
Register automata with linear arithmetic
Yu-Fang Chen∗, Ondřej Lengál†, Tony Tan‡ and Zhilin Wu§

∗ Institute of Information Science, Academia Sinica, Taiwan
† FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

‡ Department of Computer Science and Information Engineering, National Taiwan University, Taiwan
§ State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China

Abstract—We propose a novel automata model over the al-
phabet of rational numbers, which we call register automata over
the rationals (RAQ). It reads a sequence of rational numbers
and outputs another rational number. RAQ is an extension of
the well-known register automata (RA) over infinite alphabets,
which are finite automata equipped with a finite number of
registers/variables for storing values. Like in the standard RA,
the RAQ model allows both equality and ordering tests between
values. It, moreover, allows to perform linear arithmetic between
certain variables. The model is quite expressive: in addition to
the standard RA, it also generalizes other well-known models
such as affine programs and arithmetic circuits.

The main feature of RAQ is that despite the use of linear
arithmetic, the so-called invariant problem—a generalization of
the standard non-emptiness problem—is decidable. We also in-
vestigate other natural decision problems, namely, commutativity,
equivalence, and reachability. For deterministic RAQ, commuta-
tivity and equivalence are polynomial-time inter-reducible with
the invariant problem.

I. INTRODUCTION

Motivated by various needs and applications, there have
occurred many studies on languages over infinite alphabets.
To name a few, typical applications include database systems,
program analysis and verification, programming languages and
theory by itself. See, e.g., [1]–[9] and the references therein.
One of the most popular models are arguably register automata
(RA) [10], [11]. Briefly, an RA is a finite automaton equipped
with a finite number of registers, where each register can store
one symbol at a time. The automaton then moves from state to
state by comparing the input symbol with those in its registers,
and at the same time may decide to update the content of its
registers by storing a new symbol into one of its registers, and
thus, “forgetting” the previously stored symbol. The simplicity
and naturality of RA obviously contribute to their appeal.

So far, the majority of research in this direction has focused
on models where the only operations allowed on the input
symbols are equality and order relation. For many purposes,
this abstraction is good enough. For example, relational
algebra-based queries, often used in database systems, involve
only equality tests [12]. For many simple but common queries,
such as counting the number of elements or summing up the
values in a list, at least some arithmetic is, however, required.

It is a folklore belief that allowing RA to perform even
the simplest form of arithmetic on their registers will im-
mediately yield undecidability for the majority of interesting

decision problems. The evidence is that such RA subsume
simple two-counter machines, which are already Turing-
complete [13]. Indeed, the belief holds not only for RA, but
for the majority (if not all) of the models of languages over
infinite alphabets.

In this paper, we propose a novel automaton model over
the rational numbers Q, named register automata over the
rationals (RAQ). Like in standard RA, an RAQ is equipped
with a finite number of variables (registers), each of them
is able to store a value.∗ The RAQ model allows to test
order and perform linear arithmetic between some variables,
yet keeps several interesting decision problems decidable. The
key idea is the partitioning of variables into two sets, control
variables and data variables, which is inspired by the work
of Alur and Černý [14]. Control variables can be used in
transition guards for order (6) comparison and can be assigned
a value either from the input or from another control variable.
In contrast, data variables can store a value obtained from
a linear combination of the values of all variables and the
value from the input, but cannot be used in transition guards.
In a final state, an RAQ outputs a rational number obtained
by a linear combination of the values of all variables (non-
final states have no output). Due to nondeterminism, it is
possible that different computation paths for the same input
word produce different output values. RAQ can be used to
model, e.g., the following aggregate functions: finding the
smallest and the largest elements, finding the k-th largest
element, counting the number of elements above a certain
threshold, summing all elements, or counting the number of
occurrences of the largest element in a list.

The RAQ model is a very general model that captures and
simulates at least three other well-known models. The first
and obvious one is the standard RA studied in [9]–[11], [15].
An RA is simply an RAQ without data variables that only
allows equality test of control variables and in a final state
outputs the constant 1. The second one is the affine program
(AP) model defined by Karr [16], which is commonly used as
a standard abstract domain in static program analysis [17],
[18]. An AP is a special case of an RAQ where control
variables as well as values of the input are ignored. Finally,
RAQ can also simulate (division-free) arithmetic circuits (AC)

∗Though normally called registers, for reasons that will be apparent later,
we will refer to them as variables in this paper.978-1-5090-3018-7/17/$31.00 c©2017 IEEE

without indeterminates. Originally, AC were introduced as a
model for studying algebraic complexity [19], [20], but re-
cently gain prominence as a model for analysing the complex-
ity of numerical analysis [21] due to its succinct representation
of numbers. We show that RAQ can be used to represent
numbers using roughly only twice as many transitions as the
number of edges in the AC that represents the same number.

We study several decision problems for RAQ. The first
one is the so-called invariant problem, which asks if the set
of reachable configurations of a given RAQ at a given state
is not contained in a given affine space.† This is a typical
decision problem in AP, where one would like to find out
the relations among the variables when the program reaches a
certain state [16], [22]. We show that the invariant problem for
RAQ is polynomial-time inter-reducible with another decision
problem called the non-zero problem, which asks if a given
RAQ can output a non-zero value for some input word. Note
that the non-zero problem is a generalization of the non-
emptiness problem of RA, if we assume that an RA outputs
the constant 1 in its final states. We show that the non-zero
problem is decidable in exponential time (in the number of
control variables, while polynomial in other parameters). Our
algorithm is based on the well-known Karr’s algorithm [16],
[22] for deciding the same problem for AP.

We should remark that the exponential complexity is in
the bit model, i.e., rational numbers are represented in their
bit forms. If we assume that each rational number occupies
only a constant space, e.g., the Blum-Shub-Smale model [23],
the non-zero problem is PSPACE-complete, which matches the
non-emptiness problem of standard RA [9].

In addition, we also prove a small model property on the
length of the shortest word leading to a non-zero output.
From that, we derive a polynomial space algorithm for the
non-zero problem for the so-called copyless RAQ, i.e., RAQ
where reassignments to data variables are copyless‡. In fact,
the non-zero problem becomes PSPACE-complete. It should be
remarked that copyless RAQ already subsume standard RA.

The separation of control and data variables is the key to
make the non-zero problem decidable. In fact, allowing RAQ
to access just the least significant bit of their data variables
is already enough to make them Turing-complete, and so is
allowing order comparison between data variables. Without
control variables, RAQ become AP, positioning their invariant
problem in PTIME [16], [22]. RAQ without data variables
are copyless, which makes their invariant problem PSPACE-
complete (as mentioned above).

We also study the commutativity and equivalence problems
for RAQ. The former asks whether a given RAQ is commu-
tative. A commutative RAQ is an RAQ that, given a word w
as its input, outputs the same value on any permutation of w.
The latter problem asks if two RAQ are essentially the same,
i.e., for every input word, the two RAQ output the same set of

†Formal definitions will be presented later on, including the representation
of the given affine space.
‡The copyless constraint of RAQ is inspired by and in the same flavour of

the one for streaming transducers in [14].

values. The equivalence problem is known to be undecidable
already for RA [15] via a reduction from Post correspondence
problem (PCP). The same reduction can be used to show
that the commutativity problem for RA is also undecidable.
For deterministic RAQ, we show that the commutativity,
equivalence, and invariant problems are inter-reducible to each
other in polynomial time. Thus, for deterministic copyless
RAQ (and therefore also for deterministic RA), all problems
mentioned above can be decided in polynomial space, and are,
in fact, PSPACE-complete.

Finally, we also study the reachability problem for RAQ.
This problem asks if a given RAQ can output 0 for some
input word. We show that although the reachability problem is
undecidable in general, even when the RAQ is deterministic, it
is in NEXPTIME for nondeterministic copyless RAQ with non-
strict transition guards§. The decision procedure is obtained
by a reduction to the configuration coverability problem of
rational vector addition systems with states (Q-VASS). Since
there is an exponential blow-up in the reduction and the
configuration coverability problem of Q-VASS is in NP, we
get a nondeterministic exponential-time decision procedure
for the reachability problem of copyless RAQ with non-strict
transition guards.

An overview of the results obtained in this paper can be
found in Table I. All decision problems we consider are
natural and have corresponding applications. The invariant,
equivalence, and reachability problems are standard decision
problems considered in formal verification. RA and RAQ are
natural models of Reducer programs [3], [4] in the MapReduce
paradigm [24], where commutativity is an important property
required for Reducers [3], [25], [26].

Lastly, let us explain the main differences between the
decision procedures for RA and those presented for RAQ.
The non-emptiness and reachability problems for RA can
essentially be reduced to the reachability problem in a finite-
state system, where one can bound the number of data values
and consider a finite alphabet. The commutativity and equiv-
alence problems for deterministic RA can then be reduced
to the non-emptiness problem. On the other hand, due to the
use of arithmetic operations, similar techniques are no longer
applicable in RAQ, thus, a different set of tools is then required
such as Karr’s algorithm and those from algebra and linear
programming as used in this paper.

Organization: We review some basic linear algebra tools
and Karr’s algorithm in Section II. In Section III, we present
the formal definition of RAQ. We discuss the invariant and
non-zero problems in Section IV, and the commutativity and
equivalence problems in Section V. In Section VI we discuss
the reachability problem. We conclude with some discussions
on related works and remarks in Sections VII and VIII. All
missing technical details and proofs can be found in the long
version of the paper [27].

§A guard is non-strict if it does not contain negations, i.e., it is a positive
Boolean combination of inequalities z 6 z′.

TABLE I
OVERVIEW OF THE RESULTS (SV- means single-valued, CL- means copyless, NSTG- means with non-strict transition guards,

reachability for (deterministic) RA means state reachability, -c means complete, UNDEC means undecidable)

Model Non-zero (Emptiness) Equivalence Commutativity Reachability
RA [9] PSPACE-c [9] UNDEC [15] UNDEC (Thm. 5) PSPACE-c [9]
deterministic RA [9] PSPACE-c [9] PSPACE-c [9] PSPACE-c (Cor. 2) PSPACE-c [9]
RAQ EXPTIME (Thm. 2) UNDEC (Thm. 5) UNDEC (Thm. 5) UNDEC (Thm. 7)
SV-RAQ EXPTIME (Thm. 2) UNDEC (Thm. 5) UNDEC (Thm. 5) UNDEC (Thm. 7)
CL-RAQ PSPACE-c (Thm. 4) UNDEC (Thm. 5) UNDEC (Thm. 5) ?
deterministic RAQ EXPTIME (Thm. 2) EXPTIME (Cor. 1) EXPTIME (Cor. 1) UNDEC (Thm. 7)
deterministic CL-RAQ PSPACE-c (Thm. 4) PSPACE-c (Cor. 1) PSPACE-c (Cor. 1) ?
NSTG-CL-RAQ PSPACE-c (Thm. 4) ? ? NEXPTIME (Thm. 8)

II. PRELIMINARIES

In this paper, a word w is a finite sequence of rational
numbers w = d1 · · · dn ∈ Q∗. The length of w is n, denoted by
|w|. The term data value, or value for short, means a rational
number. Matrices and vectors are over the rational numbers Q,
where Qm×n and Qk denote the sets of matrices of size m×n
and column vectors of size k (i.e., Qk = Qk×1), respectively.
All vectors in this paper are understood as column vectors.

We use A,B, . . . to denote matrices, where A(i, j) is the
component in row i and column j of matrix A. We denote the
transpose of A by At, and the determinant of a square matrix A
by det(A). We use ~a,~b, ~u,~v, . . . to denote vectors, where ~u(i)
is the i-th component of vector ~u (numbered from 1).

When ~u ∈ Qk and ~v ∈ Ql, we write
[
~u
~v

]
to denote a vector

in Qk+l composed as the concatenation of ~u and ~v. Abusing
the notation, we write 0 to also denote both the zero vector
and the zero matrix.

For two vectors ~u,~v ∈ Qk, we write ~u > ~v when ~u(i) >
~v(i) for each component i = 1, . . . , k. The dot product of ~u
and ~v is denoted by ~u·~v.

Affine spaces: Recall that a vector space V in Qk is a subset
of Qk that forms a group under addition + and is closed
under scalar multiplication, i.e., for all ~v ∈ V and α ∈ Q,
it holds that α~v ∈ V. The dimension of V is denoted by
dim(V). The orthogonal complement of V is the vector space
V⊥ = {~u | ~u·~v = 0 for every ~v ∈ V}. It is known that
dim(V⊥) + dim(V) = k.

An affine space A in Qk is a set of the form ~a+ V, where
~a ∈ Qk and V is a vector space in Qk. Here, ~a+V denotes the
set {~a+~u | ~u ∈ V}. The dimension of A, denoted dim(A), is
defined as dim(V).

A vector ~u is an affine combination of V = {~a1, . . . ,~an},
if there are λ1, . . . , λn ∈ Q such that

∑n
i=1 λi = 1 and ~u =∑n

i=1 λi~ai. We use aff(V) to denote the space of all affine
combinations of V . It is known that for every affine space A,
there is a set V of size dim(A) + 1 such that aff(V) = A.

An affine transformation T : Qk → Ql is defined by a ma-
trix M ∈ Ql×k and a vector ~a ∈ Ql, such that T~x = M~x+~a.
When ~a = 0, T is called a linear transformation. From basic
linear algebra, when k = l, it holds that T is a one-to-one
mapping iff det(M) 6= 0.

For convenience, we simply write transformation to mean
affine transformation. Note that composing two transforma-
tions T1 and T2 yields another transformation ~x 7→ T2T1~x,
where ~x 7→ T2T1~x denotes a function that maps ~x to T2T1~x.

The following two lemmas will be useful.

Lemma 1. Let A ⊆ Qk be an affine space and T : Qk+1 →
Qk be a transformation. Suppose there is a vector ~v ∈ Qk

and values d1, d2 ∈ Q, where d1 6= d2, such that both T
[
~v
d1

]
and T

[
~v
d2

]
are in A. Then, T

[
~v
d

]
∈ A for every d ∈ Q.

Lemma 2. Let T1, . . . , Tm be transformations and
~u1, ~u2, . . . , ~um+1 be vectors such that ~ui+1 = Ti~ui for every
i = 1, . . . ,m. Let H be an affine space such that ~um+1 /∈ H
and m > dim(H) + 2. Then, there is a set of indices
J = {j1, . . . , jn} such that 1 6 j1 < j2 < · · · < jn 6 m,
|J | 6 dim(H) + 1, and TjnTjn−1 · · ·Tj1~u1 /∈ H.

Affine programs: An affine program (AP) with n vari-
ables is a tuple P = (S, s0, µ), where S is a finite set of states,
s0 ∈ S is the initial state, and µ is a finite set of transitions of
the form (s1, T, s2), where s1, s2 ∈ S and T : Qn → Qn is
a transformation. Intuitively, P represents a program with n ra-
tional variables, say z1, . . . , zn. A transition (s1, T, s2) ∈ µ
means that the program can move from state s1 to s2 while
reassigning the contents of variables via ~z 7→ T~z, where ~z
denotes the column vector of the variables z1, . . . , zn.

A configuration of P is a pair (s, ~u) ∈ S ×Qn where s is
a state of P and ~u represents the contents of its variables.
An initial configuration is a configuration (s0, ~u). A path
in P from a configuration (s, ~u) to a configuration (s′, ~v)
is a sequence of transitions (p0, T1, p1), . . . , (pm−1, Tm, pm)
of P such that p0 = s, pm = s′, and ~v = Tm · · ·T1~u.

The AP invariant problem is defined as follows: Given an
AP P , a vector ~u ∈ Qn, a state s′ ∈ S, and an affine space H,
decide if there is a path in P from (s0, ~u) to (s′, ~v) for some
~v /∈ H. If there is such a path, then H is not an invariant
for s′ in P w.r.t. the initial configuration (s0, ~u). The input
affine space A = ~a + V can be represented either as a pair
(~a, V) where V is a basis of V, or as a set of vectors V where
aff(V) = A. Either representation is fine as one can be easily
transformed to the other.

The AP invariant problem can be solved in a polynomial
time by the so-called Karr’s algorithm [16], [22]. The main

idea of Karr’s algorithm is to compute, for every state s ∈ S,
a set of vectors Vs such that the existence of a path from
(s0, ~u) to (s,~v) implies ~v ∈ aff(Vs). The algorithm works as
follows: At the beginning, it sets Vs0 = {~u} and Vs = ∅ for
all other s 6= s0. Then, using a worklist algorithm, it starts
propagating the values of Vs over transitions such that for
each transition (s1, T, s2) ∈ µ and each vector ~v ∈ Vs1 that
has not been processed before, it adds the vector T~v into Vs2 ,
if T~v /∈ aff(Vs2). It holds that there is a path from (s0, ~u) to
(s′, ~v), for some ~v /∈ H, iff Vs′ * H. Note that we can limit
the cardinality of Vs to be at most n+ 1, hence the algorithm
runs in a polynomial time. We refer the reader to [16], [22]
for more details.

Remark 1. From Karr’s algorithm, we can infer a small
model property for the invariant problem. That is, if there is
a path from (s0, ~u) to (s′, ~v), for some ~v /∈ H, then there is
such a path of length at most (n+1)|S|. Such a bound can also
be derived in a more straightforward manner via Lemma 2,
which we believe is interesting on its own. In fact, if all
transformations in an AP are one-to-one, the bound (n+1)|S|
can be lowered to (dim(H)+2)|S|, which can be particularly
useful when dim(H) is small.

III. REGISTER AUTOMATA OVER THE RATIONALS (RAQ)
In the following, we fix X = {x1, . . . , xk} and Y =

{y1, . . . , yl}, two disjoint sets of variables called control and
data variables, respectively. The vector ~x always denotes
a vector of size k where ~x(i) is xi. Likewise, ~y is of size l
and ~y(i) = yi. We also reserve a special variable cur /∈ X∪Y
to denote the data value currently read by the automaton.

Each variable in X ∪ Y can store a data value (these
variables are sometimes called registers). When a vector
~u ∈ Qk+l is used to represent the contents of variables in
X ∪ Y , the first k components of ~u represent the contents of
control variables, denoted by ~u(X), and the last l components
represent the contents of data variables, denoted by ~u(Y). We
also use ~u(xi) and ~u(yj) to denote the contents of xi and yj
in ~u, respectively.

A linear constraint over X ∪ {cur} is a Boolean com-
bination of atomic formulas of the form z 6 z′, where
z, z′ ∈ X ∪ {cur}. We write C(X, cur) to denote the set
of all linear constraints over X ∪ {cur}. For convenience,
we use z < z′ as an abbreviation of ¬(z′ 6 z). In the
following, Pk×(k+1) denotes the set of all 0-1 matrices in
which the number of 1’s in each row is exactly one. Intuitively,
a matrix A ∈ Pk×(k+1) denotes a mapping from {x1, . . . , xk}
to {x1, . . . , xk, cur}.

Definition 1. A register automaton over the rationals (RAQ)
with control and data variables (X,Y) is a tuple A =
〈Q, q0, F, ~u0, δ, ζ〉 defined as follows:
• Q is a finite set of states, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states.

• ~u0 ∈ Qk+l is the initial contents of variables in X ∪ Y .
• δ is a set of transitions whose elements are of the form

t : (p, ϕ(~x, cur)) → (q, A,B,~b), (1)

where p, q ∈ Q are states, ϕ(~x, cur) is a linear constraint
from C(~x, cur), and A ∈ Pk×(k+1), B ∈ Ql×(k+l+1),
~b ∈ Ql. The formula ϕ(~x, cur) is called the guard of t
and the triple (A,B,~b) its variable reassignment.

• ζ is a mapping that maps each final state qf to a linear
function/expression g(~x, ~y) = ~a · ~x + ~b · ~y + c, where
~a ∈ Qk, ~b ∈ Ql, and c ∈ Q.

The intuitive meaning of the transition in (1) is as follows.
Suppose the contents of variables in ~x and ~y are ~u and ~v,
respectively. If A is in state p, currently reading data value c,
and the guard ϕ(~u, c) holds, then A can enter state q and

reassign the variables ~x with A
[
~u
c

]
and ~y with B

[
~u
~v
c

]
+~b.

Note that the matrix representation of the reassignment
can be equivalently written as (i) a reassignment of each
control variable in X with a variable in X ∪ {cur}, and
(ii) a reassignment of each data variable in Y with a linear
combination of variables in X ∪ Y ∪ {cur} and constants.
We will therefore sometimes write the matrices A, B, and
the vector ~b as reassignments to variables of the form
{x1 := r1; . . . ;xk := rk; y1 := s1; . . . ; yl := sl} or
{~x := f(~x, cur); ~y := g(~x, ~y, cur)}. For readability, we
omit identity reassignments such as xi := xi or yj := yj
from the first form since the values of these variables do not
change. A variable xi ∈ X is said to be read-only if, for each
transition t, the reassignment to xi in t is always of the form
xi := xi.

Remark 2. Note that in the definition above, the guards
only allow comparisons among the current data value and
the contents of variables in ~x. One can easily generalize the
guards so that comparisons with constants are allowed. Such
a generalization does not affect the expressive power of RAQ,
since every such a constant c can be stored into a fresh
read-only control variable xc in the initial assignment ~u0.
This notation is chosen for technical convenience. On the
other hand, for readability, in some of the examples later
on, we do use comparisons with constants, which, strictly
speaking, should be taken as comparisons with read-only
control variables.

A configuration of A is a pair (q, ~u) ∈ Q × Qk+l,
where ~u denotes the contents of the variables. The initial
configuration of A is (q0, ~u0), while final configurations are
those with a final state in the left-hand component. A transition
t = (p, ϕ(~x, cur))→ (q, A,B,~b) and a value d entail a binary
relation (p, ~u) `t,d (q,~v), if

• ϕ(~u(X), d) holds and

• ~v(X) = A
[
~u(X)

d

]
and ~v(Y) = B

[
~u(X)

~u(Y)

d

]
+~b.

For a sequence of transitions P = t1 · · · tn, we write
(q0, ~u0) `P (qn, ~un) if there is a word d1 · · · dn such that
(q0, ~u0) `t1,d1 (q1, ~u1) `t2,d2 · · · `tn,dn (qn, ~un). In this case,
we say that d1 · · · dn is compatible with t1 · · · tn. As usual,
we write (q0, ~u0) `∗ (qn, ~un) if there exists a sequence of

transitions P such that (q0, ~u0) `P (qn, ~un).
For an input word w = d1 · · · dn, a run of A on w is

a sequence (q0, ~u0) `t1,d1
(q1, ~u1) `t2,d2

· · · `tn,dn
(qn, ~un),

where (q0, ~u0) is the initial configuration and t1, . . . , tn ∈ δ.
In this case, we also say (q0, ~u0) `A,w (qn, ~un). The run
is accepting if qn ∈ F , in which case A outputs the value
g(~un), where ζ(qn) = g, and we say that A accepts w. We
write A(w) to denote the set of all outputs of A on w (i.e., if
A does not accept w, we write A(w) = ∅).

We say thatA is deterministic if, for any state p and a pair of
transitions (p, ϕ(~x, cur))→ (q, A,B,~b) and (p, ϕ′(~x, cur))→
(q′, A′, B′,~b′) starting in p, the formula ϕ(~x, cur)∧ϕ′(~x, cur)
is unsatisfiable. A is complete if, for every state p, the
disjunction of guards on all transitions starting in p is valid. We
say that A is single-valued if for every word w, |A(w)| 6 1.
Note that different input words may yield different outputs.
Evidently, every deterministic RAQ is single-valued.

We call A copyless if the reassignment of its data variables
is of the form ~y := A~y+f(~x, cur), where f is a linear function
and A is a 0-1 matrix where each column contains at most
one 1. The intuition is that each variable yi appears at most
once in the right-hand side of the reassignment. For example,
when l = 2, the reassignment {y1 := y1 + y2; y2 := 2x1}
is copyless, while {y1 := y1 + y2; y2 := y1} is not, since y1
appears twice in the right-hand side. Our definition of copyless
is similar to the one for streaming transducers in [14].

Note that the standard register automata (RA) studied in [9],
[11], [15] can be seen as a special case of RAQ without the
data variables Y . Moreover, we can view the output function
in each final state of an RA as a constant function that always
outputs 1. Then, a standard RA can be seen as a single-valued
as well as copyless RAQ. Also note that affine programs in
the sense of Karr [16], [22] are also a special case of RAQ in
which control variables and input words are ignored.

We present some typical aggregate functions that can be
computed with RAQ.

Computing the minimal value: The RAQ has one control
variable x, as pictured below. The output function is ζ(q) = x.
The transition is pictured as ϕ(~x, cur), {M}, where ϕ(~x, cur)
is the guard and M denotes the variable reassignment.

q0

q

(true), {x := cur}

(cur < x), {x := cur}(cur > x), {}

Intuitively, the RAQ starts by storing the first value in x. Every
subsequent value cur is then compared with x and if cur < x,
it is stored in x via the reassignment x := cur.

Computing the second largest element: The RAQ has con-
trol variables x1 and x2 and its output function is ζ(q2) = x2.

q0 q1 q2
(true), {x1 := cur}

(cur 6 x1), {x2 := cur}

(cur > x1), {x1 := cur;x2 := x1}

(cur > x1), {x1 := cur, x2 := x1}

(cur 6 x2), {}

(x1 > cur > x2), {x2 := cur}

Intuitively, the RAQ stores the first two values in x1 and x2
in a decreasing order. Each subsequent value cur is compared
with x1 and x2, which are updated if necessary.

Computing the number of elements larger than M : The
RAQ has one control variable x and one data variable y with
initial values M and 0, respectively. The output function is
ζ(q0) = y.

q0 (cur 6 x), {}(cur > x), {y := y + 1}

Intuitively, each input value cur is compared with x. If cur >
x, the RAQ increments y by 1 via the reassignment y := y+1.

Computing the number of occurrences of the maximal
element: The RAQ has one control variable x and one data
variable y, with the initial value 0. The output function is
ζ(q1) = y.

q0 q1
(true), {x := cur; y := 1}

(cur < x), {}

(cur = x), {y := y + 1}

(cur > x), {x := cur; y := 1}

Intuitively, it stores the first value in x and reassigns y := 1.
Every subsequent value cur is then compared with x. If it is
the new largest element, it will be stored in x and the contents
of y is reset to 1.

Proposition 1 below will be useful later on. Intuitively, it
states that for a fixed sequence of transitions t1 · · · tn, the
contents of variables of A are a linear combination of the
values in the input word d1 · · · dn, provided that d1 · · · dn is
compatible with t1 · · · tn. Its proof can be done by a straight-
forward induction on n and is, therefore, omitted.

Proposition 1. (Linearity of RAQ) Let A be an RAQ over
(X,Y). For every sequence t1 · · · tn of transitions of A, there
is a matrix M ∈ Q(k+l)×n and a vector ~a ∈ Qk+l such
that for every word d1 · · · dn compatible with t1 · · · tn, where
(q0, ~u0) `t1,d1

· · · `tn,dn
(qn, ~un), it holds that

~un = M

d1
...
dn

 + ~a.

The following example shows that RAQ can be used to
represent positive integers succinctly. Let p and n be positive
integers, k be an integer such that k = dlog ne, and A be an
RAQ as illustrated below.

q0 q1
t0

t1, . . . , tk

A is over X = {x1, . . . , xk} and Y = {y}. The initial state
of A is q0 and q1 is its final state. The initial contents of
the variables are (b1, . . . , bk, 1), where bk · · · b1 is the binary
representation of n, i.e., n =

∑k
i=1 bi2

i−1.
The transition t0 is (q0,

∧k
i=1 xi = 0)→ (q1, {}). For each

i = 1, . . . , k, the transition ti is defined as follows:

(q0, xi = 1 ∧
i−1∧
j=1

xj = 0)

→ (q0, {x1 := 1; . . . ;xi−1 := 1;xi := 0; y := p · y}).

Recall that when a variable’s value in a reassignment is
not specified, its value stays the same. Therefore, in t0, the
contents of all variables stay the same, while in ti, the contents
of xi+1, . . . , xk stay the same. We define the output function
ζ(q1) to output y.

Intuitively, the contents of variables ~x = (x1, . . . , xk)
represent a number between n and 0 in binary, where the
least significant bit is stored in x1. A starts with ~x containing
the binary representation of n, and iterates through all integers
from n down to 1. On each iteration, it takes one of the tran-
sitions t1, . . . , tk that “decrements” the number represented
by ~x, and multiplies the contents of y by p. When the number
in ~x reaches 0, it takes transition t0 and moves to state q1. Note
that the outcome of A does not depend on the input word and
it always output pn regardless on the input. Moreover, A has
only dlog(n)e+ 1 transitions. In fact, one can obtain an RAQ
that always outputs pn1

1 · · · p
nk

k by constructing one RAQ for
each pni

i and composing them sequentially. The final RAQ has
at most

∑k
i=1(dlog(ni)e+ 1) transitions.

Motivated by the example above, we say that an RAQ A
represents a positive integer n if it has exactly one pos-
sible output n. With this representation, RAQ can simulate
arithmetic circuits as stated below.

Theorem 1. For every arithmetic circuit C (division-free and
without indeterminates), there is an RAQ A that represents
the same number as C with the number of transitions linearly
proportional to the number of edges in C. If C is additive
or multiplicative, A uses only one data variable. Moreover,
A can be constructed in time linear in the size of C.

The number of transitions in A is roughly twice the number
of edges in C, plus the number of constants in C.

IV. THE INVARIANT PROBLEM FOR RAQ

In this section, we will, in the same spirit as Karr [16],
consider the invariant problem for RAQ. For an RAQ A =
〈Q, q0, F, ~u0, δ, ζ〉 and a state q ∈ Q, define vec(A, q) =
{~v | (q0, ~u0) `∗ (q,~v)}, i.e., vec(A, q) contains all vectors
representing the contents of control and data variables when

A reaches state q. The invariant problem is defined as: Given
an RAQ A, a state q of A, and an affine space H, decide
whether vec(A, q) * H. Again, an affine space A = ~a + V
can be represented either as a pair (~a, V) where V is a
basis of V, or as a set V where aff(V) = A. The invariant
problem is tightly related to the must-constancy problem for
programs [28], which asks, for a given program location `, a
given variable z and a given constant c, whether the value of
z in ` must be equal to c.

Instead of the invariant problem, it will be more convenient
to consider another, but equivalent, problem, which we call the
non-zero problem, defined as follows. Given an RAQ A, decide
whether there is w such that A(w) * {0}, i.e., whether A
outputs a non-zero value on some word w. We abuse notation
and simply write A(w) 6= 0 to denote that there is c ∈ A(w)
such that c 6= 0. The non-zero problem can, therefore, be
written as: Given an RAQ A, decide whether there is w such
that A(w) 6= 0.

The two problems are, in fact, Karp inter-reducible. The
reduction from the non-zero problem to the invariant problem
is as follows. Let A be the input to the non-zero problem,
q1, . . . , qm be the final states of A, and ζ be the mapping that
specifies the output functions for the final states. Let A′ be the
RAQ obtained by adding a new state qf into A, and for every
qi adding the following transition: (qi, true) → (qf , {y1 :=
ζ(qi))}). A′ has only one final state qf , whose output function
yields y1. The reduction follows by the fact that there is w such
that A(w) 6= 0 iff vec(A, qf) * H, where H is the space of
the solutions ζ(qf)(~x, ~y) = 0.

Vice versa, the invariant problem reduces to the non-zero
problem as follows. Let A, q, and H = ~a + V be the input
to the invariant problem. Let {~v1, . . . , ~vm} be a basis of V⊥,
the orthogonal complement of V, which can be obtained by
Gaussian elimination on a basis of V in polynomial time. Let
A′ be the RAQ obtained by adding the following into A:
• m+ 1 new states q1, . . . , qm and p,
• m+ 1 new data variables y1, . . . , ym and z,
• for each qi, the pair of transitions (q, true)→ (qi, {yi :=

(
[
~x
~y

]
− ~a)·~vi}) and (qi, true)→ (p, {z := yi}).

Further, set p as the only final state of A′ and set its output
function to yield z. The reduction follows from the fact that
~u ∈ H iff (~u − ~a)·~vi = 0 for every i = 1, . . . ,m, thus,
vec(A, q) * H iff there is a word w such that A′(w) 6= 0.

A. The algorithm and a small model property
In this section, we present an exponential-time algorithm

for the non-zero problem of RAQ. Let A = 〈Q, q0, F, ~u0, δ, ζ〉
be the input RAQ over (X,Y), where X = {x1, . . . , xk} and
Y = {y1, . . . , yl}. The main idea of the presented algorithm
is to transform A into an affine program PA and analyse PA
using Karr’s algorithm.

We start with some necessary definitions. An ordering of X
is a total preorder φ on X , i.e., φ = z1 ~1 z2 ~2 · · ·~k−1 zk,
where (z1, . . . , zk) is a permutation of (x1, . . . , xk) and each
~i is either < or =. An ordering φ is consistent with a transi-
tion (p, ϕ(~x, cur))→ (q, A,B,~b), if ϕ(~x, cur)∧φ is satisfiable.

We say that an ordering φ holds in a configuration (q, ~u) if it
holds when we substitute (x1, . . . , xk) with ~u(X). In this case,
we say that the ordering of (q, ~u) is φ.

The construction of PA is based on the following lemma.

Lemma 3. Let H be an affine space and

(q1, ~u1) `t1,d1
· · · · · · `tm,dm

(qm+1, ~um+1)

be a run of A on a word d1 · · · dm such that ~um+1 /∈ H. Then
there is a run of A on a word c1 · · · cm, say

(q1, ~v1) `t1,c1 · · · · · · `tm,cm (qm+1, ~vm+1),

such that ~u1 = ~v1, ~vm+1 /∈ H, and for every i = 1, . . . ,m+1
the following holds:
(a) (qi, ~ui) and (qi, ~vi) have the same ordering.
(b) If di = ~ui(X)(j) for some j, then ci = ~vi(X)(j).
(c) If di < ~ui(X)(j), where ~ui(X)(j) is the minimal value in

~ui(X), then either ci = ~vi(X)(j)− 1 or ci = ~vi(X)(j)− 2.
(d) If di > ~ui(X)(j), where ~ui(X)(j) is the maximal value in

~ui(X), then either ci = ~vi(X)(j) + 1 or ci = ~vi(X)(j) + 2.
(e) If ~ui(X)(j) < di < ~ui(X)(j′), where

~ui(X)(j) is the maximal value in ~ui(X) less than di and
~ui(X)(j′) is the minimal value in ~ui(X) greater than di,
then either ci = 1

3~vi(X)(j) + 2
3~vi(X)(j′) or ci =

2
3~vi(X)(j) + 1

3~vi(X)(j′).

Intuitively, Lemma 3 states that for a run (q1, ~u1) `A,w

(qm+1, ~um+1) on a word w = d1 · · · dm such that ~um+1 does
not belong to the affine space H, we can assume that each
di is a linear combination of components in ~ui. We note that
the choice of the constants ±1,±2, 13 ,

2
3 in items (c)-(e) is

arbitrary and was made to ensure that there are at least two
possible different values for ci, since by Lemma 1, one of them
is guaranteed to hit outside H. Other constants satisfying the
right conditions would work, too.

With Lemma 3, we then transform A to an affine pro-
gram PA and apply Karr’s algorithm on PA to decide the
non-zero problem. Essentially, the set of states in PA is the
Cartesian product of Q and the set of orderings of X ∪{cur}.
The number of variables in P is k + l. There are altogether
2k(k + 1)! orderings of X ∪ {cur}, so the algorithm runs in
an exponential time, as stated in Theorem 2 below.

Theorem 2. The non-zero problem for RAQ is in EXPTIME.

Note that the number of states in the affine program PA is
|Q|2k(k + 1)!. By Remark 1, we can obtain a similar small
model property for RAQ, as stated below.

Theorem 3. (A small model property for RAQ) If there is
a word w ∈ Q∗ such that A(w) 6= 0, then there is a word w′ ∈
Q∗ such that A(w′) 6= 0 and |w′| 6 |Q|(k+ l+ 1)2k(k+ 1)!.

One can also prove Theorem 3 without relying on Karr’s
algorithm. Moreover, we can show that the exponential bound
is, in fact, tight (see [27] for proofs of both claims).

We should remark that the exponential complexity is in
the bit model, i.e., rational numbers are represented in their

bit forms. As stated in Theorem 1, an RAQ can simulate
an arithmetic circuit and store in its data variables values that
are doubly-exponentially large (w.r.t. the number of control
variables), which occupy an exponential space. For example,
if the initial value of a data variable y is 1 and every transition
contains the reassignment y := 2y, the final value of y may
be up to 2|Q|(k+l+1)2k(k+1)!. However, if we assume that
rational numbers between −1 and 1 occupy only constant
space, the non-zero problem is in PSPACE (by guessing a path
of exponential length as in Theorem 3), which matches the
non-emptiness problem of standard RA [9].

B. Polynomial-space algorithm for copyless RAQ

In the following, let A be a copyless RAQ with k control
variables and l data variables. W.l.o.g., we assume that every
transition of A is of the form (p, ϕ(~x, cur)) → (q, A,B, 0),
i.e., ~b = 0 (every RAQ can be transformed to this form by
adding new control variables to store the non-zero constants
in ~b). Recall that copyless RAQ are still a generalization of
standard RA, thus, the non-zero problem is PSPACE-hard. In
the following we will show that the non-zero problem is in
PSPACE. We need the following lemma.

Lemma 4. Let H be an affine space and

(q1, ~u1) `t1,d1
· · · · · · `tm,dm

(qm+1, ~um+1),

be a run of A on a word d1 · · · dm such that ~um+1 /∈ H. Then,
there exists a run of A on a word c1 · · · cm, say

(q1, ~v1) `t1,c1 · · · · · · `tm,cm (qm+1, ~vm+1),

such that ~u1 = ~v1, ~vm+1 /∈ H, and for every i = 1, . . . ,m+1,
if ci does not appear in ~vi(X), then ci 6= cj for every j 6 i−1.

Intuitively, Lemma 4 states that for the non-zero problem,
it is sufficient to consider only words c1 · · · cm such that if
A encounters a value ci that is not in its control variables,
then ci is indeed new, i.e., it has not appeared in c1 · · · ci−1.
Another way of looking at it is that onceA “forgets” a value ci,
i.e., ci no longer appears in its control variables, then ci will
never appear again in the future.

We start with the following observation. Let w = d1 · · · dm
be a word. Suppose (q0, ~u0) `A,w (qm, ~um), where qm
is a final state. By linearity of RAQ (cf. Proposition 1),
~um = M [d1 · · · dm]

t
+~a, for some M and ~a. Let ζ(qm)(~x, ~y) =

~c·
[
~x
~y

]
+ b. Then, for some α1, . . . , αm, β,

ζ(qm)(~um) = α1d1 + · · ·+ αmdm + β.

Suppose d′1, . . . , d
′
n are the distinct values occurring in

d1 · · · dm. Therefore, for some α′1, . . . , α
′
n, it holds that

ζ(qm)(~um) = α′1d
′
1 + · · ·+ α′nd

′
n + β.

We can assume that the values d′1, . . . , d
′
k are the initial

contents of control variables. For simplicity, we can also as-
sume that the initial contents of control variables are pairwise
different and that all initial values stored in control variables
occur in d1 · · · dm. We observe the following:

• If there is i > k such that α′i 6= 0, then we can assume
that ζ(qm)(~um) 6= 0. To show why, suppose to the
contrary that ζ(qm)(~um) = 0. From the assumption, the
value d′i does not appear in the initial contents of control
variables. When d′i first appears in the input word, by
density of rational numbers, we can increase d′i by some
small number ε > 0, i.e., replace d′i with d′i + ε, and still
obtain a run from q0 to qm. The output will now be

α′1d
′
1 + · · ·+ α′i(d

′
i + ε) + · · ·+ α′nd

′
n + β = α′iε,

which will be non-zero, since both ε and α′i are non-zero.
• If, for all i > k, it holds that α′i = 0, then ζ(qm)(~um) 6= 0

if and only if α′1d
′
1 + · · ·+ α′kd

′
k + β 6= 0.

Note that our observation above holds for general RAQ. In
general, the number of bits for storing α′i can be exponentially
large, but as we will see later, is polynomially bound for
copyless RAQ.

The algorithm works by simulating a run of A of length
at most |Q|(k + l + 1)2k(k + 1)! starting from the initial
configuration. During the simulation, when A assigns new
values into control variables, the algorithm only remembers
the ordering of control variables, not the actual data values
assigned. Such an ordering is sufficient to simulate a run. The
algorithm will then try to nondeterministically guess the first
position of the word where a value d′i such that i > k and
α′i 6= 0 occurs. Again, the algorithm does not guess the actual
value d′i but, instead, only remembers the names of the control
variables that d′i is assigned to.

In the rest of the simulation, the algorithm keeps track
of how many “copies” of d′i have been added to each data
variable. For example, suppose d′i is stored in a control
variable xj and the reassignment for y in a transition t is
of the form y := y+ y′+ c′xj . Then, the number of copies of
d′i in y is obtained by adding the number of copies of d′i in y
and y′, plus c′ copies of d′i. Note that due to being copyless,
the assignment to y′ in t cannot use the original value of y′,
which is lost.

When the value d′i is forgotten in A, i.e., d′i is not stored
in any control variable any more, we can assume d′i will
not appear again in the input word (by Lemma 4). During
the simulation, the algorithm keeps for every data variable y
a track of how many copies of d′i are stored in y. Every
time the algorithm reaches a final state, it applies the output
function of the state and checks whether α′i 6= 0.

Based on the property that A is copyless, we notice that
in one step, the sum of all data variables may increase by at
most f(~x, cur), for some linear function f , where the constants
in f come from those in the transition. By Theorem 3,
during any run, the number of bits occupied by the sum
of the “coefficients” of d′i in all data variables is at most
c · log(|Q|(k + l + 1)2k(k + 1)!), where c is the sum of all
bits occupied by the constants in the transitions. Thus, each
α′i occupies only a polynomial space.

If for all i > k it holds that α′i = 0, the algorithm counts
α′1, . . . , α

′
k instead. Recall that d′1, . . . , d

′
k are the data values

of the initial contents of control variables. The algorithm

performs the counting during the simulation of a run in
a similar way as above. When d′i no longer appears in any
control variable, the counting stops and the simulation simply
continues by remembering the state and the ordering of control
variables. When a final state is reached, the algorithm verifies
that α′1d

′
1 + · · · + α′kd

′
k + β 6= 0. Again, each α′i occupies

only a polynomial space, thus, the whole algorithm runs in
a polynomial space. Since the non-emptiness problem for
standard RA is already PSPACE-hard, we conclude with the
following theorem.

Theorem 4. The non-zero problem for copyless RAQ is
PSPACE-complete.

It is tempting to directly use Theorem 3 to prove Theorem 4
by simulating the run directly instead of tracing the coefficients
of input values. In doing so, however, the number of bits may
increase in each step. For example, suppose an RAQ has two
control variables x1 and x2 storing 0.01 and 0.1 (in binary),
respectively, and its transitions have the guard x1 < cur < x2
with the reassignment {x1 := cur}. Straightforward guessing
by adding one bit 1 at the end of x1 will result in the number
of bits in x1 increasing by one in each step. A similar thing can
happen if guessing a path in the affine program generated from
Lemma 3: the numbers cannot be represented in a polynomial
space because of the multiplication with 1

3 and 2
3 .

Furthermore, note that the algorithm is correct also for
general (i.e., not only copyless) RAQ. The restriction to
copyless RAQ allows us to guarantee that the space used by
the algorithm is polynomial. If we applied the algorithm to
general RAQ, it would require an exponential space.

C. Some remarks on the non-zero problem

In this section, we have shown that the non-zero problem for
RAQ is in EXPTIME, and the problem itself is a generalization
of the non-emptiness problem for standard RA. Our algorithm
relies heavily on the fact that the variables are partitioned into
two groups: control variables, which “control” the computation
flow, and data variables, which accumulate data about the
input word. Without control variables, an RAQ is similar
to an affine program, thus the non-zero problem drops to
PTIME. Without data variables, the non-zero problem becomes
PSPACE-complete, as an RAQ without data variables is a
special case of a copyless RAQ but still a generalization of
a standard RA.

It is also important that RAQ have no access to data
variables at all. If we allow comparison between two data
variables, the non-zero problem becomes undecidable. In fact,
even if we allow RAQ to access only one bit of information
from data variables, say, the least significant bit of the integer
part of a rational number, RAQ can simulate Turing machines.
In particular, the contents of a Turing machine (two-way
infinite) tape can be represented as a rational number. For
example, if the contents of the tape is tω001tω (with the
underline indicating the position of the head and t denoting
a blank space), its representation by a rational number can be
e.g. 1010.11, where 0, 1, and t are encoded by 10, 11, and 00,

respectively. The head moving right and left can be simulated
by multiplying the data variable by 4 and 1

4 , respectively.

V. THE EQUIVALENCE AND COMMUTATIVITY PROBLEMS

In this section we study the equivalence and the com-
mutativity problems. The equivalence problem is defined as
follows: Given two RAQ A and A′, decide if A(w) = A′(w)
for all words w. On the other hand, the commutativity problem
is defined as follows: Given an RAQ A, decide if for all
words w and w′ such that w′ ∈ perm(w), it holds that
A(w) = A(w′), where perm(w) is the set of all permutations
of the word w.

Theorem 5. For single-valued RAQ, the commutativity and
equivalence problems are both undecidable.

Theorem 5 can be proved by a reduction similar to the
one used in [15] for proving undecidability of the equivalence
problem for standard RA. For deterministic RAQ, however,
both problems become inter-reducible (via a Cook reduction)
with the non-zero problem, as stated below.

Theorem 6. For deterministic RAQ, the equivalence problem,
the commutativity problem, the non-zero problem, and the
invariant problem are all inter-reducible in polynomial time.

In the following paragraph, we present the main ideas of
the proofs.

From non-zero to invariant and vice versa: Note that the
Karp reductions from Section IV cannot be used, because
they construct nondeterministic RAQ. Instead, we modify them
into Cook reductions such that for every final state of the
RAQ in the non-zero problem, we create one invariant test.
On the other hand, for the invariant problem, suppose that
H = ~a + V and let us take a basis {~v1, . . . , ~vm} for V⊥
(the orthogonal complement of V). Then for each ~vi in the
basis, we create a new RAQ with a single final state with
a corresponding output function. Notice that the reductions
preserve the (deterministic) structure of the RAQ.

From equivalence to non-zero: The proof is by a standard
product construction. Given two deterministic RAQ A1 andA2

(w.l.o.g. we assume they are both complete), we can construct
in a polynomial time a deterministic RAQ A such that A1 and
A2 are equivalent iff A(w) = 0 for all w. The states of A are
of the form (q1, q2), where q1 is a state from A1 and q2 from
A2. A state (q1, q2) is final iff at least one of q1 and q2 is final,
and the output function is defined as either (i) the difference
of the outputs of q1 and q2 if both q1 and q2 are final, or (ii)
the constant 1 if exactly one of them is final.

From non-zero to commutativity: Let A be a deterministic
RAQ. We assume w.l.o.g. that for all w, |A(w)| = 1, i.e., A
outputs a value on all inputs w. We construct a deterministic
RAQ A′ with outputs defined as follows:
• For words where the first and the second values are 1

and 2 respectively, i.e., words of the form v = 12w, we
define A′(v) = A(w)

• For all other words, A′ outputs 0.

The construction of A′ takes only linear time by adding two
new states that check the first two values and a new final state
that outputs the constant 0 for words not in the form of 12w.
If there is a word w such that A(w) 6= 0, then A′(12w) 6= 0,
so A′ is not commutative (because A′(21w) = 0). On the
other hand, if A′ is not commutative, it means that there is an
input for which the output is not 0.

From commutativity to equivalence: The idea of the proof
is similar to the one used in [25] to prove decidability of the
commutativity problem of two-way finite automata. A similar
idea was also used in [3] for the same problem over symbolic
numerical transducers, which are a strict subclass of RAQ.

We define two permutation functions π1 and π2 on words
as follows: let π1(d1d2 · · · dn) = d2d1 · · · dn (swap the first
two symbols) and π2(d1d2 · · · dn) = d2 · · · dnd1 (move the
first symbol to the end of the input word). It is known that
every permutation is a composition of π1 and π2 [29].

Given a deterministic RAQ A, it holds that A is commuta-
tive iff the following equations hold for every word w:

A(w) = A(π1(w)) = A(π2(w))

As a consequence, we can reduce the commutativity problem
to the equivalence problem by constructing deterministic RAQ
A1 and A2 such that for every word w, A1(w) = A(π1(w))
and A2(w) = A(π2(w)).

While the construction of A1 is straightforward, the con-
struction of A2 is more involved. The standard way to con-
struct A2 involves nondeterminism to “guess” that the next
transition is the last one. However, here we require A2 to be
deterministic. Our trick is to use a new set of variables to
simulate the process of guessing in a deterministic way.

Corollary 1. The commutativity and equivalence problems for
deterministic RAQ are in EXPTIME. They become PSPACE-
complete for deterministic copyless RAQ.

All upper bounds follow from the results in Section IV. The
PSPACE-hardness can be obtained using a reduction similar to
the one in [9]. Moreover, we can use the ideas in the proof
of Theorem 6 also for standard RA to obtain the following
corollary.

Corollary 2. The commutativity problem for deterministic RA
is PSPACE-complete.

VI. THE REACHABILITY PROBLEM

The reachability problem is defined as follows: Given an
RAQ A, decide if there is a word w such that 0 ∈ A(w). The
reachability problem is tightly related to the may-constancy
problem for programs [28], which asks, for a given program
location `, a given variable z, and a given constant c, whether
the value of z in ` may be equal to c, that is, there is an
execution path leading to ` such that the value of z in ` is c.

Theorem 7. The reachability problem for RAQ is undecidable,
even for deterministic RAQ.

The proof of Theorem 7 is obtained by a reduction from
PCP [30]. On the other hand, we show that for copyless RAQ
with non-strict guards, the reachability problem is decidable.

Let X be a set of control variables. A transition guard
ϕ(~x, cur) is non-strict if it does not contain negations, i.e.,
it is a positive Boolean combination of inequalities z 6 z′

for z, z′ ∈ X ∪ {cur}. An RAQ A is said to have non-strict
transition guards if the guard in each transition of A is non-
strict.

Theorem 8. The reachability problem for (nondeterministic)
copyless RAQ with non-strict transition guards is in NEXP-
TIME.

The rest of this section is devoted to the proof of Theorem 8.
Suppose A = 〈Q, q0, F, ~u0, δ, ζ〉 is a copyless RAQ with non-
strict transition guards over (X,Y), where X = {x1, . . . , xk}
and Y = {y1, . . . , yl}. Let N be the set of constants appearing
in ~u0(X). For simplicity, we assume that all control variables
initially contain different values.

Suppose there is a word w = d1 · · · dn that leads to a zero
output. Let (q0, ~u0) `t1,d1 (q1, ~u1) `t2,d2 · · · `tn,dn (qn, ~un)

be the run of A on w. By Proposition 1, there are M and ~b
such that

~un = M

d1
...
dn

 +~b.

The values d1, . . . , dn satisfy a set of inequalities imposed
by the transitions t1, . . . , tn. Let Φ(~z) denote the conjunction
of those inequalities, where ~z = (z1, . . . , zn)t are variables
representing the data values d1, . . . , dn. For simplicity, we
assume that the guards in t1, . . . , tn contain no disjunctions,
which means that the set of points (vectors) satisfying Φ(~z)
is a convex polyhedron.

Suppose the output function of qn is ζ(qn) = ~a ·
[
~x
~y

]
+ a′.

We define the following function:

f(~z) = ~a ·M

z1
...
zn

 + ~a ·~b+ a′.

Thus, by our assumption that d1 · · · dn leads to zero, we have:

f((d1, . . . , dn)t) = 0 ∧ Φ((d1, . . . , dn)t) = true,

which is equivalent to:

∃~z1, ~z2 ∈ Qn : f(~z1) 6 0 6 f(~z2) ∧ Φ(~z1) ∧ Φ(~z2). (2)

Observe that (2) holds iff the following two constraints hold
simultaneously:

[F1] the infimum of f(~z) w.r.t. Φ(~z) is 6 0,
[F2] the supremum of f(~z) w.r.t. Φ(~z) is > 0.

From the Simplex algorithm for linear programming [31],
we know that the points that yield the optimum, i.e., the
infimum and the supremum, are at the “corner” points of
convex polyhedra. The constraints in Φ(~z) only contain the
constants fromN (as a result of the fact that the initial contents

of control variables are a fixed vector of constants), so the
corner points of the convex polyhedron of Φ(~z) only take
values from the set N ∪ {−∞,+∞}.

To establish constraints F1 and F2, it is sufficient to find
two corner points ~z1 and ~z2 such that f(~z1) 6 0 6 f(~z2).
To find these two points, we will construct a corresponding
Q-VASS (rational vector addition systems with states), where
the configuration reachability can be decided in NP.

In the following, we shows how to construct the Q-VASS
from A. For simplicity of presentation, we make the following
assumptions:
• A is order-preserving on X . That is, at all times the

contents of control variables must satisfy the constraint
x1 6 x2 6 · · · 6 xk.

• The reassignments of data variables are of the form yj :=
yj + f(~x, cur) for each yj ∈ Y .

The construction can be generalized to arbitrary copyless RAQ
with non-strict guards without the two assumptions.

Moreover, we can “split” each transition of A into several
ones by pinpointing the place of cur w.r.t. the linear order
x1 6 x2 6 · · · 6 xk, so that the guard in each transition is of
the form: cur = xi, cur 6 x1, xi 6 cur 6 xi+1, or xk 6 cur.

Let ~u0(X) = (c1, . . . , ck)t. Then N = {c1, . . . , ck} and
c1 < · · · < ck. Let N∞ = {−∞,+∞} ∪ N . A specification
is a mapping η from X to N∞ that respects the ordering of
N∞, i.e., for i 6 j, η(xi) 6 η(xj). Intuitively, η encodes the
value of xi in a corner point. We have η(xi) = cj when xi is
either assigned to cj or to a value arbitrarily close to cj .

We will construct a 2l-dimensional Q-VASS (S,∆) with
variables ~y1 = (y1,1, . . . , y1,l) and ~y2 = (y2,1, . . . , y2,l) as
follows. The set of states S of the Q-VASS is Q×{(η1, η2) |
η1, η2 are specifications}. A configuration is of the form
((q, η1, η2), ~y1, ~y2), where (η1, ~y1) and (η2, ~y2) summarize the
information of the components of the two corner points that
have been acquired so far (in other words, the input data values
that have been read by the RAQ so far). The details of the
transition relation ∆ can be found in [27].

Consider the initial configuration ((q0, η, η), ~u0(Y), ~u0(Y)),
where η(xi) = ~u0(xi) for each xi ∈ X . It holds that
there is w such that 0 ∈ A(w) iff there is a configuration
((q′, η1, η2), ~v1, ~v2) reachable from the initial configuration
such that q′ ∈ F and one of the following holds.

ζ(q′)(η1(~x), ~v1) 6 0 6 ζ(q′)(η2(~x), ~v2)

or
ζ(q′)(η2(~x), ~v2) 6 0 6 ζ(q′)(η1(~x), ~v1).

The existence of such a configuration can be encoded as
configuration reachability in the constructed Q-VASS, which,
in turn, can be reduced to satisfiability of an existential
Presburger formula.

VII. RELATED WORK

The literature provides many different formal models with
registers or arithmetics. Here we just mention those that are
closely related to RAQ. One of the most general models with

registers and arithmetics are counter automata [32] (over finite
alphabets), which are essentially finite automata equipped with
a bounded number of registers capable of holding an integer,
which can be tested and updated using Presburger-definable
relations. General counter automata with two or more registers
are Turing-complete [32], which makes any of their non-trivial
problems undecidable.

One way of restricting the expressiveness of counter
automata to obtain a decidable model are the so-called integer
vector addition systems with states (Z-VASS) [33], where
testing values of registers is forbidden and the only allowed
updates to a register are addition or subtraction of a con-
stant from its value. This restriction makes the configuration
reachability problem for Z-VASS much easier (NP-complete)
and the equivalence of reachability sets problem decidable
(coNEXPTIME-complete). For completeness, we also mention
vector addition systems with states (denoted as VASS without
the initial Z), where registers can only hold values from N (and
thus transitions that would decrease the current value below
zero are disabled). This makes VASS equivalent to Petri nets.
In VASS, configuration reachability is EXPSPACE-hard [34]
(but decidable [35]) and equivalence is undecidable [36].

Another way of restricting counter automata to decidable
subclasses is via their structure. One important subclass of
this kind are the so-called flat counter automata [37], i.e.,
counter automata without nested loops, where configuration
reachability and equivalence are decidable.

Register automata (RA) [9]–[11], [15]—sometimes also
called finite-memory automata— is a model of automata over
infinite alphabets where registers can store values copied
from the input and transition guards can only test equality
between the input value and the values stored in registers.
For (nondeterministic) RA, the emptiness problem is PSPACE-
complete, while the inclusion, equivalence, and universality
problems are all undecidable. Register automata can also be
extended [38] to allow transition guards to test the order
relation between data values (denoted by RA6), in which case
they are able to simulate timed automata [39] by encoding
timed words with data words. The model of RAQ can be
seen as an extension of RA6 with data variables and linear
arithmetics on them. There is also another RA model over the
alphabet N with order and successor relations in guards, but
no arithmetic on the input word [40].

As mentioned in the introduction, the model of RAQ is
inspired by the model of streaming data string transducers
(SDST), proposed by Alur and Černý in [14]. SDST are
an extension of deterministic RA6 with data string vari-
ables (registers), which can hold data strings obtained by
concatenating some of the input values that have been read
so far. There are two major restrictions imposed on the data
strings variables of SDST: (i) they are write-only, in the
sense that they are forbidden to occur in transition guards,
and (ii) the reassignments that update them are copyless.
These two restrictions are essential for obtaining the PSPACE-
completeness result of the equivalence problem for SDST.

Cost register automata (CRA) [41] is a model over finite

alphabets where a finite number of cost registers are used to
store values from a (possibly infinite) cost domain, and these
cost registers are updated by using the operations specified by
cost grammars. A cost domain and a cost grammar, together
with its interpretation on the cost domain, are called a cost
model. An example of a cost model is (Q,+), where the
cost domain is Q, the set of rational numbers, and the cost
grammar is the set of linear arithmetic expressions on Q, with
+ interpreted as the addition operation on Q. Decidability
and complexity of decision problems for CRA depend on the
underlying cost model. For instance, the equivalence problem
for CRA over the (Q,+) cost model is decidable in PTIME,
while, on the other hand, for CRA over the (N,min,+c)
cost model (which are equivalent to weighted automata), the
equivalence problem becomes undecidable.

The work related closest to RAQ are streaming numerical
transducers (SNT) introduced in our previous work [3] for
investigating the commutativity problem of Reducer programs
in the MapReduce framework [24]. The model of SNT is
a strict subclass of RAQ that satisfies several additional con-
straints; in particular, SNT are copyless and their transition
graph is deterministic and generalized flat (any two loops share
at most one state). In [3], by using a completely different
proof strategy than in the current paper, we provided an
exponential-time algorithm for the non-zero, equivalence, and
commutativity problems of SNT. We did not consider the
reachability problem for SNT in [3].

Weighted register automata (WRA) [42] is a model that
combines register automata with weighted automata [43].
Using the framework of this paper, the model of WRA can
be seen as a variant of RAQ with exactly one data variable
that is used to store the weight, with the following differences:
(i) the input data values in WRA can be compared using an
arbitrary collection of binary data relations in the data domain,
and (ii) the data variable can be updated using an arbitrary
collection of binary data functions from the data domain to the
weight domain. The work [42] focused on the expressibility
issues and did not investigate the decision problems.

Finally, let us mention symbolic automata and symbolic
transducers [44]–[46]. They are extensions of finite automata
and transducers where guards in transitions are predicates
from an alphabet theory (which is a parameter of the model),
thus preserving many of their nice properties. Extending
these models with registers in a straightforward way yields
undecidable models. Imposing a register access policy (such as
that a register always holds the previous value) can bring some
decision problems back to the realm of decidability [46], [47].
It is an interesting open problem to find a way of combining
symbolic automata with RAQ.

VIII. CONCLUDING REMARKS

In this paper, we defined RAQ over the rationals. To the
best of our knowledge, it is the first such model over infinite
alphabets that allows arithmetic on the input word, while keep-
ing some interesting decision problems decidable. We study

some natural decision problems such as the invariant/non-
zero problem, which is a generalization of the standard non-
emptiness problem, as well as the equivalence, commutativity,
and reachability problems. RAQ is also quite a general model
subsuming at least three well-known models, i.e., the standard
RA, affine programs, and arithmetic circuits.

It will be interesting to investigate the configuration reacha-
bility and coverability problems for copyless RAQ. Both of
them subsume the corresponding problems for Z- and Q-
VASS, since such VASS can be viewed as RAQ where data
variables represent the counters in the VASS. From Theorem 7,
we can already deduce that they are undecidable for general
RAQ. We leave the corresponding problems for copyless RAQ
as future work.

Acknowledgement: We thank Rajeev Alur for valuable
discussions and the anonymous reviewers for their helpful
suggestions about how to improve the presentation of the
paper. Yu-Fang Chen is supported by the MOST grant No.
103-2221-E-001-019-MY3. Ondřej Lengál is supported by the
Czech Science Foundation (project 17-12465S), the BUT FIT
project FIT-S-17-4014, and the IT4IXS: IT4Innovations Excel-
lence in Science project (LQ1602). Tony Tan is supported by
the MOST grant No. 105-2221-E-002-145-MY2. Zhilin Wu
is supported by the NSFC grants No. 61472474, 61572478,
61100062, and 61272135.

REFERENCES

[1] L. Segoufin, “Automata and logics for words and trees over an infinite
alphabet,” in Proc. of CSL, 2006.

[2] M. Bojańczyk, “Automata for data words and data trees,” in Proc. of
RTA, 2010.

[3] Y. Chen, L. Song, and Z. Wu, “The commutativity problem of the
MapReduce framework: A transducer-based approach,” in Proc. of CAV,
2016.

[4] F. Neven, N. Schweikardt, F. Servais, and T. Tan, “Distributed streaming
with finite memory,” in Proc. of ICDT, 2015.

[5] F. Aarts, B. Jonsson, J. Uijen, and F. W. Vaandrager, “Generating models
of infinite-state communication protocols using regular inference with
abstraction,” FMSD, vol. 46, no. 1, pp. 1–41, 2015.

[6] N. Tzevelekos, “Fresh-register automata,” in Proc. of POPL, 2011.
[7] L. Libkin, W. Martens, and D. Vrgoč, “Querying graphs with data,” J.

ACM, vol. 63, no. 2, pp. 14:1–14:53, 2016.
[8] O. Grumberg, O. Kupferman, and S. Sheinvald, “Variable automata over

infinite alphabets,” in Proc. of LATA, 2010.
[9] S. Demri and R. Lazić, “LTL with the freeze quantifier and register

automata,” ACM Trans. Comput. Log., vol. 10, no. 3, 2009.
[10] Y. Shemesh and N. Francez, “Finite-state unification automata and

relational languages,” Inf. Comput., vol. 114, no. 2, pp. 192–213, 1994.
[11] M. Kaminski and N. Francez, “Finite-memory automata,” Theor. Com-

put. Sci., vol. 134, no. 2, pp. 329–363, 1994.
[12] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.

Addison-Wesley, 1995.
[13] M. L. Minsky, Computation: Finite and Infinite Machines. Prentice-

Hall, Inc., 1967.
[14] R. Alur and P. Černý, “Streaming transducers for algorithmic verification

of single-pass list-processing programs,” in Proc. of POPL, 2011.
[15] F. Neven, T. Schwentick, and V. Vianu, “Finite state machines for strings

over infinite alphabets,” ACM Trans. Comput. Log., vol. 5, no. 3, pp.
403–435, 2004.

[16] M. Karr, “Affine relationships among variables of a program,” Acta Inf.,
vol. 6, pp. 133–151, 1976.

[17] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proc. of POPL, 1977.

[18] B. Jeannet and A. Miné, “APRON: A library of numerical abstract
domains for static analysis,” in Proc. of CAV, 2009.

[19] A. Shpilka and A. Yehudayoff, “Arithmetic circuits: A survey of recent
results and open questions,” Foundations and Trends in Theoretical
Computer Science, vol. 5, no. 3-4, pp. 207–388, 2010.

[20] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity
theory. Springer, 1997, vol. 315.

[21] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen,
“On the complexity of numerical analysis,” SIAM J. Comput., vol. 38,
no. 5, pp. 1987–2006, 2009.

[22] M. Müller-Olm and H. Seidl, “A note on Karr’s algorithm,” in Proc. of
ICALP, 2004.

[23] L. Blum, M. Shub, and S. Smale, “On a theory of computation and
complexity over the real numbers: NP-completeness, recursive functions
and universal machines,” Bull. of the Amer. Math. Soc., vol. 21, no. 1,
pp. 1–46, 1989.

[24] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. of OSDI, 2004.

[25] Y. Chen, C. Hong, N. Sinha, and B. Wang, “Commutativity of reducers,”
in Proc. of TACAS, 2015.

[26] T. Xiao, J. Zhang, H. Zhou, Z. Guo, S. McDirmid, W. Lin, W. Chen,
and L. Zhou, “Nondeterminism in MapReduce considered harmful?
an empirical study on non-commutative aggregators in MapReduce
programs,” in Proc. of ICSE, 2014.

[27] Y. Chen, O. Lengál, T. Tan, and Z. Wu, “Register
automata with linear arithmetic,” arXiv:1704.03972,
https://arxiv.org/abs/1704.03972.

[28] M. Müller-Olm and O. Rüthing, “On the complexity of constant prop-
agation,” in Proc. of ESOP, 2000.

[29] T. W. Hungerford, Algebra, 8th ed. Springer, 2003.
[30] E. L. Post, “A variant of a recursively unsolvable problem,” Bull. of the

Amer. Math. Soc., vol. 52, pp. 264–268, 1946.
[31] V. Chvátal, Linear programming. New York (NY): Freeman, 1983.
[32] M. L. Minsky, “Recursive unsolvability of Post’s problem of "Tag" and

other topics in the theory of Turing machines,” The Ann. of Math.,
vol. 74, no. 3, pp. 437–455, 1961.

[33] C. Haase and S. Halfon, “Integer vector addition systems with states,”
in Proc. of RP, 2014.

[34] R. J. Lipton, “The reachability problem requires exponential space,” Yale
University, Tech. Rep. 62, 1976.

[35] E. W. Mayr, “An algorithm for the general Petri net reachability
problem,” SIAM J. on Comput., vol. 13, no. 3, pp. 441–460, 1984.

[36] M. Hack, “The equality problem for vector addition systems is unde-
cidable,” Theo. Comp. Sci., vol. 2, no. 1, pp. 77–95, 1976.

[37] J. Leroux and G. Sutre, “Flat counter automata almost everywhere,” in
Proc. of ATVA, 2005.

[38] D. Figueira, P. Hofman, and S. Lasota, “Relating timed and register
automata,” Math. Struct. in Comput. Sci., vol. 26, no. 6, pp. 993–1021,
2014.

[39] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, 1994.

[40] B. Brütsch, P. Landwehr, and W. Thomas, “N-memory automata over
the alphabet N,” in Proc. of LATA, 2017.

[41] R. Alur, L. D’Antoni, J. Deshmukh, M. Raghothaman, and Y. Yuan,
“Regular functions and cost register automata,” in Proc. of LICS, 2013.

[42] P. Babari, M. Droste, and V. Perevoshchikov, “Weighted register
automata and weighted logic on data words,” in Proc. of ICTAC, 2016.

[43] M. P. Schützenberger, “On the definition of a family of automata,” Inf.
and Cont., vol. 4, no. 2–3, pp. 245–270, 1961.

[44] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjørner,
“Symbolic finite state transducers: algorithms and applications,” in Proc.
of POPL, 2012.

[45] M. Veanes, “Applications of symbolic finite automata,” in Proc. of CIAA,
2013.

[46] L. D’Antoni and M. Veanes, “Extended symbolic finite automata and
transducers,” FMSD, vol. 47, no. 1, pp. 93–119, 2015.

[47] C. Czyba, C. Spinrath, and W. Thomas, “Finite automata over infinite
alphabets: Two models with transitions for local change,” in Proc. of
DLT, 2015.

[48] K. N. Verma, H. Seidl, and T. Schwentick, “On the complexity of
equational Horn clauses,” in Proc. of CADE, 2005.

