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Abstract. Monadic second-order logic of one successor (S1S) is a logic
for specifying ω-regular languages in a concise way. In this paper, we re-
visit the classical decision procedure based on translating S1S formulae
into Büchi automata and employ state-of-the-art algorithms for their ma-
nipulation, in particular complementation and size reduction. We com-
pare our implementation to the one based on loop-deterministic finite
automata and observe cases where the classical approach scales better.

1 Introduction

The study of formalisms allowing reasoning about ω-regular languages still at-
tracts a lot of attention. For instance, ω-regular languages are often used for spec-
ifying properties of reactive systems via the formalisms of linear-time temporal
logics such as LTL [1] or QPTL [2]. In addition to that, ω-regular languages have
also been used for formal verification of programs [3] and, recently, in the con-
text of automated theorem proving, for reasoning about properties of Sturmian
words [4,5]. A prominent logic allowing to describe the whole class of ω-regular
properties is monadic second-order logic of one successor (S1S). The decidabil-
ity of S1S was proven by Büchi in 1962 by introducing a connection of the logic
with automata over infinite words called Büchi automata (BAs) [6]. S1S offers
immense succinctness for the price of nonelementary worst-case complexity.

The many applications of ω-regular languages, often represented using BAs,
together with BAs’ nice theoretical properties have attracted a lot of attention
towards developing efficient algorithms for their manipulation. Unlike the ones
for automata over finite words, algorithms for BAs are often much more involved.
In particular, the problem of efficiently complementing BAs has been approached
from several sides [2,7–29] and so has been the problem of BA reduction [30–33].

In this paper we revisit the original automata-based decision procedure for
S1S and exploit state-of-the-art approaches for handling BAs, in particular ap-
proaches for their reduction and techniques of complementation, to obtain an
efficient decision procedure. We summarize our observations with the implemen-
tation, identify the bottlenecks, and provide an experimental comparison with
an approach deciding S1S based on deterministic-loop automata [34].

2 Preliminaries

Functions, words, and alphabets. We use ω to denote the first infinite ordinal
ω = {0, 1, . . .}. An (infinite) word α over alphabet Σ is represented as a function
α : ω → Σ where the i-th symbol is denoted as αi. We abuse notation and
sometimes also represent α as an infinite sequence α = α0α1 . . . We use Σω to
denote the set of all infinite words over Σ.



Büchi automata. A (nondeterministic) Büchi automaton (BA) overΣ is a quadru-
ple A = (Q, δ, I, F ) where Q is a finite set of states, δ is a transition function
δ : Q × Σ → 2Q, and I, F ⊆ Q are the sets of initial and accepting states re-
spectively. We sometimes treat δ as a set of transitions of the form p

a→ q, for
instance, we use p

a→ q ∈ δ to denote that q ∈ δ(p, a). A run of A from q ∈ Q on
an input word α is an infinite sequence ρ : ω → Q that starts in q and respects δ,
i.e., ρ(0) = q and ∀i ≥ 0: ρ(i)

αi→ ρ(i+ 1) ∈ δ. Let inf(ρ) denote the states occur-
ring in ρ infinitely often. We say that ρ is accepting iff inf(ρ)∩F 6= ∅. A word α
is accepted by A if there is an accepting run ρ of A from some initial state, i.e.,
ρ(0) ∈ I. The set L(A) = {α ∈ Σω | A accepts α} is called the language of A.

Simulation. The (maximum) direct simulation on A is the relation �di ⊆ Q×Q
defined as the largest relation s.t. p �di q implies (i) p ∈ F ⇒ q ∈ F and

(ii) p
a→ p′ ∈ δ ⇒ ∃q′ ∈ Q : q

a→ q′ ∈ δ ∧ p′ �di q
′ for each a ∈ Σ.

3 Monadic Second-order Logic of One Successor (S1S)

In this section we briefly introduce monadic second-order logic of one successor,
denoted as S1S, used for expressing ω-regular properties of linear structures.

3.1 Syntax and Semantics

In this paper we build S1S formulae from atomic formulae of the form (i) 0 ∈
X, (ii) X ⊆ Y , (iii) X = Succ(Y ), and (iv) Sing(X) where X and Y are
second-order variables. Formulae are then obtained as a Boolean combination of
atomic formulae and existential quantification. Other connectives and universal
quantification can be obtained as a syntactic sugar, e.g., we can define ϕ → ψ
to denote ¬ϕ ∨ ψ and ∀X.ϕ to denote ¬∃X.¬ϕ.

S1S formulae are interpreted over the set of natural numbers. In particular,
second-order variables range over (possibly infinite) subsets of ω. For an S1S
formula ϕ(X) with free variables X an assignment is a mapping σ : X→ 2ω. The
satisfaction of an atomic formula ϕ by an assignment σ, denoted as σ � ϕ, is
inductively defined as follows: (i) σ � 0 ∈ X iff 0 is in σ(X), (ii) σ � X ⊆ Y
iff σ(X) is a subset of σ(Y ), (iii) σ � X = Succ(Y ) iff σ(X) = {y + 1 | y ∈
σ(Y )}, and (iv) σ � Sing(X) iff |X| = 1. Satisfaction of an S1S formula by σ is
then defined inductively as usual. Formula ϕ is called satisfiable if there is an
assignment σ such that σ � ϕ.

3.2 Encoding Models as Words

The first step towards automata-based decision procedure is an encoding of
assignments as words. In the following, we fix a formula ϕ with free variables X.
A symbol ξ over X is a mapping ξ : X→ {0, 1}, e.g., ξ = {X:0, Y :1}. We use ΣX
to denote the set of all symbols over X. Furthermore, for a set of variables Y, we
define the projection of ξ wrt. Y as πY(ξ) = ξ|X\Y. An assignment σ of ϕ is then
encoded as the word ασ over ΣX s.t. for each variable X ∈ X and for each i ∈ ω
the following two conditions hold (i) if i ∈ σ(X) then ασi contains X:1 and (ii) if
i /∈ σ(X) then ασi contains X:0. The language of the formula ϕ is then defined
as L(ϕ) = {ασ | σ is a model of ϕ}.
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q1 q2

{X:0, Y :0} {X:1, Y :1}
{X:1, Y :0}

{X:0, Y :1}

(a) Y = Succ(X)

p1 p2

{X:0} {X:0}

{X:1}

(b) Sing(X)

r1 {X:0, Y :?}

{X:1, Y :1}

(c) X ⊆ Y

p1 p2

{X:?}

{X:1}

(d) 0 ∈ X

Fig. 1: BAs for atomic formulae.

3.3 Automata-based Decision Procedure

The automata-based decision procedure for S1S takes an input formula ϕ and
inductively builds the BA Aϕ accepting the same language as ϕ. Checking satisfi-
ability of ϕ is then equivalent to testing whether L(Aϕ) 6= ∅. The automaton Aϕ
is defined as follows: (i) If ϕ is an atomic formula, thenAϕ is a predefined BA (see
Fig. 1). (ii) If ϕ = ψ1∧ψ2, then, in the first step, both Aψ1 and Aψ1 are adjusted
to accept the original models extended to symbols over ΣX1∪X2 (X1 and X2 are
the free variables of ψ1 and ψ2 respectively). This step is called cylindrification
and can be implemented by modifying the transition functions of Aψ1

and Aψ1
.

In particular, for Aψ1
, each transition over a symbol ξ is replaced by multiple

transitions over all symbols ξ′ ∈ ΣX1∪X2 s.t. πX1(ξ′) = ξ. The BA Aϕ is then
obtained as Aϕ = A′

ψ1
∩ A′

ψ2
where A′

ψ1
and A′

ψ2
are cylindrified BAs and ∩

is the standard operation of intersection of two BAs. (iii) If ϕ = ψ1 ∨ ψ2 then
Aϕ = A′

ψ1
∪A′

ψ2
where A′

ψ1
and A′

ψ2
are cylindrified BAs and ∪ is the standard

operation of union over BAs. (iv) If ϕ = ¬ψ, then Aϕ = A{
ψ where A{ denotes

the BA accepting Σω \L(A). (v) If ϕ = ∃X.ψ, then Aϕ = πX(Aψ) where πX(A)
is the BA obtained from A by modifying its transition function, applying π{X}
on the symbol of each transition.

Handling of first-order variables. Although the definition of S1S presented in
Section 3.1 uses second-order variables only, first-order variables (denoted by
lowercase letters) can be handled using the support of the Sing predicate as
follows: ∃x. ϕ is transformed into ∃X.ϕ∧Sing(X) and ∀x. ϕ is transformed into
∀X.Sing(X)→ ϕ.

4 Implementation of the Decision Procedure

In this section, we focus on details related to our prototype implementation of
the S1S decision procedure. The implemented tool, called Alice, is written in
Python and is publicly available on GitHub1.

Automata-based decision procedure. Alice implements the classical decision pro-
cedure as described in Section 3.3. In particular, it uses the two-copy product
construction for intersection and performs union by simply uniting the input
automata (making sure they have disjoint sets of states). BA complementation
(corresponding to using negation in the input formula) is performed either by

1 https://github.com/barbora4/projektova-praxe
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Schewe’s optimal construction [10, Section 3] improving the original rank-based
construction [11,23] or by determinization-based complementation implemented
within Spot [35]. Although the used complementation algorithms meet the lower
bound of BA complementation 2O(n logn), the complexity is still a bottleneck of
the decision procedure. Note that development of efficient complementation al-
gorithms for BAs is still a hot topic of current research [8,13]. In order to avoid
the state explosion during complementation, we keep the automata as small as
possible using (i) lightweight reductions, such as quotienting wrt. the direct sim-
ulation equivalence, i.e., two states p, q are merged if p �di q and q �di p, or
disconnecting little brother states [33], i.e., if there are transitions p

a→ q and

p
a→ r with q �di r, we can remove the transition p

a→ q from the automaton,
and (ii) heavyweight reductions, based on a 10-step lookahead simulation relation
combined with advanced transition pruning, implemented in the tool Rabit [30].

Alphabet handling. When working with BAs, the number of states is not the
only issue. Recall from Section 3.2 that if we consider a formula with n free
variables, there are 2n symbols that can occur in the corresponding automaton.
For this reason we implement symbolic handling of symbols using a “don’t care”

flag (denoted by “?”). For instance two transitions p
ξ1→ q and p

ξ2→ q where
ξ1 = {X:1, Y :0} and ξ2 = {X:1, Y :1} are represented by a single transition

p
κ→ q where κ = {X:1, Y :?}. In future, we might consider handling alphabets

via binary decision diagrams in the similar way as Mona [36].

5 Experimental Evaluation

In this section, we compare our tool with, to the best of our knowledge, the
only other existing implementation of a decision procedure for S1S, which is
based on loop-deterministic finite automata (denoted as L-DFA) [34]. The eval-
uation uses a benchmark that consists of 26 hand-crafted S1S formulae obtained
from [34]. We compared the approaches with respect to the number of states of
the automaton Aϕ (either BA or L-DFA) corresponding to the formula ϕ.2

In the comparison, we use the following three settings of our tool: Alice-
Rank denotes the setting with Schewe’s complementation and reduction by
Rabit, Alice-Spot denotes Spot’s complementation and reduction by Rabit,
and, lastly, Alice-Spot-Light denotes Spot’s complementation and lightweight
reduction. The timeout (TO) was set to 1 hour. Selected results are in Table 1.

Discussion. Our tool usually gives better results than L-DFA in terms of state
count, as shown in Table 1. In particular, for the case of Alice-Spot, the state
counts of the resulting automata were in the vast majority of cases lower than for
L-DFA. There were only two worse cases, one of them being formula 23 that did
not finish in a day (complementing an automaton having 33 states). Furthermore,
parametric formulae 18–20 are worth noticing; the number of states of L-DFA

2 We do not compare other measurements such as the execution time or the sum of
sizes of all automata obtained during the construction of Aϕ, because we were not
able to obtain the L-DFA tool and [34] does not provide these values.
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Table 1: Comparison of Alice and L-DFA on S1S formulae. In addition to the
atomic formulae from Section 3.1, Alice also considers x < y to be atomic.

Formula Alice-
Rank

Alice-
Spot-Light

Alice-
Spot

L-DFA

1. (x ∈ Y ∧ x /∈ Z) ∨ (x ∈ Z ∧ x /∈ Y ) 2 5 2 9

2. ¬∃x.((x ∈ Y ∧ x /∈ Z) ∨ (x ∈ Z ∧ x /∈ Y )) 1 1 1 9

3. after(X,Y ) := ∀x.(x ∈ X → ∃y.(y > x ∧ y ∈ Y )) 5 3 3 9

4. fair(X,Y ) := after(X,Y ) ∧ after(Y,X) 24 5 5 9

5. ∀X.(fair(X,Y )→ fair(Y,Z)) OOM 29 21 14

6. suc(x, y) := x < y ∧ ∀z.(¬x < z ∨ ¬z < y)) 3 4 3 10

18. offset(X,Y ) := ∀i∀j.(suc(i, j) ∧ i ∈ X → j ∈ Y ) 2 2 2 11

19. offset(X,Y ) ∧ offset(Y,Z) ∧ offset(Z,X) 8 8 8 107

20. offset(V,W ) ∧ offset(W,X) ∧ offset(X,Y ) ∧
offset(Y,Z) ∧ offset(Z, V )

32 32 32 2331

22. insm(i, j, U, V,W ) := (j ∈ U → i ∈ V ∨ i ∈W ) 8 13 8 15

23. ∀i∀j(suc(i, j)→ insm(i, j, U, V, Z) ∧
insm(i, j, V,X, Y ) ∧ insm(i, j,X, Y, V ) ∧
insm(i, j, Y, Z,X) ∧ insm(i, j, Z, U, Y ))

OOM TO TO 198

26. ∀x∀y.(x < y ∧ y ∈ X ∧ y ∈ Y ) ∧ ∀x∀y.(x < y ∧ y ∈
X ∧ y /∈ Y ) ∧ ∀x∀y.(x < y ∧ y /∈ X ∧ y ∈
Y ) ∧ ∀x∀y.(x < y ∧ y /∈ X ∧ y /∈ Y )

21 11 11 18

grows much faster than in our case. If we compare the variants Alice-Rank
and Alice-Spot, the setting Alice-Spot gives overall better results—e.g., for
formula 5, Alice-Rank ran out of memory (OOM), yet Alice-Spot yields an
automaton having 21 states. On the other hand, lightweight reduction behaves
surprisingly well: Alice-Spot outperforms Alice-Spot-Light just in 7 cases
(most significantly on formulae 7, 9, and 22).

By analyzing the results, we found that the bottleneck of our approach is
indeed BA complementation—it caused all the TOs and OOMs in the bench-
mark. For instance the TO in result of Alice-Spot for formula 23 is caused by
complementing a BA with 33 states. To keep the sizes of automata small, their
reduction is a crucial operation. Therefore, as a future work, we would like to
investigate state-of-the-art techniques for BA complementation and identify the
most suitable approach in connection with advanced minimization techniques.
Although Alice often produces smaller automata than L-DFA, the number of
states is not the only possible measure: with a missing run time the comparison
is incomplete, since dealing with BAs is usually harder than dealing with DFAs.

As far as we know, Alice is the only off-the-shelf publicly available S1S
solver. We intend to use it in the following settings: (i) educational (students in-
put S1S formulae and observe the corresponding BAs) and (ii) research (we wish
to study the structure of the created BAs and search for potential heuristics).

Acknowledgment. This work has been supported by the Czech Science Founda-
tion project 19-24397S and the FIT BUT internal project FIT-S-20-6427.
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20. Fogarty, S., Vardi, M.Y.: Efficient Büchi Universality Checking. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
Springer (2010) 205–220

21. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
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