
Negated String Containment is Decidable
Vojtěch Havlena #

Brno University of Technology, Czech Republic

Michal Hečko #

Brno University of Technology, Czech Republic

Lukáš Holík #

Aalborg University, Denmark
Brno University of Technology, Czech Republic

Ondřej Lengál #

Brno University of Technology, Czech Republic

Abstract
We provide a positive answer to a long-standing open question of the decidability of the not-contains
string predicate. Not-contains is practically relevant, for instance in symbolic execution of string
manipulating programs. Particularly, we show that the predicate ¬Contains(x1 . . . xn, y1 . . . ym),
where x1 . . . xn and y1 . . . ym are sequences of string variables constrained by regular languages, is
decidable. Decidability of a not-contains predicate combined with chain-free word equations and
regular membership constraints follows.

2012 ACM Subject Classification Theory of computation → Regular languages; Theory of compu-
tation → Automated reasoning; Theory of computation → Logic and verification

Keywords and phrases not-contains, string constraints, word combinatorics, primitive word

Digital Object Identifier 10.4230/LIPIcs.MFCS.2025.54

Related Version Technical Report: http://arxiv.org/abs/2506.22061 [25]

1 Introduction

String constraints have been recently intensely studied in relation to their applications
in analysis of string manipulation in programs, e.g., in the analyses of security of web
applications or cloud resource access policies [44]. Apart from a plethora of practical solvers,
e.g., cvc5 [27, 28, 7, 29, 43, 39, 42], Z3 [24, 11, 34], Ostrich [30, 13, 16, 14, 15], Z3-
Noodler [19, 18, 12], Trau [4, 2, 1] Z3Str/2/3/4/3RE [10, 9, 8], Woorpje [21], and
nfa2sat [33], the theoretical landscape of string constraints has been intensely studied
too. The seminal work of Makanin [36], establishing decidability of word equations, was
followed by the work of Plandowski [40] (and later Jeż’s work on recompression) that placed
the problem in PSpace. A number of relatively recent works study extensions of string
constraints with constraints over string lengths, transducer-defined relational constraints,
string-integer conversions, extensions of regular properties, replace-all, etc. As the extended
string constraints are in general undecidable, these works focus on finding practically relevant
decidable fragments such as the straight-line [17, 30, 13, 15, 14] and chain-free [4, 18]
fragments, quadratic equations [37], and others (e.g., [5, 22]).

The most essential constraints, from the practical perspective, are considered to be word
equations, regular membership constraints, length constraints, and also ¬Contains, as argued,
e.g., in [45], and as can also be seen in benchmarks, for instance, in [46, 3]. While the
three former types of constraints are intensely studied, ¬Contains was studied only little.
Yet, it is important as well as theoretically interesting: besides the occurrence in existing
benchmarks, its importance follows also from its ability to capture other highly practical
types of constraints. E.g., the indexOf(x, y) function should return the position of the first

© Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál;
licensed under Creative Commons License CC-BY 4.0

50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Paweł Gawrychowski, Filip Mazowiecki, and Michał Skrzypczak; Article No. 54; pp. 54:1–54:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ihavlena@fit.vutbr.cz
https://orcid.org/0000-0003-4375-7954
mailto:ihecko@fit.vutbr.cz
https://orcid.org/0009-0003-2428-8547
mailto:holik@fit.vutbr.cz
https://orcid.org/0000-0001-6957-1651
mailto:lengal@fit.vutbr.cz
https://orcid.org/0000-0002-3038-5875
https://doi.org/10.4230/LIPIcs.MFCS.2025.54
http://arxiv.org/abs/2506.22061
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Negated String Containment is Decidable

occurrence of y in x. It can be converted to the word equation x = p.y.s after which the
returned value equals |p|. To ensure that y is indeed the first occurrence in x, there should be
no occurrence of y in p.y′ where y′ is the prefix of y without the last symbol, i.e., y′.z = y for
z ∈ Σ. This can be expressed as ¬Contains(y, p.y′) (e.g., Z3 solves indexOf in this way [24]).

As mentioned above, the problem is also interesting from the theoretical perspective.
Although the positive version, Contains, can be easily encoded using word equations, the
negation is difficult. Its precise conversion to word equations would require universal
quantification, which is undecidable for word equations in general [23]. The most systematic
attempts at solving ¬Contains have been made in [3, 20]. In [3], the authors extend the
flattening underapproximating framework behind the solver Trau [2, 1] and give a precise
solution for ¬Contains if all involved string variables are constrained by flat languages
(a flat language here stands for a finite union of concatenations of iterations of words) and,
moreover, if no string variable appears multiple times, thus avoiding most of the difficulty
of the problem. Our recent work [20], on top of which we build here, proceeds in a similar
direction and removes the restriction of [3] on multiple occurrences of variables, but still
requires all languages to be flat, which is a quite severe restriction. Practical heuristics used
in solvers generally solve only easy cases and quickly fail on more complex ones, cf. [20], and
do not give any guarantees. E.g., cvc5 translates ¬Contains into a universally quantified
disequality [41], which is in turn handled by cvc5’s incomplete quantifier instantiation [38].

In this paper, we show decidability of a much more general kind of ¬Contains than [20, 3],
namely of the form ¬Contains(N ,H) ∧ ΦL where N eedle and Haystack are string terms
(sequences of symbols and variables) and ΦL constrains variables by any regular language.
The constraint is satisfied by an assignment to string variables respecting ΦL under which N
is not a factor (i.e., a continuous subword) of H (i.e., if N eedle cannot be found in Haystack).

Our solution of the problem leads relatively deep into word combinatorics and automata
theory. We rely on the result in [20] giving a decision procedure for a flat-language version
of the problem. The work [20] uses an automata-based construction inspired by deciding
functional equivalence of streaming string transducers [6]. Using a variation on automata
Parikh images, it transforms the problem into an equisatisfiable Presburger arithmetic formula
(which is decidable). The general case with variables restricted by arbitrary regular languages,
the subject of this paper, is solved by a reduction to this flat-language fragment. The core
idea of our proof is that we can always find fresh primitive words in non-flat languages that
can be repeated an arbitrary number of times. The result of such a repetition is a word
that can share with other variables only subwords of a bounded size, assuming all words
assigned to variables are sufficiently long. The reduction technically requires a dive into
combinatorics on words and results on primitive words [32, 36, 35, 31], which are closely
related to flat languages. Our techniques shares traits with the work of Karhumäki et al. [26],
which constructs long primitive words to show that disjunctions of word equations can be
encoded into a single equation. First, for variables with non-flat languages occurring on both
sides of the constraint, we show that we can replace each of them with a single fresh symbol.
This is because non-flat languages allow us to choose a sufficiently complex word for the
variable x that can be matched only with the value of x on the other side (N is the other
side of H and vice versa). For variables with non-flat languages that appear only in H, we
show that after enumerating all possible assignments for them up to a certain bound, their
languages can be underapproximated by flat languages while preserving satisfiability.

2 Preliminaries
Numbers. We use N for natural numbers (including zero). For m,n ∈ N, their greatest com-
mon divisor is denoted as gcd(m,n) and their least common multiple is denoted as lcm(m,n).

V. Havlena, M. Hečko, L. Holík, and O. Lengál 54:3

Words. An alphabet Σ is a finite non-empty set of symbols. Let Σ be fixed for the rest of
the paper. A (finite) word w over Σ is a sequence of symbols w = a1 . . . an from Σ, where n
is the length of w, denoted as |w|. The empty word of the length 0 is denoted by ϵ and
a concatenation of two words u and v is denoted as u ◦ v (or shortly uv). An iteration of
a word w is defined as w0 ≜ ϵ and wi+1 ≜ wi ◦ w for i ≥ 0. The set of all words over Σ is
denoted as Σ∗. A primitive word cannot be written as vi for any v and i > 1, and we will
use Greek letters α, β, γ, . . . from the beginning of the alphabet to denote primitive words.
We denote the set of all primitive words Prim. A word u is a factor (i.e., a continuous
subword) of every word vuv′. Given two words pus and p′u′s′, we say that the factors u
and u′ have an overlap of size k ∈ N if

∣∣{|p| + 1, . . . , |p| + |u|} ∩ {|p′| + 1, . . . , |p′| + |u′|}
∣∣ = k.

The overlap of u and u′ in the words pus and p′u′s′ contains a conflict if there is a position i
with |p| ≤ i < |pu| and |p′| ≤ i < |p′u′| such that the words pus and p′u′s′ contain a different
letter at position i.

Languages. A language L over Σ is a subset of Σ∗. We will sometimes abuse notation and,
given a word w ∈ Σ∗, use w to also denote the language {w}. For two languages L1 and L2,
we use L1 ◦ L2 (or just L1L2) for their concatenation {uv | u ∈ L1, v ∈ L2}. A bounded
iteration of a language L is defined as L0 ≜ {ϵ} and Li+1 ≜ Li ◦L for i ≥ 0. The (unbounded)
iteration is L∗ ≜

⋃
i≥0 Li. For a word w we use Pref(w) (Suf(w)) to denote the set of prefixes

(suffixes) of w and F(w) to denote the set of all factors of w. We lift the definitions to
languages as usual. A language L ⊆ Σ∗ is flat iff it can be expressed as a finite union

L =
N⋃

i=1
wi,1 ◦ w∗

i,2 ◦ wi,3 ◦ w∗
i,4 ◦ wi,5 ◦ · · · ◦ w∗

i,ℓi−1 ◦ wi,ℓi
(1)

where every wi,j s.t. 1 ≤ i ≤ n, 1 ≤ j ≤ ℓi is a word over Σ, else it is non-flat. Flatness of L
can be characterised by the absence of the so-called “butterfly loops”:

▶ Fact 1. A regular language L ⊆ Σ∗ is non-flat iff p{u, v}∗s ⊆ L for some p, s, u, v ∈ Σ∗

with u, v ̸∈ w∗ for any word w ∈ Σ∗.

Automata. A (nondeterministic finite) automaton (NFA) over Σ is a tuple A = (Q,∆, I, F)
where Q is a set of states, ∆ is a set of transitions of the form q

a→ r with q, r ∈ Q and
a ∈ Σ, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. A run of A
over a word w = a1 . . . an from state q0 to state qn is a sequence of transitions q0

a1→ q1,
q1

a2→ q2, . . ., qn−1
an→ qn from ∆. The empty sequence is a run with q0 = qn over ϵ. We

denote by q0
w
⇝A qn that A has such a run, from where we drop the subscript A if it is

clear from the context. The run is accepting if q0 ∈ I and qn ∈ F , and the language of A
is L(A) ≜ {w ∈ Σ∗ | q w

⇝ r, q ∈ I, r ∈ F}. Languages accepted by NFAs are called regular.
A is a deterministic finite automaton (DFA) if |I| = 1 and for every symbol a ∈ Σ and every
pair of transitions q1

a→ r1 and q2
a→ r2 in ∆ it holds that if q1 = q2 then r1 = r2.

The ¬Contains constraint. Let X be a set of (string) variables. A term is a word t ∈ (X∪Σ)∗

over variables and symbols. A ¬Contains constraint is a formula φ ≜ ¬Contains(N ,H) ∧ ΦL,
where N and H (for N eedle and Haystack; φ holds if we cannot find N within H) are
terms and ΦL ≜

∧
x∈X x ∈ L(x) associates every variable x with a regular language Lx.

An assignment is a function σ : X → Σ∗, i.e., it assigns strings to variables. We use
σ ◁ {x1 7→ w1, . . . , xn 7→ wn} to denote the assignment obtained from σ by substituting
the values of variables x1, . . . , xn to w1, . . . , wn respectively. We lift σ to terms so that for

MFCS 2025

54:4 Negated String Containment is Decidable

a ∈ Σ, we let σ(a) ≜ a, and for terms t, t′, we let σ(t ◦ t′) ≜ σ(t) ◦ σ(t′). We then say that
σ satisfies φ, written σ |= φ, if σ(x) ∈ Lx for every x ∈ X and σ(H) cannot be written
as u ◦ σ(N) ◦ v for any u, v ∈ Σ∗, i.e., σ(N) is not a factor of σ(H). We call a variable z
two-sided if it occurs in both N and H. Moreover, we use XFlat to denote the set of variables
x occurring in φ s.t. Lx is a flat language.

Given a term t, a variable x ∈ X, and a term ts, we use t[x/ts] to denote the term
obtained by substituting every occurrence of the variable x in t by the term ts. Moreover,
we use Vars(t) to denote the set of variables with at least one occurrence in the term t.

▶ Theorem 2 ([20, Theorem 7.5]). Satisfiability of the ¬Contains constraint is NP-hard.

2.1 Normalization
A variable z is flat (non-flat) if the language Lz associated with z is flat (non-flat), respectively,
and finite if its corresponding language is finite. Moreover, a variable is called decomposed
if its language can be represented by a DFA having a single initial, single final state, and
containing exactly one nontrivial maximal strongly connected component (SCC) and no other
SCCs. We say that φ is normalized if it contains an occurrence of at least one variable,
does not contain any finite variable, and all of its variables are decomposed. Any ¬Contains
constraint can be transformed into a disjunction of normalized constraints, as shown by the
following lemma.

▶ Lemma 3. Let φ ≜ ¬Contains(N ,H)∧ΦL. Then φ can be transformed to an equisatisfiable
disjunction

∨
1≤i≤n ¬Contains(Ni,Hi) ∧ ΦLi

of normalized constraints or the formula true.

Due to the previous lemma, in the rest of the paper we will focus on solving a single
normalized ¬Contains constraint.

In the paper, we will also make use of the following result showing decidability of
¬Contains with only flat variables.

▶ Lemma 4 ([20]). Satisfiability of ¬Contains(N ,H) ∧ ΦL where Lx is flat for any x ∈ X is
decidable in NExpTime.

Proof sketch. We can reduce φ into an equisatisfiable Presburger arithmetic formula ψ

based on Parikh images of runs of the NFAs for the variables in φ. Decidability of φ follows
from decidability of Presburger arithmetic. See [20] for details. ◀

The crucial fact that Lemma 4 depends on is that there is a one-to-one mapping between
runs in NFAs of flat languages and their Parikh images; this mapping fundamentally breaks
for non-flat languages so one cannot directly extend this technique to the non-flat case.

2.2 Lemmas in Our Toolbox
We introduce fundamental lemmas from the area of combinatorics on words that will be
used throughout the rest of the paper. The following lemma will be useful to guarantee the
existence of conflicts (i.e., non-matching positions) in sufficiently large overlaps of two words
αM and βN for some primitive words α, β ∈ Σ∗ and large constants M,N ∈ N. Intuitively,
we will control the choice of α and β, and, thus, guarantee that α and β cannot be powers of
the same word, essentially applying the contraposition of the following lemma.

▶ Lemma 5. Let α ∈ Σ∗ be a primitive word, and let p and s be two words such that α = ps.
Then the word sp is primitive.

V. Havlena, M. Hečko, L. Holík, and O. Lengál 54:5

Proof. Assume that βk = sp for some k ≥ 2. Then we have s = βlu and p = vβm for
u ∈ Pref(β), v ∈ Suf(β) such that β = uv and l +m+ 1 = k. Thus, we have

α = vβmβlu = v(uv)m(uv)lu = (vu)l+m+1 (2)

and so the word α is not primitive, a contradiction. ◀

▶ Lemma 6 ([32, Proposition 1.2.1 (Fine and Wilf)]). Let x and y be two words. If the words
xk and yl, for any k, l ∈ N share a common prefix of the length at least |x|+ |y|−gcd(|x|, |y|),
then x and y are powers of the same word.

Using Lemmas 5 and 6, we provide the following corollary that shows existence of conflicts
between arbitrary overlaps of repetitions of primitive words of a sufficient size.

▶ Corollary 7. Let u = αM and v = βN be two words where α, β ∈ Prim, with |α| ̸= |β| and
M,N ∈ N. Then any overlap between u and v of the size at least |α| + |β| − gcd(|α|, |β|)
contains a conflict.

A natural approach to showing that an assignment σ satisfies φ is to show that σ(H)
cannot be written as σ(H) = p◦σ(N)◦s for any choice of words p and s. Therefore, one would
have to consider all prefixes p, infixes u, and corresponding suffixes s with |u| = |σ(N)| and
show that σ(H) = pus implies u ≠ σ(N). Note that the choice of the prefix p ∈ Pref(σ(H))
uniquely determines u and s, and, therefore, we can only refer to different prefixes when
showing σ |= φ. The following lemma reduces the number of prefixes we have to consider if
we have information about primitive words that are factors of σ(N) and σ(H).

▶ Lemma 8 ([32, Proposition 12.1.3]). Let α ∈ Σ∗ be a primitive word, and let α2 = xαy for
some words x, y ∈ Σ∗. Then either x = ϵ or y = ϵ, but not both.

We will use the next lemma as a recipe for constructing words wz ∈ Lz for non-flat Lz

such that wz has as a factor a primitive word that is sufficiently long for our proofs.

▶ Lemma 9 ([35]). Let xK = yLzM such that x, y, and z are string variables and K,L

and M are integers such that K,L,M ≥ 2. Then any solution of the equation has the form
x = αk, y = αl, and z = αm for some word α and numbers k, l,m ∈ N.

We provide the following corollary to give insight into how we use Lemma 9 to construct
factors that are primitive words of a suitable length.

▶ Corollary 10. Given two words u and v such that for any word w it holds that u, v ̸∈ w∗,
we have that any word α = uLvM for L,M ≥ 2 is primitive.

Proof. By contradiction. Assume that α is not primitive, i.e., α = tK = uLvM for some t
and K,L,M ≥ 2. Applying Lemma 9, we see that u = wl and z = wm for some w, which
contradicts the assumptions of the corrolary. ◀

2.3 Easy Fragments
Before we establish our main result giving the decidability of the hardest fragment of
¬Contains, we first describe what we consider easy fragments and how to deal with them.
We assume a normalized ¬Contains(N ,H) ∧ ΦL constraint.

MFCS 2025

54:6 Negated String Containment is Decidable

1. The formula is solvable by length abstraction. This fragment contains formulae that can
be solved easily by making the N eedle longer than the Haystack. Suppose N = t1 . . . tm
and H = s1 . . . sn where every ti and sj is either a string variable x ∈ X or a symbol
a ∈ Σ. We can then create a Presburger arithmetic formula φℓ over length variables
{xℓ | x ∈ X} such that φℓ ≜

∑
1≤i≤m ℓi >

∑
1≤j≤n ℓj ∧ Ψ. In the formula, ℓi and ℓj

are either 1 (if ti, sj ∈ Σ) or the length variable xℓ (if ti, sj = x), and Ψ is a formula
constraining the possible values for the length variables (obtained, e.g., using the Parikh
images of the variables’ languages). If φℓ is satisfiable, so is the original ¬Contains.

2. All variables are flat. In this case, we can use Lemma 4.

3 Overview
We now move to our main result: deciding a hard instance of φ ≜ ¬Contains(N ,H) ∧ ΦL.
We can classify normalized ¬Contains constraints (cf. Section 2.1) that do not fall in the
fragments of Section 2.3 based on the occurrences of non-flat variables as follows:

1. constraints where a non-flat variable x occurs both in N and H and
2. constraints where all (and at least one) non-flat variables occur only in H.

Note that the above not included cases of (a) all variables being flat and (b) a non-flat
variable being only in N are covered in Section 2.3. In particular, if there is a variable x that
only occurs in N , then Lx is infinite due to our normalization. Therefore, such a constraint
can be solved by making N longer than H.

We distinguish the classes (1) and (2) above since for (1), the string substituted for some
occurrence of x in σ(H) may overlap with the string for an occurrence of x in σ(N). We
deal with the class (1) by substituting two-sided non-flat variables x with fresh symbols.
In Section 4, we show that if there is a model σ of the resulting ¬Contains, we can obtain
a model σ′ of the original constraint φ from σ by assigning σ′(x) to a long-enough word that
ensures a mismatch for every overlap of σ′(x) in σ′(H) and σ′(x) in σ′(N). By doing this, we
reduce (1) to either (2) or ¬Contains over flat variables (potentially with no variables at all).

For deciding the class (2), given in detail in Section 6, we construct an equisatisfiable
formula that uses flat underapproximations of languages associated with the remaining (as
some might have been removed at step (1)) non-flat variables present in H. Our result is
based on the observation that long words in a non-flat language may have a richer structure
compared to long words one can construct using flat languages. Therefore, it is unlikely that
a flat variable z should have a large conflict-free overlap with a non-flat variable x in an
assignment that assigns these two variables sufficiently long words. In particular, we prove
that the original language of x can be underapproximated by a flat language while preserving
equisatisfiability. After this step, the resulting constraint can be decided using Lemma 4.

4 Removing Two-Sided Non-Flat Variables
In this section, we will show how to transform a normalized constraint ¬Contains(N ,H)∧ΦL
with an occurrence of a two-sided non-flat variable x into a constraint without occurrences
of the variable x. The resulting constraint after removing all two-sided non-flat variables
can then be solved either by reduction to Presburger arithmetic (Lemma 4; if no non-flat
variables remain in the constraint) or by the procedure in Section 6 (if there are still non-flat
variables left in H). The main result of this section is the following theorem.

▶ Theorem 11. Let φ ≜ ¬Contains(N ,H)∧ΦL be a constraint over the alphabet Σ and let z ∈
Vars(N)∩Vars(H) be a non-flat variable. Then the formula φ# ≜ ¬Contains(N [z/#],H[z/#])∧
ΦL with # /∈ Σ ∪ X is equisatisfiable to φ.

V. Havlena, M. Hečko, L. Holík, and O. Lengál 54:7

The proof of the theorem is given below. It is based on the observation that assigning
long words to two-sided variables necessarily causes some occurrences of the same variable to
overlap. Since these variables are non-flat, we can construct long words with a rich internal
structure that will guarantee that any sufficiently long overlap necessarily contains a conflict.

Before we give the proof, let us formally introduce the concept of words that do not allow
conflict-free overlaps of two occurrences of the same word larger than a certain bound.

▶ Definition 12 (ℓ-aligned word). Let w be a word and ℓ ∈ N. We say that w is ℓ-aligned if
for all p ∈ Σ∗ such that 1 ≤ |p| ≤ |w| − ℓ, w is not a prefix of pw.

Intuitively, w is ℓ-aligned if it cannot overlap with itself on a prefix/suffix of the length
larger than or equal to ℓ (except |w|). For example, the word w = abaa is 2-aligned since for
no non-empty word p of the length at most |w| − 2 = 2 it holds that w is a prefix of pw. On
the other hand, w = abaa is not 1-aligned since for p = aba of the length 3, it holds that w
is a prefix of pw = abaabaa.

4.1 Proof of Theorem 11
If φ is satisfiable then so is φ#. To see this, take a model σ |= φ and replace the assignment
of z to #, producing σ′. Then, there will be conflicts of # and some non-# symbol when
checking whether σ′ is a model of φ#. Alternatively, it might be possible to align σ′(N) with
σ′(H) in a manner such that every # in σ′(N) matches some # in σ′(H). In such a case, if σ′

fails to be a model of φ# we reach a contradiction with σ being a model φ.
For the other direction, assume that φ# is satisfiable, which means there is a model σ′

of φ#. Next, we will show how to construct a word wz s.t. σ = σ′ ∪ {z 7→ wz} is a model of φ.
Focusing on variable z, we can write the two sides of the ¬Contains constraint as H =

H0zH,1H1 · · · Hn−1zH,nHn and N = N0zN ,1N1 · · · Nm−1zN ,mNm where Ni,Hj ∈ (X′ ∪ Σ)∗

for each i and j assuming X′ = X \ {z}. Moreover, we write the subscript zS,k to distinguish
k-th occurrence of z in S ∈ {H,N }. As Lz is non-flat, we have that p{u, v}∗s ⊆ Lz for some
words p, u, v, and s where u and v are not a power of the same word (Fact 1).

The core of our proof is based on the following observation. Since σ′ is a model of φ#, the
word σ′(N [z/#]) is not a factor of σ′(H[z/#]). Therefore, given any sufficiently long word
wz ∈ Lz, if the extension σ = σ′ ∪ {z → wz} fails to be a model, then there must be at least
one occurrence of the word σ(z) in σ(N) partially overlapping with an occurrence of the
word σ(z) in σ(H), as shown in the picture below. Thus, if we construct a word wz ∈ Lz

that cannot partially overlap with itself, we get σ that is a model of φ.

· · · σ(Hi) wz σ(Hi+1) · · ·

· · · σ(Nj) wz σ(Nj+1) · · ·

Let α = u2ukv2 and β = u2vlv2 be two words where k = lcm(|v|, |u|)/|u| and l =
lcm(|v|, |u|)/|v|. By invoking Corollary 10, we see that both α and β are primitive.

Note that we also have |α| = |β| (because |α| = 2|u| + k|u| + 2|v|, |β| = 2|u| + l|v| + 2|v|
and from the definition of l and k we have k|u| = l|v|). We now use these two primitive
words α and β to construct wz. Let γ ≜ αrβr ◦ αrβr ◦ α2rβ2r and let wz ∈ Lz be the
word wz ≜ pγs where r ≥ 2 is the smallest number satisfying r|α| > M + |p| + |s| with
M = max{|σ(Hi)|, |σ(Nj)| : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. We set σ = σ′ ∪ {z 7→ wz}. Let us now
give two lemmas establishing the properties of wz’s infix γ.

We constructed the infix γ of wz in a way so that it prevents conflict-free overlaps with
itself as shown by the following lemma.
▶ Lemma 13. The word γ is (r + 1)|α|-aligned.

MFCS 2025

54:8 Negated String Containment is Decidable

The full proof of Lemma 13 can be found in [25], but the core of the argument lies in
observing that in any overlap of γ with itself of size at least (r + 1)|α|, there is a factor α2

having an overlap with α of size |α|, or, similarly for β. Therefore, one can apply Lemma 8
and limit overlaps that must be considered.

The following lemma shows that long overlaps between two occurrences of γ are unavoid-
able when γ has a sufficient length. The ai in the lemma is used just to position the overlap
within σ(H) and σ(N).

▶ Lemma 14. For each 0 ≤ i ≤ |σ(H)|−|σ(N)|, every occurrence of γ in σ(H) has an
overlap with some occurrence of γ in ai ◦ σ(N) of size at least (r + 1)|α|, where a is any
symbol in Σ.

Proof. Let us assume an arbitrary occurrence of γ in σ(H). Since each Hi and Hi+1 are
separated by z (the same goes for Ni and Ni+1), it suffices to consider only the pessimistic
case, which is when an occurrence of γ in N matches the longest σ(Hi) with p and s on both
sides. The situation is schematically depicted below.

γ s σ(Hi) p γ

p γ s

o2o1

In the figure, o1 and o2 denote the overlaps on both sides. We show that the size of at
least one overlap o1 and o2 is greater than (r + 1)|α| by expressing the length |γ| using its
definition and the schematic above:

r(4|β| + 4|α|) = |o1| + |s| + |σ(Hi)| + |p| + |o2| *def. of γ+
⇒ 7r|α| + r|α| ≤ |o1| + r|α| + |o2| *since |α| = |β| and def. of r+ (3)
⇔ 7r|α| ≤ |o1| + |o2|

We have that |o1| + |o2| ≥ 7r|α|, and, thus, at least one of |o1| and |o2| is bigger than 3r|α|.
Since r ≥ 2, we have 3r|α| ≥ (r + 1)|α| and hence γ has an overlap of the required size. ◀

It remains to show that σ is a model of φ. For the sake of contradiction, assume that σ
is not a model, meaning that σ(N) is a factor of σ(H). From Lemmas 13 and 14 we have
that each occurrence of γ in σ(N) is perfectly aligned with some γ in σ(H), which also
means that wz’s are perfectly aligned. Furthermore, we have that wz’s in σ(N) are aligned
with consecutive wz’s in σ(H), i.e., any σ(zN ,i) is aligned with some σ(zH,i+k) for some
0 ≤ k ≤ n − m. If this were not the case and we had σ(zN ,1) overlapping with σ(zH,1+k)
while there were some σ(zN ,i) matching with σ(zH,i+k+l) for l ≥ 1, there would have to be
some σ(Nj) with 1 ≤ j < i with |σ(Nj)| > |σ(z)|, which is a contradiction with wz being
longer than any |σ(Nj)| by construction. Hence, for σ′′ = σ ◁ {z 7→ #}, σ′′(N) is also a factor
of σ′′(H), which is a contradiction to σ′ being a model of φ#. Therefore, Theorem 11 holds.

5 Γ-Expansion and Prefix/Suffix Trees
At this point, we are left with a normalized ¬Contains(N ,H) ∧ ΦL constraint where all
variables in N are flat. If all variables in H are also flat, we can use Lemma 4 and obtain
the result. In the rest of the paper, we will deal with the case when H contains at least one
non-flat variable. Before we give the proof in Section 6, in this section, we introduce two
concepts that will be used later: Γ-expansion on non-flat variables and prefix/suffix trees.

V. Havlena, M. Hečko, L. Holík, and O. Lengál 54:9

5.1 Γ-Expansions on Non-Flat Variables
Intuitively, non-flat languages have words with a rich internal structure compared to flat
languages. To illustrate, let x be a flat variable with the language Lx = α∗ for some word α
and let z be a non-flat variable with the language Lz. Furthermore, let wx ∈ Lx and wz ∈ Lz

be two sufficiently long words. We inspect the case when wx and wz share some long common
factor u. Since wx ∈ α∗, we have u = sαkp for some s ∈ Suf(α), p ∈ Pref(α), and k ∈ N. As
z is non-flat, the run of Az corresponding to the word wz passes through states at which one
can make a choice of which transition to take next. Since u is long, we have to make a lot of
“right” choices during the run of Az in order for achieve the common factor u, highlighting
the difference between the complexity of Lx and Lz, and suggesting that there is a way to
pick wz to prevent long overlaps with flat variables occurring in N .

Guided by this intuition, we introduce a tool called Γz-expansion of a non-flat variable z.
Given a prefix p ∈ Pref(Lz) and a suffix s ∈ Suf(Lz), the Γz-expansion of (p, s) is the word
Γz(p, s) = pws ∈ Lz for a particular w such that only a prefix or a suffix of a bounded length
can have long overlaps with (sufficiently long) words that belong to a flat language. This
tool will play an important role in our proofs. Loosely speaking, if we start with a model σ
and we try to find an alternative model σ′ = σ ◁ {z 7→ Γz(p, s)}, then the possible reasons
why σ′ fails to be a model are narrowed down to the choice of p and s.

In order to define the Γz-expansion, we first need some auxiliary definitions. First, as
a resulting of our normalization, the map Base: XFlat → 2Σ∗ maps any flat variable x to a
singleton containing the primitive word α that forms the basis of Lx, i.e., Base(x) ≜ {α} such
that Lx = (αk)∗ for some k ∈ N. We lift the definition of Base to a set X of flat variables as
Base(X) ≜

⋃
x∈X Base(x), and to a string s ∈ (Σ∪XFlat)∗ as Base(s) ≜ Base(Vars(s)∩XFlat).

Second, given a variable z ∈ X with Az = (Q,Σ,∆, I, F), we define the function
conz : Q × Q → Σ∗ to give the lexicographically smallest word conz(q, s) ≜ w such that
q

w
⇝A s. Having auxiliary definitions in place, we are ready to define Γ-expansion in the

context of the formula φ = ¬Contains(N ,H) ∧ ΦL with N ∈ (XFlat ∪ Σ)∗.

▶ Definition 15 (Γ-expansion). Let z ∈ Vars(H) be a decomposed non-flat variable and
Az = (Q,Σ,∆, I, F) be a DFA s.t. L(Az) = Lz. Moreover, let qu|v ∈ Q be a state such that
qu|v

u
⇝ qu|v and qu|v

v
⇝ qu|v with u, v ̸∈ w∗ for any word w. Furthermore, let p ∈ Pref(Lz) be

some prefix and qp be a state such that q0
p
⇝ qp for some q0 ∈ I. Similarly, let s ∈ Suf(Lz)

be a suffix and qs be a state such that qs
s
⇝ qf for some qf ∈ F .

Let γz ≜ u2+kv2 for a minimal k ∈ N such that γz > |α| for any α ∈ Base(N). Given
K ∈ N, we define the ΓK

z -expansion of (p, s) to be the word ΓK
z (p, s) ≜ p ◦ con(qp, qu|v) ◦

γK
z ◦ con(qu|v, qs) ◦ s.

Intuitively, Γz-expansion takes a prefix p and finds the shortest word con(qp, qu|v) that
takes the automaton to the state qu|v in which we have the freedom to read the words u and
v in any suitable sequence. We loop through qu|v in a specific manner so that the resulting
factor γz is primitive thanks to Corollary 10. The situation with the suffix is symmetric.
Note that in the following section, we use prefix/suffix variants of the Γ-expansion defined as
ΓK

Pref(z) ≜ p ◦ con(qp, qu|v) ◦ γK
z and ΓK

Suf(z) ≜ γ
K
z ◦ con(qu|v, qs) ◦ s.

The following lemma shows that Γz-expansion can be seen almost as introducing a fresh
symbol # for the infix w connecting p and s into a word pws ∈ Lz. Intuitively, if we have
an assignment σ that assigns sufficiently long words to all flat variables, then we can find
K ∈ N such that any large overlap between σ(N) and σ(z) = ΓK

z (p, s) contains a conflict.
We use MLit to be the length of the longest literal in φ, MQ to be the number of states of
the largest DFA specifying the language of some variable x ∈ X, and Mα ≜ max{|α| : α ∈

MFCS 2025

54:10 Negated String Containment is Decidable

Base(N) ∪ {γz}}.

▶ Lemma 16. Let z ∈ X be a decomposed non-flat variable, p ∈ Pref(Lz), and s ∈ Suf(Lz).
Further, let K ∈ N be such that K|γz| ≥ 4Mα + 2MLit and let σ be an assignment with
(i) |σ(x)| ≥ 2Mα for any flat variable x and (ii) σ(z) = ΓK

z (p, s). Every overlap between
σ(z) and σ(N) of the size at least max(|p|, |s|) +MQ + 2MLit + 2Mα contains a conflict.

Proof sketch. It suffices to observe that if the overlap of size at least N necessarily contains
an overlap between γK

z and σ(x) = αl for some flat variable x with α ∈ Base(x). The
existence of a conflict follows from Corollary 7. The full proof can be found in [25]. ◀

Next, we show that Γz-expansion can be used to facilitate modularity in our proofs,
allowing us to search for a suitable prefix p and a suitable suffix s separately. Searching for p
and s separately requires subtle modifications to φ, resulting in us searching for p and s in
the context of the modified formulae φPref and φSuf , respectively. If we find models of φPref
and φSuf of a particular form, we compose them into a model of φ.

Let z ∈ Vars(H) be a non-flat variable, and let zPref and zSuf be two fresh variables with
their languages restricted to zPref ∈ Pref(Lz) and zSuf ∈ Suf(Lz). Let φPref and φSuf be
formulae defined as φPref ≜ φ[z/zPref ◦#] and φSuf ≜ φ[z/#◦zSuf] where # is a fresh alphabet
symbol. Further, let σPref |= φPref and σSuf |= φSuf be two models such that:

1. σPref and σSuf agree on the values of variables different than zPref and zSuf ,
2. |σPref(x)| > 2Mα ∧ |σSuf(x)| > 2Mα for any flat variable x ∈ XFlat ,
3. σPref(zPref) = pγK

z and σSuf(zSuf) = γL
z s such that n|γz| ≥ 4Mα + 2MLit for n ∈ {K,L}.

▶ Lemma 17. The assignment σPref ◁ {z 7→ pγK
z s} is a model of φ where K = min(K,L).

Proof sketch. The idea behind the proof is that if σ ̸|= φ, then σ(z) would need to have a
large conflict-free overlap with σ(x) for some flat variable x ∈ X. Applying Corollary 7, we
reach a contradiction. The full proof of Lemma 17 can be found in [25]. ◀

5.2 Prefix (Suffix) Enumeration through Prefix (Suffix) Trees
Having defined ΓK-expansion that acts similarly to inserting a fresh symbol # between
a chosen p ∈ Pref(Lz) and a suffix s ∈ Suf(Lz) of a non-flat variable z ∈ Vars(H), we
can start enumerating prefixes p ∈ Pref(Lz) (or suffixes) up to a certain bound, while
searching for a model. We introduce the concept of prefix (suffix) trees that play a major
role in our proofs. Below, we give only the definition of a prefix tree; a suffix tree is defined
symmetrically.

▶ Definition 18 (Choice state). Let A = (Q,∆, I, F) be a DFA. We say that a state q ∈ Q is
a choice state if

∣∣{(q, a, r) ∈ ∆ : a ∈ Σ, r ∈ Q}
∣∣ > 1. We write C(A) to denote the set of all

choice states of A.

▶ Definition 19 (Prefix tree). Let z ∈ X be a variable with its language Lz given by a DFA
Az = (Qz,∆z, {q0}, Fz). We define z’s prefix tree Tz = (Vz, Ez, rz, stz,Wz) as an (infinite
finitely-branching) tree with vertices Vz rooted in rz ∈ Vz such that

stz : Vz → Qz is a function that labels non-root vertices of Tz with Az’s choice states, i.e.,
stz(v) ∈ C(Az) for any v ̸= rz and st(rz) = q0,
Ez ⊆ Vz × Σ+ × Vz is a set of labelled edges such that (v, a1 . . . an, v

′) ∈ Ez iff there is
a run stz(v) a1→ q1

a2→ · · · an→ stz(v′) in Az where for all 0 < i < n it holds that qi /∈ C(A).

V. Havlena, M. Hečko, L. Holík, and O. Lengál 54:11

Wz : Vz × Vz ⇀ Σ∗ is a function that maps any two vertices connected by an edge to
the label on the edge, i.e., Wz(v, v′) = w iff there exists an edge (v, w, v′) ∈ Ez and is
undefined otherwise.

Intuitively, vertices of the tree are labeled by Az’s choice states C(Az), i.e., states in
which we can choose between multiple outgoing transitions along different alphabet symbols.
Vertices s and s′ are connected by an edge in Tz if st(s′) is reachable from st(s) without
passing through any choice state.

A path π in Tz is a sequence of vertices π = s0 . . . sn where (si, wi, si+1) ∈ Ez for any 0 ≤
i < n. We lift the definition of W to paths as W(s0 . . . sn) ≜W

(
(s0, s1)

)
◦· · ·◦W

(
(sn−1, sn)

)
.

▶ Definition 20 (Dead-end vertex of a prefix tree). Let φ = ¬Contains(N ,H) ∧ ΦL and
Tz = (V,E, v0, st,W) be the prefix tree for z ∈ X, and let σ : (X \ {z}) → Σ∗ be a partial
assignment. A vertex vn ∈ V is called a dead end in Tz w.r.t. σ if σ′ ̸|= φ[z/z#] where
σ′ ≜ σ ◁ {z 7→ W(v0 . . . vn)} for v0 . . . vn being the (single) path between v0 and vn in Tz.

Intuitively, dead-end vertices (and all vertices that are below them in the prefix tree) are
not interesting for obtaining a ¬Contains model. Consider, e.g., φ ≜ ¬Contains(abx, xz) ∧
ΦL with Lx = (ab)+ and Lz = (a{b, c}c)∗. We have φ[z/z#] = ¬Contains(N ′,H′) =
¬Contains(abx, xz#) and, thus, the vertex v ∈ Vz corresponding to the prefix abca is a dead
end in Tz w.r.t. σ = {x 7→ ab} since σ′(N ′) = abab is a factor of σ′(H′) = ababca#.

▶ Definition 21 (H-reaching path). Let π = v0 . . . vn be a path in a prefix tree Tz =
(V,E, v0, st,W) and H ∈ N. We say that π is H-reaching if |W(v0 . . . vn)| ≥ H ≥
|W(v0 . . . vn−1)|.

In our proof, we explore all prefixes of words in a language up to a certain bound H. As
we have a prefix tree with edges labelled with words of (possibly) different lengths, stating
that we have explored all prefixes of the length precisely H is problematic. Hence, the concept
of H-reaching paths is a relaxation allowing paths (prefixes) to slightly vary in length.

6 Underapproximating Non-Flat Variables
In this section, we give the main lemma allowing to underapproximate the language of
non-flat variables with a flat language. Throughout this section we use three constants
λFlat, λQ, λκ ∈ N with the following semantics:

The constant λQ is the length of prefixes (suffixes) of non-flat variables that we will
enumerate in our proofs, searching a model that is shorter w.r.t. some non-flat variable.
The constant λFlat is the minimal size of words assigned to flat variables occurring in N .
λκ is used as the value of the parameter K in every application of ΓK

Pref(z) or ΓK
Suf(z).

First, let us define parameters of ¬Contains(N ,H) that we use to define the above bounds.
Let MLit be the length of the longest string literal in N and H, let MQ be the largest number
of states of a DFA associated with some variable. Furthermore, let Mα be the length of the
longest word in the set Wα(N) ∪Wγ where Wγ is the set of the primitive words γz used to
define the Γz-expansion for every non-flat variable z ∈ Vars(H).

Since λFlat and λκ depend on the value of λQ, we start by fixing λQ ≜ 2MαMQ +MLit.
Intuitively, for any non-flat variable z ∈ X, we set up λQ in a way so that if we consider all
prefixes in Tz up to the length MαMQ, then Tz will contain paths through any state q ∈ Qz

since Az is a single SCC. After extending these paths up to the length λQ, we can guarantee
that Tz will contain all words read from any state q of the length at least Mα. Considering all

MFCS 2025

54:12 Negated String Containment is Decidable

possible words of the length |β| for some β ∈ Base(N) readable from a state will be crucial
later, as we will show that there can be only a few such words if we fail to find an alternative
model σ′ ≜ σ ◁ {z 7→ wz} s.t. |σ′(z)| < |σ(z)|, assuming the existence of a model σ.

The remaining bounds λFlat and λκ are defined as λFlat ≜ λQ + 4Mα + MQ and λκ ≜
λFlat + 2Mα + 2MLit. Ignoring some technical details and due to reasons that will be
revealed shortly, we need λFlat to be slightly longer than λQ, so that when we later construct
σ′ ≜ σ ◁ {z 7→ p} for some particular prefix |p| ≤ λQ + MQ, we can establish some of the
string that precedes an occurrence of z in σ|X\{z}(H) in the case σ′ fails to be a model.
Finally, λκ is set up so that together with λFlat they allow Lemma 17 to be applied, where
λQ and λFlat play the role of K0 and N0, respectively.

We remark that the exact values of λQ, λFlat, and λκ are not important when reading the
proof for the first time. It is sufficient to note that λQ < λFlat < λκ, and that the difference
in sizes between these bounds is sufficiently large.

6.1 Overcoming the Infinite by Equivalence with a Finite Index
Our procedure to decide φ = ¬Contains(N ,H) containing non-flat variables in H originates
in enumeration of partial assignments η : Vars(N) → Σ∗, since it is easy to find suitable
values for non-flat variables when N is a literal due to us fixing values of all variables in N .
The problem is that there is an infinite number of such assignments. Our key observation
allowing us prove that we can underapproximate non-flat languages using flat ones is that
the precise values of flat variables occurring in N does not matter as long as these variables
have assigned sufficiently long words. In general, however, a model σ |= φ might assign long
words only to a subset of flat variables. Therefore, in our decision procedure, we first guess
the set X of flat variables that are assigned words shorter than λFlat. Since there are finitely
many such words, we have a finite number of possible choices τ : X → Σ∗ of values these
variables can attain. We enumerate all possible valuations τ , and for every such a valuation
τ we produce a new constraint φτ in which we replace every short variable x ∈ X by the
word τ(x). The regular constraints restricting the remaining flat variables are modified to
permit only words longer than λFlat, allowing us to assume in our proofs that flat variables
in φτ have assigned sufficiently long words.

Let us formalize our observation that the precise length of words assigned to flat variables
does not matter as long as they are sufficiently long. Let η : Vars(N) → Σ∗ be a partial
assignment. We define the set X<λ as X<λ(η) ≜

{
x ∈ Vars(N) : |η(x)| < λ

}
. Given

a constant λ ∈ N, we say that two partial assignments η and ϑ are λ-equivalent denoted by
η ∼λ ϑ iff η ∼λ ϑ

def⇔ η|X<λ(η) = ϑ|X<λ(ϑ).
Clearly, ∼λ has a finite index and if there exists a model σ of φ, then its restriction

σ|Vars(N) will fall into one of the equivalence classes induced by ∼λ. Setting λ = λFlat, we
inspect all equivalence classes, checking whether any of them contains a model. Given a
representative η of an equivalence class, we replace all variables x ∈ Vars(N) with η(x) if
|η(x)| < λFlat, producing a new constraint φη. Furthermore, we need to include the fact
that the remaining variables in N have assigned long words. Therefore, the languages of
all variables y ∈ Vars(N) such that |η(y)| ≥ λFlat will have their their languages restricted
to a new language L′

y = Ly ∩ {|w| ≥ λFlat | w ∈ Σ∗} in φη. The resulting constraint φη is
clearly equisatisfiable to φ with models restricted to be ∼λFlat-equivalent to η.

Some of these instances can be decided without any additional work. In particular, if
we have an assignment η such that X<λFlat(η) = Vars(N), i.e., all variables occurring in N
are short, we fix values of all variables in N , and, thus, the N eedle of φη is a word. The
remaining instances with X<λFlat(τ) ⊂ Vars(N) contain at least one occurrence of a (long)
variable in τ(N), and, thus, their decidability requires investigation.

V. Havlena, M. Hečko, L. Holík, and O. Lengál 54:13

6.2 Inspecting the Structure of Non-flat Variables in the Presence of
Long Flat Variables

Throughout this section, we fix φ be a ¬Contains instance resulting from the previous section,
i.e., φ ≜ φη = ¬Contains(N ,H ∧ ΦL,η for some equivalence class representative η such that
Vars(N) ̸= ∅. We start by stating the key theorem for our decidability result.

▶ Theorem 22. Let z be a (decomposed) non-flat variable present in H. There is a flat
language LFlat

z ⊂ Lz s.t. if there exists a model σ |= φ, then there exists a model σ′ |= φ[z/z#]
s.t. σ′ ≜ σ ◁ {z 7→ wz} for some word wz ∈ LFlat

z .

Before presenting quite technical lemmas that allowed us to obtain the result, let us
derive some intuition on why the theorem holds. Assume that we have a model σ of φ
and we we pick some long prefix p and a long suffix s for the variable z, and we glue them
together using Γz-expansion to produce a word w ≜ Γλκ

z (p, s) and an altered assignment
σ′ ≜ {z 7→ w}. The core of the theorem lies in analyzing the situation when σ′ fails to be a
model. By symmetry, we focus on the case when our choice of the prefix p is problematic.
We have two possibilities.

There is a short prefix of p due to which σ′ fails to be a model. We address this by
systematically exploring the prefix tree of z up to a certain bound, marking the vertices
that correspond to such prefixes as dead ends.
Our choice of p does not cause σ′ to immediately fail to be a model, however, by applying
Γz-expansion we introduce an infix due to which σ′ ̸|= φ. Since we assume that φ results
from a previous section, we know that all flat variables have assigned a long word, i.e.,
σ′(N) contains long factors of the form αk for some α which forms the basis of a flat
variable x ∈ Vars(N) and k ∈ N. Γz-expansion glues together a prefix and a suffix using
a word γK

z where |γz| ̸= |α| for any base α. Therefore, we know that only a limited part
of the infix introduced by Γz-expansion is problematic, otherwise we would have a long
overlap between γK

z and some factor αk of σ′(N). Thus, p contains a long factor αk for
some k ≥ 1 and a primitive α word α that forms the base of a flat variable present in N .
We carefully analyze the effect of such a factor on the structure of Az.

We now provide an overview of lemmas that lead to Theorem 22. Since these lemmas
are quite technical, we accompany them with intuition and only sketch their proofs. Full
proofs can be found in [25]. To simplify the presentation, we focus primarily on attempting
to find a suitable prefix of a non-flat variable, and hence, our results are formulated in the
context of a modified formula that contains a fresh alphabet symbol #. Since the situation
is symmetric for suffixes, we can use the properties of Γz-expansion (Lemma 17) and glue
together a suitable prefix and a suitable suffix to produce an altered model.

We start with a technical lemma used frequently in our proofs. The lemma shows that if
we know that α is a factor of H, and we know that a part of H in the proximity of the factor
α is incompatible with α, then we can show that a large number of overlaps between σ(N)
and σ(H) must contain a conflict if N contains a large factor of the form αN .

▶ Lemma 23. Let α and γ be two primitive words, such that |α| ≠ |γ|. Let H = tαuγλκ

and N = vαNw where t, u, v and w are (possibly empty) words such that N |α| > λFlat and
u < λFlat − 2 max(|α|, |γ|). If 1. the prefix p of H of the size |p| = |t| + |α| + |w| does not
contain the word N , 2. α ̸∈ Pref(v0) and v0 ̸∈ Pref(α), then N is not a factor of H.

Proof sketch. Since N contains a long factor αN and H contains at least one α, we can
apply Lemma 8 to rule out a lot of overlaps that might be conflict-free. All of the remaining
overlaps contain a conflict thanks to Condition 2. The full proof is available in [25]. ◀

MFCS 2025

54:14 Negated String Containment is Decidable

▶ Lemma 24. Let x ∈ X be a flat variable with Base(x) = {α}, and let z ∈ Vars(H) be a
(decomposed) non-flat variable. Let φ φ ≜ ¬Contains(N ,H) = ¬Contains(N ′xαMpW,H) be
formula with p ≠ α being a prefix of α and W = a0 . . . an being a non-empty word such that
the word pa0 is not a prefix of α.

If there exists a model σ with σ(z) being of the form σ(z) = sαkpWV for some word V ,
k ≥ 1, and a suffix s of α, then σ ◁

{
z 7→ Γλκ

Pref(z)(sα
kpW)

}
is a model of φ[z/z#].

Intuitively, the rightmost variable in N is the flat variable x with Base(x) = {α}. To
the right of x, there is a literal with the prefix αMp that resembles the flat language Lx.
Moreover, σ(z) also starts with a prefix sαkp resembling Lx, followed by W . Thus, the prefix
sαkpW of the word σ(z) mimics the suffix of the right-hand side σ(N). Hence, if we look
solely on the prefix of σ(z) and the suffix of σ(N), there are no obvious conflicts.

. . . sα . . . α pα W . . .

. . . α . . . α pα W

σ(H)

σ(N)

σ(z)

However, σ |= φ, and, therefore, there must be a conflict outside of z when considering the
above alignment. The rest of the proof can be found in [25].

Next, we derive a lemma formalizing that we can restrict languages of non-flat variables
to flat ones, producing an equisatisfiable instance. Stating a symmetric lemma for suffixes,
and applying Lemma 17 would give us the entire proof of Theorem 22.

▶ Lemma 25. Let x be the rightmost flat variable with Base(x) = {α}, and let z be
a non-flat variable occurring in H. Let φ be a formula φ ≜ ¬Contains(N ,H) ∧ ΦL =
¬Contains(N ′xαMpW,H) ∧ ΦL where N ′ ∈ (X ∪ Σ)∗, M ≥ 0, p ̸= α is a prefix of α, and
W = a0 . . . an is a non-empty word such that pa0 is not a prefix of α. There exists a flat
language LFlat

z ⊂ Lz s.t. if there is a model σ |= φ, then σ ◁ {z 7→ wz} |= φ[z/z#] for some
word wz ∈ LFlat

z .

The intuition behind Lemma 25 is the same as the intuition behind Theorem 22. We
note that the lemma requires the word W to be non-empty. The case for when W = ε has
a similar, but simpler proof.
Proof sketch. We assume the existence of a model σ |= φ, and we systematically explore the
prefix tree Tz of the variable z in a breadth-first fashion up to the bound λQ, searching for the
word wz. When inspecting any prefix u, we check whether σ ◁ {z 7→ u} is a model of φ[z/z#],
and if not we mark the last vertex corresponding to u as a dead end and we do not explore
it further. At the end of the exploration, we inspect the set P≥λQ of all λQ-reaching paths in
Tz. If there are no such paths, we know that |σ(z)| < λQ, and hence, wz can be found in the
finite (flat) language {w ∈ Lz | |w| < λQ}. Alternatively, we check for every path π in P≥λQ

whether σ ◁ {z 7→ Γλκ

Pref(z)(uπ)} |= φ[z/z#] where uπ is the prefix corresponding to π. Since,
the number of possible λQ-reaching paths is finite, we have that wz can be found in the flat
language {Γλκ

Pref(z)(pπ) | π ∈ P≥λQ} in the case that ΓPref(z)-expansion of some uπ leads to
a model of φ[z/z#].

Next, it might be that none of the paths in P≥λQ can be ΓPref(z)-expanded into a model.
Let x be the rightmost variable in N with Base(x) = {α}. Recall that none of the paths in
P≥λQ contain a dead-end, and that all variables in N are flat, and, thus, they have assigned
long words. Combined with the properties of ΓPref(z)-expansion, we know the reason why
σ′ ≜ σ◁{z 7→ Γλκ

Pref(z)(pπ)} fails to be a model, i.e., we almost accurately know the position of

V. Havlena, M. Hečko, L. Holík, and O. Lengál 54:15

Algorithm 1 Decision Procedure for ¬Contains

Input: φ ≜ ¬Contains(N , H) ∧ ΦL

Output: Satisfiability of φ

1 Normalize φ into
∨

i
φi and Guess φi ; ▷ Section 2.1

2 if φi is easy then return solve(φi); ▷ Section 2.3
3 Remove all two-sided x ∈ X \ XFlat from φi ; ▷ Theorem 11
4 if φi is easy then return solve(φi); ▷ Section 5
5 Guess P ⊆ XFlat ; ▷ vars. with assignments longer than λFlat

6 Guess assignment σ s.t. ∀x ∈ XFlat \ P : |σ(x)| < λFlat;
7 Let φ′ := σ(φi) = ¬Contains(N ′, H′);
8 foreach x ∈ (X \ XFlat) ∩ Vars(H′) do
9 Constrain prefix/suffix trees Tx/Sx up to bound λQ;

10 Constrain prefix language LPref
x ; ▷ Lemma 25

11 Constrain suffix language LSuf
x ; ▷ symmetric to Lemma 25

12 Construct flat L′
x := glue(LPref

x , LSuf
x);

13 end
14 return solve(φ′ ∧ {x 7→ L′

x | x ∈ X \ XFlat}) ; ▷ Lemma 4

σ′(N) in σ′(H). We show that all paths in P≥λQ share the same prefix of the form sαMp for
some large k ∈ N and s ∈ Suf(α) and p ∈ Pref(α). Since z is non-flat, and λQ is larger than
the number of states of Az, we have opportunities to diverge from the shared prefix sαMp in
Tz. We show that diverging must immediately lead to a dead-end vertex, and in such a case
σ(z) has a prefix sαMpW . Hence, we apply Lemma 23 and obtain that σ ◁ {z 7→ wz,M } is a
model of φ[z/z#] where wz,M = Γλκ

Pref(z)(sα
MpW). Note that wz,M depends on an unknown

integer M , however, the language containing all wz,M s for every possible choice of k is flat.
Alternatively, not-diverging from the path implies that σ(z) ∈ sα∗p′ for some p′ ∈ Pref(α),
which is again a flat language. ◀

A careful analysis of the proof of Lemma 25 reveals that the lemma, and, therefore,
Theorem 22, is not effective in a sense that one cannot directly construct LFlat

z . However,
we can obtain a decision procedure at the cost of a producing larger flat language. We
construct Tz and all paths up to the bound λQ without having σ available, losing the ability
to mark dead-end vertices. In the resulting flat language LFlat

z we include all words shorter
than λQ, and ΓPref(z)-expansions of all λQ-reaching paths. The remaining parts of LFlat

z

that correspond to the situation when no λQ-reaching paths can be ΓPref(z)-expanded into
a model can be computed from Az without requiring access to the original model σ. For
details, we refer the reader to the full proof of Lemma 25 in [25].

7 Decision Procedure
Finally, we summarize the approach described in previous sections into a decision procedure
for ¬Contains. The (nondeterministic) algorithm is shown in Algorithm 1. In the algorithm,
for a negated containment φ and a (partial) assignment σ, we use σ(φ) to denote the
¬Contains predicate obtained from φ replacing variables whose assignment is defined with
the corresponding assignment.

The set LPref
x (LSuf

x) contains prefixes (suffixes) of words from Lz that might be used to
find an alternative model. The glue(LPref

x ,LSuf
x) procedure glues together prefixes and suffixes,

resulting in a language consisting of entire words (not just prefixes or suffixes) from Lz. The
procedure partitions the language LPref

x into LPref
x = Pw ∪Pinc such that Pinc consists of words

resulting from an application of ΓPref(z)-expansion. Intuitively, the words in Pw are words

MFCS 2025

54:16 Negated String Containment is Decidable

from Lx whereas Pinc are only prefixes that need to be completed into full words from Lx by
concatenating suitable suffixes. We decompose LSuf

x in the same way into LSuf
x = Sw ∪ Sinc.

The procedure then returns L′
x = Pw ∪ Sw ∪ {pγλκs | (pγλκ , γλκs) ∈ Pinc × Sinc}.

▶ Theorem 26 (Soundness). If Algorithm 1 terminates with an assignment σ, then σ |= φ.

Proof. Follows from the fact that L′
x ⊆ Lx for every non-flat variable x found in H′. ◀

▶ Theorem 27 (Completeness). If φ is satisfiable, then Algorithm 1 terminates with an as-
signment σ such that σ |= φ. Otherwise Algorithm 1 terminates with the answer UNSAT.

Proof. Correctness for two-sided non-flat variables follows from Theorem 11. For remaining
non-flat variables, correctness follows from Lemma 25. Finally, correctness of the glue
procedure follows from Lemma 17. ◀

▶ Theorem 28. A constraint ¬Contains(N ,H) ∧ ΦL is decidable in ExpSpace.

Proof sketch. Decidability follows from the analysis of the decision procedure in Algorithm 1
given above. As for ExpSpace membership, first notice that languages of non-flat variables
occurring only in H are replaced with flat languages of polynomial size due to the bounds
λQ and λκ. Algorithm 1 then uses Lemma 4, bringing the complexity of the procedure to
NExpTime. However, obtaining a full model that includes all two-sided non-flat variables
brings the procedure to ExpSpace as the length of the word to assigned to a two-sided
non-flat variable doubles with each such a variable (cf. Theorem 11). ◀

7.1 Chain-Free Word Equations with ¬Contains
After establishing the decidability of a single ¬Contains predicate, we immediately obtain
decidability of string fragments that permit the so-called monadic decomposition [47, 17],
i.e., expressing the set of solutions as a finite disjunction of regular membership constraints∧

x∈X x ∈ Lx. These include fragments such as the straight-line fragment [30] or the more
expressive chain-free fragment of word equations [4] (note that [4] considers also other
predicates). We can therefore easily establish the following theorem.

▶ Theorem 29. Formula W ∧ ¬Contains(N ,H) ∧ ΦL where W is a conjunction of chain-free
word equations is decidable.

8 Future Work
This paper shows that chain-free word equations with regular constraints and a single instance
of the ¬Contains predicate are decidable. There are several possible future work directions.
First, we wish to investigate the fragment where the number of ¬Contains constraints is not
limited to a single one. Another direction is examining combinations of ¬Contains with other
predicates, such as length constraints or disequalities. The technique for combining these
from [20] based on the reduction of the constraints to reasoning over Parikh images of finite
automata is not directly applicable here. Also, the resulting complexity of our procedure is
ExpSpace, however, we have hints that the problem might in fact be solvable in NP.

Acknowledgements
We thank the anonymous reviewers for careful reading of the paper and their suggestions that
greatly improved its quality. This work was supported by the Czech Ministry of Education,
Youth and Sports ERC.CZ project LL1908, the Czech Science Foundation project 25-18318S,
and the FIT BUT internal project FIT-S-23-8151. The work of Michal Hečko, a Brno Ph.D.
Talent Scholarship Holder, is funded by the Brno City Municipality.

V. Havlena, M. Hečko, L. Holík, and O. Lengál 54:17

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš Holík,

Ahmed Rezine, and Philipp Rümmer. Flatten and conquer: A framework for efficient analysis
of string constraints. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, pages 602–617. ACM, 2017. doi:10.1145/3062341.
3062384.

2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš Holík, Ahmed
Rezine, and Philipp Rümmer. Trau: SMT solver for string constraints. In Nikolaj S. Bjørner
and Arie Gurfinkel, editors, 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, pages 1–5. IEEE, 2018. doi:
10.23919/FMCAD.2018.8602997.

3 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukáš Holík,
Denghang Hu, Wei-Lun Tsai, Zhillin Wu, and Di-De Yen. Solving not-substring constraint
with flat abstraction. In Programming Languages and Systems, pages 305–320, Cham, 2021.
Springer International Publishing.

4 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bui Phi Diep, Lukáš Holík, and Petr Janků.
Chain-free string constraints. In Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza, editors,
Automated Technology for Verification and Analysis - 17th International Symposium, ATVA
2019, Taipei, Taiwan, October 28-31, 2019, Proceedings, volume 11781 of Lecture Notes in
Computer Science, pages 277–293. Springer, 2019. doi:10.1007/978-3-030-31784-3_16.

5 C. Aiswarya, Soumodev Mal, and Prakash Saivasan. On the satisfiability of context-free
string constraints with subword-ordering. In Proceedings of the 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’22, New York, NY, USA, 2022. Association
for Computing Machinery. doi:10.1145/3531130.3533329.

6 Rajeev Alur and Pavol Černý. Streaming transducers for algorithmic verification of single-
pass list-processing programs. SIGPLAN Not., 46(1):599–610, January 2011. doi:10.1145/
1925844.1926454.

7 Clark W. Barrett, Cesare Tinelli, Morgan Deters, Tianyi Liang, Andrew Reynolds, and
Nestan Tsiskaridze. Efficient solving of string constraints for security analysis. In William L.
Scherlis and David Brumley, editors, Proceedings of the Symposium and Bootcamp on the
Science of Security, Pittsburgh, PA, USA, April 19-21, 2016, pages 4–6. ACM, 2016. doi:
10.1145/2898375.2898393.

8 Murphy Berzish, Joel D. Day, Vijay Ganesh, Mitja Kulczynski, Florin Manea, Federico Mora,
and Dirk Nowotka. Towards more efficient methods for solving regular-expression heavy string
constraints. Theor. Comput. Sci., 943:50–72, 2023. doi:10.1016/j.tcs.2022.12.009.

9 Murphy Berzish, Mitja Kulczynski, Federico Mora, Florin Manea, Joel D. Day, Dirk Nowotka,
and Vijay Ganesh. An SMT solver for regular expressions and linear arithmetic over string
length. In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided Verification
- 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part II, volume 12760 of Lecture Notes in Computer Science, pages 289–312. Springer, 2021.
doi:10.1007/978-3-030-81688-9_14.

10 Berzish, Murphy. Z3str4: A solver for theories over strings. PhD thesis, University of Waterloo,
2021. URL: http://hdl.handle.net/10012/17102.

11 Nikolaj S. Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility analysis for
string-manipulating programs. In Stefan Kowalewski and Anna Philippou, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 15th International Conference,
TACAS 2009, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5505 of Lecture
Notes in Computer Science, pages 307–321. Springer, 2009. doi:10.1007/978-3-642-00768-2\
_27.

MFCS 2025

https://doi.org/10.1145/3062341.3062384
https://doi.org/10.1145/3062341.3062384
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1145/3531130.3533329
https://doi.org/10.1145/1925844.1926454
https://doi.org/10.1145/1925844.1926454
https://doi.org/10.1145/2898375.2898393
https://doi.org/10.1145/2898375.2898393
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.1007/978-3-030-81688-9_14
http://hdl.handle.net/10012/17102
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27

54:18 Negated String Containment is Decidable

12 František Blahoudek, Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík,
Ondřej Lengál, and Juraj Síč. Word equations in synergy with regular constraints. In
Marsha Chechik, Joost-Pieter Katoen, and Martin Leucker, editors, Formal Methods - 25th
International Symposium, FM 2023, Lübeck, Germany, March 6-10, 2023, Proceedings, volume
14000 of Lecture Notes in Computer Science, pages 403–423. Springer, 2023. doi:10.1007/
978-3-031-27481-7_23.

13 Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu. What is decidable
about string constraints with the replaceall function. Proc. ACM Program. Lang., 2(POPL):3:1–
3:29, 2018. doi:10.1145/3158091.

14 Taolue Chen, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu, Shuanglong
Kan, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. Solving string constraints with
regex-dependent functions through transducers with priorities and variables. Proc. ACM
Program. Lang., 6(POPL):1–31, 2022. doi:10.1145/3498707.

15 Taolue Chen, Matthew Hague, Jinlong He, Denghang Hu, Anthony Widjaja Lin, Philipp
Rümmer, and Zhilin Wu. A decision procedure for path feasibility of string manipulating
programs with integer data type. In Dang Van Hung and Oleg Sokolsky, editors, Automated
Technology for Verification and Analysis - 18th International Symposium, ATVA 2020, Hanoi,
Vietnam, October 19-23, 2020, Proceedings, volume 12302 of Lecture Notes in Computer
Science, pages 325–342. Springer, 2020. doi:10.1007/978-3-030-59152-6_18.

16 Taolue Chen, Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. Decision
procedures for path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang., 3(POPL):49:1–49:30, 2019. doi:10.1145/3290362.

17 Taolue Chen, Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. Decision
procedures for path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang., 3(POPL):49:1–49:30, 2019. doi:10.1145/3290362.

18 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj
Síč. Solving string constraints with lengths by stabilization. Proceedings of the ACM on
Programming Languages, 7(OOPSLA2):2112–2141, 2023.

19 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj
Síč. Z3-Noodler: An automata-based string solver. In Bernd Finkbeiner and Laura Kovács,
editors, Tools and Algorithms for the Construction and Analysis of Systems - 30th Interna-
tional Conference, TACAS 2024, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024,
Proceedings, Part I, volume 14570 of Lecture Notes in Computer Science, pages 24–33. Springer,
2024. doi:10.1007/978-3-031-57246-3_2.

20 Yu-Fang Chen, Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál. A uniform
framework for handling position constraints in string solving. Proc. ACM Program. Lang.,
9(PLDI), 2025. URL: https://dx.doi.org/10.1145/3729273, doi:10.1145/3729273.

21 Joel D. Day, Thorsten Ehlers, Mitja Kulczynski, Florin Manea, Dirk Nowotka, and
Danny Bøgsted Poulsen. On solving word equations using SAT. In RP’19, volume 11674 of
LNCS, pages 93–106. Springer, 2019. doi:10.1007/978-3-030-30806-3_8.

22 Joel D. Day, Vijay Ganesh, Nathan Grewal, and Florin Manea. On the expressive power of string
constraints. Proc. ACM Program. Lang., 7(POPL), January 2023. doi:10.1145/3571203.

23 Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, and Dirk Nowotka. The satisfiability
of extended word equations: The boundary between decidability and undecidability. CoRR,
abs/1802.00523, 2018. URL: http://arxiv.org/abs/1802.00523, arXiv:1802.00523.

24 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: An efficient SMT solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

https://doi.org/10.1007/978-3-031-27481-7_23
https://doi.org/10.1007/978-3-031-27481-7_23
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3498707
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1145/3290362
https://doi.org/10.1145/3290362
https://doi.org/10.1007/978-3-031-57246-3_2
https://dx.doi.org/10.1145/3729273
https://doi.org/10.1145/3729273
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1145/3571203
http://arxiv.org/abs/1802.00523
https://arxiv.org/abs/1802.00523
https://doi.org/10.1007/978-3-540-78800-3_24

V. Havlena, M. Hečko, L. Holík, and O. Lengál 54:19

25 Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál. Negated string containment
is decidable (technical report). CoRR, abs/2506.22061, 2025. URL: http://arxiv.org/abs/
2506.22061, arXiv:2506.22061.

26 Juhani Karhumäki, Filippo Mignosi, and Wojciech Plandowski. The expressibility of languages
and relations by word equations. J. ACM, 47(3):483–505, 2000. doi:10.1145/337244.337255.

27 Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett, and Morgan Deters. A
DPLL(T) theory solver for a theory of strings and regular expressions. In Armin Biere and
Roderick Bloem, editors, Computer Aided Verification - 26th International Conference, CAV
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 646–662. Springer,
2014. doi:10.1007/978-3-319-08867-9_43.

28 Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark W. Barrett, and
Morgan Deters. An efficient SMT solver for string constraints. Formal Methods Syst. Des.,
48(3):206–234, 2016. doi:10.1007/s10703-016-0247-6.

29 Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli, and Clark W. Barrett. A
decision procedure for regular membership and length constraints over unbounded strings. In
Carsten Lutz and Silvio Ranise, editors, Frontiers of Combining Systems - 10th International
Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings, volume
9322 of Lecture Notes in Computer Science, pages 135–150. Springer, 2015. doi:10.1007/
978-3-319-24246-0_9.

30 Anthony Widjaja Lin and Pablo Barceló. String solving with word equations and transducers:
Towards a logic for analysing mutation XSS. In Rastislav Bodík and Rupak Majumdar,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 123–136. ACM, 2016. doi:10.1145/2837614.2837641.

31 M. Lothaire, editor. Combinatorics on Words. Cambridge Mathematical Library. Cambridge
University Press, 2 edition, 1997.

32 M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002.
33 Kevin Lotz, Amit Goel, Bruno Dutertre, Benjamin Kiesl-Reiter, Soonho Kong, Rupak Majum-

dar, and Dirk Nowotka. Solving string constraints using sat. In Constantin Enea and Akash
Lal, editors, Computer Aided Verification, pages 187–208, Cham, 2023. Springer Nature
Switzerland.

34 Zhengyang Lu, Stefan Siemer, Piyush Jha, Joel D. Day, Florin Manea, and Vijay Ganesh.
Layered and staged Monte Carlo tree search for SMT strategy synthesis. In Proceedings of
the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju,
South Korea, August 3-9, 2024, pages 1907–1915. ijcai.org, 2024. URL: https://www.ijcai.
org/proceedings/2024/211.

35 R. C. Lyndon and M. P. Schützenberger. The equation aM = bN cP in a free group. Michigan
Mathematical Journal, 9(4):289 – 298, 1962. doi:10.1307/mmj/1028998766.

36 G S Makanin. The problem of solvability of equations in a free semigroup. Math-
ematics of the USSR-Sbornik, 32(2):129, feb 1977. URL: https://dx.doi.org/10.1070/
SM1977v032n02ABEH002376, doi:10.1070/SM1977v032n02ABEH002376.

37 Jakob Nielsen. Die isomorphismen der allgemeinen, unendlichen gruppe mit zwei erzeugenden.
Mathematische Annalen, 78(1):385–397, 1917.

38 Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark W. Barrett, and Cesare Tinelli.
Syntax-guided quantifier instantiation. In Jan Friso Groote and Kim Guldstrand Larsen,
editors, Tools and Algorithms for the Construction and Analysis of Systems - 27th International
Conference, TACAS 2021, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part II, volume 12652 of Lecture Notes in Computer Science, pages 145–163.
Springer, 2021. doi:10.1007/978-3-030-72013-1_8.

MFCS 2025

http://arxiv.org/abs/2506.22061
http://arxiv.org/abs/2506.22061
https://arxiv.org/abs/2506.22061
https://doi.org/10.1145/337244.337255
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/s10703-016-0247-6
https://doi.org/10.1007/978-3-319-24246-0_9
https://doi.org/10.1007/978-3-319-24246-0_9
https://doi.org/10.1145/2837614.2837641
https://www.ijcai.org/proceedings/2024/211
https://www.ijcai.org/proceedings/2024/211
https://doi.org/10.1307/mmj/1028998766
https://dx.doi.org/10.1070/SM1977v032n02ABEH002376
https://dx.doi.org/10.1070/SM1977v032n02ABEH002376
https://doi.org/10.1070/SM1977v032n02ABEH002376
https://doi.org/10.1007/978-3-030-72013-1_8

54:20 Negated String Containment is Decidable

39 Andres Nötzli, Andrew Reynolds, Haniel Barbosa, Clark W. Barrett, and Cesare Tinelli. Even
faster conflicts and lazier reductions for string solvers. In Sharon Shoham and Yakir Vizel,
editors, Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel,
August 7-10, 2022, Proceedings, Part II, volume 13372 of Lecture Notes in Computer Science,
pages 205–226. Springer, 2022. doi:10.1007/978-3-031-13188-2_11.

40 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. In 40th
Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999,
New York, NY, USA, pages 495–500. IEEE Computer Society, 1999. doi:10.1109/SFFCS.
1999.814622.

41 Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli. High-level abstractions
for simplifying extended string constraints in SMT. In Isil Dillig and Serdar Tasiran, editors,
Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY,
USA, July 15-18, 2019, Proceedings, Part II, volume 11562 of Lecture Notes in Computer
Science, pages 23–42. Springer, 2019. doi:10.1007/978-3-030-25543-5_2.

42 Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli. Reductions for
strings and regular expressions revisited. In 2020 Formal Methods in Computer Aided Design,
FMCAD 2020, Haifa, Israel, September 21-24, 2020, pages 225–235. IEEE, 2020. doi:
10.34727/2020/isbn.978-3-85448-042-6_30.

43 Andrew Reynolds, Maverick Woo, Clark W. Barrett, David Brumley, Tianyi Liang, and Cesare
Tinelli. Scaling up DPLL(T) string solvers using context-dependent simplification. In Rupak
Majumdar and Viktor Kuncak, editors, Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II, volume
10427 of Lecture Notes in Computer Science, pages 453–474. Springer, 2017. doi:10.1007/
978-3-319-63390-9_24.

44 Neha Rungta. A billion SMT queries a day (invited paper). In Sharon Shoham and Yakir
Vizel, editors, Computer Aided Verification - 34th International Conference, CAV 2022, Haifa,
Israel, August 7-10, 2022, Proceedings, Part I, volume 13371 of Lecture Notes in Computer
Science, pages 3–18. Springer, 2022. doi:10.1007/978-3-031-13185-1_1.

45 Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn
Song. A symbolic execution framework for JavaScript. In 31st IEEE Symposium on Security
and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA, pages 513–528.
IEEE Computer Society, 2010. doi:10.1109/SP.2010.38.

46 Trauc string constraints benchmark collection, 2020. URL: https://github.com/plfm-iis/
trauc_benchmarks.

47 Margus Veanes, Nikolaj S. Bjørner, Lev Nachmanson, and Sergey Bereg. Monadic decomposi-
tion. J. ACM, 64(2):14:1–14:28, 2017. doi:10.1145/3040488.

https://doi.org/10.1007/978-3-031-13188-2_11
https://doi.org/10.1109/SFFCS.1999.814622
https://doi.org/10.1109/SFFCS.1999.814622
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_30
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_30
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1109/SP.2010.38
https://github.com/plfm-iis/trauc_benchmarks
https://github.com/plfm-iis/trauc_benchmarks
https://doi.org/10.1145/3040488

	1 Introduction
	2 Preliminaries
	2.1 Normalization
	2.2 Lemmas in Our Toolbox
	2.3 Easy Fragments

	3 Overview
	4 Removing Two-Sided Non-Flat Variables
	4.1 Proof of lemma:twoSidedRemoval

	5 -Expansion and Prefix/Suffix Trees
	5.1 -Expansions on Non-Flat Variables
	5.2 Prefix (Suffix) Enumeration through Prefix (Suffix) Trees

	6 Underapproximating Non-Flat Variables
	6.1 Overcoming the Infinite by Equivalence with a Finite Index
	6.2 Inspecting the Structure of Non-flat Variables in the Presence of Long Flat Variables

	7 Decision Procedure
	7.1 Chain-Free Word Equations with Contains

	8 Future Work

