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ÚSTAV INTELIGENTNÍCH SYSTÉMŮ
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Abstrakt
Mnoho současných počítačových systémů používá dynamické datové či řídicí struktury pře-
dem neomezené velikosti. Tyto datové struktury mají často charakter stromů nebo se
dají zakódovat jako stromy s některými dodatečnými ukazateli nad stromovou kostrou.
Této skutečnosti využívají některé v současné době intenzivně studované techniky for-
mální verifikace, které reprezentují nekonečně mnoho stavů konečným stromovým auto-
matem. Nicméně v současnosti neexistuje efektivní a flexibilní implementace knihovny
pro stromové automaty, která by byla pro tyto techniky vhodná. Cílem této diplomové
práce je takovouto knihovnu poskytnout. Předložený text nejdříve popisuje základy teorie
konečných stromových automatů a regulárních stromových jazyků. Dále jsou prozkoumány
existující implementace knihoven pro stromové automaty a různé verifikační techniky pro
systémy se stromovou strukturou. Poté se text zaobírá návrhem reprezentace stromového
automatu a algoritmů provádějících standardní jazykové operace nad touto reprezentací,
načež následuje popis implementace knihovny. Prostřednictvím provedených experimentů
ukazujeme, že knihovna může konkurovat ostatním dostupným knihovnám pro práci se
stromovými automaty, přičemž její výkon v určitých oblastech je řádově vyšší.

Abstract
Numerous computer systems use dynamic control and data structures of unbounded size.
These data structures have often the character of trees or they can be encoded as trees
with some additional pointers. This is exploited by some currently intensively studied
techniques of formal verification that represent an infinite number of states using a finite
tree automaton. However, currently there is no tree automata library implementation that
would provide an efficient and flexible support for such methods. Thus the aim of this Mas-
ter’s Thesis is to provide such a library. The present paper first describes the theoretical
background of finite tree automata and regular tree languages. Then it surveys the cur-
rent implementations of tree automata libraries and studies various verification techniques,
outlining requirements for the library. Representation of a finite tree automaton and algo-
rithms that perform standard language operations on this representation are proposed in
the next part, which is followed by description of library implementation. Through a series
of experiments it is shown that the library can compete with other available tree automata
libraries, in certain areas being even significantly superior to them.
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I think that I shall never see
A poem lovely as a tree.
A tree whose hungry mouth is prest
Against the sweet earth’s flowing breast;
A tree that looks at God all day,
And lifts her leafy arms to pray;
A tree that may in summer wear
A nest of robins in her hair;
Upon whose bosom snow has lain;
Who intimately lives with rain.
Poems are made by fools like me,
But only God can make a tree.

— Joyce Kilmer, Trees

1



Contents

1 Introduction 4

2 Theoretical Background 6
2.1 Terms and Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Regular Tree Languages and Finite Tree Automata . . . . . . . . . . . . . . 8
2.2.1 Nondeterministic Finite Tree Automata . . . . . . . . . . . . . . . . 8
2.2.2 Nondeterministic Finite Tree Automata with ε-rules . . . . . . . . . 9
2.2.3 Deterministic Finite Tree Automata . . . . . . . . . . . . . . . . . . 9

2.3 Closure properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Complementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Minimisation of Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Top-down Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Decision Problems and their Complexity . . . . . . . . . . . . . . . . . . . . 11
2.7 Tree Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7.1 Bottom-up Tree Transducers . . . . . . . . . . . . . . . . . . . . . . 12
2.7.2 Top-down Tree Transducers . . . . . . . . . . . . . . . . . . . . . . . 12

3 Existing Tree Automata Libraries 14
3.1 Timbuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 MONA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Other Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Analysis 18
4.1 Abstract Regular Tree Model Checking . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Abstraction Based on Languages of Finite Height . . . . . . . . . . . 18
4.1.2 Abstraction Based on Predicate Languages . . . . . . . . . . . . . . 18

4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Design 20
5.1 Representation of a Finite Tree Automaton . . . . . . . . . . . . . . . . . . 20
5.2 Operations on MTBDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Insertion of a Transition . . . . . . . . . . . . . . . . . . . . . . . . . 22

2



5.2.2 Retrieval of a Transition . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.3 Language Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.4 Language Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.5 Determinisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.6 Language Complementation . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.7 Automaton Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.8 Pruning Unreachable States . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.9 Minimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.10 Checking Language Emptiness . . . . . . . . . . . . . . . . . . . . . 30
5.2.11 Downward Simulation Reduction . . . . . . . . . . . . . . . . . . . . 31
5.2.12 Checking Language Inclusion Using Antichains . . . . . . . . . . . . 31

5.3 Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.1 Representation of a Relabelling Tree Transducer . . . . . . . . . . . 33
5.3.2 Performing a Transduction Step . . . . . . . . . . . . . . . . . . . . 35
5.3.3 Transducer Composition . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Implementation 40
6.1 MTBDD Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Object-Oriented Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.1 MTBDD Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.2 Transition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.3 Tree Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.4 Automaton Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.5 Automaton Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.6 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Evaluation 46
7.1 Language Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Language Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Simulation Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Conclusion 50

A Storage Medium 54

3



Chapter 1

Introduction

Donald Knuth, the pioneer of the analysis of algorithms, says that computer scientists
love trees more than anybody else [1]. Indeed, trees play a crucial role in computer science.
They recur in many of its fields, from the representation of programs in the form of abstract
syntax trees [2], through the use for fast data retrieval in search trees [3], to tree topologies
of computer networks. It is not surprising that trees are often a natural way to represent a
model of many types of systems including safety-critical systems

Software errors in safety-critical systems may cause severe losses of money and, in the
worst case, even human lives (the Ariane 5 failure is perhaps the best-known case of an
expensive software failure [4]). There are several means which help to avoid software bugs
in such systems, one of them being verification based on formal mathematical methods,
formal verification.

Formal verification of computer systems has gained in popularity in recent years. One
of the reasons of this increased interest is the fact that testing of systems, which do not need
to be very large, can never cover 100 % of cases in an acceptable time (even for systems with
finite state spaces; infinite state systems per se cannot be completely tested). A popular
approach to formal verification is model checking (introduced in early 1980s by E. M. Clarke,
E. A. Emerson, J. P. Queille and J. Sifakis), a method based on checking whether a given
system conforms to given specification by systematically searching the state space of the
system. However, in the real world, there exist systems with state spaces that are infinite,
though they often have regular structure, e.g. systems with unbounded queues or stacks.
As one of the approaches to handle infinite-state systems where states have a linear (or
effectively linearizable) structure, regular model checking has been proposed [5]. Regular
model checking is based on the following ideas: configurations of the systems being verified
are represented as finite words over finite alphabet, transitions are represented as relations
over words. Then finite (word) automata over the alphabet can be used to represent sets
of configurations of the system and finite (word) transducers can be used to express the
transition relation.

However, there are also systems that do not have a linear structure which would enable
natural encoding of their configuration into finite words. A special case of these are systems
with tree-like structure, such as parametrised tree networks or heaps. Moreover, it turns out
that many more general graph structures that cannot be easily linearized can be effectively
encoded using trees (see e.g. [6]). For such cases, it is convenient to generalise the method
to regular tree model checking [7], where finite tree automata, a generalisation of finite
automata to trees, and finite tree transducers are used.

Nonetheless when used for reachability analysis, regular model checking in general may

4



suffer from problems with infinite number of configurations as the transducers may generate
ever new configurations. Therefore various acceleration techniques that ensure finiteness of
the method for many real world problems have been proposed. These methods may need
to perform sophisticated operations upon finite tree automata (transducers). In order to
conduct the operations in verification of non-trivial systems in an acceptable time, smart
data structures and algorithms must be used. However, currently there is no efficient tree
automata library that would be suitable for such operations (although MONA, which is
discussed in Section 3.2, includes a fairly sophisticated deterministic finite tree automata
implementation).

The aim of this work is to design an efficient library that would be suitable for sophisti-
cated tree model checking techniques while being flexible enough to be used even for meth-
ods which have not yet been developed. The library focuses on an efficient representation
of finite tree automata that work with large alphabets. Unlike most other tree automata li-
braries, we use symbolic representation to encode transition functions of tree automata. An
exception in this sense is MONA which also uses symbolic representation. Moreover, unlike
MONA, our library allows to handle nondeterministic finite tree automata, which turns out
to be crucial for the efficiency of many verification approaches. We have developed a set
of algorithms that conduct standard language operations on symbolically represented non-
deterministic finite tree automata, as well as algorithms that perform several non-standard
operations, such as reduction according to downward simulation or inclusion checking based
on antichains. A prototype of the library has been implemented and evaluated through a
series of experiments.

The text is divided into several chapters. Chapter 2 introduces terms, trees, finite tree
automata and regular tree languages, while Chapter 3 discusses available libraries that
support work with tree automata. In Chapter 4, various formal verification techniques
using tree automata are studied and requirements for the library are outlined. Chapter 5
describes the proposed tree automata representation and algorithms for standard operations
that work with this representation. This is followed by a description of the implementation
of the library in Chapter 6. Chapter 7 gives experimental results. Finally, Chapter 8
summarizes the work and outlines its possible further development.

5



Chapter 2

Theoretical Background

This chapter introduces standard definitions, which were taken from [8]. Theorems are pre-
sented without proofs as they can be found in the same source. First, terms over a ranked
alphabet and trees are defined, followed by a description of tree automata and an analysis
of closure properties of regular tree languages. Then the concept of tree automata min-
imisation is introduced, and decision problems for tree automata languages are discussed.
Finally, a definition of tree transducers concludes the chapter.

2.1 Terms and Trees

This section introduces terms over ranked alphabet and trees.

2.1.1 Terms

A ranked alphabet is a couple (F ,Arity) where F is a finite set of symbols and Arity is a
mapping Arity : F → N (N denotes the set of non-negative integer numbers). Arity(f),
where f ∈ F , is the arity of f . The set of symbols of arity p is denoted by Fp. We assume
that the set F0 (the set of constants) is nonempty. Furthermore, we use parenthesis and
commas for a short declaration of symbols with arity, such as f(, ) for a binary symbol f .

Let X be a set of constants called variables such that X ∩ F0 = ∅. We define a set of
n variables as Xn. The set T (F ,X ) of terms over the ranked alphabet F and the set of
variables X is the smallest set defined by:

• F0 ⊆ T (F ,X ) and

• X ⊆ T (F ,X ) and

• if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X ), then f(t1, . . . , tp) ∈ T (F ,X ).

T (F , ∅) is abbreviated as T (F). Terms in T (F) are called ground terms. A term t ∈ T (F ,X )
is linear if each variable occurs at most once in t.

Example 1. Let F = {a, g(), f(, )} be a ranked alphabet. The ground term t = f(f(a, a), g(a))
can be represented in a graphical way as:
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2.1.2 Trees

Let E be a set of labels and Pos(t) ⊆ N∗ be a prefix-closed set. Mapping f : Pos(t) → E
is called a finite ordered tree t. A term t ∈ T (F ,X ) can then be viewed as a finite
ordered ranked tree with its leaves labeled with variables or constants and its internal
nodes labeled with symbols of positive arity, with out-degree equal to the arity of the label.
Term t ∈ T (F ,X ) can then be defined as a partial function t : N∗ → F ∪ X (with domain
Pos(t)) that satisfies the following properties:

(i) Pos(t) is nonempty and prefix-closed,

(ii) ∀p ∈ Pos(t), if t(p) ∈ Fn, n ≥ 1, then {j | pj ∈ Pos(t)} = {1, . . . , n},

(iii) ∀p ∈ Pos(t), if t(p) ∈ X ∪ F0, then {j | pj ∈ Pos(t)} = ∅.

In the following we confuse trees and terms.

2.1.3 Substitutions

A substitution σ is a mapping σ : X → T (F ,X ) (and a ground substitution is a mapping
σ : X → T (F)) where there are only finitely many variables which are not mapped to
themselves. The domain of a substitution σ is the subset of variables x ∈ X such that
σ(x) 6= x. The substitution {x1 ← t1, . . . , xn ← tn} is the identity of X \ {x1, . . . , xn}
and maps xi ∈ X on ti ∈ T (F ,X ), for every index 1 ≤ i ≤ n. The following extends
substitutions to T (F ,X ):

∀f ∈ Fn, ∀t1, . . . , tn ∈ T (F ,X ) σ (f(t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)) . (2.1)

We confuse a substitution and its extension to T (F ,X ). Postfix notation is often used for
substitutions: tσ is the result of applying σ to the term t.

2.1.4 Contexts

A linear term C ∈ T (F ,Xn) is called a context and the expression C[t1, . . . , tn] for t1, . . . , tn ∈
T (F) denotes the term in T (F) obtained from C by replacing variable xi by ti for each
1 ≤ i ≤ n, i.e. C[t1, . . . , tn] = C{x1 ← t1, . . . , xn ← tn}. Cn(F) denotes the set of contexts
over (x1, . . . , xn).

Contexts with a single variable are denoted as C(F). A context is trivial if it is reduced
to a variable. Given a context C ∈ C(F), we denote the trivial context by C0, C1 is equal
to C and, for n > 1, Cn = Cn−1[C] is a context in C(F).
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2.2 Regular Tree Languages and Finite Tree Automata

This section introduces various kinds of finite tree automata.

2.2.1 Nondeterministic Finite Tree Automata

A (bottom-up) nondeterministic finite tree automaton (NFTA) over F is a 4-tuple A =
(Q,F , Qf ,∆), where Q is a finite set of states (Q ∩ F = ∅), Qf ⊆ Q is a set of final states
and ∆ is a set of transition rules

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)), (2.2)

where n ∈ N, f ∈ Fn, q, q1, . . . , qn ∈ Q and x1, . . . , xn ∈ X . The move relation →A is
defined by: let t, t′ ∈ T (F ∪Q),

t −→
A
t′ ⇔


∃C ∈ C(F ∪Q), ∃u1, . . . , un ∈ T (F),
∃f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)) ∈ ∆,
t = C[f(q1(u1), . . . , qn(un))],
t′ = C[q(f(u1, . . . , un))].

(2.3)

→∗A is the reflexive and transitive closure of →A. A ground term t ∈ T (F) is accepted by
an NFTA A = (Q,F , Qf ,∆) if there exists q ∈ Qf such that

t
∗−→
A
q(t). (2.4)

The set of all ground terms accepted by NFTA A (the language of A) is denoted as L(A).
A set L of ground terms is regular if there exists such NFTA A that L = L(A). If two (or
more) NFTA accept the same tree language, they are equivalent.

Example 2. Consider the ground term t = f(f(a, a), g(a)) from Example 1. Let A =
(Q,F , Qf ,∆) be an NFTA and t1 ∈ T (F ∪ Q), t1 = f(q1(f(a, a)), q2(g(a))) be a partially
processed term t by A, t →∗A t1. Assume that f(q1(x1), q2(x2)) → q1(f(x1, x2)) ∈ ∆; then
the following sequence of transitions is possible:

t =

f

f

a a

g

a

∗−→
A
t1 =

f

q1

f

a a

q2

g

a

−→
A

q1

f

f

a a

g

a

, i.e. t
∗−→
A
q1(t).

If q1 ∈ Qf , then t ∈ L(A).

An NFTA A is complete if there is at least one rule

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)) ∈ ∆ (2.5)

for all n ≥ 0, f ∈ Fn, and q1, . . . , qn ∈ Q. A state q ∈ Q is accessible if there exists a ground
term t such that t→∗A q(t). An NFTA is reduced when all of its states are accessible.
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The set of transition rules can also be defined as the set of rules of an alternative
form: f(q1, . . . , qn) → q. A move relation can be defined as before, except that instead of
preserving the structure of the term, the NFTA A replaces subtrees with its states. A term
t is then accepted by an NFTA A if

t
∗−→
A
q (2.6)

where q ∈ Qf .

2.2.2 Nondeterministic Finite Tree Automata with ε-rules

The definition of NFTA with ε-rules is similar to the definition of NFTA, except for the set
of transition rules which may now also contain ε-rules of the form q → q′, i.e. the state is
changed without processing an input symbol.

Theorem 1. If L is accepted by an NFTA with ε-rules, then L is accepted by an NFTA
without ε-rules.

2.2.3 Deterministic Finite Tree Automata

A deterministic finite tree automaton (DFTA) is an NFTA where there are no two rules
with the same left-hand side (and no ε-rules) in ∆. It is unambiguous, i.e. there is at most
one run for every ground term, which means that there is at most one state q ∈ Q such
that t→∗A q.

Theorem 2. Let L be a regular set of ground terms. Then there exists a DFTA that accepts
L.

2.3 Closure properties

2.3.1 Union

Theorem 3. The class of regular tree languages is closed under union.

Let us have the following two complete NFTAs (an NFTA can always be made com-
plete by adding missing transitions that all point to a sink nonaccepting state): A1 =
(Q1,F , Qf1,∆1) andA2 = (Q2,F , Qf2,∆2). Now let us construct NFTAA = (Q,F , Qf ,∆)
that accepts L(A) = L(A1)∪L(A2), where Q = Q1 ×Q2, Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and
∆ = ∆1 ×∆2 where

∆1 ×∆2 = {f((q1, q
′
1), . . . , (qn, q

′
n))→ (q, q′) |

f(q1, . . . , qn)→ q ∈ ∆1, f(q′1, . . . , q
′
n)→ q′ ∈ ∆2}. (2.7)

This construction preserves determinism, i.e. if A1 and A2 are deterministic, then A is
deterministic too.

2.3.2 Complementation

Theorem 4. The class of regular tree languages is closed under complementation.

Let L(A) be a regular tree language and A = (Q,F , Qf ,∆) be a complete DFTA. Then an
NFTA A′ = (Q,F , Q \Qf ,∆) accepts the complement of set L in T (F).
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2.3.3 Intersection

Theorem 5. The class of regular tree languages is closed under intersection.

Closure under intersection follows directly from closure under union and complementation
using De Morgan’s law:

L1 ∩ L2 = L1 ∪ L2 (2.8)

where L denotes the complement of set L in T (F). The construction that preserves deter-
minism follows: Let A1 = (Q1,F , Qf1,∆1) and A2 = (Q2,F , Qf2,∆2) be NFTA. Consider
NFTA A = (Q,F , Qf ,∆) such that Q = Q1 ×Q2, Qf = Qf1 ×Qf2 and ∆ = ∆1 ×∆2. It
holds that L(A) = L(A1) ∩ L(A2).

2.4 Minimisation of Tree Automata

An equivalence relation ≡ on T (F) is a congruence on T (F) if for every f ∈ Fn

ui ≡ vi, 1 ≤ i ≤ n⇒ f(u1, . . . , un) ≡ f(v1, . . . , vn). (2.9)

It is of finite index when there are only finitely many ≡-classes. An equivalent definition
is that a congruence is an equivalence relation closed under context, i.e. for all contexts
C ∈ C(F), if u ≡ v, then C[u] ≡ C[v]. Assume L is a regular tree language, then ≡L on
T (F) is defined by: u ≡L v if for all contexts C ∈ C(F),

C[u] ∈ L ⇔ C[v] ∈ L. (2.10)

Myhill-Nerode Theorem for Tree Languages. The following three statements are
equivalent:

(i) L is a regular tree language,

(ii) L is the union of some equivalence classes of a congruence of finite index,

(iii) the relation ≡L is a congruence of finite index.

An interesting point of the proof of the theorem above is the proof of (iii) ⇒ (i):

Proof. Let Qmin be the finite set of equivalence classes of ≡L. Let us define the transition
relation ∆min as the smallest set such that

f([u1], . . . , [un])→ [f(u1, . . . , un)] ∈ ∆min (2.11)

for all f ∈ F , u1, . . . , un ∈ T (F), where [u] denotes the equivalence class of term u. The
definition of ∆min is consistent because ≡L is a congruence. Let Qminf

= {[u] | u ∈ L}.
The DFTA Amin = (Qmin,F , Qminf

,∆min) accepts the tree language L.

It can be proved that Amin is minimum (in the number of states) and unique up to a
renaming of states.
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2.5 Top-down Tree Automata

A nondeterministic top-down finite tree automaton (top-down NFTA) over F is a 4-tuple
A = (Q,F , I,∆), where Q is a finite set of states, I ⊆ Q is a set of initial states and ∆ is
a set of transition rules

q(f(x1, . . . , xn))→ f(q1(x1), . . . , qn(xn)), (2.12)

where n ≥ 0, f ∈ Fn, q, q1, . . . , qn ∈ Q, x1, . . . , xn ∈ X . The move relation is easily deduced
from the move relation for bottom-up NFTA.

The tree language L(A) accepted by A is the set of ground terms t for which there is
an initial state q ∈ I such that

q(t)
∗−→
A
t. (2.13)

Note that the expressive power of bottom-up and top-down nondeterministic finite tree
automata is the same. However, top-down DFTA are strictly less powerful than top-down
NFTA.

2.6 Decision Problems and their Complexity

This section summarises some decision problems of regular tree languages and their com-
plexity in the context of RAM machines. Note the increased complexity with respect to
regular word languages, which implies an even stronger need for a very careful design and
various heuristic optimizations of working with finite tree automata.

• The fixed membership problem (determining whether a certain ground term is ac-
cepted by a fixed finite tree automaton, i.e. the automaton is not the input of the
decision procedure) is ALOGTIME-complete.

• The uniform membership problem (determining whether a certain ground term is
accepted by a given finite tree automaton, i.e. the automaton is also the input of the
decision procedure) can be decided in linear time for DFTA and in polynomial time
for NFTA.

• The emptiness problem (determining whether the language accepted by given finite
tree automaton is empty) is decidable in linear time.

• The intersection non-emptiness problem (determining whether there is at least one
ground term accepted by each finite tree automaton from a given finite sequence of
tree automata) is EXPTIME-complete.

• The finiteness problem (determining if the language of a given finite tree automaton
is finite) is decidable in polynomial time.

• The complement emptiness problem (determining whether a given finite tree automa-
ton accepts every ground term) can be decided in polynomial time for DFTA and it
is EXPTIME-complete for NFTA.

• The equivalence problem (determining whether two given finite tree automata accept
the same language) is decidable.

• The singleton set problem (determining whether a given finite tree automaton accepts
only a single ground term) is decidable in polynomial time.
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2.7 Tree Transducers

2.7.1 Bottom-up Tree Transducers

A nondeterministic bottom-up tree transducer (NBUTT) is a 5-tuple U = (Q,F ,F ′, Qf ,∆),
where Q is a set of states (Q ∩ F = ∅, Q ∩ F ′ = ∅), F and F ′ are finite nonempty sets
of input symbols and output symbols, Qf ⊆ Q is a set of final states and ∆ is a set of
transduction rules of the following two types:

f(q1(x1), . . . , qn(xn))→ q(u), (2.14)

where f ∈ Fn, u ∈ T (F ′,Xn), q, q1, . . . , qn ∈ Q, and x1, . . . , xn ∈ Xn, and

q(x1)→ q′(u) (ε-rule), (2.15)

where u ∈ T (F ′,X1), q, q′ ∈ Q, and x1 ∈ X1.
Let t, t′ ∈ T (F ∪ F ′ ∪Q). The move relation →U is defined as:

t −→
U
t′ ⇔


∃f(q1(x1), . . . , qn(xn))→ q(u) ∈ ∆,
∃C ∈ C(F ∪ F ′ ∪Q),
∃u1, . . . , un ∈ T (F ′),
t = C[f(q1(u1), . . . , qn(un))],
t′ = C[q(u{x1 ← u1, . . . , xn ← un})].

(2.16)

The reflexive and transitive closure of →U is →∗U . The relation induced by U (also denoted
as U) is:

U =
{

(t, t′) | t→∗U q(t′), t ∈ T (F), t′ ∈ T (F ′), q ∈ Qf
}
. (2.17)

A transducer is ε-free if there is no ε-rule in ∆. If all transduction rules are linear
(no variable occurs twice in the right-hand side), then the transducer is linear. It is non-
erasing if, for each rule, at least one symbol from F ′ occurs in the right-hand side. In
a complete (or non-deleting) transducer, for every rule f(q1(x1), . . . , qn(xn)) → q(u), for
every xi, (1 ≤ i ≤ n), xi occurs at least once in u. An ε-free transducer where there are no
two rules with the same left-hand side is called deterministic (DBUTT).

2.7.2 Top-down Tree Transducers

A nondeterministic top-down tree transducer (NTDTT) is a 5-tuple D = (Q,F ,F ′, Qi,∆),
where Q is a set of states (Q ∩ F = ∅, Q ∩ F ′ = ∅), F and F ′ are finite nonempty sets of
input and output symbols, Qi ⊆ Q is a set of initial states and ∆ is a set of transduction
rules of the following two types:

q(f(x1, . . . , xn))→ u[q1(xi1), . . . , qp(xip)], (2.18)

where f ∈ Fn, u ∈ Cp(F ′), q, q1, . . . , qp ∈ Q, xi1 , . . . , xip ∈ Xn, and

q(x)→ u[q1(x), . . . , qp(x)] (ε-rule), (2.19)

where u ∈ Cp(F ′), q, q1, . . . , qp ∈ Q, x ∈ X .
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Let t, t′ ∈ T (F ∪ F ′ ∪Q). The move relation →D is defined as:

t −→
D

t′ ⇔


∃q(f(x1, . . . , xn))→ u[q1(xi1), . . . , qp(xip)] ∈ ∆,
∃C ∈ C(F ∪ F ′ ∪Q),
∃u1, . . . , un ∈ T (F),
t = C[q(f(u1, . . . , un))],
t′ = C[u[q1(v1), . . . , qp(vp)]] where vj = uk if xij = xk.

(2.20)

The reflexive and transitive closure of →D is →∗D. The relation induced by D (also denoted
as D) is:

D =
{

(t, t′) | q(t)→∗D t′, t ∈ T (F), t′ ∈ T (F ′), q ∈ Qi
}
. (2.21)

ε-free, linear, non-erasing, complete, deterministic (DTDTT) top-down tree transducers are
the same as in the bottom-up case.
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Chapter 3

Existing Tree Automata Libraries

This chapter describes several implementations of finite tree automata libraries focusing on
a couple of the most interesting from our point of view: Timbuk and MONA.

3.1 Timbuk

Timbuk [9] is a collection of tools for achieving proofs of reachability over term rewriting
systems and for manipulating tree automata. This system is written in OCaml, a popular
functional programming language. Version 2.2 of Timbuk was surveyed; although newer
version 3.0 is currently available, this version has abandoned the tree automata library
present in earlier versions as the tool now focuses on reachability analysis and equational
approximations of term rewriting systems. This library is a free software (available under
the GNU LGPLv2 [10] licence) distributed for free, therefore it was possible to study the
implementation.

The tree automaton is implemented as a tuple of lists: a list of symbols (an alphabet),
a list of state operators, a list of states, a list of final states, a list of transitions and a list of
prioritary transitions. The supported operations on tree automata are the standard ones:
intersection, union, language emptiness, deletion of inaccessible states, determinisation and
others. Since states and transitions are represented as lists, the aforementioned operations
are implemented in a straightforward way. The library is able to construct a tree automaton
directly from a given term rewriting system.

3.2 MONA

MONA [11] is a tool (released free of charge under the GNU GPLv2 licence [12]) that
implements decision procedures for the weak second-order theory of one or two successors
(WS1S/WS2S). These types of logic are notable for the following reasons:

WS1S Büchi claims in [13] that WS1S has an expressive power equivalent to regular
expressions, i.e. it can be used to denote the class of regular languages.

WS2S According to [14] (who further refers to Thatcher and Wright [15]), WS2S is equiv-
alent to the class of regular tree languages.

Indeed, MONA uses finite automata and finite tree automata for determining the truth
status of formulae in WS1S and WS2S, respectively. Independently of MONA, Glenn and
Gasarch [16] also implemented an automaton-based decision procedure for WS1S.
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MONA was actively developed for six years, but since 2002 no further progress of the
tool has appeared and only bugfixes have been applied. However, Klarlund et al [17] boldly
claim that the developers of MONA tried many approaches to deal with common problems
and tuned the tool to give the best performance. The most important feature mentioned
is symbolic representation of transition functions of automata by multi-terminal binary
decision diagrams (MTBDD), which are a generalisation of reduced ordered binary decision
diagrams (ROBDD, often abbreviated just as BDD, see [18] for further details). The idea
of generalising BDDs to MTBDDs is by assigning multiple values to the sink nodes of the
diagram (i.e. generalising function f represented by BDD, f : {0, 1}n → {0, 1}, to function
g represented by MTBDD, g : {0, 1}n → D, where D is an arbitrary domain such that it
contains bottom element ⊥ ∈ D).

Due to the fact that BDDs are only a compact representation of formulae in propo-
sitional logic with Boolean variables x1, . . . , xn, Boolean formulae can be used for their
description. A BDD f : {0, 1}n → {0, 1} maps to the Boolean formula

∑
(a1,...,an)∈{0,1}n

(∏
ai=0

¬xi ·
∏
ai=1

xi · f(a1, . . . , an)

)
. (3.1)

The mapping for MTBDDs is analogous, however a few preconditions need to be imposed
on domain D:

(i) the product of x ∈ {0, 1} and d ∈ D is defined as

x · d def
=

{
⊥ if x = 0
d if x = 1

, (3.2)

(ii) the addition operation on D needs to ensure that for d ∈ D it holds that

d+⊥ = ⊥+ d = d . (3.3)

Then we define the mapping from MTBDD g : {0, 1}n → D to the Boolean formula

∑
(a1,...,an)∈{0,1}n

(∏
ai=0

¬xi ·
∏
ai=1

xi · g(a1, . . . , an)

)
. (3.4)

Example 3. This example shows in Figure 3.1 the structure of the following decision
diagrams:

a) a BDD representing formula:

x1¬x3 + ¬x1x2¬x3 + ¬x1¬x2x3 , (3.5)

b) an MTBDD representing formula:

¬x1¬x2¬x3A+ x1x3B + ¬x1x2x3B . (3.6)

Note that, e.g., the expression x1x3 represents the expression x1(x2 + ¬x2)x3 which fully
expands to x1x2x3 + x1¬x2x3.
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Figure 3.1: Examples of the structure of BDD and MTBDD.

When MTBDDs are used for transition table representation, every symbol of the in-
put alphabet Σ is assigned a binary string, i.e. there exists an encoding function enc :
Σ → {0, 1}n, where n = dlg |Σ|e. The values of sink nodes (set D from previously men-
tioned function g) is the state set of the automaton. Such an MTBDD can be used to
describe the transition relation of the automaton for a single state: the input symbol is
encoded by function enc into a sequence of binary digits (x1, . . . , xn), where x1, . . . , xn cor-
respond to the Boolean variables of the MTBDD. The assignment to the variables denotes
the path that is to be taken in the diagram and determines the sink node (i.e. the next state
of the automaton). Such an MTBDD may either exist for every state of the automaton,
or preferably shared MTBDD is used. This is another generalisation which merges all dia-
grams into a single one with multiple root nodes (each corresponding to a different state)
and changes the tree-like structure of an MTBDD into a directed acyclic graph (DAG).
This solution yields a compact representation of the transition function even for large input
alphabets.

Another concept introduced by MONA developers is guided tree automaton [19], which
is supposed to tackle state space blow-up. Bottom-up tree automata often suffer from the
problems of the way they work: while the automaton traverses the tree from its leaves to
the root, it does not have any information about the position in the tree. The guided tree
automaton provides a guide, an additional top-down tree automaton that labels tree nodes
by assigning state spaces to them, making them aware of their position in the tree. This
assignment is done before the actual automaton starts working. When it does, it operates
faster, since every state space has its own state set and transition table. The guide needs
to be either provided by the programmer, or it can be synthesized automatically for certain
domains (e.g. WSRT logic used for description of recursive data types, which is implemented
in MONA).

Another noteworthy optimization applied in MONA is so-called eager minimisation:
whenever the structure of an automaton is modified, a Myhill-Nerode minimisation is per-
formed. Although originally not expected, this strategy yields very good results. Despite
the fact that formulae are often represented in the form of trees (at least during syntactic
analysis of the formula), MONA uses DAGs for their representation. Common subexpres-
sions are identified and collapsed, thus saving both space and time.
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Although MONA only supports work with deterministic finite (tree) automata, there are
formal verification techniques (such as [20]) that can efficiently work directly with nondeter-
ministic finite (tree) automata, thus avoiding possible time and space exponential blow-up
caused by automata determinisation. After the construction of a finite tree automaton,
MONA tries to find both a satisfying example and a counterexample. Therefore there is
no efficient support for sophisticated manipulation with automata which may be required
by some verification methods.

3.3 Other Libraries

Java library Lethal [21] supports numerous operations on tree automata, like checking
whether some properties (determinism, completeness, . . . ) hold for a given automaton, or
standard operations on languages (such as union, intersection, complement or difference).
The implementation appears to be quite näıve, with a primary focus on education. However,
as the only studied library, Lethal also implements tree transducers and hedge automata
(a modification of tree automata for unranked trees).

Binary Tree Automata Library [22] is a Caml library for tree automata. The implemen-
tation provides only basic functions and is close to Timbuk (see section 3.1), although it
uses hash tables for a transition table representation and language-provided sets for state
sets.

A simple implementation of a tree automata library in ELAN can be found in [23]. Also
this library provides only basic functionality.
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Chapter 4

Analysis

This chapter starts with an introduction to abstract regular tree model checking and an
analysis of potential use of the library and collects requirements for the library.

4.1 Abstract Regular Tree Model Checking

The basic idea of regular tree model checking is to decide the emptiness of the language

τ∗ (L(Init)) ∩ L(Bad), (4.1)

where Init is a tree automaton denoting the set of initial states of the system, Bad is a
tree automaton expressing the set of states violating the safety properties of the system,
and τ is a linear tree transducer representing the transition relation of the system. Because
an iterative computation of τ∗ (L(Init)) may not terminate, several acceleration methods
have been proposed. One of them is abstract regular tree model checking [24], which is
an acceleration technique based on the abstract-check-refine paradigm. Abstraction α is a
function from the set of all tree automata MF over ranked alphabet F to its subset AF ,
AF ⊆MF , such that ∀M ∈MF : L(M) ⊆ L(α(M)).

4.1.1 Abstraction Based on Languages of Finite Height

Abstraction based on languages of finite height, which was introduced in [24], defines two
states of a tree automaton as equivalent if their languages up to a given height n are
identical. The implementation can be done similar to the Myhill-Nerode minimisation,
except that the procedure stops after n iterations.

4.1.2 Abstraction Based on Predicate Languages

Given a set of predicate tree automata P = (P1, . . . , Pn), abstraction based on predicate
languages (introduced also in [24]) defines two states of a tree automaton equivalent if
their languages have a nonempty intersection with exactly the same subset of languages
represented by tree automata from P. This can be done by labeling every state with
predicates that have a nonempty intersection with the language of the automaton and
collapsing states with identical labeling.
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4.2 Requirements

An important requirement for the library is to enable a direct work with nondeterministic
tree automata without determinising the automaton first. This is convenient for avoiding
state explosion connected with automaton determinisation in some verification techniques
(see [20]). The following standard operations are necessary to be implemented in the library:

• creating a finite tree automaton denoting the union of languages of given finite tree
automata,

• creating a finite tree automaton denoting the intersection of languages of given finite
tree automata,

• creating a finite tree automaton denoting the complement of the language of a given
finite tree automaton,

• determinisation of a finite tree automaton,

• minimisation of a finite tree automaton,

• determining emptiness of language of a finite tree automaton,

• reducing the size of a given nondeterministic finite tree automaton without determin-
isation, and

• determining inclusion of languages of given finite tree automata while avoiding deter-
minisation of any automaton.

The library also needs to implement tree transducers at least in their structure-preserving
form. Certain techniques [24, 25, 26, 27, 28] need to efficiently traverse all states of the
automaton in order to, for instance, compute the abstraction of the automaton. Support
for this is also necessary.
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Chapter 5

Design

This chapter starts with a description of the representation that we propose for the transi-
tion function of nondeterministic finite tree automata. This is followed by a description of
algorithms for operations on finite tree automata that use this representation. Relabelling
tree transducers and operations with them are described at the end of the chapter.

5.1 Representation of a Finite Tree Automaton

The performance of operations on a nondeterministic finite tree automatonA = (Q,F , Qf ,∆)
is mostly affected by the choice of the data structure for representing the transition function
∆. Two major approaches are possible:

Explicit representation This approach represents the transition function of a tree au-
tomaton by enumerating all transitions in a data structure used for a representation
of the set.

Symbolic representation This method is a popular approach in model checking that is
based on a representation of the transition function using Boolean formulae. The
exact form of the representation varies depending on the application, however the
most popular data structure used for representing Boolean formulae is the BDD.

The analysis in Chapter 3 showed that symbolic representation using MTBDDs is a very
promising approach. Therefore we chose MTBDDs for representation of transition function.
To recap, MTBDD is a data structure that stores mapping g : {0, 1}n → D, where D is an
arbitrary set.

Our design attempts to tackle the problem of large alphabets by using a shared MTBDD
such that the domain of the MTBDD, i.e. the sequence of Boolean variables {0, 1}n, repre-
sents binary encodings of symbols from F according to some encoding function enc : F →
{0, 1}n, where n ≤ dlg |F|e (note that n may be smaller than dlg |F|e because when arity
of symbols is implicit, more symbols with different arity may map to one assignment of
Boolean variables; in conflicting cases, we will denote symbol f ∈ Fp as fp). Using function
enc to encode symbols from F , MTBDD may represent function g : F → D. Before we
proceed, let us first define the set of super-states S(∆) of the transition function ∆ as

S(∆) = {(q1, . . . , qp) | p ≥ 0,

f(q1, . . . , qp)→ D ∈ ∆, f ∈ Fp, D ⊆ Q,D 6= ∅} (5.1)
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or in case of a complete automaton with a sink state qsink :

S(∆) = {(q1, . . . , qp) | p ≥ 0,

f(q1, . . . , qp)→ D ∈ ∆, f ∈ Fp, D ⊆ Q,D 6= {qsink}} . (5.2)

Let Sn(∆) be the set of super-states of ∆ of arity n. Note that an empty sequence ()
represents initial super-state, i.e. the super-state from which transitions over leaf nodes are
possible. We also extend the definition of membership relation ∈ to super-states in the
following way:

q ∈ (q1, . . . , qn)
def⇔ ∃1 ≤ i ≤ n : q = qi (5.3)

Using the previous definition of super-states and definition of ∆ (see Equation 2.2), we
may alternatively define the transition function of an automaton A as a mapping ∆• in the
following way:

∆• : S → (F → 2Q)

(q1, . . . , qp) 7→ {(f,D) | f(q1, . . . , qp)→ D ∈ ∆} (5.4)

This means that we may represent the transition function ∆ of a tree automaton A as a
data structure that associates each super-state with an MTBDD that is indexed using a
binary encoding of symbols from F and has subsets of Q in its sink nodes. When shared
MTBDD is used, each super-state is mapped to a root of a given MTBDD. In case ∆• is
not total, we make it total by assigning MTBDD where all symbols map to a sink state
{qsink} to each super-state that has no image in ∆•, which yields a complete automaton.
We further confuse ∆ and ∆•.

Example 4. Consider the nondeterministic finite tree automaton A = (Q,F , Qf ,∆), Q =
{q1, q2, q3}, F = {a, b0, b2, c0, c1, d1}, and ∆ = {b0 → {q1, q2}, c0 → {q2}, d1(q2) → {q3},
b2(q1, q3) → {q1, q2}, c1(q3) → {q1, q2}} (Qf is not important at this point). A shared
MTBDD corresponding to ∆ is in Figure 5.1.

 ()  (q2) 

x1

 (q1,q3) 

x1

 (q3) 

x1 x1

x2

{}

x2 x2x2

{q2} {q1,q2}{q3}

Figure 5.1: A representation of ∆ by a shared MTBDD. Encoding of symbols from F : a:
00, b: 01, c: 10, d: 11. Dashed lines represent 0 value of given variable, solid lines represent
value 1.
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5.2 Operations on MTBDDs

This section describes algorithms that perform operations on finite tree automata with a
transition function represented by an MTBDD. These algorithms manipulate MTBDDs
using the following two sufficient functions:

Apply The standard Apply function that performs a given binary operation op on all
respective sink nodes (this means sink nodes accessible over the same symbol) of
two input MTBDDs (lhs and rhs for left-hand side MTBDD and right-hand side
MTBDD respectively) and returns the resulting MTBDD.

Apply : (F → 2Q)→ (F → 2Q)→ (2Q → 2Q → 2Q)→ (F → 2Q)

Apply lhs rhs op = λx . op (lhs x) (rhs x) (5.5)

MonadicApply The monadic version of Apply function that performs a given unary op-
eration op on all sink nodes of input MTBDD tf and returns the resulting MTBDD.

MonadicApply : (F → 2Q)→ (2Q → 2Q)→ (F → 2Q)

MonadicApply tf op = λx . op (tf x) (5.6)

Note that λ-calculus is used for definitions and applications of functions that work with
MTBDDs in order to make them more comprehensible. In case the result of the Apply
operation is not stored (the operation is performed solely for the side effect of op), op does
not need to return a value. Further, we assume that transition functions for all automata
are stored in a single shared MTBDD.

5.2.1 Insertion of a Transition

Inserting a transition into an MTBDD-represented transition function of finite tree au-
tomaton A = (Q,F , Qf ,∆) is done by creating a new MTBDD with only given transition
and merging it with the original MTBDD representing ∆ by substituting the sink node at
position given by the symbol of the transition with the new value as described in Algo-
rithm 1. In order to create a new MTBDD with a given transition, an additional function
is necessary:

CreateMTBDD This function creates an MTBDD which maps a single symbol to a single
set of states.

CreateMTBDD : F → 2Q → (F → 2Q)

CreateMTBDD k D = λx . if x = k then D else {qsink} (5.7)

Algorithm 1: Transition insertion
Input: Transition function ∆IN

Transition f(q1, . . . , qn)→ D to be inserted
Output: ∆OUT = (∆IN \ {f(q1, . . . , qn)→ E | E ⊆ Q}) ∪ {f(q1, . . . , qn)→ D}
begin1

tmp := CreateMTBDD f D;2

sp := (q1, . . . , qn);3

∆OUT := ∆IN ;4

∆OUT sp := Apply (∆IN sp) tmp (λX Y . if Y = {qsink} then X else Y );5

return ∆OUT ;6

end7
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5.2.2 Retrieval of a Transition

The algorithm that retrieves a transition (i.e. for a given super-state (q1, . . . , qn) and a
symbol f returns D such that f(q1, . . . , qn) → D ∈ ∆) from an MTBDD-represented
transition function ∆ first creates a projection BDD and makes a projection of the MTBDD
representing the transition function for given super-state according to given symbol of the
input alphabet. A projection BDD p : F → {0, 1} is a BDD over the same set of Boolean
variables as the transition function MTBDD which identifies the nodes that are to be
excluded from the MTBDD with value 0 and the others with value 1. After the projection
is done, MonadicApply collects the sink nodes of the resulting MTBDD. The algorithm,
which is described in Algorithm 2, needs the following two additional functions for working
with projection BDDs:

CreateProjection This function creates a projection BDD for symbol k.

CreateProjection : F → (F → {0, 1})
CreateProjection k = λx . if x = k then 1 else 0 (5.8)

Project Makes a projection of MTBDD lhs using a projection BDD rhs and returns the
resulting MTBDD.

Project : (F → 2Q)→ (F → {0, 1})→ (F → 2Q)

Project lhs rhs = λx . if (rhs x) = 1 then (lhs x) else {qsink} (5.9)

Algorithm 2: Transition retrieval
Input: Transition function ∆

Symbol f and super-state (q1, . . . , qn)
Output: D = {E | f(q1, . . . , qn)→ E ∈ ∆}
begin1

states := ∅;2

tmp := CreateProjection f ;3

proj := Project (∆ (q1, . . . , qn)) tmp;4

MonadicApply proj (collect states);5

return states;6

end7

Function collect(states, leaf )

begin1

states := states ∪ leaf ;2

end3
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5.2.3 Language Union

The task of the operation of language union is, for two input tree automataA1 = (Q1,F , Qf1,∆1)
and A2 = (Q2,F , Qf2,∆2), to create a tree automaton A∪ = (Q∪,F , Qf∪,∆∪) such that
L(A∪) = L(A1) ∪ L(A2). Although the algorithm presented in Section 2.3.1 preserves
determinism, we chose to use a more simple approach that does not create a product au-
tomaton but rather reuses transition functions of input automata as much as possible (and
may introduce nondeterminism when input automata are deterministic).

The idea of this construction is to create such an automaton that makes nondeterministic
transitions over leaf symbols to either A1 or A2 and then continues its run in the target
automaton. Assume without loss of generality that Q1 ∩ Q2 = ∅, then Q∪ = Q1 ∪ Q2,
Qf∪ = Qf1 ∪Qf2, and

∆∪ = (∆1 \ {f → D1 | f ∈ F0, D1 ⊆ Q1}) ∪
(∆2 \ {f → D2 | f ∈ F0, D2 ⊆ Q2}) ∪
{f → D | f ∈ F0, D = D1 ∪D2, f → D1 ∈ ∆1, f → D2 ∈ ∆2} . (5.10)

Computations of Q∪ and Qf∪ are trivial. Since all transitions are stored in a single MTBDD
the computation of ∆∪ needs only one Apply operation:

∆∪ () := Apply (∆1 ()) (∆2 ()) (λX Y . X ∪ Y ) . (5.11)

Figure 5.2 shows the process of construction of the transition function for the union
automaton. The procedure is described in Algorithm 3.
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Figure 5.2: Construction of automaton A∪ such that L(A∪) = L(A1) ∪ L(A2).

5.2.4 Language Intersection

The requirements on the language intersection operation are very similar to language union:
given two finite tree automata A1 = (Q1,F , Qf1,∆1) and A2 = (Q2,F , Qf2,∆2) construct
a finite tree automaton A∩ = (Q∩,F , Qf∩,∆∩) such that L(A∩) = L(A1) ∩ L(A2).

The construction is done by creating a product automaton (a tree automaton with state
set that is the Cartesian product of state sets of input automata) A∩ which simulates
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Algorithm 3: Union automaton construction
Input: Input automata A1 = (Q1,F , Qf1,∆1) and A2 = (Q2,F , Qf2,∆2)
Output: A∪ = (Q∪,F , Qf∪,∆∪) such that L(A∪) = L(A1) ∪ L(A2)
begin1

Q∪ := Q1 ∪Q2;2

Qf∪ := Qf1 ∪Qf2;3

∆∪ := ∆1 ∪∆2;4

∆∪ () := Apply (∆1 ()) (∆2 ()) (λX Y . X ∪ Y );5

return A∪ = (Q∪,F , Qf∪,∆∪);6

end7

parallel run of both input automata:

A∩ = (Q1 ×Q2,F , Qf1 ×Qf2,∆∩) (5.12)

where

∆∩ = {f ((q11, q21), . . . , (q1n, q2n))→ (q1, q2) | f ∈ Fn,
f(q11, . . . , q1n)→ q1 ∈ ∆1, f(q21, . . . , q2n)→ q2 ∈ ∆2} (5.13)

such that A∩ contains only reachable states and transitions. Detection of reachable states
is done by starting from initial super-states of automata, analysing all transitions from
reachable super-states and collecting states that may be reached in this way until the
algorithm has no unanalysed state. A super-state (q1, . . . , qn) is reachable if ∀1 ≤ i ≤ n : qi
is reachable. Due to the fact that we work with complete automata (with sink state qsink /∈
Qf ), whenever we reach a product state (q1, qsink ) or (qsink , q2), we may stop generating
further states (this is because qsink has only transitions to qsink so no accepting state can
be reached from such state). Figure 5.3 shows the first step of construction of the product
automaton. The construction process is described in Algorithm 4.
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Figure 5.3: Construction of automaton A∩ such that L(A∩) = L(A1) ∩ L(A2).
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Algorithm 4: Intersection automaton construction
Input: Input automata A1 = (Q1,F , Qf1,∆1) and A2 = (Q2,F , Qf2,∆2)
Output: A∩ = (Q∩,F , Qf∩,∆∩) such that L(A∩) = L(A1) ∩ L(A2)
begin1

Q∩ := Qf∩ := ∆∩ := ∅;2

newStates := empty queue;3

∆∩ () := Apply (∆1 ()) (∆2 ()) (intersect newStates);4

while newStates is not empty do5

(qa, qb) := newStates.dequeue();6

if (qa, qb) /∈ Q∩ then7

Q∩ := Q∩ ∪ {(qa, qb)};8

if qa = qsink ∨ qb = qsink then continue;9

if qa ∈ Qf1 ∧ qb ∈ Qf2 then Qf∩ := Qf∩ ∪ {(qa, qb)};10

foreach n ∈ N such that Sn(∆1) 6= ∅ ∧ Sn(∆2) 6= ∅ do11

foreach (q11, . . . , q1n) ∈ Sn(∆1) such that qa ∈ (q11, . . . , q1n) do12

foreach (q21, . . . , q2n) ∈ Sn(∆2) such that qb ∈ (q21, . . . , q2n) do13

if ∀1 ≤ i ≤ n : (q1i, q2i) ∈ Q∩ then14

sp1 := (q11, . . . , q1n);15

sp2 := (q21, . . . , q2n);16

∆∩ ((q11, q21), . . . , (q1n, q2n)) :=17

Apply (∆1 sp1) (∆2 sp2) (intersect newStates);
endif18

endfch19

endfch20

endfch21

endif22

endw23

return A∩ = (Q∩,F , Qf∩,∆∩);24

end25

Function intersect(newStates, lhs, rhs)

begin1

productSet := lhs× rhs;2

foreach (qa, qb) ∈ productSet do3

newStates.enqueue((qa, qb));4

endfch5

return productSet;6

end7

5.2.5 Determinisation

The determinisation operation takes an input finite tree automaton A = (Q,F , Qf ,∆) and
transforms it into a deterministic finite tree automaton Ad = (Qd,F , Qfd,∆d) such that
L(Ad) = L(A).

The determinisation algorithm that is described in Algorithm 5 works with macrostates.
A macrostate M ⊆ Q is a state in the deterministic automaton that represents all states
which might have been accessed during the run of the nondeterministic automaton over
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the same sequence of symbols. The algorithm starts from the initial super-state, creates a
new macrostate for each sink node of the MTBDD for the initial super-state and proceeds
with finding all super-states (q1, . . . , qn) such that there exist macrostates M1, . . . ,Mn :
∀1 ≤ i ≤ n : qi ∈ Mi. For each such super-state an MTBDD with union of sets at sink
nodes of all MTBDDs that can be accessed by combinations of states in given macrostates
is created; new macrostates are retrieved as sets of states from sink node of this MTBDD.
This guarantees that only reachable states are present in the result automaton.

Algorithm 5: Automaton determinisation
Input: Input automaton A = (Q,F , Qf ,∆)
Output: Deterministic automaton Ad = (Qd,F , Qfd,∆d), L(Ad) = L(A)
begin1

Qd := Qfd := ∆d := ∅;2

newStates := empty queue;3

∆d () := MonadicApply (∆ ()) (collectSets newStates);4

while newStates is not empty do5

s := newStates.dequeue();6

if s /∈ Qd then7

Qd := Qd ∪ {s};8

if ∃qf ∈ s such that qf ∈ Qf then Qfd := Qfd ∪ {s};9

foreach n ∈ N such that Sn(∆) 6= ∅ do10

foreach (q1, . . . , qn) ∈ Sn(∆) such that ∃1 ≤ i ≤ n : qi ∈ s do11

foreach s1, . . . , sn ∈ Qd such that q1 ∈ s1, . . . , qn ∈ sn, si = s12

do
/* Create empty MTBDD */

tmp := ∅;13

foreach (p1, . . . , pn) ∈ Sn(∆) such that p1 ∈ s1, . . . , pn ∈ sn14

do
tmp := Apply tmp (∆ (p1, . . . , pn)) (λX Y . X ∪ Y );15

endfch16

∆d (s1, . . . , sn) :=17

MonadicApply tmp (collectSets newStates);
endfch18

endfch19

endfch20

endif21

endw22

return Ad = (Qd,F , Qfd,∆d);23

end24

Function collectSets(newStates, tf )

begin1

newStates.enqueue(tf );2

return {tf };3

end4
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5.2.6 Language Complementation

Given a finite tree automatonA = (Q,F , Qf ,∆), the task of language complementation is to
construct automaton Ac such that L(Ac) = L(A). This is done by first transforming A to a
deterministic automaton Ad = (Qd,F , Qfd,∆d) by the procedure described in Section 5.2.5
and then complementing the set of accepting states: Ac = (Qd,F , Qd \Qfd,∆d).

5.2.7 Automaton Reduction

Reduction of a finite tree automaton is a generic operation that takes a finite tree automaton
A = (Q,F , Qf ,∆) and a quotient set Q/∼ of some equivalence relation ∼ and returns a
reduced finite tree automaton Ar = (Qr,F , Qfr,∆r) such that Qr = Q/∼, Qfr = {D ∈
Qr | ∃q ∈ D : q ∈ Qf}, and

∆r = {f(B1, . . . , Bn)→ B |
f(q1, . . . , qn)→ q ∈ ∆, f ∈ F , q1 ∈ B1, . . . , qn ∈ Bn, q ∈ B} . (5.14)

Various methods can be used for obtaining the equivalence relation ∼, e.g. Myhill-
Nerode minimisation (see Section 5.2.9) or downward simulation (see Section 5.2.11). Note
that while the former approach can be used over deterministic finite tree automata only,
the latter may be used to reduce the size of nondeterministic finite tree automata as well
(in their case, however, the result is not a minimal nondeterministic finite tree automaton
but reduced nondeterministic finite tree automaton only). The algorithm for reduction of
a finite tree automaton is given in Algorithm 6.

Algorithm 6: Automaton reduction
Input: Input automaton A = (Q,F , Qf ,∆)

Quotient set Q/∼
Output: Reduced automaton Ar = (Qr,F , Qfr,∆r)
begin1

Qr := Q/∼;2

Qfr := {[q]∼ | q ∈ Qf};3

∆r := ∅;4

foreach n ∈ N such that Sn(∆) 6= ∅ do5

foreach (q1, . . . , qn) ∈ Sn(∆) do6

sp := ([q1]∼, . . . , [qn]∼);7

∆r sp := Apply (∆r sp) (∆ (q1, . . . , qn)) (λX Y . X ∪ {[y]∼ | y ∈ Y });8

endfch9

endfch10

return Ar = (Qr,F , Qfr,∆r);11

end12

5.2.8 Pruning Unreachable States

The task of pruning unreachable states of a finite tree automaton A = (Q,F , Qf ,∆) is
removal of states q (and corresponding transitions, which means removing MTBDDs for
all super-states that contain q) for which there does not exist a tree t ∈ T (F) such that
t→∗A q. The algorithm attempts to simulate the run of the automaton for all possible trees
and collect states that can be reached. The description of the algorithm is in Algorithm 7.
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Algorithm 7: Unreachable states pruning
Input: Input automaton A = (Q,F , Qf ,∆)
Output: Automaton Ap = (Qp,F , Qfp,∆p) without unreachable states, such

that L(Ap) = L(A)
begin1

Qp := Qfp := ∆p := ∅;2

reachStates := empty queue;3

∆p () := MonadicApply (∆ ()) (collectReachable reachStates);4

while reachStates is not empty do5

q := reachStates.dequeue();6

if q /∈ Qp then7

Qp := Qp ∪ {q};8

if q ∈ Qf then Qfp := Qfp ∪ {q};9

foreach n ∈ N such that Sn(∆) 6= ∅ do10

foreach (q1, . . . , qn) ∈ Sn(∆) such that q ∈ (q1, . . . , qn) do11

if ∀1 ≤ i ≤ n : qi ∈ Qp then12

sp := (q1, . . . , qn);13

∆p sp :=14

MonadicApply (∆ sp) (collectReachable reachStates);
endif15

endfch16

endfch17

endif18

endw19

return Ap = (Qp,F , Qfp,∆p);20

end21

Function collectReachable(reachStates, leaf )

begin1

foreach q ∈ leaf do2

reachStates.enqueue(q);3

endfch4

return leaf ;5

end6

5.2.9 Minimisation

Automaton minimisation is an operation on a finite tree automaton A = (Q,F , Qf ,∆)
which returns deterministic finite tree automaton Am = (Qm,F , Qfm,∆m) such that
L(A) = L(Am) and Am is an automaton that has the least states from all determinis-
tic finite tree automata that accept L(A). Existence of a minimum deterministic finite tree
automaton is guaranteed by the proof of Myhill-Nerode Theorem (see Section 2.4).

The minimisation process starts with pruning unreachable states and determinising the
input automaton. Once done, Algorithm 8 computes equivalence relation for congruence
(used in Myhill-Nerode Theorem) ∼ on Q. This is done by refining the equivalence relation
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from the start point with two initial classes: the accepting states and the non-accepting
states. All super-states (q1, . . . , qn) are then searched and in case there exists an equivalence
class [qi]∼ such that when qi is substituted in (q1, . . . , qn) for some other element from [qi]∼
and the target class of transitions over respective symbols differs, then ∼ is refined.

In the following step, the quotient set of ∼ is passed to the reduction procedure (see
Section 5.2.7) and obtaining the minimum automaton is straightforward.

Algorithm 8: Computation of ∼ equivalence over states
Input: Deterministic automaton without unreachable states A = (Q,F , Qf ,∆)
Output: Equivalence relation ∼⊆ Q×Q
begin1

eq := {(p, q) | p ∈ Qf ⇔ q ∈ Qf};2

prevEq := ∅;3

while eq 6= prevEq do4

prevEq := eq;5

foreach n ∈ N such that Sn(∆) 6= ∅ do6

foreach (q1, . . . , qn) ∈ Sn(∆) do7

foreach 1 ≤ i ≤ n do8

foreach q ∈ [qi]prevEq do9

spqi := (q1, . . . , qi−1, qi, qi+1, . . . , qn);10

spq := (q1, . . . , qi−1, q, qi+1, . . . , qn);11

if spq ∈ Sn(∆) then12

refined := false;13

Apply
(
∆ spqi

) (
∆ spq

)
(refineEq prevEq refined);14

if refined then eq := eq \ {(q, qi), (qi, q)};15

else16

eq := eq \ {(q, qi), (qi, q)};17

endif18

endfch19

endfch20

endfch21

endfch22

endw23

return ∼= eq;24

end25

Function refineEq(prevEq, refined, {lhs}, {rhs})
begin1

if [lhs]prevEq 6= [rhs]prevEq then2

refined := true;3

endif4

end5

5.2.10 Checking Language Emptiness

The problem of determining emptiness of a language is defined as given a finite tree automa-
ton A = (Q,F , Qf ,∆), is L(A) = ∅? The algorithm for deciding language emptiness first
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removes unreachable states from automaton A using the method described in Section 5.2.8.
This constructs a finite tree automaton Ap = (Qp,F , Qfp,∆p) without unreachable states.
It holds that language L(Ap) is empty if and only if Qfp = ∅ (i.e. there is no reachable final
state in Ap). Note that a slightly more efficient algorithm can determine that L(A) 6= ∅
immediately when the analysis of reachable states reaches state q such that q ∈ Qf .

5.2.11 Downward Simulation Reduction

Downward simulation [26] � for a finite tree automaton A = (Q,F , Qf ,∆) is a binary
relation on Q such that if q � r and f(q1, . . . , qn) → q ∈ ∆, then there are r1, . . . , rn such
that f(r1, . . . , rn)→ r ∈ ∆ and qi � ri for each 1 ≤ i ≤ n. Formally:

∀f ∈ F : [q � r ∧ f(q1, . . . , qn)→ q ∈ ∆]⇒
[∃r1, . . . , rn ∈ Q : f(r1, . . . , rn)→ r ∈ ∆ ∧ ∀1 ≤ i ≤ n : qi � ri] (5.15)

From the previous equation, the following can be inferred using modus tollens:

∀f ∈ F : ¬ [∃r1, . . . , rn ∈ Q : f(r1, . . . , rn)→ r ∈ ∆ ∧ ∀1 ≤ i ≤ n : qi � ri]⇒
[¬ (q � r) ∨ ¬ (f(q1, . . . , qn)→ q ∈ ∆)] (5.16)

We further expand � relation to super-states:

(q1, . . . , qn) � (r1, . . . , rn)
def⇔ ∀1 ≤ i ≤ n : qi � ri (5.17)

It can be proved that � is reflexive and transitive. It is possible to use downward simulation
for reduction of the size of an automaton by identifying states that simulate each other and
collapsing those states together. Even though an automaton obtained in this way is often
not minimum, the reduction can be significant and computation is faster than minimisation
which needs to first convert the automaton to deterministic one.

The algorithm for computation of downward simulation, described in Algorithm 9, starts
with declaring �= Q × Q and then for each super-state (q1, . . . , qn) finds all super-states
(r1, . . . , rn) such that (q1, . . . , qn) � (r1, . . . , rn) and makes a new MTBDD with uniting
the sink nodes of those. This union MTBDD represents all states r that can be reached
using super-states (r1, . . . , rn) simulating super-state (q1, . . . , qn). Now for each state q
accessible from (q1, . . . , qn) over symbol f ∈ F we check for each r such that q � r that r
is in the union MTBDD accessible over f . In case it is not, according to Equation 5.16 the
simulation relation � can be is refined by removing (q, r) from �. This is repeated until �
reaches the fixpoint.

As downward simulation is reflexive and transitive but generally not symmetric, sym-
metric closure of the relation needs to be performed in order to obtain equivalence relation.
Reduction is then performed using the generic reduction procedure as described in Sec-
tion 5.2.7.

5.2.12 Checking Language Inclusion Using Antichains

The language inclusion decision problem is to determine for two input finite tree automata
A1 = (Q1,F , Qf1,∆1) and A2 = (Q2,F , Qf2,∆2) whether it holds that L(A1) ⊆ L(A2).
The standard approach of checking language inclusion is by determinising A2, complement-
ing it, and checking whether L(A1) ∩ L(A2) = ∅. In case the intersection is not empty, it
means that there are some trees which are in L(A1) and not in L(A2) and therefore the
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Algorithm 9: Downward simulation computation
Input: Input automaton A = (Q,F , Qf ,∆)
Output: Simulation relation �⊆ Q×Q
begin1

prevSim := ∅;2

sim := Q×Q;3

while prevSim 6= sim do4

prevSim := sim;5

foreach n ∈ N such that Sn(∆) 6= ∅ do6

foreach (q1, . . . , qn) ∈ Sn(∆) do7

/* Create empty MTBDD */

tmp := ∅;8

foreach (r1, . . . , rn) ∈ Sn(∆) such that ∀1 ≤ i ≤ n : (qi, ri) ∈ sim9

do
tmp := Apply tmp (∆ (r1, . . . , rn)) (λX Y . X ∪ Y );10

endfch11

Apply (∆ (q1, . . . , qn)) tmp (simulationRefinement sim);12

endfch13

endfch14

endw15

return �= sim;16

end17

Function simulationRefinement(sim, lhs, rhs)

begin1

foreach q ∈ lhs do2

foreach r such that (q, r) ∈ sim do3

if r /∈ rhs then sim := sim \ {(q, r)};4

endfch5

endfch6

end7

inclusion does not hold. Nevertheless complementation needs determinisation of A2 which
is often very expensive. Therefore it is desirable to find approaches that do not need this
operation.

One approach that avoids determinisation is based on antichains [20]. An antichain
over Q1 × 2Q2 is a set S ⊆ Q1 × 2Q2 such that for every (p, s), (p′, s′) ∈ S if p = p′ then
s 6⊂ s′. For (p, s) ∈ S, p denotes a state from A1 that is reachable over some tree and s
denotes a set of states of automaton A2 that are reachable over the same tree. If such a pair
(p, s) can be reached so that p ∈ Qf1 and ∀r ∈ s : r /∈ Qf2, the inclusion L(A1) ⊆ L(A2)
does not hold. The algorithm is given in Algorithm 10.
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Algorithm 10: Antichain-based inclusion
Input: Input automata A1 = (Q1,F , Qf1,∆1) and A2 = (Q2,F , Qf2,∆2)
Output: true if L(A1) ⊆ L(A2), false otherwise
begin1

prevAntichain := ∅;2

antichain := ∅;3

Apply (∆1 ()) (∆2 ()) (collectProducts antichain);4

while antichain 6= prevAntichain do5

prevAntichain := antichain;6

foreach (q,D) ∈ prevAntichain do7

if q ∈ Qf1 ∧ ∀p ∈ D : p /∈ Qf2 then return false;8

endfch9

foreach n ∈ N such that Sn(∆1) 6= ∅ do10

foreach (q1, . . . , qn) ∈ Sn(∆1) such that11

∀1 ≤ i ≤ n : ∃Ri ⊆ Q2 : (qi, Ri) ∈ prevAntichain do
tmp := ∅;12

foreach (s1, . . . , sn) ∈ Sn(∆2) such that ∀1 ≤ i ≤ n : si ∈ Ri do13

tmp := Apply tmp (∆2 (s1, . . . , sn)) (λX Y . X ∪ Y );14

endfch15

Apply (∆1 (q1, . . . , qn)) tmp (collectProducts antichain);16

endfch17

endfch18

endw19

return true;20

end21

5.3 Transducers

This section starts with a description of the representation of relabelling (or sometimes
called structure-preserving) tree transducers. These are transducers that do not change the
structure of input trees but only change symbols in their nodes. The section continues by a
definition of two operations that are necessary in regular tree model checking: performing
a transduction step on a finite tree automaton and composition of transducers.

5.3.1 Representation of a Relabelling Tree Transducer

We represent only relabelling tree transducers that use the same alphabet F for both
input and output, we therefore refer to transducer τ = (Q,F ,F ′ = F , Qf ,∆) by τ =
(Q,F , Qf ,∆). Relabelling tree transducers contain transduction rules of the following type:

f(q1(x1), . . . , qn(xn))→ q(g(x1, . . . , xn)), (5.18)

where n ∈ N, f, g ∈ Fn, q, q1, . . . , qn ∈ Q and x1, . . . , xn ∈ X , or using an alternative
notation as

f(q1, . . . , qn)→ q(g). (5.19)

The representation of a transduction function ∆ of a relabelling tree transducer is
therefore very similar to the representation of a transition function of a finite tree automaton
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Function collectProducts(antichain,lhs, rhs)

begin1

foreach q ∈ lhs do2

if @(q, E) ∈ antichain such that rhs ⊆ E then3

antichain := (antichain \ {(q, F ) | F ⊂ rhs}) ∪ {(q, rhs)};4

endif5

endfch6

end7

and can again be symbolic. We naturally expand the definition of a super-state S(∆) to
the transduction function. The transduction function ∆ of a relabelling tree transducer τ
may then be alternatively defined as a mapping ∆• in the following way:

∆• : S →
(
F → (F → 2Q)

)
(q1, . . . , qp) 7→ {(f, (g,D)) | D = {q | f(q1, . . . , qp)→ q(g) ∈ ∆}} . (5.20)

However, since the composition of functions is associative, the formula in Equation 5.20
can be rewritten as

∆• : S →
(
(F → F)→ 2Q

)
(q1, . . . , qp) 7→ {((f, g), D) | D = {q | f(q1, . . . , qp)→ q(g) ∈ ∆}} (5.21)

(we again confuse ∆ and ∆•). This means that we can represent a transduction function of
a relabelling tree transducer using MTBDDs in the same way as a transition function of a
finite tree automaton, provided we expand the function enc : F → {0, 1}n, which is defined
in Section 5.1, to encT : (F × F)→ {0, 1}2n in the following way:

encT : (F × F)→ {0, 1}2n

(a, b) 7→ (a1, . . . , an, b1, . . . , bn) (5.22)

where (a1, . . . , an) = enc(a) and (b1, . . . , bn) = enc(b).

Note that the actual ordering of a1, . . . , an and b1, . . . , bn is not important provided that it
remains consistent for encT . Another ordering which may be useful for some cases is for
instance (a1, b1, . . . , an, bn).

In case we denote the MTBDD for a super-state sA of the transition function ∆A of a
finite tree automaton A as

∑
f∈F

enc(f)=(a1,...,an)

(∏
ai=0

¬xi ·
∏
ai=1

xi · sA(f)

)
(5.23)

(see Section 3.2 for further details of this notation), we may represent MTBDD for a super-
state sτ of the transduction function ∆τ of a relabelling tree transducer τ as

∑
(f,g)∈F×F
encT (f,g)=

(a1,...,an,b1,...,bn)

∏
ai=0

¬xi ·
∏
ai=1

xi ·
∏
bi=0

¬yi ·
∏
bi=1

yi · sτ (f, g)

 . (5.24)
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This representation works with an MTBDD extended by Boolean variables y1, . . . , yn
(we assume that the representation of finite tree automata described in Section 5.1 uses
variables x1, . . . , xn). In order to support operations that work with both finite tree au-
tomata and relabelling tree transducers, the following two functions that work directly with
the structure of MTBDDs are necessary:

TrimVariables This function receives an MTBDD M and x, which is a base name of
Boolean variables x1, . . . , xn such that x1, . . . , xn are in M , and returns MTBDD
M−x that does not contain x1, . . . , xn. Hence, TrimVariables(M,x) = M−x. Since
this operation may cause collisions (e.g. producing formula y1y2A + y1y2B where
A 6= B,A 6= ⊥, B 6= ⊥), they need to be properly handled by uniting colliding state
sets (e.g. producing y1y2(A ∪ B) for the previous example). The following formula
formally defines the function:

TrimVariables


∑

(f,g)∈F×F
encT (f,g)=

(a1,...,an,b1,...,bn)

∏
ai=0

¬xi ·
∏
ai=1

xi ·
∏
bi=0

¬yi ·
∏
bi=1

yi · J(f, g)

 , x


=

∑
g∈F

enc(g)=(b1,...,bn)

∏
bi=0

¬yi ·
∏
bi=1

yi ·
⋃
f∈F

J(f, g)

 (5.25)

The implementation of TrimVariables(M,x) can be done in the following way:

Traverse M from the root to sink nodes and for each node k on the path such
that k represents some xi do the following: take both child nodes of k, k0 and
k1, and set k to k := Apply k0 k1 (λX Y . X ∪ Y ).

RenameVariables A function that receives an MTBDD M and names of two Boolean
variables x and y such that x1, . . . , xn are in M . The function renames all occurrences
of xi to yi for each 1 ≤ i ≤ n. The function is formally defined by the following
formula:

RenameVariables

 ∑
f∈F

enc(f)=(a1,...,an)

(∏
ai=0

¬xi ·
∏
ai=1

xi · J(f)

)
, x, y


=

∑
f∈F

enc(f)=(b1,...,bn)

∏
bi=0

¬yi ·
∏
bi=1

yi · J(f)

 (5.26)

The implementation of RenameVariables(M,x, y) simply traverses M and renames
all occurrences of xi to yi (assuming that y1, . . . , yn are not in M).

5.3.2 Performing a Transduction Step

The operation of performing a transduction step of a finite tree automatonA = (QA,F , QfA,∆A)
according to the transduction denoted by a relabelling tree transducer τ = (Qτ ,F , Qfτ ,∆τ )
constructs a finite tree automaton Aw = (Qw,F , Qfw,∆w) such that L(Aw) = τ (L(A)).
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Informally, if A represents a set of configurations of a system and τ represents transitions in
the system, then τ (L(A)) is a finite tree automaton that represents the set of configurations
of the system after one transition.

Algorithm 11: Performing transduction step
Input: Input automaton A = (QA,F , QfA,∆A)

Relabelling tree transducer τ = (Qτ ,F , Qfτ ,∆τ )
Output: Automaton Aw = (Qw,F , Qfw,∆w) such that L(Aw) = τ (L(A))
begin1

Qw := Qfw := ∆w := ∅;2

newStates := empty queue;3

tmp := Apply (∆A ()) (∆τ ()) (intersect newStates);4

tmp := TrimVariables(tmp, x);5

∆w () := RenameVariables(tmp, y, x);6

while newStates is not empty do7

(qa, qb) := newStates.dequeue();8

if (qa, qb) /∈ Qw then9

Qw := Qw ∪ {(qa, qb)};10

if qa = qsink ∨ qb = qsink then continue;11

if qa ∈ QfA ∧ qb ∈ Qfτ then Qfw := Qfw ∪ {(qa, qb)};12

foreach n ∈ N such that Sn(∆A) 6= ∅ ∧ Sn(∆τ ) 6= ∅ do13

foreach (q11, . . . , q1n) ∈ Sn(∆A) such that qa ∈ (q11, . . . , q1n) do14

foreach (q21, . . . , q2n) ∈ Sn(∆τ ) such that qb ∈ (q21, . . . , q2n) do15

if ∀1 ≤ i ≤ n : (q1i, q2i) ∈ Qw then16

sp1 := (q11, . . . , q1n);17

sp2 := (q21, . . . , q2n);18

tmp :=19

Apply (∆A sp1) (∆τ sp2) (intersect newStates);
tmp := TrimVariables(tmp, x);20

∆w ((q11, q21), . . . , (q1n, q2n)) :=21

RenameVariables(tmp, y, x);
endif22

endfch23

endfch24

endfch25

endif26

endw27

return Aw = (Qw,F , Qfw,∆w);28

end29

The algorithm for this operation is described in Algorithm 11. The algorithm assumes
that MTBDDs for transition function ∆A are defined over Boolean variables x1, . . . , xn and
that MTBDDs for transduction function ∆τ are defined over Boolean variables x1, . . . , xn
and y1, . . . , yn, where x1, . . . , xn are used for input symbols of the transducer and y1, . . . , yn
are used for output symbols. MTBDDs for the output automaton are again over Boolean
variables x1, . . . , xn. The algorithm works by traversing both the automaton and the trans-
ducer in parallel and performing relabelling of transitions which are in both (the algorithm
may resemble the computation of intersection, it actually uses function intersect() which
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is defined in Section 5.2.4). Figure 5.4 attempts to give the idea about how the algorithm
works for a pair of super-states.

x2 x2

x1

A B

a) MTBDD sA

x2

y1

x1

3

y1

y2

7

b) MTBDD sτ

x2

y1

x1

A3

y1

y2

x2

B7

c) res := Apply sA sτ intersect

A3

y1

y2

B7

d) trimmed := TrimVariables(res, x)

A3B7

x1

x2

e) RenameVariables(trimmed, y, x)

Figure 5.4: An example of performing transduction step of transducer τ on automaton A
for one pair of super-states sτ and sA, such that 01(sA) → A, 10(sA) → B, and 0X(sτ ) →
3(1X), 10(sτ )→ 7(01). Ordering (a1, b1, . . . , an, bn) is used.

5.3.3 Transducer Composition

Transducer composition is an operation that, when given two relabelling tree transducers
τ1 = (Q1,F , Qf1,∆1) and τ2 = (Q2,F , Qf2,∆2), creates a relabelling tree transducer τ =
(Q,F , Qf ,∆) such that for all finite tree automataA, it holds that τ (L(A)) = τ2 (τ1 (L(A)))
(or τ = τ2 ◦ τ1).

The algorithm described as Algorithm 12 assumes that MTBDDs for transduction func-
tions ∆1 and ∆2 are over Boolean variables x1, . . . , xn (which encode the input symbol) and
y1, . . . , yn (which encode the output symbol). The MTBDDs for the transduction function
of the constructed transducer are again over Boolean variables x1, . . . , xn for the input and
y1, . . . , yn for the output. However, the MTBDDs need to be able to also work with Boolean
variables z1, . . . , zn as they are used inside the algorithm.

The algorithm is very similar to the algorithm that performs a transduction step on a
finite tree automaton (see Section 5.3.2). Figure 5.5 gives an example of the operations
carried out by the algorithm for one pair of super-states.
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Algorithm 12: Transducer composition
Input: Input transducers τ1 = (Q1,F , Qf1,∆1) and τ2 = (Q2,F , Qf2,∆2)
Output: Transducer τ = (Q,F , Qf ,∆) such that τ = τ2 ◦ τ1
begin1

Q := Qf := ∆ := ∅;2

newStates := empty queue;3

tmp := RenameVariables(∆2 (), y, z);4

tmp := RenameVariables(tmp, x, y);5

tmp := Apply (∆1 ()) tmp (intersect newStates);6

tmp := TrimVariables(tmp, y);7

∆ () := RenameVariables(tmp, z, y);8

while newStates is not empty do9

(qa, qb) := newStates.dequeue();10

if (qa, qb) /∈ Q then11

Q := Q ∪ {(qa, qb)};12

if qa = qsink ∨ qb = qsink then continue;13

if qa ∈ Qf1 ∧ qb ∈ Qf2 then Qf := Qf ∪ {(qa, qb)};14

foreach n ∈ N such that Sn(∆1) 6= ∅ ∧ Sn(∆2) 6= ∅ do15

foreach (q11, . . . , q1n) ∈ Sn(∆1) such that qa ∈ (q11, . . . , q1n) do16

foreach (q21, . . . , q2n) ∈ Sn(∆2) such that qb ∈ (q21, . . . , q2n) do17

if ∀1 ≤ i ≤ n : (q1i, q2i) ∈ Q then18

tmp := RenameVariables(∆2 (q21, . . . , q2n), y, z);19

tmp := RenameVariables(tmp, x, y);20

sp := (q11, . . . , q1n);21

tmp := Apply (∆1 sp) tmp (intersect newStates);22

tmp := TrimVariables(tmp, y);23

∆ ((q11, q21), . . . , (q1n, q2n)) :=24

RenameVariables(tmp, z, y);
endif25

endfch26

endfch27

endfch28

endif29

endw30

return τ = (Q,F , Qf ,∆);31

end32
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Figure 5.5: An example of performing transducer composition of transducer τ on it-
self: τ ◦ τ , for one super-state sτ , such that 0X(sτ ) → 3(1X), 10(sτ ) → 7(01). We as-
sume that s1 = sτ and s2 = RenameVariables(RenameVariables(sτ , y, z), x, y). Ordering
(a1, b1, c1, . . . , an, bn, cn) is used.
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Chapter 6

Implementation

This chapter describes design and implementation of a prototype of the library. It starts
with description of the implementation of the type of MTBDDs as defined in Section 5.1.
This is followed by description of the object-oriented design of the implementation.

6.1 MTBDD Package

Since a smart and efficient implementation of MTBDDs is not trivial, it was decided that
an existing library should be used instead of implementing an own BDD package. For
this purpose, CUDD [29] (distributed free of charge under the new and simplified BSD
licence [30]), which is a C library implementing shared BDDs, ADDs (algebraic decision
diagrams) and ZDDs (zero-suppressed decision diagrams), has been chosen.

Using this library, we represent an MTBDD by an ADD [31], which is in fact an MTBDD
that puts emphasis on performing algebraic operations (such as addition, multiplication, or
computation of logarithm) on sets of floating point numbers represented by the diagram.
Despite such broad range of operations we use the data structure only for storage and
retrieval of data and performing Apply operation. Because CUDD only allows to store
floating point numbers into the sink nodes of MTBDDs, we had to deal with the problem
to substitute those floating point numbers for sets of states of an automaton (as described
in Section 5.1). We solved this problem by patching the library so that sink nodes would
contain pointers to sets stored in another data structure, which serves as a pool of sets
of states. In order to make use of MTBDD’s space reduction, it must hold that there are
never two equal sets of states in the pool. This means that two pointers point to the same
set of states if and only if they are equal.

As shared variation of MTBDD is used, a way to distinguish among individual MTBDDs
in such structure needs to be defined. We use another data structure that provides mapping
from the set of super-states of the transition function to roots of the shared MTBDD. The
resulting wrapper over MTBDDs provided by CUDD is shown in Figure 6.1.

Due to the fact that many algorithms in Chapter 5 need to alter some data outside
of MTBDD during an Apply operation, we also patched CUDD and support the following
Apply operation: Apply(lhs, rhs, op), where lhs and rhs are sets of states of the left
and right MTBDD respectively, and op is a function object: an object that can be called
like an ordinary function. Using op to pass pointers to data structures in main subroutines,
we can avoid using global variables and thus making the code re-entrant and less prone to
programming errors.
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super−states

sets of states

CUDD

Figure 6.1: Wrapper over CUDD-provided MTBDDs.

6.2 Object-Oriented Design

C++ has been chosen as the implementation language because of its efficiency, good sup-
port, means for modular design and an extensive standard library. We employ C++’s
support of object-oriented programming paradigm to create a generic and modular design,
which is further described in this section.

In order to provide both modularity and good performance, policy-based design [32] is
exploited in the object-oriented design of the library. This approach uses policy classes,
which are classes that are not supposed to be instantiated (which can be enforced by
making their constructor protected) or to only provide interface, but rather to provide a
certain functionality when inherited by some class called the host class. Each policy class
implements a particular interface called a policy. The host class is a class template, i.e.
an incomplete class that does not name a type by itself but needs to be have its template
arguments bound in order to do so, as shown in Figure 6.2. In addition to standard

<<policy>>

<<policy>>

<<policy>> <<policy>>

binding A

<<incomplete type>>

policy classes host class host class<A>

<<complete type>>

<<policy>>
A

B

A

Figure 6.2: Binding of policy classes to host class.
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template arguments the host class also defines its policies. Using multiple inheritance,
several orthogonal policy classes may be inherited by host class. Due to the fact that policy
classes of a host class are resolved statically during compile time, the compiler may perform
certain optimizations, such as inlining of code, which is an advantage over using e.g. virtual
methods.

6.2.1 MTBDD Wrapper

CUDDFacade is a class that was designed according to the façade design pattern [33]. It
is used as the access point to CUDD library that provides very extensive and confusing
API. CUDDFacade provides a clean and type-safe interface with only those operations which
are necessary for the implementation of the library, while hiding the others. The class is
compiled with all CUDD’s object files into a single static library which is then further used
by the tree automata library.

CUDD

CUDDFacade

...methods...

+SetValue()

+GetValue()

+Apply()

+MonadicApply()

CUDDSharedMTBDD

...other methods...

libcudd_facade.a

Figure 6.3: Interface to CUDD package.

CUDDSharedMTBDD is an object-oriented representation of a shared MTBDD as described
in Section 6.1. The class uses CUDDFacade to access CUDD as depicted in Figure 6.3.
CUDDSharedMTBDD is a class template with the following template parameters:

RootType Defines the type for accessing MTBDDs for individual super-states. This may
be an arbitrary type, the prototype implementation uses unsigned.

LeafType The type for the sink node of the MTBDD. This may again be an arbitrary type,
the prototype implementation uses a set of states. However, deterministic automata
may store the target state directly in the sink node thus making the access time
shorter.

VariableAssignmentType This template parameter determines the data type for represen-
tation of assignment to Boolean variables of the MTBDD, i.e. the data type for the
symbol. To fully utilise the potential of MTBDDs, our representation of assignment
to Boolean variables of MTBDD can assign 3 different values to a variable: true (1),
false (0) and don’t care (X). By using the don’t care value, we may work with
whole sets of transitions over various symbols as with a single transition (for example
to work with four transitions over symbols encoded as 100, 101, 110, and 111 at once,
it is enough to use only one encoding 1XX).

RootAllocator The implementation of this policy defines the mapping of roots of RootType
to CUDD-related pointers to root nodes of corresponding MTBDDs.
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LeafAllocator This policy determines the exact implementation of the mapping between
the unsigned sink nodes stored in the patched CUDD data structures and those of
type LeafType.

These template parameters allow high configurability of CUDDSharedMTBDD, for instance
to be used for deterministic finite tree automata or for finite (word) automata transition
functions.
CUDDSharedMTBDD also defines AbstractApplyFunctorType which is an abstract class

of a function object with a single pure virtual method, which is overloaded operator ():

virtual LeafType operator()(const LeafType& lhs, const LeafType& rhs) = 0;

Classes that inherit this abstract function object need to implement the only method by
defining a function for Apply operation. The Apply operation takes root nodes of two MTB-
DDs and an object of a class that implements the AbstractApplyFunctorType interface:

RootType Apply(const RootType& lhs, const RootType& rhs,

AbstractApplyFunctorType* op);

6.2.2 Transition Function

The MTBDDTransitionFunction class represents transition functions of several automata
using single MTBDD. This is because CUDD only allows executing Apply operation on
MTBDD roots from the same shared MTBDD. When an automaton is being created, it
registers to some MTBDDTransitionFunction and inserts all its transitions into this object.

A challenging issue that needs to be faced is the choice of data structure for storage of
super-states, i.e. mapping of super-states to their respective MTBDDs. Storage of nullary
and unary super-states is obvious. Since there is only one nullary super-state for each
automaton, these super-states are stored in a single array indexed by automaton number.
Unary super-states of each automaton are stored in a separate array indexed by the only
state’s number. The prototype implementation also deals with storage of binary super-
states by using a 2-dimensional matrix indexed by the two states of the super-state. Due
to the fact that space requirements for n-dimensional matrix grow exponentially and the
utilisation drops with almost the same speed for real-world problems, more sophisticated
data structures need to be found. Our prototype implementation uses for storage of super-
states with arity greater than 2 a hash table with an arbitrarily long vector of states as the
key and pointer to MTBDD as the value.

6.2.3 Tree Automaton

The TreeAutomaton class represents a finite tree automaton with a high-level interface.
The interface allows the use of human-readable names of states and symbols and provides
mapping to their inner representation. TreeAutomaton enables adding a state, transition or
marking a state as final. It also supports importing and exporting a finite tree automaton
to or from a file.

6.2.4 Automaton Import

In order to support direct user interface to the library, the library supports reading a fi-
nite tree automaton from a file. The reading interface is designed according to the builder
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AbstractTABuilder

TimbukTABuilder

+Build()

Figure 6.4: TABuildingDirector structure.

design pattern [33]. Building a new finite tree automaton from a file is done by creat-
ing an object of class TABuildingDirector and assigning an instance of class implement-
ing the AbstractTABuilder interface to it. Then calling the Construct() method of
TABuildingDirector (which further calls the Build() method of AbstractTABuilder)
with a data stream that has a format recognized by the concrete builder constructs proper
tree automaton. For testing purposes one concrete builder was implemented:
TimbukTABuilder which accepts input data stream with description of automata in Timbuk-
like format (see Section 3.1).

6.2.5 Automaton Export

This section deals with exporting description of a tree automaton into a human-readable
format. In order to do so, the most difficult task is to extract transitions from symbolic
representation into explicit. This operation needs to know the structure of the MTBDD
used for representation of the transition function. This is achieved by using test symbols
(x1, . . . , xn) that start with value XXX...X and for each Boolean variable x1, . . . , xn attempt
to bind its value to both 0 and 1. If it holds that the resulting MTBDDs for both bindings
are the same, then the value of the variable is not important, it is left in X (don’t care)
and the procedure carries on to the following variables. In case the MTBDDs are not
the same, the procedure splits into two branches and continues for both bindings. This
continues until all variables have been either bound or left in X.

A simple script that converts a file in the output format into a graphical representation
of the automaton for dot tool [34] has been created.

Unlike finite word automata, transition function and run of a finite tree automaton
cannot be expressed simply as a labelled graph and walk (i.e. sequence of vertices and edges
such that each vertex or edge may occur several times in the sequence) in the graph. Up to
our knowledge there is no widely accepted standard graphical representation of finite tree
automata, we therefore attempted to choose a simple and understandable representation
resembling finite (word) automata as much as possible. As in finite (word) automata, states
are represented by circles, final states by double circles. We introduce new type of vertices
representing super-states which make the graph bipartite: an edge is either from a state to a
super-state or from a super-state to a state (this may resemble a Petri net). Representation
of super-states is by rectangles with boxes. The number of boxes determines the arity of the
super-state. The labelling of edges from states to super-states denotes the position of the
state in the super-state vector; the labelling of edges from super-states to states denotes the
symbol over which the transition is to be made. An example of graphical representation of
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Figure 6.5: Example of graphical representation of a tree automaton.

a finite tree automaton is in Figure 6.5.

6.2.6 Operations

Operations on finite tree automata with transition function represented using an MTBDD
are provided by MTBDDOperation class. The prototype implementation implements the
following operations: language union, language intersection, reduction of an automaton
according to some equivalence class, and computation of downward simulation. All these
operations are performed only using the interface provided by CUDDSharedMTBDD.
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Chapter 7

Evaluation

This chapter provides an evaluation of the prototype implementation (called libSFTA) of
the library described in the previous chapters. The tests were run on a laptop with a dual-
core Intel Core 2 Duo CPU at 1.80 GHz and 2 GiB of available memory with Debian Squeeze
GNU/Linux installed. We measured performance of the following three finite tree automata
operations: language union, language intersection, and automaton reduction according to
the downward simulation relation.

7.1 Language Union

The performance of the language union operation on two input finite tree automata was
measured and compared to Timbuk, a tree automata library (described in Section 3.1)
that performs operations on nondeterministic finite tree automata using an explicit rep-
resentation of the transition function (note that the implemented library uses a symbolic
representation). We made this choice because MONA immediately determinises input au-
tomata so the comparison would not be fair.

We performed the tests on binary tree automata over an alphabet with 130 symbols and
various size of the state set obtained from tree model checking of real systems. It should
be pointed out that the execution time for both libSFTA and Timbuk does not include
the time necessary to load the automaton from a file. This should give more valid results,
since building an MTBDD for a transition function is not a trivial operation (note that
the comparison is fair from a practical point of view since within a verification framework
automata are built internally, not loaded from a file). The results are given in Table 7.1
(in a graphical form in Figure 7.1). It can be seen that libSFTA significantly outperforms
Timbuk in all cases.

Automata Timbuk libSFTA

A0053 A0054 1.982 s 0.0005 s
A0080 A0082 37.645 s 0.0007 s
A0080 A0111 37.645 s 0.0008 s
A0053 A0246 414.104 s 0.0010 s
A0080 A0246 533.678 s 0.0012 s
A0082 A0246 542.069 s 0.0012 s

Table 7.1: Language union performance results.
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Figure 7.1: Performance comparison of language union for various state set size.

7.2 Language Intersection

The experiments with the language intersection operation on two input finite tree automata
were also compared to Timbuk. These experiments were conducted with the same set of test
automata and the same testing conditions as the language union operation (see Section 7.1).
The results are given in Table 7.2 with the graph in Figure 7.2. The results show that
for larger state sets Timbuk computes the finite tree automaton for language intersection
slightly faster than libSFTA.

Automata Timbuk libSFTA

A0053 A0054 0.076 s 0.057 s
A0053 A0246 0.609 s 0.617 s
A0080 A0082 1.862 s 1.675 s
A0080 A0111 2.483 s 3.765 s
A0080 A0246 6.062 s 18.320 s
A0082 A0246 7.503 s 19.355 s

Table 7.2: Language intersection performance results.

 50  55  60  65  70  75  80  85  40
 80

 120
 160

 200
 240

 280

 0

 2

 4

 6

 8

Time [s]

A1 States

A2 States

Time [s]

 0

 2

 4

 6

 8

a) Timbuk

 50  55  60  65  70  75  80  85  40
 80

 120
 160

 200
 240

 280

 0

 4

 8

 12

 16

 20

Time [s]

A1 States

A2 States

Time [s]

 0

 4

 8

 12

 16

 20

b) libSFTA

Figure 7.2: Performance comparison of language intersection for various state set size.
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7.3 Simulation Reduction

The performance of reduction of a finite tree automaton according to downward simulation
relation was measured in the next series of tests. The results were compared to SA [35],
an OCaml tool implementing computation of downward simulation over labelled transition
systems and finite tree automata.

The execution time for libSFTA comprises computing downward simulation over the
input tree automaton, computing symmetric closure of the relation and reducing the au-
tomaton according to equivalence given by the simulation and its symmetric closure. As
SA cannot perform reduction of the automaton, the execution time of SA consists of the
time it takes to load the automaton from a file (which should be negligible according to the
authors) and compute the downward simulation. Two different test cases were measured.

1. The first test case shows how the performance depends on the size of the state set of
the input finite tree automaton for a fixed small alphabet. The results are given in
Table 7.3 and Figure 7.3. We can see that the performance of libSFTA is worse when
compared to SA. The reason for this is that SA uses a more sophisticated algorithm
for computation of simulation. In the future version of the library, we wish to focus
on optimising the algorithm we use in order to be able to compete with the solution
used in SA even for smaller alphabets.

Automaton States Transitions SA libSFTA

A0053 53 159 0.04 s 24.6 s
A0054 54 241 0.04 s 29.3 s
A0063 63 571 0.10 s 55.2 s
A0070 70 622 0.07 s 71.5 s
A0080 80 672 0.11 s 274.4 s
A0082 82 713 0.09 s 331.5 s
A0089 89 1006 0.11 s 226.1 s

Table 7.3: Experimental results of simulation reduction for various state set size.
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Figure 7.3: Performance comparison of simulation reduction for various state set size.
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2. The second test case shows how the performance of libSFTA and SA relates to the size
of the alphabet of the input finite tree automaton for a fixed set of states. We created
a set of simple tree automata that perform transitions over symbols from alphabet of
various size. The number of transitions equals the number of symbols in the alphabet
(we use one transition for every symbol). The results of the experiments with the size
of the alphabet are in Table 7.4 and Figure 7.4. It is clear that the use of symbolic
representation makes the performance of libSFTA far superior to the performance of
SA.

Symbols SA libSFTA

1337 0.06 s 0.0033 s
3525 0.14 s 0.0051 s
7067 0.26 s 0.0071 s

15136 0.69 s 0.0054 s
31235 2.09 s 0.0031 s
65503 8.86 s 0.0040 s

130023 48.40 s 0.0045 s

Table 7.4: Experimental results of simulation reduction for various alphabet size.
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Figure 7.4: Performance comparison of simulation reduction for various alphabet size.

7.4 Discussion

The experiments described in this chapter showed that libSFTA has a good potential to
become an interesting tree automata library, especially for applications that need large
alphabets and can exploit symbolic representation well. The use of nondeterminism also
considerably accelerates the computation of the automaton for language union and can keep
automata small and clean.
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Chapter 8

Conclusion

The aim of this Master’s Thesis was to design and implement an efficient and flexible finite
tree automata library for the use in symbolic formal verification, namely to be applicable
for tree model checking techniques, such as regular tree model checking and abstract regular
tree model checking.

The theoretical background of tree automata has been studied as well as formal verifica-
tion methods for systems represented by tree automata. Existing packages that implement
tree automata have been surveyed and their advantages and disadvantages summarised.
An analysis of the aforementioned verification methods have yielded a list of necessary
requirements for the library.

A representation of nondeterministic finite tree automata with symbolically represented
transition functions has been proposed. The representation is based on MTBDDs provided
by an external package (which may be changed though by writing a simple wrapper with
given interface for another library). Algorithms that carry out standard as well as some
verification-specific operations on tree automata using this representation have also been
developed and described in this text.

An object-oriented modular design of the library based on design patterns and policies
has been created. A prototype implementation has been programmed, evaluated on test-
ing data, and compared to other tools that provide the same functionality. The results of
experiments show that the concepts we employed are viable and that the library can com-
plement currently available tree automata libraries, especially when used for applications
with finite tree automata that make use of large alphabets and nondeterminism.

Future work will focus on redesigning the library according to our feedback from the
implementation of the prototype and data collected from code profiling. Further, we wish
to create a library that supports both explicitly and symbolically represented finite tree
automata. We also plan to optimise the algorithms that are used by the library in order to
give good performance even for small alphabets and large state sets. Another direction of
work then includes implementing a support of further algorithms for simulation reduction
(upward and combined simulation based relations) and antichain-based inclusion checking
(combination of antichains and simulations), including further research on still more ad-
vanced reduction and inclusion checking techniques. A next step should then be to test
the library as a part of various verification tools (for instance as a base of abstract regular
tree model checking tools or with decision procedures for various logics, such as WS2S or
separation logic).
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Appendix A

Storage Medium

A storage medium (DVD) containing an electronic version of the technical report and source
code of the prototype implementation including patched CUDD package is enclosed to this
thesis.
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