCS 8301, Springer, 2013.

13. R. Piskac, T. Wies, and D. Zufferey. Automating Separation Logic Using SMT. In Proc. of
CAV’13, LNCS 8044, Springer, 2013.

14. X. Qiu, P. Garg, A. Stefanescu, and P. Madhusudan. Natural Proofs for Structure, Data, and
Separation. In Proc. of PLDI’13, ACM Press, 2013.

15. M. Sighireanu and D. Cok. Report on SL-COMP’14. JSAT, 9:173–186, 2014.

	SPEN: A Solver for Separation Logic

