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Abstract

The work presented in this thesis focuses on finite state automata over finite words
and finite trees, and the use of such automata in formal verification of infinite-state
systems. First, we focus on extensions of a previously introduced framework for verifi-
cation of heap-manipulating programs—in particular programs with complex dynamic
data structures—based on tree automata. We propose several extensions to the frame-
work, such as making it fully automated or extending it to consider ordering over data
values. Further, we also propose novel decision procedures for two logics that are often
used in formal verification: separation logic and weak monadic second order logic of
one successor. These decision procedures are based on a translation of the problem into
the domain of automata and subsequent manipulation in the target domain. Finally,
we have also developed new approaches for efficient manipulation with tree automata,
mainly for testing language inclusion and for handling automata with large alphabets,
and implemented them in a library for general use. The developed algorithms are used
as the key technology to make the above mentioned techniques feasible in practice.
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Abstrakt

Tato prace se zaméruje na konecné automaty nad kone¢nymi slovy a koneé¢nymi stromy,
a pouziti téchto automatt pii formalni verifikaci nekoneéné stavovych systému. Préace se
nejdiive vénuje rozsifeni existujiciho pristupu pro verifikaci programu které manipuluji
s haldou (konkrétné programu s dynamickymi datovymi strukturami), jenz je zalozen
na stromovych automatech. V préci je navrzeno nékolik rozsiteni tohoto ptistupu, jako
napiiklad jeho plnd automatizace ¢i jeho rozsiteni o podporu usporadanych dat. V praci
jsou popsany nové rozhodovaci procedury pro dvé logiky, které jsou ¢asto pouzivany
ve formélni verifikaci: pro separa¢ni logiku a pro slabou monadickou druhoiddovou
logiku s néslednikem. Obé tyto rozhodovaci procedury jsou zalozeny na pievodu jejich
problému do automatové domény a nasledné manipulaci v této cilové doméné. Poslednim
piinosem této prace je vyvoj novych algoritmu k efektivni manipulaci se stromovymi au-
tomaty, s durazem na testovani inkluze jazyku téchto automatu a manipulaci s automaty
s velkymi abecedami, a implementace téchto algoritma v knihovné pro obecné pouziti.
Tyto vyvinuté algoritmy jsou pouzity jako klicova technologie, kterd umoznuje pouziti
vySe uvedenych technik v praxi.
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1. Introduction

Computer-based systems and technologies keep penetrating still deeper into human lives.
The importance of their uninterrupted and correct operation thus keeps growing. Today,
computer systems are widely used in the automotive industry (currently, there are over
30 microcontrollers in an average car), aerospace industry, telecommunication, bank
sector, military, etc. An incorrect behaviour of a computer system in some of these
environments may cause substantial loses of money, resources, or, in the worst case,
even human lives. Even in cases of programs that are not safety-critical, errors are often
the cause of a negative user experience, which can lead to frustration, and, in an extreme
case, even to damage to hardware.

Verification is a process that checks whether a given system is correct with respect
to a provided specification. There are two main approaches to verification: the so-called
bug hunting and formal verification. Bug hunting methods focus on finding as many
errors as possible in the verified system. This approach includes testing of programs
using random inputs while observing their behaviour, dynamic analysis (extrapolation of
program’s dynamic behaviour), some forms of static analysis (such as detection of errors
that match some patterns in the source code), bounded model checking (systematic
search of the state space of the verified program to a limited depth), etc. Bug hunting
methods usually cannot guarantee a program’s correctness and often find only easily
reachable errors.

1.1. Formal Verification

Formal verification is, as opposed to bug-hunting, a technique that attempts to formally
prove that the verified system is error-free, i.e. formal verification can guarantee that if
it does not find an error, there are indeed no errors present in the system. Although the
formal verification problem is in general undecidable, there are currently various formal
verification methods that work well for a large range of classes of programs.

Several properties are often required from formal verification methods. Perhaps the
most important of these properties is soundness. A method is said to be sound in
case it never pronounces a system error-free when the system contains a behaviour that
violates the specification. On the other hand, a method is said to be complete if it
does not produce spurious counterexamples, i.e. counterexamples that in fact can never
occur in the real system. A desired property of formal verification algorithms is also
termination, i.e. that the algorithms always converge.



1.2. Shape Analysis of Programs Manipulating Heap

One particular class of errors are the ones relating to memory safety in programs that
use dynamic memory allocation, such as programs manipulating different flavours of
lists (e.g. singly/doubly linked, circular, with skip pointers) and trees (e.g. binary trees,
trees with root/parent pointers). The area that investigates techniques for dealing with
them is called shape analysis. Examples of the considered errors are invalid pointer
dereference (which may cause a corruption of data values or an abnormal termination
of the program) or occurrence of garbage (which may cause the program to deplete the
memory available and even affect other programs running on the computer). Dynamic
memory is utilised (either directly or indirectly via library calls) in a vast portion of
currently produced software. Among the most critical applications that extensively use
dynamic memory are kernels of operating system (e.g. Linux) and various standard
libraries (e.g. the GNU C library glibc or the C++ standard library).

Because programs manipulating heap are usually infinite-state, a sound analysis tech-
nique needs to represent the heap symbolically, i.e. represent sets of heaps by different
means than enumerating all of their elements. Currently, there are several competing
approaches for symbolic heap representation. The first approach is based on the use of
formulae of various logics to describe sets of heap configurations. The logics used are
e.g. separation logic [Rey02, MTLTT0, BCCT07, [GVA07, [CDNQ124, [CRNO7, [YLBT08,
CDOY09, DPV13, (CDNQ12b, LGQC14], monadic second-order logic [MSO01, [JJSK97,
MPQ11, MQ11], or other [SRW02), [ZKR08, BR06G]. Another approach is based on the
use of automata. In this approach, elements of languages of the automata describe con-
figurations of the heap [BHRV06, BBH'11, [DEG06]. The last approach that we will
mention is based on graph grammars describing (sets of) heap graphs [HNR10, Weil2].
The presented approaches differ in their degree of specialisation for a particular class of
data structures, their efficiency, and their level of dependence on user assistance (such as
definition of loop invariants or inductive predicates for the considered data structures).

The works that build on separation logic, such as [BCCT07, [YLBT08, LGQC14], are
among the more efficient ones, thanks to the support for local reasoning provided by the
separating conjunction (separating conjunction effectively decomposes the heap into dis-
joint components so that each can be handled independently of the others, without the
need to consider all possible aliasings of their elements). However, most of the techniques
based on separation logic are either specialised for some particular data structure—such
as singly/doubly linked lists—and even a slight change in the data structure can make
the technique unusable (as e.g. in [BCCT07, YLBT08, [DPV13]), or they need the user
to provide inductive definitions of the used data structures. Moreover, when testing for
a fixpoint (which is done to detect whether a newly obtained symbolic representation is
subsumed by some already existing one), the analysis needs to check entailment of a pair
of separation logic formulae. Entailment procedures have so far been either for consider-
ably limited classes of data structures (e.g. singly linked lists), or quite ad-hoc, based on
folding/unfolding inductive predicates in the formulae and trying to obtain a syntactic
proof of the entailment. Obviously, this often came with no completeness guarantee.
Only recently have there appeared more systematic approaches [IRSlB, IRV14].



The shape analysis techniques based on automata can address this issue by exploiting
the generality of the automata-based representation. Finite tree automata, for instance,
have been shown to provide a good balance between efficiency and ability to express
complex data structures. In particular, the so-called abstract reqular tree model checking
(ARTMC) of heap-manipulating programs [BHRV12] uses a finite tree automaton to de-
scribe a set of heaps positioned on a tree backbone (non-tree edges of the heap are repre-
sented using regular “routing” expressions describing how the target can be reached from
the source using tree edges). Manipulation with the heap is represented using a finite tree
transducer and the set of reachable configurations is computed by iteratively applying
the transducer on the initial configuration, until a fixpoint is reached. At each step, the
obtained symbolic configuration is safely over-approximated using abstraction—which
collapses certain states of the automaton—and a fixpoint is detected by standard au-
tomata language inclusion testing. The abstraction used is derived automatically during
the run of the analysis, using the so-called counterexample guided abstraction refinement
(CEGAR) technique, which uses spurious counterexamples to refine the abstraction.
This formalism is able to fully automatically verify even as complex data structures as
binary trees with linked leaves, however, it suffers from the inefficiency of the monolithic
encoding of the sets of heaps and the transition relation.

Recently, a technique borrowing the best from the worlds of separation logic and
ARTMC emerged. This technique, introduced in [HHRT12|, is based on the so-called
forest automata, which are essentially tuples of tree automata where leaves of the trees
accepted by one of the tree automata can reference roots of the trees accepted by the
other tree automata (or by itself). This “non-monolithic” encoding gives a support for
local reasoning because heap manipulating operations are executed as simple operations
locally on a particular tree automaton and not affecting the other tree automata in the
forest automaton. Each root of a tree corresponds to a cut-point (a node with multiple
incoming edges) in the heap graph. Some data structures have an unbounded number of
cut-points, e.g. doubly linked lists wherein every internal node is a cut-point. Data struc-
tures of this kind cannot be represented in a finite way using this basic formalism; the
number of tree components of the forest automata in the analysis would keep growing.
The approach therefore uses hierarchical encoding, which uses special symbols—called
bores—to encode sets of subgraphs that contain a cut-point. Boxes are, again, repre-
sented using forest automata. The technique uses automata abstraction from ARTMC to
obtain a sound over-approximation of the set of reachable configurations and accelerate
obtaining a fixpoint of the analysis.

1.2.1. Selected Problems in Shape Analysis

One issue of the techniques described in the previous is that they often ignore the data
component of the represented data structure. This is not always feasible because several
data structures, such as binary search trees or skip lists, depend on the data stored
inside—in a binary search tree, for example, if a new value is inserted, the ordering
relation between the inserted value and the data stored in the root of the tree determines
whether the new value is inserted into the left or the right subtree. Examples of works
also considering data stored in data structures are [MPQ11, MQ11, |QGSM13].



Another interesting problem emerging in the frameworks for shape analysis is the
problem of detecting whether the analysis of symbolic executions of a loop has reached
a fixpoint. A symbolic execution is an abstract execution of the program that uses the
symbolic representation of the program’s memory (there may be a potentially unbounded
number of them, the same as for real program executions). In this case, the fixpoint is
a closed representation of the set of reachable configurations of the heap, with closed
meaning that any new iteration over the body of the loop cannot add anything new to
the set. A fixpoint is detected by testing inclusion of the symbolically represented sets of
states before and after one more execution of the loop. The analyses based on separation
logic perform such a test by checking entailment of a pair of formulae describing the
heap configurations. On the other hand, in the analyses based on automata, this test
corresponds to checking inclusion of languages of a pair of automata. Also note that
both of these problems are general and used in other settings, such as in deductive
verification when deducing whether a precondition of a statement and its semantics imply
its postcondition (for entailment), or testing containment of a pair of XML schemas (for
tree automata language inclusion), among many others. These problems are theoretically
very hard with a discouraging worst case complexity, yet good heuristics can often solve
an average case in reasonable time.

An example of such a heuristic is the technique of the so-called antichains for checking
language inclusion of a pair of nondeterministic finite state automata (over finite words
or trees). The technique [WDHRO6, [DRI0, BHHT08, IACH™10] avoids explicit deter-
minisation of the automata by performing an on-the-fly exploration of the state space.
During the exploration, it prunes parts of the state space using a subsumption relation
on sets of states of the original automaton (the simplest form of the relation, introduced
in [WDHROG], is simple set inclusion). Although language inclusion of a pair of nonde-
terministic automata has a forbidding worst case complexity—it is a PSPA CE-complete
problem for finite word automata and, even worse, EXPTIME-complete problem for
finite tree automata—the technique works well for many practical examples.

1.3. Goals of the Thesis

The main goal of this thesis is an improvement of current state of the art in shape anal-
ysis. This goal consists of the following three subgoals. The first subgoal is the devel-
opment of extensions to the shape analysis technique proposed in [HHR 12| that would
extend its degree of automation and class of programs it can handle, with a particular
focus on data-dependent programs. The second subgoal is an extension and development
of new efficient algorithms for testing entailment and validity of selected logics that are
used in shape analysis, in particular separation logic and monadic second-order logic.
For both of the logics, there exist fragments for which there have been developed efficient
translations of decision problems in the logics into finite (tree) automata; such fragments
are the particular focus of our attention. For separation logic, we consider the fragment
where higher-order inductive predicates correspond to linked lists of many different kinds
(singly and doubly linked, circular, nested, ... ), and for monadic second-order logic, we



consider its weak fragment of one successor (the so-called weak monadic second-order
logic of 1 successor—WS1S). The third subgoal of this thesis is development of tech-
niques for efficient manipulation with finite tree automata, which underlie the previous
two subgoals. In particular, the emphasis is placed on the development of algorithms for
efficient testing of inclusion over nondeterministic tree automata, and on techniques for
manipulating tree automata with large alphabets.

1.4. An Overview of the Achieved Results

This section summarises the contributions to the particular areas exposed in the previous
section as goals of this thesis.

Fully Automated Shape Analysis with Forest Automata. The original paper on
forest automata-based shape analysis [HHR™12| relied on the user to provide together
with the verified program also the needed boxes—i.e. the forest automata describing
subgraphs of the heap to be enclosed into higher-level symbols. The first contribution
of this thesis is the development of a fully automated method for discovering suitable
boxes directly during the run of the analysis. The proposed method is based on selecting
a suitable subgraph of the heap, isolating it as a box, and removing a cut-point by folding
the selected subgraph into a single hyper-edge that is labelled with the box descriptor.

The challenging part is identifying which subgraphs to fold. In general, these need to
be subgraphs that decrease the number of cut-points in the heap. However, some more
complex conditions need to be met when the method is applied in the analysis. Firstly,
the considered subgraph needs to be small enough so that the created box that represents
it is reusable and the widening operator can make a loop in some tree automaton over
the box. Secondly, on the contrary to the previous point, the subgraph needs to be large
enough so that the box effectively helps to remove a cut-point from the heap graph. The
second condition is needed because folding a finite number of input edges of a node with
an unbounded in-degree into a box may be sometimes harmful and may even prevent
the algorithm to find a more suitable subgraph and terminate.

We developed an algorithm that searches the heap graph for basic subgraphs (called
knots) that match the particular conditions. The search starts from the knots smallest
in the number of cut-points and proceeds to larger ones. During the search, knots are
saturated in order to avoid the problems of too small subgraphs mentioned earlier; on
the other hand, the algorithm keeps them as small as possible to allow the created
boxes to be reused. The procedure developed in this contribution allowed us to fully
automatically verify programs with such complex dynamic data structures as various
flavours of singly/doubly linked (circular and/or nested) lists, trees, as well as skip lists
(after the addition of data mentioned below).

Extending Forest Automata with Support for Data. A further contribution of
this thesis is an extension of the forest automata-based framework with a support of
programs with ordered data. In this extension, forest automata are augmented with



constraints that can relate values stored in the nodes of the represented data structure.
There are two types of constraints: (i) local constraints, which are used in tree automata
transitions and relate data values occurring in the parent node to data values occurring
in the subtrees of children nodes, and (ii) global constraints, which are used to relate two
tree automata with respect to the data values that occur in the trees they can generate.
The addition of constraints required further extension of the abstract transformers, which
need to introduce new constraints where implied by the performed operation, and remove
constraints that do not hold any more. Furthermore, to transform forest automata into
the canonical form to make testing language inclusion possible, we devised a saturation
procedure that traverses a forest automaton and infers new constraints from the existing
ones. Using this extension, we were able to fully automatically verify programs with
binary search trees and a full implementation of a 3-level skip list [Pug90|, which is, to
the best of our knowledge, the first time anyone has achieved this.

A Decision Procedure for Separation Logic with List Predicates. A further
contribution of this thesis is the development of a decision procedure for the problem of
testing entailment of a pair of formulae in a fragment of separation logic. The consid-
ered fragment supports a wide range of higher-order inductive predicates that describe
various flavours of singly and doubly linked lists, including nested lists and skip lists.
The developed decision procedure is based on finding a homomorphism between the
symbolic heaps represented by the separation logic formulae, splitting the heaps into
subgraphs according to this homomorphism and component-wise translating the separa-
tion logic formulae describing the subgraphs into trees and tree automata and checking
membership of the trees in the languages of the tree automata.

An Antichain-based Technique for Deciding WS1S Formulae. As the penul-
timate contribution, we propose a decision procedure for the WSIS logic (the weak
monadic second-order logic of 1 successor). The decision procedure checks, for a WS1S
formula ¢, whether ¢ is valid or not. The standard procedure is based on constructing
a finite automaton for ¢, starting by creating finite automata for the atoms of ¢ and
then going upwards alongside the syntax tree of ¢ and performing finite automata op-
erations corresponding to the logical operators, eventually creating a finite automaton
representing ¢, and checking whether its language is non-empty. The drawback of this
procedure is that each negation and quantifier alternation yields complementation of
an automaton, for which there is no known algorithm that avoids exponential explosion
in the number of states (because it includes determinisation of the automaton). The
exponential construction induced by complementation makes the procedure infeasible
for larger formulae. We propose a method that avoids explicit complementation of the
automata but exploits a technique that generalises the antichains principle used in algo-
rithms for efficient testing of language inclusion over nondeterministic automata. Note
that the multiple-exponential worst case complexity is unavoidable, because the inher-
ent theoretical complexity of the addressed problem is NONELEMENTARY, i.e. it
cannot be solved by a k-EXPTIME algorithm for any fixed k.



Efficient Algorithms for Nondeterministic Tree Automata. Finally, in order
to make the previously described contributions usable in practical settings, they need
the support of an efficient implementation of operations for manipulating the underly-
ing automata representation. The majority of the previously existing automata-based
techniques were based on the use of deterministic automata and suffered from the state
explosion that comes with determinisation. The state explosion prevents the use of
deterministic automata for larger systems. To avoid the state explosion, we always use
nondeterministic automata and techniques that manipulate directly those. We never de-
terminise them, even for such operations as testing language inclusion (which is usually
done by determinising and complementing one of the automata and testing emptiness
of the intersection with the other automaton). This (and also other problems from the
wide area of applications of tree automata) poses the requirement for techniques that can
efficiently execute operations directly on nondeterministic tree automata. Concretely,
in addition to standard automata operations, such as constructing a union or an inter-
section of a pair of automata, there is also the requirement for efficient techniques for
testing language inclusion. Although testing language inclusion of nondeterministic tree
automata has an extreme worst case complexity (being an EXPTIME-complete prob-
lem), using clever heuristics—which avoid explicit determinisation of a tree automaton
used by textbook algorithms causing an exponential state explosion—this can be done
efficiently in many practical cases.

We propose a downward inclusion testing algorithm for nondeterministic tree au-
tomata, which, in contrast to already existing algorithms, traverses the automata top-
down rather than bottom-up. In addition, it uses antichains and the simulation relation
to prune parts of the search space that are subsumed by the already explored ones. In our
experiments, this algorithm was in the majority of cases the fastest algorithm for test-
ing language inclusion over tree automata. We also developed efficient algorithms for
manipulating semi-symbolic representations of nondeterministic tree automata, which
can be advantageously used for tree automata with large alphabets—such as those the
emerge in the proposed decision procedure for WS1S—also including algorithms for ef-
ficient testing of inclusion or computation of simulation relations. We implemented the
proposed algorithms in the VATA library, which has since been used by quite a few
researchers around the world, who have used it as an efficient underlying library for
handling nondeterministic automata for their own techniques.

1.5. Plan of the Thesis

Chapter [2] contains preliminaries on graphs, trees, and tree automata. Part [I] contains
the following three chapters describing our contributions to the forest automata-based
shape analysis. Chapter [3|introduces forest automata. Chapter [4] describes the approach
taken to make the analysis based on forest automata fully automated using box learning.
Chapter [5] describes the extension of the forest automata framework to support reasoning
about heap-manipulating programs that depend on ordered data stored in the heap.
Part[[I]is dedicated to the description of the decision procedures for two logics: separation



logic (Chapter @ and WS1S (Chapter|7)). Finally, Part|III focuses on efficient techniques
for manipulation of nondeterministic tree automata. In particular, Chapter [§| describes
the proposed downward inclusion checking technique for nondeterministic tree automata,
Chapter [J] proposes a symbolic encoding of nondeterministic tree automata with large
alphabets, and Chapter covers the design and implementation of an efficient tree
automata library. The last chapter, Chapter concludes the thesis.



2. Preliminaries

This section formally introduces concepts that will be used in the rest of the thesis, in
particular graphs, trees, and tree automata.

2.1. Graphs and Trees

Given a word o = aq . ..ay, where n > 1, we write «; to denote its ¢-th symbol a;. We
use the symbol € for the empty word. For a total map f : A — B, we use dom(f) to
denote its domain A and img(f) to denote its image in B.

A ranked alphabet is a (potentially infinite) set of symbols ¥ associated with a mapping
# : ¥ — Nj that assigns ranks to symbols. A (directed, ordered, labelled) graph over
Y is a total map g : V' — ¥ x V* which assigns to every node v € V' (1) a label from
¥, denoted as £4(v), and (2) a sequence of successors from V*, denoted as Sy(v), such
that #£,4(v) = |Sg(v)|. We drop the subscript g if no confusion may arise. Nodes v with
S(v) = e are called leaves. For any v € V such that g(v) = (a,v1 - - - vy,), we call the pair
v+ (a,v1---vy,) an edge of g. The in-degree of a node in V is the overall number of its
occurrences in g(v) across all nodes v € V. The nodes of a graph g with an in-degree
larger than one are called joins of g.

A path from v to v’ in g is a sequence p = vy, i1,v1, ..., s, vV, Where vg = v, v, = v/,
and for each j such that 1 < j < n, v; is the i;-th successor of v;_1. The path is empty
if n = 0. The path is acyclic if none of nodes vy, ..., v, appears twice in it. The nodes
v1,...,0n—1 are called the inner nodes of p. The length of p is defined as length(p) = n.
The path is a cycle if vg = vy, and it is a simple cycle (or loop) if it is a cycle and no
node except vy = v, appears twice in it. An acyclic path has defined the cost as the
sequence i1, ...,1,. We say that p is cheaper than another path p’ iff the cost of p is
lexicographically smaller than that of p’. A node u is reachable/accessible from a node
v iff there is a path from v to u in g (including the case when the path is empty, i.e.
u =v). A node v that reaches all nodes of g is called the root of g. If such a node exists
in the graph g, we say that g is rooted (in v). A tree is a graph t that has exactly one
root  and each of its nodes except r is a successor of at most one node v of t. We use
root(t) to denote the root of ¢ and Tx to denote the set of all trees over 3.

2.2. Tree Automata

A (finite, nondeterministic) tree automaton (TA) is a quadruple A defined as A =
(Q,2,A, R) where @ is a finite set of states, ¥ is a ranked alphabet, A is a finite set
of tramsitions, and R C @ is a set of root states. Each transition is a triple of the
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form (q,a,q1---q,) where n > 0, ¢,q1,...,q, € Q, a € 3, and #a = n. We often
use interchangeably ¢ — a(q1,...,qn) and a(q1,...,q,) — ¢ to denote (q,a,q1 - qn),
depending whether we wish to emphasise the downward or the upward direction of the
transition. In the special case where n = 0, we speak about the so-called leaf transitions.
We use Q% to denote the set of all tuples of states from @ with up to the maximum
arity that some symbol in ¥ has, i.e. if n = max,ey, #a, then Q% = Up<icn @

For ¢ € Q and a € %, we use downg(q) to denote the set of tuples accessible

from ¢ over a in the top-down manner; formally, down,(q) = {(q1,...,q2) | ¢ —
a(qi,...,qn)}. Fora € ¥ and (qi,...,q.) € Q7?, we denote by upa((q1,-...,qn)) the
set of states accessible from (qi,...,qy) over the symbol a in the bottom-up manner;

formally, up,((q1,-..,qn)) = {q | alq1,-..,q,) — q}. We also extend these notions to
sets in the usual way, i.e. for a € ¥, P C Q, and S C Q#?, down,(P) = UpeP down(p)
and upa(S) = U, syes WPal(s1,- -, 5n)).

A run of A over a tree t over ¥ is a mapping p : dom(t) — Q s.t. for each node
v € dom(t) where ¢ = p(v), if ¢; = p(S(v);) for 1 < i < |S(v)|, then A has a transition
q = Lv)(q1,- -, qs@))- We write t =, ¢ to denote that p is a run of A over ¢ s.t.
p(root(t)) = q. We use t = q to denote that ¢ =, ¢ for some run p. The language of
a state ¢ is defined by L(q) = {t | t = ¢}, and the language of A is defined by L(A) =
quR L(q). We extend the notion of a language to a tuple of states (q1,...,qn) € Q" by
letting L((q1,.--,qn)) = L(g1) X -+ X L(qy). The language of a set of n-tuples of sets of
states S C (2¢)" is the union of languages of elements of S, the set L(S) = Upeg L(E).

Simulations. A downward simulation on a TA A = (Q, %, A, R) is a preorder relation
=p € @ x @ such that if ¢ <p p and ¢ — a(q1, ..., qn), then there are states pi,...,p,
such that p — a(p1,...,pn) and ¢; <p p; for each 1 < i < n. Given a TA A =
(Q,%, A, R) and a downward simulation <p, an upward simulation <y C @ x @ induced
by =<p is a relation such that if ¢ <y p and a(q1,...,q,) — ¢ with ¢; = ¢, 1 < i < n,
then there are states p1,...,pn,p’ such that a(p1,...,pn) — p’ where p; = p, ¢ 2v P/,
and ¢; <p pj for each j such that 1 < j #1i < n.

2.3. Structured Labels

Sometimes, we will work with alphabets where symbols, called structured labels, have an
inner structure. Let I be a ranked alphabet of sub-labels, ordered by a total ordering
Cr. We will work with graphs over the alphabet 21 where for every symbol A C T, its
arity is #A = > a4 #a. Let e = v ({a1,...,am},v1---v,) be an edge of a graph g
where n = > ;... #a; and a1 Cr a2 Cr -+ Cr a,. We decompose e into a sequence
of m sub-edges e(1) = v — (a1,v1 " Vga,), .-, e{m) = v = (m, Vn—ga,+1 - Vn). We
call e(i) = v — (a;,vg - - - v7) from the sequence the i-th sub-edge of e in g, for 1 <i < m.
We use SE(g) to denote the set of all sub-edges of g, and SE(g,v) for the subset of
SE(g) where v is the origin.. We say that a node v of a graph is isolated if it does not
appear within any sub-edge, neither as an origin (i.e. £(v) = () nor as a target. A graph
g without isolated nodes is unambiguously determined by SFE(g) and vice versa (due to
the total ordering Cp and since g has no isolated nodes).
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A counterpart of the notion of sub-edges in the context of transitions of TAs is the no-
tion of sub-terms, defined as follows: Given a transition 6 = ¢ — {a1,...,am}(q1,---,qn)
of a TA over the alphabet of structured labels 2", sub-terms of § are the terms 6(1) =
a1(qi, .-y Q#ar), - 0(m) = am(@n—tan+1;---,4qn) Where 6(i), for 1 < i < m, is called
the i-th sub-term of 9.
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Part 1.

Forest Automata-Based Formal
Verification of Programs
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3. Shape Analysis with Forest Automata

In this chapter, as the starting point for our own work presented in Chapters | and |5 we
will briefly describe the forest automata-based shape analysis framework for verification
of programs manipulating complex dynamic data structures, as introduced by Haber-
mehl et al in [HHR™12]. The main concept of the symbolic representation used in the
framework is the so-called forest decomposition of a heap graph, which is performed as
follows: First, the cut-points of the graph are identified; a cut-point is a node that is
either referenced by a program variable or is a target of multiple edges. Every cut-point
is then taken as the root of a (cut-point-free) tree component whose leaves are either
nodes with no outgoing edges, or other cut-points. The heap graph is split into the tree
components. The tree components are then canonically ordered according to the order
in which their roots were visited in a depth-first search (DFS) through the graph, when
starting from program variables. In the tree components, any leaf that corresponds to
a cut-point numbered with ¢ during the DFS is changed into an explicit reference to
the cut-point number ¢, written as ¢. See Figure for an illustration of the forest
decomposition of a heap graph.

To represent a set of (potentially infinite) heaps H = {hi, hg,...} with the same
number n of cut-points, we decompose all heaps of H into forests and for every position
1 < i < n, we then collect the i-th components of all forests into the set H[i] =
{h1[i], h2[d],...}. The set HJ[i] can be represented using a tree automaton (TA) A[i] and
the whole set of heaps H can be represented by a tuple of TAs A[1],..., A[n], called
a forest automaton (FA). (Note that the previous decomposition of a set of heaps can be
performed only in the case the set of forests Fir of H is convex. Convexity of Fir denotes
the fact that we can take any forest h[1], ..., h[n| from Fp, substitute h[j] with h'[4] for
any 1 < j <mnand h' € H, and the result will still be a member Fy. Non-convex sets
of forests are represented as unions of convex sets. Our analysis also guarantees that all
HJi] are regular tree languages.)

An FA of the simple structure presented above cannot be used as a representation of
data structures that have an unbounded number of cut-points—such as doubly linked
lists (DLLs) or trees with parent pointers, where every internal node is a cut-point—and
the analysis would need an infinite number of FAs to represent a set of all instances of
these data structures. In order to be able to represent them using finitary means, the
forest automata framework allows the use of the so-called boxes. Boxes are FAs that
are used as symbols of another, higher level FA. In this FA, they represent a (complex)
subgraph using a single symbol. Intuitively, the task of boxes is to decrease the in-degree
of cut-points in a graph—when the in-degree of a node drops to one (and the node is
not referenced by a program variable), the node is no longer a cut-point and can be
represented by an ordinary state in a TA. In this way, it is possible to represent an
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over-approximation of all reachable configurations of a program using forest automata
with a bounded number of tree components. See Figure for an example of a use of
a box in an encoding of a DLL.

Alongside the notion of FAs, [HHR™ 12| also proposed a shape analysis that uses FAs
and is based on the framework of abstract interpretation |[CCTT]. For each program line,
a set of forest automata is used to represent the set of memory configurations reachable
at a given line. The program is symbolically executed on this representation in such
a way that each program statement is mapped to an abstract transformer that simulates
execution of the statement on the symbolic representation (and also checks whether
an error has been encountered). The symbolic execution examines all branches of the
program until no new symbolic states can be found on the branches and a fixpoint is
obtained (this is detected by testing language inclusion of FAs, see [HHR™12] for more
details). Because, as mentioned earlier, programs manipulating heap are usually infinite-
state, the widening operator is used to provide a sound over-approximation of the set of
reachable configurations. This operator is based on automata abstraction borrowed from
abstract regular tree model checking (ARTMC). For a given forest automaton, abstraction
collapses some states of the TAs of the FA (for each TA separately), trying to introduce
loops into the TAs to obtain TAs accepting an infinite (regular) tree language that over-
approximates the original one and, in turn, a forest automaton representing an infinite
set of heaps, again over-approximating the original one.

Outline. Section [3.1] of this short chapter introduces the formalism of forest automata
and Section describes the forest automata-based framework for shape analysis.

3.1. Forest Automata

Forests. Let ¥ be a ranked alphabet disjoint from N, i.e. XN N = (). A Y-labelled
forest is a sequence of trees tj---t, over the alphabet (X U {1,...,n}) where for all
1 <4 < n, the arity of i is #¢ = 0. Leaves labelled by ¢ € N are called root references.
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The forest t;---t, represents the graph ®t;---t, obtained by uniting the trees of
t1-- - tp, assuming w.l.o.g. that their sets of nodes are disjoint, and interconnecting their
roots with the corresponding root references. Formally, ®t;---t, contains an edge of
the form v — (a,vy---vy,) iff there is an edge v — (a,v]---v},) of some tree t;, for
1 <4 < n, such that for all 1 < j < m, the following holds: if v;» is a root reference with
£(v}) = k then v; = root(ty), otherwise v; = vj.
Graphs and forests with ports. We will further work with graphs with designated
input and output nodes. An io-graph is a pair (g,¢), abbreviated as g4, where g is
a graph and ¢ € dom(g)* a sequence of ports in which ¢; is the input port and ¢s - - - D¢
is a sequence of output ports such that the occurrence of ports in ¢ is unique. Ports and
joins (i.e. nodes with multiple incoming edges) of g are called cut-points of g4. We use
cps(ge) to denote all cut-points of g,. We say that g4 is accessible if it is rooted in the
input port ¢;1. We sometimes abuse notation for graphs and use it also for io-graphs,
e.g. we may write dom(gg) to denote dom(g).

An io-forest is a pair f = (ty -+ - t,, ) such that n > land 7 € {1,...,n}T is a sequence
of port indices, 7y is the input indez, and 72 ... 74| is a sequence of output indices, with
no repetitions of indices in 7. An io-forest encodes the io-graph ® f where the ports of
®tq - - - t,, are roots of the trees defined by 7, i.e. ®f = (®t1 - - - ty, 100t (L7, ) - - - TOOL(t1,))-

Forest automata. A forest automaton (FA) over the alphabet ¥ is defined as a pair
F = (A;1---A,,m) where n > 1, A;--- A, is a sequence of tree automata over the
alphabet (XU{1,...,n}), and 7 € {1,...,n}7 is a sequence of port indices as defined for
io-forests. The forest language of F is the set of io-forests L(F') = L(A1)x---x L(Ajy) x
{r}, and the graph language of F is the set of io-graphs L(F) = {®h | h € L;(F)}.

Forest automata of a higher level. We let I'; be the set of all forest automata
over the alphabet of structured labels 2! and call its elements forest automata over I' of
level 1. For i > 1, we define I'; as the set of all forest automata over ranked alphabets
2FUA where A C Ty is any nonempty finite set of FAs of level i —1. We denote elements
of I'; as forest automata over I' of level . The rank #F of an FA F' in these alphabets
is the number of its output port indices. When used in an FA F over 2I'Y2| the forest
automata from A are called bozes of F'. We write I'y to denote UZ->0 I'; and assume
w.l.o.g. that I', is ordered by some total ordering Cr,. -
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An FA F of a higher level over I' accepts graphs where forest automata of lower levels
appear as sub-labels. To define the semantics of F' as a set of graphs over I', we need the
following operation of sub-edge replacement where a sub-edge of a graph is substituted
by another graph. Intuitively, the sub-edge is removed, and its origin and targets are
identified with the input and output ports of the substituted graph respectively.

Formally, let g be a graph with an edge e € ¢ and its i-th sub-edge e(i) = v; —
(a,v2---vp). Let g be an io-graph with [¢| = n. Assume w.lo.g. that dom(g) N
dom(g;,) = 0. The sub-edge e(i) can be replaced by ¢ provided that forall 1 < j <nitis
that £g(v;) N Ly (¢;) = 0, which means that the node v; € dom(g) and the corresponding
port ¢; € dom(gfb) do not have successors reachable over the same sub-label. If the
replacement can be done, the result, denoted g[g:b /e(i)], is the graph g, in the sequence
9o, - - -, gn Of graphs obtained as follows: The graph gy is defined using sub-edges as
SE(go) = (SE(g) \ {e(i)}) U SE(¢'), and for each 1 < j < n, the graph g; arises from
gj—1 by (1) deriving a graph h; by replacing the origin of the sub-edges of the j-th
port ¢; of ggb by vj, (2) redirecting edges leading to ¢; to lead to v;, i.e. replacing
all occurrences of ¢; in img(h); by vj, obtaining the graph A}, and (3) removing ¢;.
Intuitively, we start by removing e(i) from g, proceed by adding ¢’ to the graph and
then, one by one, reconnecting edges leading to and leaving the ports of gfb with the
nodes incident with e(i) in g. Figure shows the sub-edge replacement step including
the intermediate graphs.

If the symbol a of the sub-edge e(i) in the previous paragraph is an FA and gj € L(a),
we say that h = g[g;/e(i)] is an unfolding of g, written g < h. Conversely, we say that
g arises from h by folding g:ﬁ into e(i). Let <* be the reflexive transitive closure of <.
The I'-semantics of g is then the set of graphs ¢’ over I' such that g <* ¢/, denoted
[9]r, or just [g] if no confusion may arise. For an FA F of a higher level over I, we let

[F] = Uy err) (lg] x {2})-

Canonicity. We call an io-forest f = (t1---t,, ) minimal iff the roots of the trees
ty---t, are the cut-points of ® f. A minimal forest representation of a graph is unique
up to reordering of t1---t,. Let the canonical ordering of cut-points of ® f be defined
by the cost of the cheapest paths leading from the input port to them. We say that f
is canonical iff it is minimal, ® f is accessible, and the trees within ¢ - - - ¢, are ordered
by the canonical ordering of their roots (which are cut-points of ® f). A canonical forest
is thus a unique representation of an accessible io-graph. We say that an FA respects
canonicity iff all forests from its forest language are canonical. (Note that we do not
consider canonical FAs, due to the reason that there would have to be some canonicity
restriction on the component TAs. As for a set of nondeterministic TAs with the same
language L, there is no known natural canonical TA accepting L, and even if there were,
the cost of conversion to this TA might be too high.) Respecting canonicity makes it
possible to efficiently test FA language inclusion by testing TA language inclusion of the
respective components of a pair of FAs. This method is precise for FAs of level 1 and
sound (not always complete) for FAs of a higher level, see [HHR™12] for more details.
In practice, we keep automata in the so called state uniform form, which simplifies
maintaining the canonicity respecting form (and it is also useful when abstracting and
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Figure 3.3.: Steps taken in the sub-edge replacement of an edge labelled by the DLL box

“folding”, as discussed in Section [£.1.2). It is defined as follows. Given a node v of
a tree t in an io-forest, we define its span as the pair (o, V) where ao € N* is the sequence
of labels of root references reachable from the node v ordered according to the cost of
the cheapest path to them, and V' C N is the set of labels of references that occur more
than once in the subtree of ¢ rooted in v. The state uniform form then requires that all
nodes of forests from Ly (F') that are labelled by the same state ¢ in some accepting run
of F have the same span, which we denote by span(q).
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3.2. FA-based Shape Analysis

We now provide a high-level overview of the main loop of the shape analysis based on
forest automata. The analysis automatically discovers memory safety errors (such as
invalid dereferences of null or undefined pointers, double frees, or memory leaks) and
provides an FA-represented over-approximation of the sets of heap configurations reach-
able at each program line. The framework considers sequential non-recursive C programs
manipulating the heap. Each heap cell may have several pointer selectors and data se-
lectors from some finite data domain (below, PSel denotes the set of pointer selectors,
DSel denotes the set of data selectors, and D denotes the data domain). Although the
implementation of the approach in the Forester tool can handle limited pointer arith-
metic and type casting, for the sake of simplicity we do not consider these features in
the following description. The analysis can also provide as an output an FA-represented
over-approximation of the sets of heap configurations reachable at each program line.

Heap Representation

A single heap configuration is encoded as an io-graph gs¢ (we describe the input port sf
later in the text) over the ranked alphabet of structured labels 21" with sub-labels from the
ranked alphabet I' = PSelU(DSelxD) with the ranking function that assigns each pointer
selector 1 and each data selector 0. In this graph, an allocated memory cell is represented
by a node v, and its internal structure of selectors is given by a label £4(v) € 2I'. Values
of data selectors are stored directly in the structured label of a node as sub-labels from
DSel x D, so e.g. a singly linked list cell with the data value 42 and the successor node
Tnext May be represented by a node x such that £,(z) = {next(zqext), (data,42)(e))}.
Selectors with undefined values are represented in such a way that the corresponding
sub-labels are not in £4(x). The null value is modelled as the special node null such
that ¢4(null) = (). The input port sf represents a special node that contains the stack
frame of the analysed function, i.e. a structure where selectors correspond to variables
of the function.

In order to represent (infinite) sets of heap configurations, we use state uniform FAs
of a higher level to represent sets of canonical io-forests representing the heap configu-
rations. The FAs used as boxes, i.e. symbols of FAs of a higher level, are provided by
the user.

Symbolic Execution

The verification procedure is based on abstract interpretation [CCT7] with the abstract
domain consisting of sets of state uniform FAs (a single FA does not suffice as FAs are
in general not closed under union) representing sets of heap configurations at particular
program locations. The computation starts from the initial heap configuration given by
an FA for the io-graph gss where g comprises two nodes: null and sf where 4(sf) = ()
(i.e. the values of all local variables are undefined). The computation then executes
abstract transformers corresponding to program statements until the sets of FAs held at
program locations stabilise. We note that abstract transformers corresponding to pointer
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manipulating statements are the most precise transformers. For each operation op in
the intermediate representation of the analysed program, the semantics of C implies
existence of a function fop that, when applied to the io-graph gs¢, gives the io-graph
fop(gse) representing the heap after executing op. Based on fop, we define for each
operation op the corresponding abstract transformer 7., with the property that when
Top is applied to the set of FAs S, the result is the set of FAs &' = 7,,(S) such that

U [F] = {fop(9s1) | 9ot € [FIAF € S} (3.1)
Fres’
Executing the abstract transformer 7o, over a set of FAs S is performed separately for
every ' € §. In the first step, we perform materialisation during which we unfold
(i.e. substitute by the corresponding FA) lower-level boxes until the heap nodes being
accessed by the given operation are uncovered. Then we perform the actual update—
which amounts to manipulation of states in the neighbourhood of a root state, which is
quite close to the corresponding manipulation of concrete heap graphs—as described in
the following paragraph.
Let us fix the set of stack frame sub-edges S = SE(g,sf). Pointer updates of the
form x :=y, x := y->s1, or x := null replace the sub-edge sf — (x,vy) in S with the
sub-edge sf — (x,v}), where v is obtained according to the type of the update:

(i) For the assignment x :=y, v, is a node such that there is a sub-edge sf — (y,v.)
in S. In the case there is no such a sub-edge in S, the sub-edge sf — (x,vy) is
removed from S and x is left undefined.

(i) For the assignment x := y->s1, v} is a node such that there is a node vy pointed
by y, i.e. sf — (y,vy) € S, where vy points to vy over s1, vy — (s1,vy) € SE(g).
In case there is no sub-edge sf — (y,vy) in S or vy = null, ie. y is undefined
or null respectively, the analysis reports an invalid memory access error. On the
other hand, if such a sub-edge exists but there is no sub-edge sf — (y,vy), the
sub-edge sf — (x,vx) is, again, removed from S and x is left undefined.

(iii) Finally, for the assignment x := null, v is the node null.

Updates of the form x->sl := y replace the sub-edge vy — (s1,z) with the sub-edge
vy — (s1,vy), where sf — (y,vy) € S (or remove vy — (sl, z) if there is no sub-edge
sf — (y,vy) in S). Note that in the case that either x is undefined or vy is the null node,
the analysis reports invalid memory access. Further, symbolic execution of the operation
malloc(x) replaces the sub-edge sf — (x,z) with the sub-edge sf — (%, Upew), where
Unew 18 a newly created node, vpe, & dom(g), where £(vpe,) = 0. The call free(x)
removes the node vy such that sf — (x,v¢) € S from g, and also removes all sub-
edges v — (sel,vy) € SE(g), thus making all selectors pointing to vx undefined. Data
updates x->data := dy¢y, replace the sub-edge vy — ((data,dyg),€) € S with the sub-
edge vy — ((data,dpew), €), where vy is a node such that sf — (x,vy) is in S. During
these operations, dereferences of null and undefined selectors are detected, as well as
emergence of garbage (detected when fop(gs¢) is not accessible). Evaluating a guard on
an io-graph gs¢r amounts to a test of equality of nodes, or equality or inequality of data
fields of nodes.
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Folding and abstraction. As we have already discussed at the beginning of this
chapter, in order to be able to represent infinite sets of configurations of some data
structures (in particular those with an unbounded number of cut-points), the analysis
needs to use the so-called boxes, which are FAs of a lower level. In the context of the work
that introduced forest automata-based shape analysis [HHRT12|, the user is required to
provide as the input of the analysis a database of boxes; these boxes are then used by
the analysis for folding of subgraphs.

The folding is performed after an update of the symbolic execution is completed. It
takes the database of boxes and for every box, the procedure attempts to find in the
FA that represents the current abstract state all substructures matching the structure
of the box. Every such substructure is substituted by a sub-term labelled with the box
name. This is done repeatedly until nothing more can be folded. The folding step is
followed by transformation of the FA into the canonicity respecting form.

At junctions of program paths, the analysis computes unions of sets of FAs. At
loop points (junctions at the beginning of a loop), the union is followed by widening.
The widening is performed by applying abstraction on each FA from the set of FAs
obtained at the loop point. The abstraction used is a modification of the abstraction
based on tree languages of a finite height—the so-called finite height abstraction—from
ARTMC [BHRV12|, which is applied independently on every component TA in the FA.
The finite height abstraction is parameterised by a height k, and it collapses those states
of a TA whose tree languages of the height up-to &£ match.

3.3. Discussion

The results that were presented in the original work on forest automata-based shape
analysis [HHR™12] give evidence of the viability of the approach, in the senses of both the
expressivity of the underlying formalism (forest automata can indeed represent various
singly/doubly linked lists, skip lists, trees, and their (finitely nested) combinations) and
in the scalability (thanks to the decomposition of the heap into a tuple of trees and
manipulating each of them independently).

The data structures that are unsupported by the forest automata-based analysis in the
proposed setting are either data structures that are not hierarchically structured (such as
general graphs) or hierarchical data structures with an unbounded level of nesting (such
as trees with linked leaves or skip lists of an arbitrary level). Some of the hierarchical
data structures of an unbounded level of nesting could be represented by an extension
of the formalism that would allow an FA to recursively contain itself (recall that self-
reference is forbidden now); however, it is yet not clear how all steps of an analysis
based on this extended formalism would be carried out. To give examples of other data
structures that the analysis cannot handle, let us mention data structures with complex
invariants (such as AVL trees, which rely on balancedness of a tree) or data structures
that perform suballocation of their assigned memory (such as the data structures used
in memory allocators).
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One weak point of the presented analysis lies in the need for the user to provide the
boxes for the substructures that the analysis might come upon during its run. As we
strive for fully-automated analysis, the next chapter, Chapter |4 presents an approach
that addresses this issue and provides a way for the analysis to infer the boxes itself,
during its run. Moreover, Chapter [5| extends the formalism and augments the analysis
based on it by taking into account ordering relations between the data stored in a data
structure. This extension allows us to verify programs with data structures where the
invariant depends on the ordering between the data values stored inside memory nodes,
which is the case for various sorting algorithms, binary search trees, or procedures for
manipulating skip lists.
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4. Learning Boxes for Forest Automata

The work presented in this chapter is an extension of the shape analysis based on forest
automata, as described in Chapter Recall that the described shape analysis relied
on the user to provide a suitable set of boxes (the subgraphs to be folded into au-
tomata symbols). This means that the user needed to provide the analysis with a forest
automata-based description of those data structures used in the program that have an
unbounded number of cut-points. As we strive for a push-button analysis—an analysis
that would run without user interaction, which, we believe and our cooperation with
industry partners confirms, is the only kind of analysis that can work for large-scale
ever-evolving systems—such an approach is naturally not feasible. To address this issue,
we propose an extension of the approach where the boxes are inferred automatically
during a run of the analysis using a technique that we call box learning.

The basic principle of box learning stems from the reason for which boxes were orig-
inally introduced into FAs. In particular, FAs must have a separate component TA for
each node (called a join) that has multiple incoming edges in the represented graphs. If
the number of joins is unbounded (as e.g. in doubly linked lists, abbreviated as DLLs be-
low), unboundedly many component TAs are needed in flat FAs. However, when some of
the edges are hidden in a box (as e.g. the prev and next links of DLLs in Figure[4.1)) and
replaced by a single box-labelled edge, a finite number of component TAs may suffice.
Therefore, the basic idea of our learning is to identify subgraphs of the FA-represented
graphs that contain at least one join, and when they are enclosed—or, as we say later
on, folded—into a box, the in-degree of the join decreases.

There are, of course, many ways to select the above mentioned subgraphs to be used
as boxes. To choose among them, we propose several criteria that we found useful in
a number of experiments. Most importantly, the boxes must be reusable in order to
allow eliminating as many joins as possible. The general strategy here is to choose boxes
that are simple and small since these are more likely to correspond to graph patterns
that appear repeatedly in typical data structures. For instance, in the already mentioned
case of DLLs in Figure it is enough to use a box enclosing a single pair of next/prev
links. On the other hand, as also discussed below, too simple boxes are sometimes not
useful either.

Further, we propose a way how box learning can be efficiently integrated into the main
analysis loop. In particular, we do not use the perhaps obvious approach of incrementally
building a database of bores whose instances would be sought in the generated FAs. We
found this approach inefficient due to the costly operation of finding instances of different
boxes in FA-represented graphs. Instead, we always try to identify which subgraphs of
the graphs represented by a given FA could be folded into a box, followed by looking into
the so-far built database of boxes whether such a box has already been introduced or not.
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Figure 4.1.: A DLL and its hierarchical encoding

Moreover, this approach has the advantage that it allows one to use simple language
inclusion checks for approximate box folding which substitutes a subgraph with a box
from the database that has a larger language, thus over-approximating the set of graphs
represented by a given FA. This approach sometimes greatly accelerates the computation.
Finally, to further improve the efficiency, we interleave the process of box learning with
the automata abstraction into a single iterative process. In addition, we propose an FA-
specific improvement of the basic automata abstraction which accelerates the abstraction
of an FA using components of other FAs. Intuitively, it lets the abstraction synthesise
an invariant faster by allowing it to combine information coming from different branches
of the symbolic computation.

We have prototyped the proposed techniques in Forester and evaluated it on a number
of challenging case studies. The results show that the obtained approach is both quite
general as well as efficient. For example, we were the first to fully-automatically analyse
programs with a data-independent modification of 2- and 3-level skip lists (a modification
where the shape invariant of a skip list does not rely on the fact that the list is ordered—
our extension to the standard data-dependent skip lists is described in Chapter [5).
On the other hand, our implementation achieves performance comparable and sometimes
even better than that of Predator [DPV13| (a winner of multiple heap analysis-related
awards in several years of the competition on software verification SV-COMP) on list
manipulating programs despite being able to handle much more general classes of heap
graphs.

Related work. From the point of view of efficiency and degree of automation, the
main alternative to our approach are the methods that fully-automatically use separa-
tion logic with inductive list predicates as implemented in Space Invader [YLBT08| or
SLAyer [BCI1I]. These approaches are, however, much less general than our approach
since they are restricted to programs over certain classes of linked lists (and cannot han-
dle even structures such as linked lists with data pointers pointing either inside the list
nodes or optionally outside of them, which we can easily handle as discussed later on).
A similar comparison applies to the Predator tool inspired by separation logic but using
purely graph-based algorithms [DPV13]. The work [LYP11] on overlaid data structures
mentions an extension of Space Invader to trees, but this extension is of a limited gen-
erality and requires some manual help.
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In [GVAQT], an approach for synthesising inductive predicates in separation logic is
proposed. This approach is shown to handle even tree-like structures with additional
pointers. One of these structures, namely, the so-called mcf trees implementing trees
whose nodes have an arbitrary number of successors linked in a DLL, is even more general
than what can in principle be described by hierarchically nested FAs (to describe mcf
trees, recursively nested FAs or FAs based on hedge automata would be needed). On the
other hand, the approach of [GVAQT7] seems quite dependent on exploiting the fact that
the encountered data structures are built in a “nice” way conforming to the structure
of the predicate to be learnt (meaning e.g. that lists are built by adding elements at the
end only), which is close to providing an inductive definition of the data structure.

A novel technique based on the so-called second-order bi-abduction was presented
in [LGQC14]. This technique tries to infer the most general pre- and post-conditions
of functions, expressed in the form of higher-order inductive predicates of separation
logic, such that they imply that the analysed program is memory-safe. First, pre- and
post-conditions that use unknown predicates (second-order variables) are inferred from
the code. Then, the analysis tries to synthesise the most general shape predicates for the
unknown predicates such that when the synthesised predicates substitute the unknown
predicates in the pre- and post-conditions, the result is consistent. The issue of this
approach is that in the analysed program is not memory safe, the analysis cannot give
a direct reason why it is so. Instead, the user will just see that the inferred pre- and
post-conditions are trivial. Moreover, as in the previous work, this analysis also relies
on the way how the data structure is created.

The work [MTLTTI0] proposes an approach which uses separation logic for generating
numerical abstractions of heap manipulating programs allowing for checking both their
safety as well as termination. The described experiments include even verification of
programs with 2-level skip lists. However, the work still expects the user to manually
provide an inductive definition of skip lists in advance. Likewise, the work [CRNQT7|
based on the so-called separating shape graphs reports on verification of programs with
2-level skip lists, but it also requires the user to come up with summary edges to be
used for summarizing skip list segments, hence basically with an inductive definition of
skip lists. Compared to [MTLT10, [CRNO7], we did not have to provide any manual aid
whatsoever to our technique when dealing with 2-level as well as 3-level skip lists in our
experiments.

Finally, from the world of graph grammars, a concept of inferring graph grammar
rules for the heap abstraction proposed in [HNRI0| has recently appeared in [Weil2].
However, the proposed technique can so far only handle much less general structures
than in our case.

Outline. The structure of this chapter is the following. First, Section describes
how we select the parts of the forest automata to be fold and how the very folding
is carried out. Then, in Section [£.2] we talk about the abstraction that is used in
the analysis. Afterward, Section [4.3] reports on the experimental results and, finally,
Section [.4] concludes the chapter.
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4.1. Learning of Boxes

Sets of graphs with an unbounded number of joins can only be described by FAs with the
help of boxes. In particular, boxes allow one to replace (multiple) incoming sub-edges
of a join by a single sub-edge, and hence lower the in-degree of the join. Decreasing the
in-degree to 1 turns the join into an ordinary node. When a box is then used in a cycle
of an FA, it effectively generates an unbounded number of joins.

The boxes are introduced by the operation of folding of an FA F which transforms
F into an FA F’ and a box B used in F’ such that [F] = [F']. However, the graphs
in L(F') may contain less joins since some of them are hidden in the box B, which
encodes a set of subgraphs containing a join and appearing repeatedly in the graphs
of L(F). Before we explain folding, we give a characterisation of subgraphs of graphs
of L(F) which we want to fold into a box B. Our choice of the subgraphs to be folded
is a compromise between two high-level requirements. On the one hand, the folded
subgraphs should contain incoming edges of joins and be as simple as possible in order
to be reusable. On the other hand, the subgraphs should not be too small in order
not to have to be subsequently folded within other boxes (in the worst case, leading to
generation of unboundedly nested boxes). Ideally, the hierarchical structuring of boxes
should respect the natural hierarchical structuring of the data structures being handled
since if this is not the case, unboundedly many boxes may again be needed.

4.1.1. Knots of Graphs

We use i = g W ¢’ to denote a graph i such that SE(i) = SE(g) U SE(g’). A graph h is
a subgraph of a graph g iff SE(h) C SE(g). The border of h in g is the subset of the set
dom(h) of nodes of h that are incident with sub-edges in SE(g) \ SE(h). A trace from
a node u to a node v in a graph g is a set of sub-edges t = {e1,...,e,} C SE(g) such
that n > 1, the sub-edge e is outgoing from u, the sub-edge e,, is entering v, the origin
of e; is one of the targets of e;_1 for all 1 < ¢ < n, and no two sub-edges in t have the
same origin. We call the origins of es, ..., e, the inner nodes of the trace. A trace from
u to v is straight iff none of its inner nodes is a cut-point. A cycle is a trace from a
node v to v. A confluence of gy is either a cycle of g4 or it is the union of two disjoint
traces starting at a node u, called the base, and ending in the node v, called the tip (for
a cycle, the base and the tip coincide)—cf. Figure

Given an io-graph g4, the signature of a sub-graph h of g is the minimum subset sig(h)
of c¢ps(gg) that (1) it contains cps(gg) N dom(h) and (2) all nodes of h, except the nodes
of sig(h) themselves, are reachable by straight traces from sig(h). Intuitively, sig(h)
contains all cut-points of h plus the cut-points of g4 closest to h which lie outside of h
but which are needed so that all nodes of h are reachable from the signature. Consider
the example of the graph g, in Figure in which cut-points are represented by e.
The signature of g, is the set {u,v}. The signature of the highlighted subgraph h is also
equal to {u,v}.

Given a set U C cps(gg), a confluence of U is a confluence of g4 with the signature
in U. Intuitively, the confluence of a set of cut-points U is a confluence whose cut-points
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Figure 4.2.: Notions of confluence and closure

belong to U plus in case the base is not a cut-point, then the closest cut-point from
which the base is reachable is also from U (cf. Figure [4.2d)).

Finally, for a set U C cps(gy), we define the closure of U (denoted as cl(U)) as the
smallest subgraph h of g4 such that (1) it contains all confluences of U and (2) for
every inner node v of a straight trace of h, it contains all straight traces from v to leaves
of g. The closure of the signature {u, v} of the graph g, in Figure is the highlighted
subgraph h. Intuitively, Point 1 of the requirements on a closure includes into the closure
all nodes and sub-edges that appear on straight traces between nodes of U apart from
those that do not lie on any confluence (such as node u in Figure . Note that nodes
z and y in Figure which are leaves of g,, are not in the closure as they are not
reachable from an inner node of any straight trace of h. The closure of a subgraph h of
ge is the closure of its signature, and h is closed if it equals its closure. In the following,
we sometimes use clsig(-) to denote cl(sig(-)).

Knots. For the rest of Section let us fix an io-graph g4 € L(F). We now
introduce the notion of a knot which summarises the desired properties of a subgraph
k of g that is to be folded into a box. A knot k of g4 with weight n is a subgraph of g
where one of the following holds:

1. k is a confluence such that n = |sig(k)|,
2. k=K wk"” where k' and k" share a sub-edge and their maximum weight is n, or
3. k is the closure of a knot of the weight n.

The weight of k therefore corresponds to the maximum from the numbers of cut-points
of all confluences that were used to build up k. Note that it is possible that k& may
be constructed using different sequences of operations with confluences of potentially
different weights. To address this issue, we further define the complexity of a knot k as
the minimum weight over all possible constructions of k.

An optimal knot of complexity n is a maximal knot of complexity n which has a (pos-
sibly more than one) source, and at least one source is reachable from the input port of
g by a trace that does not intersect with sub-edges of the optimal knot.

The following lemma states some properties of a closure of a knot.
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Lemma 4.1. Given knots k and k' of gy and their respective closures clsig(k) and
clsig(k'), and sets of cut-points of g4 o and j3, the following properties hold:

a) SE(k) C SE(K') = sig(k) C sig(k'),

b) a Cp = cl(a) C c(B),

¢) union preserves signature: for a knot k" = kW k', it holds sig(k") = sig(k) U sig(k'),
d) closure preserves signature: sig(k) = sig(clsig(k)),

e) monotonicity: SE(k) C SE(K') = SE(clsig(k)) C SE(clsig(k')),

f) idempotence: clsig(k) = clsig(clsig(k)), and

g) extensivity: SE(k) C SE(clsig(k)).

Proof.

E[) Suppose the contrary. Then it must hold that there is an isolated node in k.
However, recall that we consider only accessible graphs that do not contain isolated
nodes.

b) This clearly holds because cl(f) can be computed by computing cl(«) and then
adding more sub-edges.

) We prove this by a simple observation that sig(k”) contains all cut-points in k
and &', and that all nodes of k" are accessible from sig(k) U sig(k’), in particular
the nodes originating from k are accessible from sig(k) and the nodes originating
from k" are accessible from sig(k’).

[d) We first prove that sig(k) 2 sig(clsig(k)) and then prove sig(k) C sig(clsig(k)).

1) sig(k) 2 sig(clsig(k)): To prove this direction we first observe that due to
Point [1] of the definition of a closure, the cut-points on confluences of clsig(k) are
only those from sig(k). Second, it is easy to see that Point [2|adds no new cut-points
to the closure.

2) sig(k) C sig(clsig(k)): We prove this direction using induction on the structure
of k. For the base case when k is a confluence (Point [1| of the definition of a knot),
from the definition of a closure, because closure contains all confluences of the set
of nodes, it follows that clsig(k) contains k, formally SE (k) C SE(clsig(k)). From
Lemma [4.1p] it follows that sig(k) C sig(clsig(k)).

For the case when k = k' & k" for some knots k' and k” (Point [2), we introduce
the induction hypotheses sig(k’) C sig(clsig(k’)) and sig(k”) C sig(clsig(k")).
Obviously, the following pair of inclusions holds:

sig(k") C sig(clsig(k')) U sig(clsig(k")),
C s

sig (k") g(clsig(K")) U sig(clsig(k")), (4.1)
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and, therefore,

sig(k') U sig(k") C sig(clsig(k")) U sig(clsig(k")). (4.2)
Further, it is easy to see that sig(cl(v1)) U sig(cl(y2)) = sig(cl(y1) W cl(y2)), so we
obtain
sig(k') U sig(k") C sig(clsig(k') & clsig(k")). (4.3)
Next, from

K Ck Wk

K'C K wk” (44)
we obtain, using Lemma [£.TJp] and Lemma .| that
sig(k') C sig(k' w k") clsig(k') C clsig(k' w k")
sig(k") C sig(k' w k") and clsig(k") C clsig(k' W k") (45)
From this, it follows that
clsig(K') & clsig(K") C clsig(K' v k"), (4.6)
which implies, again using Lemma [{.Tf] that
sig(clsig(K') @ clsig(K")) C sig(clsig(K' @ k")). (4.7)
Combining Equations (4.3 and we obtain the following inclusion:
sig(k") U sig(k") C sig(clsig(k’ @ k")). (4.8)

We infer that sig(k’ & k”) C sig(clsig(k’ W k")) and conclude with sig(k) C
sig(clsig(k)).

For the last case when k = clsig(k’) for a knot k' (Point [3)), we use the induction
hypothesis sig(k’) C sig(clsig(k")). From the induction hypothesis, Lemma

and Lemma we conclude that sig(k') C sig(clsig(k’)) = sig(clsig(k’)) C
sig(clsig(clsig(k’))). From this, it follows that sig(k) C sig(clsig(k)).

E[) Follows from Lemma and Lemma
) Follows from Lemma [4.1H]

We prove this part using induction on the structure of k. In the base case when k
is a confluence (Point [1] of the definition of a knot), k is a confluence of sig(k) and
will therefore be contained in clsig(k), therefore SE(k) C SE(clsig(k)).

For the case when k = k' & k” where k&’ and k£ are knots (Point [2[ of the definition
of a knot), we use the induction hypotheses SE(k’) C SE(clsig(k’)) and SE (k") C
SE(clsig(k")). It holds that SE(k') C SE(k) and so SE(clsig(k')) C SE(clsig(k))
(Lemma [4.1f). Therefore, SE(k') C SE(clsig(k')) C SE(clsig(k)), so it holds
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Figure 4.3.: Knots in graphs

that SE(K') C SE(clsig(k)). The same holds for k", therefore we conclude that
SE(K') U SE(K") C SE(clsig(k)).

If k is the closure of a knot k', k = clsig(k’), (Point [3)) then Lemma claims
that clsig(k") = clsig(clsig(k’)) and so SE(k) = SE(clsig(k)), which proves the

lemma. O

Note that the properties [£.1f} and (4.1 are the typical properties of a standard
closure operator. Lemma [4.2] implies that optimal knots are uniquely identified by their
signatures, which is crucial for the folding algorithm presented later.

Lemma 4.2. An optimal knot is closed.
Proof. This follows from Lemma [.T] and the maximality of an optimal knot. O

Next, we explain what is the motivation behind the notion of an optimal knot:

Confluences. As mentioned above, in order to allow one to eliminate a join, a knot
must contain some join v together with at least one incoming sub-edge in case the knot
is based on a loop and at least two sub-edges otherwise. Since g, is accessible (meaning
that there do not exist any traces that cannot be extended to start from the same node),
the edge must belong to some confluence av of g4. If the folding operation does not fold
the entire «, then a new join is created on the border of the introduced box: one of its
incoming sub-edges is labelled by the box that replaces the folded knot, another one is
the last edge of one of the traces of a. Confluences are therefore the smallest subgraphs
that can be folded in a meaningful way.

Uniting knots. If two different confluences o and o’ share an edge, then after fold-
ing «, the resulting edge shares with o/ two nodes (at least one being a target node),
and thus o’ contains a join of g4. To eliminate this join too, both confluences must be
folded together. A similar reasoning may be repeated with knots in general. Usefulness
of this rule may be illustrated by an example of the set of all singly linked lists of an
unbounded length with head pointers. Without uniting, every list would generate a hi-
erarchy of knots of the same depth as the length of the list, as illustrated in Figure
for the list of length four. This is clearly impractical since the entire set of all lists of
an unbounded length could not be represented using finitely many boxes of this type.
Rule [2| unites all knots into one that contains the entire list, and the set of all such knots
can then be represented by a single FA (containing a loop accepting the inner nodes of
the lists).
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Complexity of knots. The notion of complexity is introduced to limit the effect of
Rule [2] of the definition of a knot, i.e. the rule which unites knots that share a sub-edge,
and to hopefully make it follow the natural hierarchical structuring of data structures.
Consider, for instance, the case of singly linked lists (SLLs) of cyclic doubly linked
lists (DLLs). Recall that every node in a DLL is a cut-point. In this case, it is natural
to first fold the particular segments of the DLLs (denoted as doubly linked segments—
DLSs—below), i.e. to introduce a box for a single pair of next and prev pointers.
This way, one effectively obtains SLLs of cyclic SLLs, where the latter are over the
DLS box and each contains a single cut-point at the point where the cycle connects.
Subsequently, one can fold the cyclic SLLs into a higher-level box. However, uniting
all knots with a common sub-edge would create knots that contain entire cyclic DLLs
(requiring unboundedly many joins inside the box). The reason is that in addition to
the confluences corresponding to DLSs, there are confluences which traverse the entire
cyclic DLLs and that share sub-edges with all DLSs (this is in particular the case of
the two circular sequences consisting solely of next and prev pointers respectively).
To avoid the undesirable folding, we exploit the notion of complexity and fold graphs in
successive rounds. In each round we fold all optimal knots with the smallest complexity
(as described later in Section , which should correspond to the currently most
nested, not yet folded, sub-structures. In the previous example, the algorithm starts by
folding DLSs of complexity 2, because the complexity of the confluences in cyclic DLLs
is given by the number of the DLSs they traverse.

Closure of knots. The closure is introduced for practical reasons. It allows one to
identify optimal knots by their signatures, which is then used to simplify automata
constructions that implement folding on the level of FAs (cf. Section 4.1.2)).

Root of an optimal knot. The requirement for an optimal knot k£ to have a root
is to guarantee that if an io-graph 92/; containing a box B representing k is accessible,
then the io-graph giﬂ[k/ B| emerging by substituting k for a sub-edge labelled with B is
accessible, and vice versa. It is also a necessary condition for the existence of a canonical
forest representation of the knot itself (since one needs to order the cut-points w.r.t. the
costs of the paths leading to them from the input port of the knot).

4.1.2. Folding in the Abstraction Loop

In this section, we describe the operation of folding together with the main abstraction
loop of which folding is an integral part. The pseudo-code of the main abstraction loop is
shown in Algorithm The algorithm modifies a set of FAs until it reaches a fixpoint.
Folding on line [5| is a sub-procedure of the algorithm which looks for substructures of
FAs that accept optimal knots, and replaces these substructures by boxes that represent
the corresponding optimal knots. The operation of folding is itself composed of four
consecutive steps: Identifying indices, Splitting, Constructing bozxes, and Applying bozes.
The steps are described in the following paragraphs.
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Algorithm 4.1: Abstraction Loop

1 Unfold solitaire bozxes;

2 repeat

3 Normalise;
4 Abstract;

5 Fold;

6 until fizpoint;

Unfolding of solitaire boxes. Folding is in practice applied on FAs that accept
partially folded graphs (only some of the optimal knots are folded). This may lead the
algorithm to hierarchically fold data structures that are not hierarchical, causing the
symbolic execution not to terminate. For example, consider a program that creates
a DLL of an arbitrary length. Whenever a new DLS is attached, the folding algorithm
would enclose it into a box together with the tail which was folded previously. This would
lead to creation of a hierarchical structure of an unbounded depth (see Figure ,
which would cause the symbolic execution to never reach a fixpoint. Intuitively, this
is a situation when a repetition of subgraphs may be expressed by an automaton loop
that iterates a box, but it is instead misinterpreted as a recursive nesting of graphs.
This situation may happen when a newly created box contains another box that cannot
be iterated by a cycle in an automaton (e.g. in Figure there is always one occurrence
of a box encoding a shorter DLL fragment inside a higher-level box). This issue is
addressed in the presented algorithm by first unfolding all occurrences of boxes that
cannot be iterated by automata loops before folding is started.

Normalising. We define the indez of a cut-point u € cps(gy) as its position in the
canonical ordering of cut-points of g4, and the index of a closed subgraph h of g4 as
the set of indices of the cut-points in sig(h). The folding algorithm expects the input
FA F to satisfy the property that all io-graphs of L(F') have the same indices of closed
knots. The reason is that folding starts by identifying the index of an optimal knot
of an arbitrary io-graph from L(F'), and then it creates a box which accepts all closed
subgraphs of the io-graphs from g, with the same index. We need a guarantee that
all these subgraphs are indeed optimal knots. This guarantee can be achieved if the
io-graphs from L(F') have equivalent interconnections of cut-points, as defined below.
We define the relation ~g, C 2N x 2N between indices of closed knots of g, such that
N ~g, N'iff there is a closed knot k of g4 with the index N and a closed knot k" with
the index N’ such that k& and &’ have intersecting sets of sub-edges. We say that two
io-graphs g4 and g;} are interconnection equivalent iff ~g, = ~g, and for every two cut-
points u € dom(g) and v € dom(g') with the same index, the sets of indices of cut-points
that are reachable from them by straight traces are the same (note the latter requirement
is more general than saying that u and v have the same indices of their spans). Notice
that the relation ~ is reflexive and therefore ~;, = ~g, implies that a knot k& with the

index N is in g iff a knot &" with the same index N is in g,
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Lemma 4.3. Given two interconnection equivalent io-graphs g4 and giﬁ’ N C N is the
index of an optimal knot in gy iff it is the index of an optimal knot in gip.

Proof. First, we prove that for two interconnection equivalent io-graphs g4 and gip, the
index of a signature of a knot of complexity n of one of the io-graphs is also the index of
a signature of a knot of complexity n of the other io-graph. Let I be the index of a knot
k of g4 of complexity n. According to the inductive definition of a knot, k can be viewed
as a term tj that consists of literals (which correspond to confluences of g of complexity
at most n according to Point (1| of the definition), occurrences of the & binary operator
(Point [2)) and occurrences of the ¢l o sig unary operator (Point , such that the weight
of k constructed in this way is n. An example of such a term may be the term

tr = clsig(a W clsig(b W (c W d))) (4.9)

where a, b, ¢, and d are confluences.

Due to Lemmas and the signature of a knot k is the same as the signature of
the knot &’ such that the term ¢ is a modification of ¢;, where each union is preceded by
applying closure on its arguments. Note that &’ really is a knot because making a closure
is allowed by Point [3] of the definition, and the application of each W operator in tg by
Point [2| is still justified since closure of a knot is extensive (according to Lemma if
two knots share a sub-edge, their closures share the same sub-edge too). For the previous
example, we would obtain

tir = clsig(clsig(a) W clsig(clsig(b) W clsig(clsig(c) W clsig(d)))). (4.10)

Let k" be a subgraph of g:ﬂ such that tg» emerges from ¢, by substituting each oc-
currence of a confluence (literal) ¢’ in #j by a knot ¢” of g, with the same index J of
its signature. First, we observe that k" is indeed a knot of complexity m < n (k" is
either a confluence with the index of its signature J, a union of two other knots with
indices of their signatures being subsets of J, or the closure of a knot with the index of
its signature J). Second, we refute the possibility of m < n using contradiction.

Let us suppose that the statement m < n holds and consider the consequences. It must
then hold that ¢” is built by uniting confluences C” with numbers of cut-points smaller
than n along the way. Then, because g4 and g:ﬁ are interconnection equivalent, it holds
that there needs to exist a set of knots C’ which have the same indices of signatures
as the confluences in C”. However, this means that it is possible to construct ¢ such
that its weight is at most m < n, which is a contradiction to the assumption that the
complexity of ¢’ is n, and therefore m = n.

Next, we show that if I is the index of an optimal knot k of complexity n in g4, then it
is the index of an optimal knot of the same complexity in g{b (and vice versa). From the
above, we know that I is the index of a knot k" of complexity n in g;. We may assume
that £’ is closed.

For the maximality condition of an optimal knot, if &’ is not a maximal knot of
complexity n, then it can be united with another knot k” to obtain a bigger knot with
the same complexity. However, because g4 and g:p are interconnection equivalent, there
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must exist a knot with the same index as k” in g4 with the complexity at most n that
intersects with k. This is a contradiction because k£ would not be maximal in this case.
Therefore, k' is maximal.

To prove the existence of a source of k' reachable from the input port, we use the
second point of the definition of interconnection equivalence, which says that cut-points
of g4 and gip with the same indices must reach by straight traces sets of cut-points with
the same indices. This means that if ¢ is the index of a source cut-point of g, that
reaches all cut-points of k&’ and that is reachable from the input of g4 by a trace that
does not traverse k, then ¢ must also be the index of a source cut-point of g{/) such that
it reaches all cut-points of £’ and is reachable from the input port of gip by a path that
does not traverse k. Both k and k' thus have a source required by the definition of an
optimal knot, which is reachable by a straight trace from the i-th cut-point. This means
that &’ is also optimal. O

Interconnection equivalence of all io-graphs in the language of an FA F' is achieved
by transforming F' to the interconnection respecting form. This form requires that the
language of every TA of the FA consists of interconnection equivalent trees (when viewing
root references and roots as cut-points with corresponding indices). The normalisation
step also includes a transformation into the state uniform and canonicity respecting
form.

Abstraction. We use abstraction described in Section[£.2that preserves the canonicity
respecting form of TAs as well as their state uniformity. It may break interconnection
uniformity, in which case it is followed by another round of normalisation. Abstraction
is included into each round of folding for the reason that it leads to learning more
general boxes. For instance, an FA encoding a cyclic list of one particular length is first
abstracted into an FA encoding a set of cyclic lists of all lengths, and the entire set is
then folded into a single box.

Identifying indices. For every FA F' entering this sub-procedure, we pick an arbitrary
io-graph g4 € L(F'), find all its optimal knots of the smallest possible complexity n, and
extract their indices. By Lemma and since F' is normalised, indices of the optimal
knots are the same for all io-graphs in L(F"). For every found index, the following steps
fold all optimal knots with that index at once. Optimal knots of complexity n do not
share sub-edges (they would be united otherwise), the order in which they are folded is
therefore not important.

Splitting. ForanFA F = (A;---A,,7) and an index I of an optimal knot found in the
previous step, splitting transforms F' into a (set of) new FA(s) with the same language.
The nodes of the borders of I-indexed optimal knots of io-graphs from L(F') become
roots of trees of io-forests accepted by the new FA(s). Let s € I be a position in F' such
that the s-indexed cut-points of io-graphs from L(F’) reach all the other I-indexed cut-
points. The index s exists since an optimal knot has a root. Due to the definition of the
closure, the border contains all I-indexed cut-points, with the possible exception of s.
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n+1 1

Figure 4.4.: Creation of Fy, and B, from FC? . The subtrees that contain references i, j € J
are moved into By, and replaced by the Bg-labelled sub-term in F7j,.

The s-th cut-point may be replaced in the border of the I-indexed optimal knot by the
base e of the I-indexed confluence that is the first one reached from the s-th cut-point
via a straight path. We call e the entry. The entry e is a root of the optimal knot, and
the s-th cut-point is the only I-indexed cut-point that might be outside the knot. If e
is indeed different from the s-th cut-point, then the s-th tree of forests accepted by F
must be split into two TAs in the new FA: The subtree rooted at the entry is replaced
by a reference to a new tree. The new tree then equals the subtree of the original s-th
tree rooted at the entry.

The construction is carried out as follows. We find all states and all of their transitions
that label entry nodes in accepting runs. We denote such states and transitions as entry
states and transitions. For every entry state ¢, we create a new FA F(? which is a copy
of F but with the s-th TA A split to a new s-th TA A’ and a new (n+1)-th TA A, ;.
The TA A is obtained from As by changing the entry transitions of ¢ to accept just
a reference to the new (n+1)-th root and by removing entry transitions of all other entry
states (the entry states are processed separately in order to preserve possibly different
contexts of entry nodes accepted at different states). The new TA A, 11 is a copy of Aj
but with the only accepting state being ¢. Note that the construction is justified since
due to state uniformity, each node that is accepted by an entry transition and that does
not appear in a run below a node that is also accepted by an entry transition is an entry
node. In the result, the set J = (I \ {s}) U {n + 1} contains the positions of the trees of
forests of F, g rooted at the nodes of the borders of I-indexed optimal knots.

Constructing boxes. For every F, (? and J being the result of splitting F' according to
an index I, a box B, is constructed from F(?. We transform TAs of FC? indexed by the
elements of J. The resulting TAs will accept the original trees modified in such a way
that their roots are stripped from the children that cannot reach a reference to J. To
turn these TAs into an FA accepting optimal knots with the index I, it remains to order
the obtained TAs and define port indices. Roughly, the input index of the box will be
the position j to which we place the modified (n + 1)-th TA of F, g (the one that accepts
trees rooted at the entry). The output indices are the positions of the TAs with indices
J\{j} in F which accept trees rooted at cut-points of the border of the optimal knots.

Applying boxes. This is the last step of folding. For every F] g , J, and B, which are
the result of splitting F' according to an index I, we construct an FA Fj that accepts
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graphs of F' where knots enclosed in B, are substituted by a sub-edge with the label B,.
It is created from Fg by (1) leaving out the parts of root transitions of its TAs that
were taken into By, and (2) adding the sub-term By(r1,...,7n) to the sub-terms of root
transitions of the (n + 1)-th component of Fg (these are transitions used to accept the
roots of the optimal knots enclosed in By). The states 71,...,ry, are fresh states that
accept root references to the appropriate elements of J (to connect the borders of knots
of By correctly to the graphs of Fy;). The FA Fj, now accepts graphs where optimal knots
of graphs of L(F') with the signature I are hidden inside B,. Creation of B, and of its
counterpart Fy from Fg is illustrated in Figure where 4,7,... € J.

During the analysis, the discovered boxes must be stored in a database and tested for
equivalence with the newly discovered ones since the alphabets of FAs would otherwise
grow with every operation of folding ad infinitum. That is, every discovered box is given a
unique name, such as “DLL” for the box from Figure|3.2b, and whenever a semantically
equivalent box is folded, the newly created sub-term is labelled by that name. This
step offers an opportunity for introducing another form of acceleration of the symbolic
computation. Namely, when a box B is found by the procedure described above, and
another box B’ with a name N s.t. [B’] C [B] is already in the database, we associate
the name N with B instead of B’ and restart the analysis (i.e. start the analysis from
the scratch, remembering just the updated database of boxes). If, on the other hand,
[B] C [B], the folding is performed using the name N of B’, thus over-approximating
the semantics of the folded FA. As presented in Section[4.3] this variant of the procedure,
called folding by inclusion, performs in some difficult cases significantly better than the
former variant, called folding by equivalence.

4.2. Abstraction

The abstraction we use in our analysis is based on the general techniques described
in the framework of abstract regular (tree) model checking [BHRV12]. In this set-
ting, abstraction over-approximates the language of an automaton by collapsing some
of its states (i.e. merging them together, potentially introducing new loops) according
to a given equivalence relation on the states of the automaton. We, in particular, build
on the finite height abstraction of TAs, which uses the equivalence of languages of a fi-
nite height k, denoted as ~. The equivalence is defined as ¢ ~j, ¢’ iff ¢ and ¢’ accept
trees with the same sets of prefixes of the height at most k (the prefix of height &k of
a tree is a subgraph of the tree which contains all paths from the root of length at
most k). The equivalence =~ is further refined to deal with various features special for
FAs. Namely, it has to work over tuples of TAs and cope with the interconnection of
the TAs via root references, with the hierarchical structuring, and with the fact that we
use a set of FAs instead of a single FA to represent the abstract context at a particular
program location.

Refinements of =xj. First, in order to maintain the same basic shape of the heap
after abstraction (such that no cut-point would e.g. suddenly appear or disappear),
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we refine & by requiring that equivalent states must have the same spans (as defined in
Section . When applied on =, which corresponds to equivalence of data types, this
refinement provided enough precision for most of the case studies presented later on,
with the exception of the most difficult ones, namely programs with skip lists [Pug90].
To verify these programs, we needed to further refine the abstraction to distinguish
automata states whenever trees from their languages encode tree components containing
a different number of unique paths to some root reference, but some of these paths are
hidden inside boxes. In particular, two states ¢,q’ can be equivalent only if for every
io-graph g, from the graph language of the FA, for every two nodes u,v € dom(gs)
accepted by ¢ and ¢/, respectively, in an accepting run of the corresponding TA, the
following holds: For every w € ¢ps(gs), both u and v have the same number of outgoing
sub-edges (selectors) in [ge] which start a trace in [gy] leading to w. According to our
experiments, this refinement does not cost almost any performance, and hence we use it
by default.

Abstraction for Sets of FAs. Our analysis works with sets of FAs. We observed that
abstracting individual FAs from a set of FAs in isolation is sometimes slow since in each
of the FAs, the abstraction widens some selector paths only, and it takes a while until
an FA in which all possible selector paths are widened is obtained. For instance, when
analysing a program that creates binary trees, the symbolic analysis generates many
FAs before reaching a fixpoint, each of the FAs accepting a subset of binary trees with
some of the branches restricted to a bounded length (e.g. trees with no right branches,
trees with a single right branch of length one, two, etc.). In such cases, it helps when the
abstraction has an opportunity to combine information from several FAs. For instance,
consider an FA that encodes binary trees degenerated to an arbitrarily long left branch,
and another FA that encodes trees degenerated to right branches only. Abstracting these
FAs in isolation has no effect. However, if the abstraction is allowed to collapse states
from both of these FAs, it can generate an FA accepting all possible branches.

Unfortunately, the natural solution to achieve the above, which is to unite FAs before
abstraction, introduces a much too coarse over-approximation, even before the abstrac-
tion itself is applied. Instead, we enrich the automata structure of an FA F' by TA states
and transitions of another one, omitting introduction of new root states. While this does
not change the language of F, it allows the abstraction to combine the information from
both FAs. In particular, before abstracting an FA F = (A;--- A,,7) from a set S of
FAs, we pre-process it as follows.

(1) We pick FAs F' = (A} --- A/, 7) € S that are compatible with F' in that they have
the same number of TAs, the same port references, and for each 1 < i < n, the root
states of A’ have the same spans as the root states of A;.

(2) For all such F” and each 1 <1i < n, we add transitions and states of A} to A;, but
we keep the original set of root states of A;. Since we assume that the sets of states of
TAs of different FAs are disjoint, the language of A; stays the same, but its structure is
enriched, which helps the abstraction to perform a coarser widening.
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4.3. Experimental Results

We have implemented the above proposed techniques as an extension of the Forester
tool and tested their generality and efficiency on a number of case studies. In the exper-
iments, we compare two configurations of Forester, and we also compare the results of
Forester with those of Predator [DPV13|, which uses a graph-based memory represen-
tation inspired by separation logic with higher-order list predicates. We do not provide
a comparison with Space Invader [YLBT08] and SLAyer [BCIII], based also on separa-
tion logic with higher-order list predicates, since in our experiments they were always
outperformed by Predator.

In the experiments, we considered programs with various types of lists (singly and
doubly linked, cyclic, nested, with skip pointers), trees, and their combinations. In the
case of skip lists, we had to slightly modify the algorithms since their original versions
use an ordering on the data stored in the nodes of the lists. This is done for the reason
to guarantee that the search window delimited on some level of skip pointers is not left
on any lower level of the skip pointers. In our modification, we avoided such a scenario
by adding an additional explicit end-of-window pointer. In Chapter 5] we describe an
extension of the analysis that takes into consideration also the data fields in the nodes
and the additional pointer is not necessary. We checked the programs for memory safety
only, i.e. we did not check other properties (such as that the result of a sorting procedure
is indeed a sorted permutation of the original).

Table gives running times in seconds (the average of 10 executions) of the tools on
our case studies. “Basic” stands for Forester with the abstraction applied on individual
FAs only and “SFA” stands for Forester with the abstraction for sets of FAs. The value
TIMEOUT means that the running time of the tool exceeded 30 minutes, and the value
ERROR means that the tool reported a spurious error. The names of the examples in
the table contain the name of the data structure manipulated in the program, which
is “SLL” for singly linked lists, “DLL” for doubly linked lists (the “C” prefix denotes
cyclic lists), “tree” for binary trees, “tree+parents” for binary trees with parent pointers.
Nested variants of SLL (DLL) are named as “SLL (DLL) of” and the type of the nested
structure. In particular, “SLL of 0/1 SLLs” stands for SLL of a nested SLL of length 0
or 1, and “SLL of 2CDLLs” stands for SLL whose each node is a root of two CDLLs.
The “+head” flag stands for a list where each element points to the head of the list
and the subscript “Linux” denotes the implementation of lists used in the Linux kernel,
which uses type casts and a restricted pointer arithmetic. The “DLL+subdata” stands
for a kind of a DLL with data pointers pointing either inside the list nodes or optionally
outside of them. For a “skip list”, the subscript denotes the number of skip pointers.
In the example “tree+stack”, a randomly constructed tree is deleted using a stack,
and “DSW?” stands for the Deutsch-Schorr-Waite tree traversal (the Lindstrom variant).
All experiments start with a random creation and end with a disposal of the specified
structure; the indicated procedure (if any) is performed in between. The experiments
were run on a machine with the Intel i7-2600 (3.40 GHz) CPU and 16 GiB of RAM.

The table further contains the column “boxes” where the value “X/Y” means that X
manually created boxes were provided to the analysis that did not use learning while
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Table 4.1.: Results of the experiments

’ Example H basic \ SFA \ boxes Predator
SLL (delete) 0.03 | 0.04 0.04
SLL (bubblesort) 0.04 | 0.04 0.03
SLL (mergesort) 0.08 | 0.15 0.10
SLL (insertsort) 0.05 | 0.05 0.04
SLL (reverse) 0.03 | 0.03 0.03
SLL+head 0.05 | 0.05 0.03
SLL of 0/1 SLLs 0.03 | 0.03 0.11
SLL inux 0.03 | 0.03 0.03
SLL of CSLLs 2071073 3 / 4 0.12
DLL (reverse) 004 (006 1 / 1 0.03
DLL (insert) 006 007 1 / 1 0.05
DLL (insertsort1) 035|040 1 / 1 0.11
DLL (insertsort2) 011012 1 / 1 0.05
DLL of CDLLs 567 | 125 8 / 7 0.22
DLL+subdata 0.06 | 009 - / 2| TIMEOUT
CDLL 003|003 1 / 1 0.03
SLL of 2CDLLspinux || 0.16 | 0.17 | 13/ 5 0.25
skip listo 066 | 0.42 | - / 3| TIMEOUT
skip lists T|914 | - / 7| TIMEOUT
tree 0.14 | 0.14 ERROR
tree+parents 018021 2 / 2| TIMEOUT
tree+stack 0.09 | 0.08 ERROR
tree (DSW) 1.74 | 0.40 ERROR
tree of CSLLs 032|042 - / 4 ERROR

Y boxes were learnt when the box learning procedure was enabled. The value “-” of X

means that we did not run the given example with manually constructed boxes since their
construction was too tedious. If user-defined boxes are given to Forester in advance, the
speedup is in most cases negligible, with the exception of “DLL of CDLLs” and “SLL of
CSLLs”, where it is up to 7 times. In a majority of cases, the learnt boxes were the same
as the ones created manually. In some cases, such as “SLL of 2CDLLsy iy, the learning
algorithm found a smaller set of more elaborate boxes than those provided manually.

In the experiments, we use folding by inclusion as defined in Section For simpler
cases, the performance matched the performance of folding by equivalence, but for the
more difficult examples it was considerably faster (such as for “skip listy” when the
time decreased from 3.82s to 0.66s), and only when it was used the analysis of “skip
lists” succeeded. Further, the implementation folds optimal knots of the complexity
< 2, which is enough for the considered examples. Finally, note that the performance of
Forester in the considered experiments is indeed comparable with that of Predator even
though Forester can handle much more general data structures.
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4.4. Conclusion

This chapter presented an extension of the shape analysis of [HHR12|, presented in
Chapter |3l Unlike the original analysis, the extension works fully automatically, without
the need of the user to provide any information. For that purpose, we have proposed
a technique of automatically learning FAs called boxes to be used as alphabet symbols in
higher-level FAs when describing sets of complex heap graphs. We also proposed a way
how to efficiently integrate the learning with the main analysis algorithm. Finally,
we have proposed a significant improvement—both in terms of generality as well as
efficiency—of the abstraction used in the original framework.

An implementation of the approach presented in this chapter inside the Forester tool
allowed us to fully-automatically handle programs over quite complex heap structures,
including a data-independent modification of 2-level and 3-level skip lists, which—to
the best of our knowledge—we were the first to fully automatically verify (the recent
work of [LGQC14], based on second-order bi-abduction in separation logic, is the only
other approach we are aware of that also succeeded). At the same time, the efficiency
of the analysis is comparable with other state-of-the-art analysers even though they
handle less general classes of heap structures. In the next chapter, we introduce yet
another extension of the forest automata-based shape analysis, an extension that takes
into consideration relations among data values stored inside memory cells and, therefore,
allows verification of data structures that depend on data.
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5. Forest Automata-Based Shape
Analysis of Programs with Data

In the previous two chapters, we focused on shape analysis that used only pointer fields
of data structures and abstracted from non-pointer ones. This is in many cases sufficient,
however, there are also cases where it is necessary to track the data that are stored in
data structures to be able to correctly verify their higher-level and shape invariants, or
even memory safety. Let us now give two examples of such data structures.

First, consider a binary search tree (BST). One of the higher-level invariant of a BST
is that for every node u, the data values of all nodes in the left subtree of u are less
than the data value stored in u, and the data values of all nodes in the right subtree
of u are greater than the data value of u. The procedure that inserts a new data value
d into a BST (given in Figure uses the variable x to descend the BST and find
the position at which the node newNode with the new data value d should be inserted.
The procedure uses the relation between the new data value and the root of the tree to
determine whether d will be stored in the left or the right subtree (or not inserted at all
in the case it is equal to the data value of the root). Failure to track this relation may
cause the analysis to report a spurious counterexample for some operation that relies on
the higher-level invariant.

Second, the routines for manipulating a skip list [Pug90] rely on the property that the
data values of lists on all levels are always sorted. Consider, for example, that we are
inserting the value 7 into the 2-level skip list in Figure The procedure for inserting
starts in the node labelled as head and first tries to find the insertion point at level 2
(i.e. the level that uses the ny pointers) by testing whether the inserted value is greater
than the value in head—n,, the successor of head. In this case, it is not, so the procedure
descends to level 1 and, because this is the ground level, traverses the list over the nj
pointers and finds the exact position where the new node will be inserted. Because of
the sortedness property, we know that the new node cannot be inserted anywhere behind
the node head—n,. Note that in this case, not only the sortedness property would be
lost when not treating the data, but even the shape invariant would be corrupted!

Automated verification techniques that aim for the verification of such data structures
need to handle both infinite sets of reachable heap configurations that have a form of
complex graphs and the different possible relationships between data values embedded
in such graphs. The few approaches that can automatically reason about data properties
are often limited to specific classes of structures, mostly singly linked lists (SLLs), and/or
are not fully automated (as also discussed later).

In this chapter, we propose an extension of the forest automata-based shape analysis
that was described in Chapter [3| and further augmented in Chapter Our extension
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o Node *insert(Node *root, Data d)

1 q{

2 Node* newNode = calloc(sizeof (Node));
3 newNode—data = d;

4 if (root == NULL) return newNode;

5 Node *x = root;

6 while (x—data != newNode—data)

7
8
9

{
if (x—data < newNode—data)
if (x—right # NULL) x = x—right;

10 else {
11 x—right = newNode;
12 break;
13 }
14 else
15 if (x—left # NULL) x = x—left;
16 else {
17 x—1left = newNode;
18 break;
19 }
20 }

21 if (x—data == newNode—data) free(newNode);
22 x = NULL;
23 return root;

24}

Figure 5.1.: A function that inserts a new node into a BST and returns a pointer to its
root node

allows us to represent relationships between data elements stored inside heap structures.
As a consequence, this method makes it possible to automatically verify programs that
depend on relationships between data, such as programs manipulating various search
trees, lists, and skip lists, and to also verify e.g. different sorting algorithms. Technically,
we express relationships between data elements associated with nodes of the heap graph
by two classes of constraints. Local data constraints are associated with transitions of
tree automata and capture relationships between data of neighbouring nodes in a tree
of the forest decomposition of a heap graph; they can be used e.g. to represent ordering
internal to some structure such as a binary search tree. Global data constraints are
associated with states of TAs (even states of different TAs) and capture relationships
between data in distant parts of the heap. In order to obtain a powerful analysis based on
such extended forest automata, the entire analysis machinery must be also be extended,
including a need to develop mechanisms for propagating data constraints through FAs,
to adapt the abstraction mechanisms of abstract regular tree model checking (ARTMC),
to develop a new inclusion check between extended FAs, and to define extended abstract
transformers.
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Figure 5.2.: An example of a 2-level skip list

The presented approach has been implemented as a further extension of the Forester
tool. We have applied the tool to verification of data properties, notably sortedness, of
sequential programs with data structures, like various forms of singly and doubly linked
lists (DLLs), possibly cyclic or shared, binary search trees (BSTs), and even 2-level and
3-level skip lists. The verified programs include operations like insertion, deletion, or
reversal, and also bubble-sort and insert-sort both on SLLs and DLLs. The experiments
confirm that our approach is not only fully automated and rather general, but also quite
efficient, outperforming many previously known approaches even though they are not of
the same level of automation or generality. In the case of skip lists, our analysis is the
first fully-automated shape analysis which is able to handle fully-fledged skip listsﬂ

Related Work. Verification of properties depending on the ordering of data stored
in SLLs was considered in [BBHT11|, which translates programs with SLLs to counter
automata. A subsequent analysis of these automata allows one to prove memory safety,
sortedness, and termination for the original programs. The work is, however, strongly
limited to SLLs. In the work presnted in this chapter, we get inspired by the way
that [BBHT 11| uses for dealing with ordering relations on data, but we significantly
redesign it to be able to track not only ordering between simple list segments but rather
general heap shapes described by FAs. In order to achieve this, in addition to proposing
a suitable way of combining ordering relations with FAs, we also had to significantly
modify many of the operations used over FAs.

In [AACJ09], another approach for verifying data-dependent properties of programs
with lists was proposed. However, even this approach is strongly limited to SLLs, and it
is also much less efficient than our current approach. In [AHHT13|, concurrent programs
operating on SLLs are analysed using an adaptation of the transitive closure logic (see
e.g. [BROG]), which also tracks simple sortedness properties between data elements.

Verification of properties of programs depending on the data stored in dynamic linked
data structures was considered in the context of the TVLA tool [LRS05] as well. Unlike
our approach, [LRS05] assumes a fixed set of shape predicates and uses inductive logic
programming to learn predicates needed for tracking non-pointer data. The experiments
presented in [LRS05|] involve verification of sorting and stability properties of several
programs on SLLs (merging, reversal, bubble-sort, insert-sort) as well as insertion and
deletion in BSTs. We do not handle stability, but for the other properties, our approach

! Note that in the experiments presented in Chapter 4] where we ignored the data stored in the nodes,
we had to modify the insertion procedure for a skip list by introducing an explicit end-of-window
pointer for every level of the skip list, so that the shape invariant did not depend on ordering relations.
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is much faster. Moreover, for BSTs, we verify that a node is greater /smaller than all the
nodes in its left /right subtrees (not just than the immediate successors as in [LRS05]).
Another work that combines the TVLA framework with reasoning on data is [BHT06],
which combines TVLA with predicate abstraction implemented in BLAST. The approach
was experimentally run on several list-manipulating programs only.

An approach based on separation logic extended with constraints on the data stored
inside dynamic linked data structures and capable of handling size, ordering, as well
as bag properties was presented in [CDNQI2b]. Using the approach, various programs
with SLLs, DLLs, and also AVL trees and red-black trees were verified. The approach,
however, requires the user to manually provide inductive shape predicates as well as loop
invariants. Later, the need to provide loop invariants was avoided in [QHL™ 13|, but the
need to manually provide inductive shape predicates remains.

The work considered in [CRO8| extends the previous work [CRNQ7] with data con-
straints. The method still needs shape invariants extended with data to be provided
manually. The join and widening operations used on the shape level are extended with
subsequent join and widening on the data level to cope with the data during the analysis.

Another work that targets verification of programs with dynamic linked data struc-
tures, including properties depending on the data stored in them, is [ZKRO08]. It gen-
erates verification conditions in an undecidable fragment of higher-order logic and dis-
charges them using decision procedures, first-order theorem proving, and interactive
theorem proving. To generate the verification conditions, loop invariants are needed.
These can either be provided manually, or sometimes synthesised semi-automatically
using the approach of [WKZ"07|. The latter approach was successfully applied to sev-
eral programs with SLLs, DLLs, trees, trees with parent pointers, and 2-level skip lists.
However, for some of them, the user still had to provide some of the needed abstraction
predicates. A further extension of this approach given in [WP10] increases the degree
of automation and synthesises the loop invariants automatically using counterexample
guided refinement.

Several works, including [BDESI2|, define frameworks for reasoning about pre- and
post-conditions of programs with SLLs and data. Decidable fragments that can express
more complex properties on data than we consider are identified, but the approach
does not perform a fully automated verification, only checking of pre-post condition
pairs. Other approaches presenting various logical fragments for reasoning about heaps
and the data stored in them together with decision procedures of these fragments were
presented e.g. in [MNO05, RBHCO7, [CLQRO7, LQO§]. None of these approaches has been
extended to a fully automatic verification method.

Outline. In Section [5.1] we present our extension to the forest automata formalism
that uses constraints to specify relationships between data. values. Then, in Section 5.2

we describe the changes we made to the shape analysis algorithm that allow it to handle
programs that depend on ordered data. Section [5.3| shows how our procedure handles
boxes, used in order to allow processing of more complex data structures. Section [5.4]
describes our implementation of the proposed ideas as well as the obtained experimental
results and Section [5.5| concludes the chapter.
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5.1. Forest Automata with Data Constraints

This section presents several extensions to the basic definitions presented in Chapters
and 3| that will be used throughout this chapter.

Graphs and Forests with Data. Let us fix a data domain D with a total order <
(in the following, we also use the symbols <, =, =, and = with the obvious meaning).
We extend the notion of a graph g : V — X x V* with a data labelling A\, that assigns
every node a value, formally, Ay : V' — (DU {T}) where T ¢ D is interpreted as
an undefined value. Note that data labellings extend to trees because a tree is only
a special case of a graph, in particular a graph with a single root. For the case of forests,
though, we need to make sure that the data labelling of the root references are consistent
with the data labelling of the respective roots.

We say that a forest t1-- -ty is composable if A\ (u) = A, (root(t;)) where £y, (u) = j
for any root reference w in any tree t; of the forest. As a consequence, the operator ®
that composes forests into graphs is defined only for composable forests. The data
labelling Ay of the resulting graph ¢’ = ®t; - - - t,, is then obtained simply as the union of
data labellings of all trees from t; - - - t,,, restricted to the domain of ¢’. We will use the
following notation to talk about relations of data values of nodes within a forest. Given
nodes u and v of trees ¢t and ¢’ of a forest respectively, and a relation ~ € {<,<,=>, =},
we denote by u ~yr v that A\(u) ~ A\y(v) and we denote by u ~ra v that A(u) ~
Ap(w) for all non-root-reference nodes w in the subtree of ¢’ rooted at v, including the
node v itself. We call these two types of relationships root-root and root-all relations
respectively. The definition of i0-graphs and io-forests with data is a straightforward
extension obtained by adding data labellings to the corresponding concepts introduced

in Section B.11

Tree Automata with Data Constraints. For the use in this chapter, we also extend
the notion of tree and forest automata to consider data. Because we focus on the
verification of programs that work with ordered data, when we represent sets of heap
graphs with forest automata, we do not remember ezact values stored in nodes of heap
graphs, but only the relations among them instead. Let us first start with the modified
definition of a tree automaton.

A tree automaton with data constraints (or simply a tree automaton, TA) is a tuple
A= (Q,2,Ac, R = {qo}) where @ is a nonempty finite set of states, ¥ is a ranked
alphabet, R C @Q is a singleton set of root states containing the root state ¢y (we use
root(A) to denote the root state of A), and A, is a set of (constrained) transitions.
Each transition is of the form ¢ — a(q1,...,qn) : ¢ wheren >0, ¢,q1,...,¢, € Q, a € ¥,
and c is a set of local constraints. Every local constraint is of the form 0 ~y; 7 or 0 ~y, @
where ~ € {<, =, >, =, =} (with = viewed as syntactic sugar for a pair of constraints
that use < and =) and 1 <i < n.

Intuitively, a local constraint of the form 0 ~, i associated with a transition of A of
the form ¢ — a(qi, - .., qn) states the following: For each tree ¢ accepted by A, the data
value of the root of the subtree ¢ of ¢’ that is accepted at state ¢ is related by ~ with
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the data value of the root of the i-th subtree of ¢ accepted at state ¢;. A local constraint
of the form 0 ~., 7 states that, in addition to the constraint imposed by 0 ~. i, the
relation ~ also holds between ¢ and all nodes in the i-th subtree of ¢.

Moreover, we also extend the notion of a run of A. In the data setting, tree automata
accept trees with data. A run of A over a tree t with data labelling A\; is a mapping
p: dom(t) — @ such that

1. the root of ¢ is mapped to the root state of A, p(root(t)) = qo (a simplification
that considers only accepting runs),

2. for each node v € dom(t) where g = p(v), if ¢; = p(S(v);) for 1 <i < |S(v)|, then
A, has a transition ¢ — £(v)(q1,---,qs()) : ¢ (the definition of a run of a TA
from Section , and

3. for each constraint 0 ~y, @ in ¢ where z € {r,a}, it holds that v ~y, S(v);
(consistency of data constraints).

Note that for the sake of simplification, all runs start from the root state. We define the
language of A as L(A) = {t | there is a run of A over t}.

Example 5.1. BSTs, such as the tree labelled by root but without the variable x in
Figure a, are accepted by the TA A = ({q1,q1}, 5, Ae, {q1}) (we use q1 to denote
that q1 is a root state), where A, contains the following transitions (we ignore the data
selector in the TA symbols):

q1 — left,right(qi,q1) :0>7a1,0 <za 2 q — left,right(qi,q1) :0>ral
q1 — left,right(qi,q1) :0 <ra2 q1 — left,right(qy,q1)
a1 — L0

The local constraints of the transitions express that the data value in a node is always
greater than the data values of all nodes in its left subtree and less than the data values
of all nodes in its right subtree. O

Forest Automata with Data Constraints. We also extend FAs with data con-
straints. A forest automaton with data constraints (in this chapter, we will simply say
a forest automaton, FA) over X is a triple of the form F = (A; --- A,, 7, ¢) where:

o A;--- A, withn >0, is a sequence of TAs over the alphabet Y U{1,...,n} whose
sets of states @1, ..., Q, are pairwise disjoint,

e 7 is a sequence of port indices as defined in Section [3.I} and

e o is a set of global data constraints between the states of A; - - - A,, each having the
form q ~yr ¢’ Or ¢ ~ra ¢’ where ¢,¢' € J;, Qi, at least one of ¢, ¢’ is a root state
and ~ € {<,=X,>,>,=} (with = again viewed as syntactic sugar). Intuitively,
q ~rz ¢ says that for any two nodes v and v’ in a forest that are labelled in
accepting runs of TAs by ¢ and ¢’ respectively, the data relation v ~y, v’ must
hold.
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Figure 5.3.: Decomposition of a graph into trees

An io-forest (ty---t,,n") with data is accepted by F if there are runs pi,...,p, such
that p; is a run of A; over t; for every 1 <4 < n, the port indices match, 7’ = 7, and for
each global constraint of the form g ~y, ¢’ where z € {r,a}, q is a state of some A; and
¢’ is a state of some A;, we have v ~y, v' whenever p;(v) = g and p;(v') = ¢’. The forest
language of F', denoted as Ly(F), is the set of io-forests accepted by F, and its graph
language is the set of io-graphs L(F') obtained by applying ® on composable io-forests
accepted by FJ

Note that global constraints can imply some local ones, but they cannot in general be
replaced by local constraints only. Indeed, global constraints can relate states of different
automata as well as states that do not appear in a single transition and therefore relate
nodes that can be arbitrarily far from each other and unrelated by any sequence of local
constraints.

5.2. FA-based Shape Analysis with Data

The extension in this chapter uses the analysis described in Section with several
modifications. First, we consider a single data selector, i.e. DSel = {data}. The data
labelling of heaps is based on this selector in such a way that for a node v from a heap
gst, its data value Ay, (v) is set to the value of the data selector (or T if undefined).
For the sake of brevity of the used examples, in this chapter we will represent program
states using the so-called abstract configurations. Each abstract configuration is a pair
(0, F) where o maps every variable to L, an index of a TA in F, or to an undefined
value, and F' is an FA representing a set of heaps (any such configuration can be easily
transformed into the form used in Section by creating a stack frame node in F' that
encodes o). We do not write port indices in FAs from abstract configurations. Further
in our examples, we will not write the often used transition ¢, — L () that we consider
implicitly present in all sets of transitions of TAs (in figures, we simplify the state to L).

2 Note that from the definitions of languages of TAs and FAs, the effect of the ~;, data constraint
(both local and global) is local to the TAs it is related to.
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F = (A Az, )
o(root) =1,0(x) =2

gr — left,right(qi,2) 10 =2 1,0 <7a 2
Ap ¢ g1 — left,right(qi,q2) :0 <pa2

g2 — left,right(q,,q.)

A, - { gx — left,right(qi,q3) :0 <ya?2
2:9 —

qs — left,right(q,,q.)

o= Qx > ra qr,q3 > ra Qr,
Qr >ra Gx,q1 <ra Gx; 42 <ra Gx

Figure 5.4.: An example of an abstract configuration that is a possible representation of
the concrete configuration shown in Figure

Example 5.2. Figure[5.5a shows a possible heap of the program in Figure[5.1. Nodes
are shown as circles, labelled by their data values. Selectors are shown as edges. Fach
selector points either to a node or to L (denoting NULL). Some nodes are labelled by
a pointer variable that points to them. The node with data value 15 is a cut-point since
it is referenced by variable x. Figure [5.3b shows a tree decomposition of the graph into
two trees, one rooted at the node referenced by root, and the other rooted at the node
pointed by x. The right selector of the root node in the first tree points to root reference
2 (i denotes a reference to the i-th tree t;) to indicate that in the graph, it points to the
corresponding cut-point. O

Example 5.3. Figure illustrates an abstract configuration (o, F') that is a possible
representation of the concrete configuration shown in Figure [5.3b. O

The symbolic execution from Section is modified for considering the data rela-
tions in the following way. Some of the considered operations require the so-called
constraint saturation. The saturation procedure transforms the FAs into the saturated
form, meaning that they explicitly include all (local and global) data constraints that
are consequences of the existing ones.

The automata abstraction used in widening is modified by also taking into account the
data relations. In particular, for a pair of states g and ¢’ that are to be merged according
to the abstraction procedure from Section [4.2] we further impose the requirement that
they occur in isomorphic global data constraints. This requirement means that g ~y; p
occurs as a global constraint if and only if ¢’ ~;, p occurs as a global constraint, for
any p and x, and it guarantees that the abstraction does indeed over-approximate (if
we merge a pair of states with incompatible constraints, the language of the TA may
become empty).

In the following subsections, we provide more detail on some of the major steps of
our analysis. Section [5.2.1] describes the constraint saturation procedure, Section [5.2.2]
describes the modifications made to abstract transformers, Section describes the
changes in the normalisation, and, finally, Section describes our modified check for
inclusion.
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Table 5.1.: Rules for inferring global constraints from global constraints.

qreed ¢~ d!

G-TRANS
q (N o N,)ra: q”
q ~rrq
G-REFL % G-DuAaL
q =rr q q ~rr 4
/ /
~ Leaf
x4 7 (q) G-STRE
q ~ra g
q~rad g~
i, G-WEAK]1 L, G-WEAK?2
q ~rr 4 q “rz q

100t (A) ~ra To0t(A') q € QA)

root(A) N q’ G-ROOTALL

e We assume that = € {r,a},

~e{x,=},

Leaf(q') means that ¢’ has only nullary outgoing transitions, and
Q(A') is the set of states of the TA A’

5.2.1. Constraint Saturation

In this section, we show the saturation rules that are used to deduce new data constraints
from already existing ones. The saturation rules are used in a fixpoint computation to
deduce both global and local constraints from global constraints, local constraints, or
their combinations.

Before the description of the saturation rules, we first introduce some notation. For
relations ~ and ~' on D, let ~ o ~' be the weakest relation from {<;., <rz,>rz, =1z},
for x € {r,a}, such that for all di,da,ds € D, it holds that d; ~ da Ady ~' d3 =
dy (~ o ~') d3. Wewrite ~ C ~/iff d ~ d implies d ~' d’, and we define ~~! by d ~~1 d'
iff " ~ d. We say that a constraint ¢ ~;, ¢’ is a weakening of a constraint q ~r, ¢’ iff it
holds that ~ C ~/ and, in the case y is a (i.e. a root-all constraint), it also holds that x
is a. The saturation rules that can be used are as follows.

Inferring global constraints from global constraints

The saturation rules for inferring new global constraints from already existing ones, as
shown in Table are based on the following principles:
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Table 5.2.: Rules for inferring local constraints from local constraints.

O~rat €Ec
——  L-RooTRooT
O~ t Ec
O~rpt €Ec O~ t€Ec Leaf(q;
rzi‘ L-WEAK = - (%) L-STRE
0~ i Ec O~rat €Ec
e We assume the transition ¢ — a(q1,...,¢,) : cand 1 <i < mn,
o v c{ral,
e ~ c {X,x}, and

Leaf(q) is true iff ¢ has only nullary outgoing transitions.

. properties of the ordering relations:

e G-TrANS is based on transitivity,
e G-REFL is based on the reflexivity of < and >, and
e G-DuAL is based on the duality of < and .

. strengthening of existing data constraints:

e G-STRE states that each global constraint ¢ ~;r ¢’ where ¢’ has nullary out-

going transitions only can be strengthened to q <a ¢/,

. weakening of existing data constraints:

e G-WEAKI states that from g ~., ¢/, we can infer a weaker constraint ¢ ~ry ¢,

e G-WEAK2 gives a rule for inferring the weaker constraints ¢ <y, ¢ from

q <rz ¢ and q =y, ¢ from q >, ¢ for any x € {r,a},

. properties of the ra relation:

e G-RoOTALL states for a pair of TAs A and A’ of the given FA that if ¢
is a state of A’ then a global constraint root(A) ~y, root(A’) implies the

constraint root(A) ~ya ¢

Inferring local constraints from local constraints

The saturation rules (shown in Table |5.2)) that infer new local constraints from already
existing ones in a transition ¢ — a(qi,...,q,) : ¢ are, for 1 < ¢ < n, based on the

following:

1. weakening the existing constraints: if ¢ — a(qq, ..

e L-RooTROOT weakens a ~y, relation to a ~ relation,

., qn) : ¢ is a transition, then

e L-WEAK infers the weaker constraints 0 <., ¢ from 0 <., 7 and 0 >, 7 from

0 >y ¢ for any = € {r,a},
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Table 5.3.: Rules for inferring local constraints from global constraints.

~rz i =] ~opy T00L(A;
A e @ m, & L-G-Prop 4~ 70 1 - = (A7) L-G-REF
Or~ppi€c 0r~ppi€cC
e We assume the transition ¢ — a(q1,...,¢n) : cand 1 <i < mn,

o z € {r,a}, and

e ¢; — j() is the only outgoing transition of ;.

2. strengthening of existing data constraints:

e L-STRE is used for ¢; such that ¢; has only nullary outgoing transitions to
strengthen a constraint 0 ~;, 7 to the constraint 0 ~, 7.

Inferring local constraints from global constraints

Inference of local constraints in a transition ¢ — a(qi,...,q,) : ¢ from global constraints
is done, for 1 < i < n, using the rules shown in Table

e L-G-Prop propagates a global constraint ¢ ~y, ¢; for states used in the same
transition into a local constraint 0 ~, 1,

e L-G-REF propagates a global constraint ¢ ~y, r00t(A;) between a state ¢ and the
root state of a TA 4; into a local constraint 0 ~, 7 between ¢ and g; that accepts
a reference to the TA A;.

Inferring global constraints from local constraints

Finally, new global constraints can be inferred from existing ones by propagating them
over local constraints of transitions in which the states of the global constraints occur.
Since a single state may be reached in several different ways, propagation of global con-
straints through local constraints on all transitions arriving to the given state must be
considered. If some of the ways how to get to the state does not allow the propagation,
it cannot be done. Moreover, since one propagation can enable another one, the propa-
gation must be done iteratively until the fixpoint is reached. The iterative propagation
must terminate since the number of constraints that can be used is finite. The propaga-
tion of constraints between states of a TA can be performed either downwards from the
root towards leaves or upwards from leaves towards the root as described below. Let p
be the root state of some TA A. For each state g of A, let ®(g,p) be the set of global
constraints between g and p. The data constraints are propagated in two directions:

Downward propagation. In the downward propagation, we simultaneously extend
the sets ®(q,p) to larger ones ¥(q,p) starting from the root state gy of A and setting
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U(qo,p) = P(qo,p) (i.e. no constraints are added for this case). Then, for non-root
states ¢, we extend the set of constraints in W(q, p) by traversing over the transitions of
A and adding constraints according to the following rules:

e We add the constraint g ((~')"'o ~)z p, with € {a,r}, if, for every occurrence
of ¢ as ¢; in any transition 6 = ¢ — a(q1,...,¢n) : ¢, there is a local constraint
0~/ i in ¢ and a global constraint ¢’ ~y, p in ¥(¢', p).

e We add the constraint p (~ o ~)., ¢, with z € {a, r}, if, for every occurrence of ¢
as ¢; in any transition § = ¢’ — a(qi1,...,qn) : ¢, there is a local constraint 0 ~7,,
in ¢ and a global constraint p ~y, ¢’ in ¥(¢',p) with y € {a,r}.

e We add the constraint p ~y, q if, for every occurrence of ¢ as ¢; in any transition
d=q — alq1,...,qn) : ¢, it holds that p ~y, ¢’ is in ¥(¢', p).

Intuitively, the first two cases use transitivity to propagate a constraint involving ¢’ to
a constraint involving ¢;; the last case uses the semantics of p ~y, ¢'.

Upward propagation. The upward propagation can be defined analogously. Already
existing sets of constraints ®(q¢, p) can be extended to sets ¥(q, p) by traversing over the
transitions of A4 and adding constraints according to the following rules:

e We add the constraint p ~yr, ¢ if there is the constraint p ~y, ¢ is in ¥U(g,p), and
for every transition 6 = ¢ — a(q1,...,qn) : ¢ it holds that p ~4 ¢; € ¥(qg;,p) for
every 1 <1 < n.

e We add the constraint g (~' o ~)., p, with z € {a,r}, if there is no nullary
transition going from ¢ and for every transition § = ¢ — a(q1,...,qn) : ¢, there are
the constraints 0 ~L, i in ¢ and ¢; ~r, p in ¥(g;, p) for some 1 < i < n.

e We add the constraint p (~ o(~')71); ¢, with 2 € {a,r}, if there is no nullary
transition going from ¢ and for every transition § = ¢ — a(q1,...,qn) : ¢, there are
the constraints 0 ~._ 4 in ¢ and p ~y; q; in ¥(g;, p) for some 1 < i < n.

Proposition 5.1. The constraint saturation process always terminates.

Proof. Follows from the facts that the maximum number of constraints in an FA is finite
and that adding a new constraint is a monotone operation. O

5.2.2. Abstract Transformers

In this section, we present the abstract transformers corresponding to some of the op-
erations on abstract configurations of the form (o, F') (also see Section for the basic
description of abstract transformers). For simplicity of the presentation, we assume that
for all TAs A; in F', (a) the root state of A; does not appear on the right-hand side of
any transition, and (b) it occurs on the left-hand side of exactly one transition. It is easy
to see that any TA can be transformed into this form, the transformation procedure,
called unwinding, is described in the following.
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Unwinding the Root State

In order to transform a TA A= (Q, %, A., {qr}), from an FA F into the form where ¢f
does not appear on the right-hand side of any transition and appears on the left-hand
side of exactly one transition, we may perform the following sequence of actions:

1. create a copy q} of q¢, which replaces gy on the right-hand side of all transitions,

2. duplicate all transitions from gy to become transitions also from q} (while again
substituting any occurrence of ¢y with q}),

3. split A into several TAs, one for each transition from the accepting state gy, cre-
ating several copies of the FA F' that contains A, and

4. adapt the local and global constraints by duplicating them whenever some state is
duplicated.

An example of this transformation, which basically unfolds once all loops on ¢y, will be
given in Example [5.4] below.

We now introduce some common notation and operations for the below presented
transformers. We use A,y and Ay, to denote the TA pointed by variables x and
y, respectively, and ¢y and ¢y to denote the root states of these TAs. Let ¢ —
a(qi,---14---,qm) : ¢ be the unique transition from gy. Before describing the actual
update, let us first define how to split a TA.

Splitting a TA

The operation of splitting a TA A,y at the i-th position, for 1 < i < m, is described
by the following sequence of operations:

1. First, a new TA Ay is appended to F' such that Ay is a copy of Ay(y) but with g;
as the root state.

2. Second, the root transition in A,y is changed to ¢y — a(q1,...,qg;---,qm) : ¢

where ¢ is obtained from ¢ by replacing any local constraint of the form 0 ~yry 4
by the global constraint gy ~r; root(Ay), and the transition gz — k() is added to
As(y) (we assume gz, is a new state in A (y)).

3. Global data constraints are adapted as follows: For each constraint ¢ ~y; p where
q is in .AJ(Y) such that ¢ # gy, a new constraint ¢’ ~r, p is added, where ¢’ is the
version of ¢ in Ag. Likewise, for each constraint q ~y, p where p is in A,y such
that p # ¢y, a new constraint ¢ ~y, p’ is added (again, p’ is the version of p in Ay).
Finally, for each constraint of the form p ~r, gy, a new constraint p ~r, r00t(Ay)
is added.

An example of the splitting step is also given in Example below.
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Description of Abstract Transformers

In what follows, we assume the existence of the sub-term g, — sel(g;) in the (single)
root transition of A,(y). Before performing the actual update, we check whether the
operation to be performed tries to dereference a pointer to L or to an undefined value,
in which case we stop the analysis and report an error. Otherwise, we continue by
performing one of the following actions, depending on the particular statement.

x :=malloc() We extend F' with a new TA A, containing one state and one transition
where all selector values are undefined and assign o(x) to the index of Ae, in F.

x := y->sel If ¢; is a root reference (say, j), it is sufficient to change the value of o(x)
to j. Otherwise, we split A,y at the i-th position (creating Ax) and assign k to
o(x).

y—>sel :=x If ¢; is a state, then we split A,y at the i-th position. In both cases we
insert gpey in the i-th position (instead of ¢;) in the children states of the root
transition of Ay(y) (We assume gnew is a new state in A, (). We follow by adding

the transition gpew — 0(x)() into Ayy). Any local constraint in ¢ of the form
0 ~yz 7 that concerns the removed root reference ¢; is then removed from c.

y->data := x->data First, we remove any local constraint that involves gy or a root
reference to Ay (). Then, we add a new global constraint gy =rr gx, and we also
keep all global constraints of the form ¢’ ~y, ¢y if ¢ ~rr ¢x is implied by the
constraints obtained after the update.

y->data ~ x->data (where ~ € {<, =, >, =}) First, we execute the saturation proce-
dure in order to infer the strongest constraints between gy and gx. Then, if there
exists a global constraint gy ~' ¢x that implies ¢; ~ ¢x (resp. its negation), we
return true (resp. false). Otherwise, we copy (o, F') into two abstract configura-
tions: (o, Firue) for the true branch and (o, Fyyse) for the false branch. Moreover,
we extend Fy.,. with the global constraint gy ~ gx and F}y,e with its negation.

x :=y or x := NULL We simply update o accordingly.

free(y) First, we split A, (y) at all j-th positions, 1 < j < m, that appear in its root
transition, then we remove A,y from F' and set o(y) to undefined. However, to
keep all possible data constraints, before removing A, y), the saturation proce-
dure is executed. After the action is done, every global constraint involving gy is
removed.

x =y This operation is evaluated simply by checking whether o(x) = o(y). If o(x) or
o(y) is undefined, we assume both possibilities.

After the update, we check that all TAs in F' are referenced, either by a variable or from
a root reference, otherwise we report an emergence of garbage.
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leftright Fy = (Aau,0)
o(root) =1,0(x) =1

Aal

la: ¢ —1,r(qr,q1) :0>ra1,0<za2
2a: q —1,r(qr,q1) 0 <ra?2

3a: q —1,r(q,q1) :0>ral

da: @ —1,r(qL,q1)

a) An example abstract configuration at line 9 of the program in Figure The
abstract configuration represents a set of BSTs (1, r abbreviates left, right).

Fy = (Ap,0)
o(root) =1,0(x) =1

1b: g1 —1,r(¢},q1) :0>ra1,0<ra?2
20 q —1,r(qL,qy) 0 <ra?2

3b: ¢ —1,r(¢1,q1) 0>l

b g1 = 1,r(q1,q1)

5b: qy = 1,1(q),q)) 0 >ra 1,0 <pa 2
60 : q1—>1 r(q1,q)) :0=<ga?2

b - q1 —1,7(q},q1) :0>pal

8b: ¢y —1,x(q1,q1)

b) An intermediate state of unwinding the root state of Ag1

Figure 5.5.: An example of unwinding the root state of a TA

Example 5.4. We now present the computation of the abstract configuration that results
from executing the program statements which appear at line 9 of the program in Figure[5.1]
when starting from the abstract configuration described in Figure [5.5a (for the sake of
brevity, we leave out the newNode variable and the corresponding TA from the example).
In order to compute this abstract configuration, a sequence of two statements consisting of
the test statement x->right # NULL and the update statement x = x->right is executed.
First, the test statement x->right # NULL is ezecuted in the following two steps:

1. As can be seen from the FA F, from Figure [5.5a encoding BSTs, the root state
@1 of Ag1 (the only TA of F,) occurs as a child state in three transitions of Aq1,
and we will therefore perform unwinding of q1. We start by creating the state
4y, a copy of q1, and duplicate to ¢y the four transitions leaving from qi (the
resulting intermediate FA Fy, can be seen in Figure b ). Then, for each transition
t € {1b,2b,3b,4b} leaving from q1 in Ayp, we create a copy of the intermediate FA
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F. = (A, 0), o(root) = 1,0(x) =1 Fy = (A14,0), o(root) =1,0(x) =1

-Alc Ald

le: ¢t —=1,r(¢},q1) :0>ral,0<ra2 1d: ¢ —1,r(qL,q)) :0—<ra?2

2c: ¢4 —>1,r(¢),q)) 0>=ral,0<p2 2d: ¢§ —1,r(¢),q)) :0>=ral,0<ra2
3¢ gy = 1,r(qL,q)) 0 <ga?2 3d : q1—>1 r(q1,q)) :0=<pa?2

e qg - 17r(q/1aQL) :0>ral 4d Q1 —1 r(‘]laQL) 10 >ral

5c: ( 5d: ¢ —1,r(q1,q1)

) @ —1 r(Q17Q1 ; 2 (1b) b) g1 = 1,r(q1,q)) : 0 <ra 2 (20)
=1 Fy = (Ai5,0), o(root) =1,0(x) =1

left L
ht

Ay
le: ¢ —1,r(q,qr) :0>ral If+ g —1,r(qL,q1)
2¢: ¢ = 1,r(¢),q¢)) 0>ral,0<pa?2
3e: ¢y = Lr(qr,q)) 0 <ra?2
de: ¢ —1,r(q],q1) :0>ral

Se : qi — 17 I'(QJ_, QJ_)
c) g1 —1,r(q1,q1) : 0 >za 1 (3) d) ¢ = 1,r(qL,q1) (4b)
Figure 5.6.: The results of unwinding the root state of A, from Figure
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Fg = <.Alg -A297 {CI1 <ra QQ}>
o(root) = 1,0(x) =2

lg: @1 —>1,r(¢1,¢5) :0>ral,0<ra?
2g: q; —1,1(q},q))  :0>ral,0 <ypa 2
3g: ¢4 —1,r(qL,q¢)) :0<a?2

4g: ¢4 = 1,r(q},q1) 0>l

S5g: ¢ —1,r(qL,q1)

69: g5 — 2()

69: g2 —1,7(q2,q2) :0>ra1,0<pa2
79: @ —1,r(qL,q2) 0 <ra?2

8g: ¢ —1,r(q2,qL) :0>ral
99 g2 —1,r(qL,q1)

Figure 5.7.: The FA obtained from F, (Figure ) by splitting A;. at second position

called F,, Fy, Fe, and Fy respectively. From the obtained TA Ai., Aiq, Aie, and
A1y, we subsequently remove all transitions leaving from q1 other than t, resulting
in the four FAs in Figure[5.0

2. The next step is to remove configurations where the root transition of the TA
pointed by x has q| at the the second position of the tuple of children states since
they do mot pass the test x=>right # NULL (they will be processed in the else
branch though). Due to this, the abstract configurations with the FAs F, and Fy
are removed.

Second, the update statement x = x->right is executed on the abstract configurations
shown in Figure [5.6a and Figure [5.6p. Here, we show the steps only for the abstract
configuration from Figure [5.0a, the other one could be computed in a similar manner.
The resulting abstract configuration is shown in Figure[5.7.

1. The first step is to compute the new FA resulting from splitting the root transition
lc of the TA Ai. in the FA F, in Figure[5.6a at the second position, yielding the
FA F,. First, we create the TA Asg from Ai. by copying it, renaming qj to qa,
and making the state g2 the root state (note that g1 becomes top-down unreachable
in Azg, and so we discard it). Then, we copy Ai. to Aig and change the root
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transition lc of Aig by replacing the state qi at the second position of its tuple of
children states (corresponding to the selector right) by ¢5, and add (1) the leaf
transition gz — 2() and (2) the global constraint ¢1 <ra go.

2. The second step is to update the valuation o of both abstract configurations to
o = o{x — 2} meaning that x will point to roots of BSTs accepted by Aa, whereas
o(root) is kept unchanged. O

5.2.3. Normalisation

Normalisation transforms an FA F = (A; ---A,, ¢) into a canonicity respecting FA in
three major steps:

1. First, we transform F into a form in which roots of trees of accepted forests cor-
respond to cut-points in a uniform way. In particular, for all 1 < i < n and all
accepted forests t; ---t,, one of the following holds: (a) If the root of ¢; is the
j-th cut-point in the canonical ordering of an accepted forest, then it is the j-th
cut-point in the canonical ordering of all accepted forests. (b) Otherwise the root
of t; is not a cut-point of any of the accepted forests.

2. Then we merge TAs so that the roots of trees of accepted forests are cut-points
only, which is described in detail below.

3. Finally, we reorder the TAs according to the canonical ordering of cut-points (which
are roots of the accepted trees).

Our procedure is an augmentation of that in [HHR12] used to normalise FAs with-
out data constraints. The difference, which we describe below, is an update of data
constraints while performing Step 2.

In order to minimise a possible loss of information encoded by data constraints, Step 2
is preceded by saturation (Section. Then, for all 1 <4 < n such that roots of trees
accepted by A; = (Qa, %, A4, {ga}) are not cut-points of the graphs in L(F') and such
that there is a TA B = (Qp, X, Ag, {¢s}) that contains a root reference to 4;, Step 2
performs the following. The TA A; is removed from F', the data constraints between ¢4
and non-root states of F' are removed from ¢, and A; is connected to B at the places where
B refers to it. In detail, B is replaced by the TA (Q4UQp, X, Aa+5,{q5}) where A4y

is constructed from A4 U Ag by modifying every transition ¢ — a(qi,...,qm) : ¢ € Ag
as follows:
1. we replace by g4 all occurrences of ¢g; among ¢z, .. ., ¢, such that there is a transi-

tion ¢; — () in Ag (note that there will be at most one such occurrence in a single
transition), and

2. for all 1 < k < m such that g, can reach the state ¢; by following top-down
a sequence of the original transitions of Ag, the constraint 0 ~., k is removed
from c unless g ~ra qa € @ or g, = ¢; and q ~ra g4 € .
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Aip

Az,
Fy, = (Aip Aon, {q1 <ra 2}) F; = (A1, 0)
o(root) =1,0(x) = L o(root) =1,0(x) = L
Ain Ay
1h: ¢ —1,r(q1,q3) :0>2al,0<ra2 1i: ¢ —1,v(¢),q2) :0>7al,0<ra?2
2h : q’1 = 1,r(¢l,q}) 0>ral,0=<ra2 2i: ¢ —1,r(¢),q¢)) :0>ral,0~<ra2
3h: ¢y = L,r(qr,q)) 0 =<yra?2 3i: ¢4 = 1,r(qr,q)) :0=<a?2
dh: g = 1,1(q),q1) 0>l di: gy = Lr(qh,q1) 0>l
i ¢h = 1,r(qr,q1) it gy —1,r(q1,q1)
69: %%2() 67 : q2 — 1, I‘(Q%Qz) 10 >ra 170 <ra 2
A Ti: g —1,r(q1,q2) 0 <pa?2
2h 8i: q2—1,r(q2q1) :0>zal
971 g2 — 1,r(qL,q1)

6h: g —1,r(g2,q2) :0>ral,0<ra2
Th: @ —1,r(q,q) :0<ra?2
8h: g2 —1,1(g2,q1) :0>ral

(

9h : @ — L q1,91)
b) The abstract configuration from (a)

a) An abstract configuration after normalisation

Figure 5.8.: An example of running normalisation on the abstract configuration obtained
from the program in Figure after executing line 22
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Example 5.5. In this example, we show normalisation of the FA in a possible abstract
configuration after the execution of line 22 in the program in Figure [5.1 The abstract
configuration can be seen in Figure[5.8a. Because the roots of the trees accepted by the
TA Agyp do not correspond to the cut-points of the graphs in L(F},), we join Ayp, and Asp,
in the following way. First, the states and transitions of Asp are copied to Ay and the
root state of Agy, substitutes the reference 2 in the transition 1h of Ayp. Afterwards, the
TA Ay, is removed together with the global data constraint qi <ra qo from the FA. The
constraint 0 <y, 2 is not removed from the root transition 1h because q1 <ra g2 was in
the set of global data constraints of Fj, before normalisation and, therefore, 0 <r5 2 will
still hold. The resulting FA F; is shown in Figure[5.8p. O

5.2.4. Checking Language Inclusion

In this section, we describe a reduction of checking language inclusion of FAs with data
constraints to checking language inclusion of FAs without data constraints, which can be
then done using the techniques of [HHR™12]. We note that “ordinary FAs” correspond
to FAs with no global and no local data constraints, which were discussed in Chapter
The reduction encodes an FA with data constraints as an FA without data constraints
such that its language, when decoded in a particular way, is the same as the language
of the original automaton.

An encoding of an FA F = (A; --- A, , 7, ) with data constraints is an ordinary FA
F¥ = (A, .- A, m 0) where the data constraints are written into symbols of transitions.
That is, each transition ¢ — (ai,...,am)(q1,---,qm) : ¢ of A; is in A} replaced by the
transition ¢ — ((a1,41,9) - (@mslm, 9))(q1, ..., qm) : O where for 1 < j < m, ¢; is
the subset of ¢ containing the local constraints involving j and g encodes the global
constraints involving ¢ as follows: Let r be the root state of some Ag, for 1 < k < n,
that does not appear within the tuple of children states of any transition. Then for a
global constraint q ~y, r or r ~y, q, g contains 0 ~y, k or k ~y, 0 respectively. The
language of A} thus consists of trees over the alphabet I'® =T x C x C where C is the
set of constraints of the form j ~., k for 1 < j, k < n.

To show that testing inclusion of encoded FAs is a sound approximation of language
inclusion test of FAs with constraints, we need to establish a correspondence between
languages of the encoded FAs and languages of the original ones. For this, we define
a decoding of a forest t} ---t, from a language of an encoded FA over I' as the set of
forests ¢ ---t, over I' such that t;---¢, arises from ¢ ---¢/ by (1) removing encoded
constraints from the symbols, and (2) choosing data labeling that satisfies the constraints
encoded within the symbols of ¢} - -t/ . Formally, for all 1 < i < n, the set of nodes of
ti, Vi, is assigned to equal the set of nodes of ¢}, V;/, and for all @ € T, u,v € V;,, and
¢, g C C, there is the sub-edge u — ((a, ¢, g),v) in Slz?(t;) iff

(1) u— (a,v) € SE(t;) and

(2) for all 1 = '] <n if 0 ~rx .7 € 67 then u ~ry U (ln tl)a and if 0 ~rx ] € g, then
U ~rg T00t(t;) (symmetrically for j ~yg 0).
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Decoding of forests is naturally lifted to io-forests. The notion of decoding allows us to
summarise the correspondence of languages of FAs and languages of their encodings as
follows.

Lemma 5.1. The set of io-forests accepted by an FA F is equal to the set of decodings
of io-forests accepted by FF.

Proof. Let F = (Ay -+ Ap,m, ) and F¥ = (A} --- A 7 (). We first prove that every
io-forest (t1 - --t,, ) accepted by F is a decoding of some io-forest accepted by F¥. Let
Ply- .-, Ppn be the runs of Aq,..., A, on t1,...,t, respectively. We will construct runs
s pl, of Ay, ..., AL on the io-forest (t)---t],m) of which (¢ ---ty,7) is a decoding
of, such that for every p;, we will construct the run p). Let us first simplify the notation
by denoting p;, ti, p}, t;, A;, and A} by p, t, p', t', A, and A’ respectively. The run p’ is
constructed as follows. The nodes of ¢’ are set to the nodes of t, Vi = V;, and Ay can be
chosen arbitrarily. For every v € V; such that v — (a},v1),...,v — (a*,v;n) € SE(t,v),
there is a transition of A of the form § = q — {(a},...,a)(q1,...,qm) : ¢ such that the
following conditions hold: p(v) = ¢, p(v1) = qi, ..., p(Vm) = ¢m, the local constraints in
c are satisfied by v,v1,...,v, in t, and also global constraints ¢ ~y, 7,7 ~rz g € @ are
satisfied by v and pg(r) for k such that r is a state of Ax. The run p’ then labels the
nodes v, vy, ..., v, using the transition ¢’ = ¢ — @ (q1,...,qm) : @ that is the encoding
of § (@ ={(a1,01,9),--,(am,lm,g)) where g contains encoded the part of ¢ involving
gand ¢ = /{1 U---Uly,). The run p is obviously a run of A’. The described construction

of p/ defines a map f that assigns to every v,vy,...,v,, € Vi, where vy,...,v,, are the
children of v, a pair of transitions (d, ) of A and A" respectively, where § and ¢’ are the
transitions used within p and p’ respectively to label the nodes v, vy, ..., vp,.

First, let us argue that ¢1 - - - t,, is indeed a decoding of ¢ - - - ¢/,. It is trivially satisfied
for all 1 < ¢ < n that V;, = Vp and that every node has the same children in both
forests. In order to argue that data values in ty - - - t,, satisfy the constraints encoded in
t) -t as required by the definition of decoding, we let v € V;, be a node with children
V1,..., Uy such that f(v,v1,...,0,) = (6,8") where § = q — (a1,...,am)(q1,---,qm) : €
and 0’ = q¢ — a(q1,...,qm) : Owith @ = ((a1,41,9) - - - (@m, €m, g)). Then the constraints
imposed on the data value of v within t; - --%, by ¢ and those imposed by ¢ due to the
use of ¢ are the same as the constraints enforced on v due to @ when ¢t} - -, is decoded
into t1---t,. In detail, ¢ contains a local constraint 0 ~ k iff ¢; contains 0 ~ k (by
the definition of encoding). This means that in the run of A on t, it is required that
v ~ v, which is the same constraint as required by the decoding function. Further,
there is a global constraint of the form ¢ ~ r € ¢ such that r is the root state of Ay (not
appearing within any children tuple of its transitions) iff 0 ~ k € g (and analogically for
the symmetrical cases). In the run of A, ¢ ~ r enforces that v ~ u where u is the root
of t;. Notice that v cannot be any other node than the root since r does not appear
within the children tuple of any transition of Aj. The constraint v ~ u is precisely what
is enforced due to 0 ~ k € g when decoding ¢} - - - t],.

Second, we prove that every decoding t;---t, of an io-forest t;---t,, € Lp(FF) is
accepted by F. We will do that by showing that every n-tuple of runs pf,...,p), of

Y.y Al on ty,. .., t, respectively also encodes runs of Aj,..., A, on ti,...,t, re-
spectively.
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Recall first that by the definition of a decoding, for each 1 < i < n, the trees t; and ¢
have the same sets of nodes and every node has the same tuple of children. To simplify
the notation, let ¢, p',t', A, and A" be denoted as t;, pl, t}, A;, and A} respectively. Let
v € Vy and let v — (a},v1),...,v = (&, vy) € SE(t',v) where for all 1 < j < m,
a{, = (aj,4;,9). By the definition of a decoding, v satisfies all constraints encoded within
a = {(a},...,a). Since t' is accepted by A’, there is a transition of A’ of the form §" =
q— a(q1,---,qm) : Osuch that p'(v) = q, p'(v1) = q1, ..., p'(Vm) = @m. By the definition
of encoding, ¢ was created from a transition § = ¢ — (a1,...,am)(q1,---,qm) : cof A
where ¢4 U--- U/, = c and g encodes all global constraints involving g and a root state
r that does not appear within a children tuple of any transition. These constraints are
precisely those encoded within @ and hence required to hold for v in 1 - - - t,, by decoding.
The run p’ is thus indeed a run of A since for every v and its children vy, ..., v,,, there
is a transition d which can be used according to the definition of a run. O

A direct consequence of Lemma is that if L(FY) C L(FE), then L(F4) C L(Fp).
We can thus use the language inclusion checking procedure of [HHR™12] for ordinary
FAs to safely approximate language inclusion of FAs with data constraints.

This language inclusion test is not complete, the above implication does not hold in the
opposite direction. There are two reasons for this. First, encoding translates a constraint
of Fp that is strictly weaker than a constraint of F4 into two different and unrelated
labels. This may result in the situation that even though L(F4) C L(Fp), language
inclusion of encodings of FAs does not hold due to the reason that the trees accepted are
labelled by different symbols. For instance, let Fi4 = (A, 7, 0) where A4; contains only
two transitions 64 = ¢ — a(qq) : {0 <y 1} and 64 = ¢ — 1() : 0, and Fp = (By, ,0)
where B; also contains only two transitions 05 = r — a(gq) : 0 and 6% = ¢ — 1() : 0. It
holds that L(F4) C L(Fp) (indeed, L(F4) = () due to the strict inequality on the root),
but L(F¥) is incomparable with L(FL). The reason is that §4 and dp are encoded as
transitions the symbols of which differ due to different data constraints. The fact that
the constraint () is weaker than the constraint of 0 <, 1 plays no role. The second
source of incompleteness of the inclusion test is that decodings of some forests accepted
by F f and F g may be empty due to inconsistent data constraints. If the set of such
inconsistent forests of F'¥ is not included in that of FZ, then L(F¥) cannot be included
in L(FE), but the inclusion L(F4) C L(Fp) can still hold since the forests with empty
decodings do not contribute to L(F4) and L(Fp) (in the sense of Lemma [5.1).

We do not attempt to resolve the problem of inconsistent data constraints since it
does not seem to occur in practice, as witnessed by our experiments. On the other
hand, the issue of incompatible encodings of related data constraints appears to be
of a practical consequence. We address it with a quite simple transformation of F' BE :
We pump-up the TAs of F g by variants of their transitions which encode stronger data
constraints than originals and match the data constraints on transitions of F' f . Since
we are adding transitions with stronger constraints than the existing ones, this does not
change the language of F'g. For instance, in our previous example, we add the transition
r — a(gq) : {0 <zr 1} to By. This transition, when encoded, can then correspond to the
encoded version of the transition ¢ — a(gy) : {0 <yr 1} of A; and the language inclusion
of the encodings will hold.
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Formally, we call a sequence @ = ((a1,1,9), "  (am, lm,g)) € (TF)™ stronger than
a sequence § = ((a1,01,9"), -, (am,2,,9")) iff Ag = A¢ and for all 1 < i < m,
Al = A/, Intuitively, o encodes the same sequence of symbols (ai,...,an) as E
and stronger local and global data constraints than B We modify Fg in such a way
that for each transition r — @(r1,...,7,) of F5 and each transition of F'¥ of the form
q— E(ql, ..., qm) where E is stronger than o, we add the transition g — E(ql, ey m)-
The modified FA, denoted by F' };ﬁ, accepts the same or more forests than F g (since its
TAs have more transitions), but the sets of decodings of the accepted forests are the same
(since the added transitions encode stronger constraints than the existing transitions).
The FA Fg+ can thus be used within language inclusion checking in the place of F' g.
This technique prevents the inclusion check to fail because of incompatible encodings of
data constraints. Its soundness is summarised by the following lemma.

Lemma 5.2. Given two FAs Fa and Fg, L(FY) C L(FE") = L(Fa) C L(Fp).

Proof sketch. Since the transformation from FE to F, g+ adds only versions of existing
transitions encoding stronger constraints, the sets of decodings of forest of F§+ is the

same as the set of decodings of forests of F'L. The statement then follows immediately
from Lemma G511 O

We note that the same construction is used when checking language inclusion between
sets of FAs with data constraints in a combination with the construction of [HHR™12]
for checking inclusion of sets of ordinary FAs.

5.3. Boxes

In this chapter, we have so far considered only “flat” FAs, i.e. FAs without boxes. The
extension of FAs by data constraints must, however, also be reflected within treatment of
those. Particularly, in order not to lose information stored within data constraints, fold-
ing and unfolding require calls of the saturation procedure. When folding, saturation is
used to transform global constraints into local ones. Namely, global constraints between
the root state of the TA that is to become the input port of a box and the state of the TA
that is to become an output port of the box is transformed into a local constraint of the
newly introduced transition that uses the box as a label. When unfolding, saturation is
used to transform local constraints into global ones. Namely, local constraints between
the parent state of the transition with the unfolded box and a child state attached to
the unfolded box is transformed to a global constraint between the root states of the
TAs within the box that correspond to its input and output ports.

Example 5.6. In this ezample we show how to unfold and fold bozxes on a sample abstract
configuration of a program manipulating a 2-level skip list. A skip list is a linked list
sorted by keys. Each node is assigned a height, either 1 or 2, and one successor for every
level. For example, a node of level 2 has two next pointers, here called ny and ny, where
ny points to the next node of level 1 and ny points to the next node of level 2. Figure
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Fsk12 - (Al AQa (17 2)’ @)

la: ry—mny,n9(r2,¢3) 0 <rpal
2a: 71— ni,05(q5,93)

3a: ro—mng,ny(re,q1) 0 <pl
da: ro = ny,n5(¢5,q1) 0=l
5a: ¢z — 2()

6a: s1—¢()

a) The 2-level skip list box skl

F= (Bl 827 (1)7 90)
Y = {tl <ra u17t2 <ra ul}
o(head) = 1,0(tail) =2

Sklg m Sklg —
B @ ~ra \2) Zra 2 B
1b: t1 — skly(ta) 10 <l
2b: to — skla(gg) 10 <pa 1l
B mL 2 SKl2\q3 ra
? 3b: gz — 2()

Bo
4b: up — ny,n(q1,q1)

b) A heap containing a skip list with two segments

F'=(BY By B3, (1), ¢)
50/ = {tl <ra ulatQ <ra u17t1 =ra t27
r2 <ra U1,r2 <ra t2}
o(head) =1,0(tail) =2
By
le: ti = ny,m0(r2,03) 10 <ra 1,0 <pa 2
2¢: t1 = 1n1,05(¢5,q3) 10 <ra 1,0 <1n 2
3c: ryg = ny,np(re,q1): 0 <pa 1
4c: ro —>B1,n2(q§, q1):0 < 1
5¢: gz — 3()

"
By

B! 1"
2 [3’2

6c: u; — n1,n5(q1,q1)

By
Tc: Q — Sklg(%) :0 <ra 1
8c: gz — 2()

1/
Bs

¢) Unfolding of the first occurrence of the skl, box in (b)

Figure 5.9.: An example of unfolding of a box representing a 2-level skip list segment.
We omitted all <, constraints which are subsumed by <., constraints.
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shows an example configuration of a 2-level skip list with integer keys (the nodes head
and tail with the keys —oo and +oo respectively are used as sentinels).

We can see from Figure that each internal node of level 2 is a cut-point. In order
to be able to represent a skip list of any length, it is necessary to introduce a box that
effectively hides these cut-points. We use, in particular, the box skly from Figure[5.9a,
which represents all skip list segments between a pair of nodes of level 2. Figure [5.9b
shows an abstract configuration of a skip list with 3 nodes of level 2: the head node, the
tatl node, and one regular node in between. The number of level 1 nodes (hidden inside
the two skl2 boxes) is arbitrary. Note that the single output port of skl2 contains an
automaton accepting e —this is because there are no transitions leading from the output
port of the boz.

Figure [5.9c shows an unfolding of the first occurrence of the skly box in the FA.
Intuitively, the unfolding proceeded in the following steps:

1. As a preparatory step for replacing the use of skls on the transition 1b by the
contents of the box represented by skly, the TA By was split at the state to to
isolate the transition 1b. This produced two auziliary TAs B} and B consisting
of the transitions {[1b1]t1 — skla(qs) : {0 <,q 1}, [1b2] g3 — 3() : 0} for B and
{[2b1] t2 — skla(gg) : {0 <rq 1},[202] g3 — 2() : 0} for BY, with a newly introduced
cut-point 3.

2. Subsequently, the TA A1 corresponding to the input port of skly was inserted in
between t1 and gg instead of the transition 1by over skl,, yielding the TA BY. (No-
tice that if the transition 1by led—wvia other symbols than sklo—to more targets
than just gz, the part of 1by leading from t1 to such targets would be preserved
and merged with the root transitions of Ay.) On the other hand, the TA As cor-
responding to the single output port of skls was merged with the transition 2by
leading from ty. However, since Ay accepts €, the resulting transition Tc of Bj
remains the same as the original transition 2b. (The TA By was copied into the
TA Bl without any modification.)

3. The local data constraint from the transition 1b : t; — skla(ta) : 0 <,q 1 was
transformed into the global data constraint ty <, ta during the unfolding.

The subsequent saturation then also generated the local constraints 0 <., 1 and 0 <,.q 2
on the transitions lc and 2c from t1 to gz, and the global constraints ro <,q t2 and
r9 <rq U1 (these changes are emphasised by a bold typeface in Figure c).

The inverse operation of folding would transform the FA from Figure[5.9c, while using
the skly box, into the FA in Figure[5.9b. See Chapters|[3 and[] for more details on box
folding and unfolding. O

5.4. Experimental Results

We have implemented the above presented techniques as an extension of the Forester
tool and tested their generality and efficiency on a number of case studies. We consid-
ered programs dealing with SLLs, DLLs, BSTs, and skip lists. We verified the original
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Table 5.4.: Results of the experiments

’ Example H time [s] H Example H time [s] ‘
SLL insert 0.06 || SL9 insert 9.65
SLL delete 0.08 || SLo delete 10.14
SLL reverse 0.07 || SL3 insert 56.99
SLL bubblesort 0.13 || SL3 delete 57.35
SLL insertsort 0.10
DLL insert 0.14 || BST insert 6.87
DLL delete 0.38 || BST delete 15.00
DLL reverse 0.16 || BST left rotate 7.35
DLL bubblesort 0.39 || BST right rotate 6.25
DLL insertsort 0.43

implementation of skip lists that uses the data ordering relation to detect the end of the
operated window (as opposed to the implementation handled in the work presented in
Chapter 4] which was modified to remove the dependency of the algorithm on sorted-
ness). Although the examples are of a smaller size, they are very challenging as they
include complex manipulation with dynamic memory that may depend on data values
stored in memory cells.

Table gives running times in seconds (the average of 10 executions) of the exten-
sion of Forester on our case studies. The names of the examples in the table contain the
name of the data structure manipulated in the program, which is “SLL” for singly linked
lists, “DLL” for doubly linked lists, and “BST” for binary search trees. “SL” stands for
skip lists where the subscript denotes their level (the total number of next pointers in
each cell). All experiments start with a random creation of an instance of the specified
structure and end with its disposal. The indicated procedure is performed in between.
The “insert” procedure inserts a node into an ordered instance of the structure, at the
position given by the data value of the node, “delete” removes the first node with a par-
ticular data value, and “reverse” reverses the structure. “Bubblesort” and “insertsort”
perform the given sorting algorithm on an unordered instance of the list. “Left rotate”
and “right rotate” rotate the BST in the specified direction. Before the disposal of the
data structure, we further check that it remained ordered after execution of the opera-
tion. The experiments were run on a machine with the Intel Core i5-480M @2.67 GHz
CPU and 5 GiB of RAM.

Compared with works [LRS05, WKZ"07, BBH" 11, QHL™13|, which we consider the
closest to our approach, the running times show that our approach is significantly faster.
We, however, note that a precise comparison is not easy even with the mentioned works
since as discussed in the related work paragraph, they can handle more complex prop-
erties on data, but on the other hand, they are less automated or handle less general
classes of pointer structures.
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5.4.1. Discussion

In the above, we described evaluation of our approach on programs manipulating skip
lists of two and three levels. A natural question would be why we limit ourselves to two
and three levels and not consider skip lists of even higher or, which would be the best
case, of an arbitrary level.

Based on our experience, already going from 2-level to 3-level skip lists makes a huge
difference in difficulty, due to the occurrence of a combinatorial explosion in the number
of shapes considered by our approach. In order to make handling of a 3-level skip list
feasible, we had to refine our finite height abstraction from a quite coarse one, which
was sufficient for the other considered data structures, to take into account the number
of unique paths from a state to a root reference (this step is described in more detail in
Section for the case without data relations). For the case of 4-level skip lists, this
ad-hoc abstraction refinement was not sufficient and our experiments did not finish in
reasonable time.

Moreover, in order to support skip lists with an arbitrary number of next selectors,
these would need to be stored in a dynamic list, therefore making the data structure yet
more complex. Even more, the support of a data structure of an arbitrary level in the
current technique would need to use recursive nesting of boxes, which is not supported.
Allowing this would demand to rewrite the box learning algorithm to be able to find
such recursive boxes, and the operations for manipulating those, including the language
inclusion algorithm. These modifications are quite challenging and an interesting future
research direction.

5.5. Conclusion

In this chapter, we presented an extension of FA-based analysis of heap manipulating
programs with a support for reasoning about data stored in dynamic memory. The result-
ing method allows verification of pointer programs where the needed inductive invariants
combine complex shape properties with constraints over stored data, such as sortedness.
The method is fully automatic, quite general, and its efficiency is comparable with other
state-of-the-art analyses even though they handle less general classes of programs, are
less automated, or both. We presented experimental results from verifying programs
dealing with variants of (ordered) lists and trees. To the best of our knowledge, our
method is the first one to cope fully automatically with a full C implementation of
a 3-level skip list.
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Part I1.

Using Automata for Deciding
Logics
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6. Compositional Testing of Entailment
for a Fragment of Separation Logic

Automatic verification of programs manipulating dynamic linked data structures is
highly challenging since it requires one to reason about complex program configura-
tions having the form of graphs of an unbounded size. For that, a highly expressive
formalism is needed. Moreover, in order to scale to large programs, the use of such a for-
malism within program analysis should be highly efficient. In this context, separation
logic (SL) [IO01, Rey02], a formalism complementary to forest automata presented in
Chapters has emerged as one of the most promising formalisms, offering both high
expressiveness and scalability. The latter is due to its support of compositional reasoning
based on the separating conjunction * and the frame rule, which states that if a Hoare
triple {¢} P{¢} holds and P does not alter free variables in o, then {¢*o} P{i*c} holds
too. Therefore, when reasoning about P, one has to manipulate only specifications for
the heap region altered by P.

Usually, SL is used together with higher-order inductive definitions that describe the
data structures manipulated by the program. If we consider general inductive definitions,
then SL is undecidable [CYOO01]. Various decidable fragments of SL have been introduced
in the literature [BCO05, IRS13, PWZ13, BFGP14] by restricting the syntax of the
inductive definitions and the Boolean structure of the formulae.

In the work presented in this chapter, we focus on a fragment of SL with inductive
definitions that allows one to specify program configurations (heaps) containing finite
nestings of various kinds of linked lists (acyclic or cyclic, singly or doubly linked, skip
lists, etc.), which are common in practice. This fragment contains formulae of the form
3X : TTAY where X is a set of variables, II is a conjunction of (dis)equalities, and
> is a set of spatial atoms connected by the separating conjunction. Spatial atoms
can be points-to atoms, which describe values of pointer fields of a given heap location,
or inductively defined predicates, which describe data structures of an unbounded size.
We propose a novel (semi-)decision procedure for checking the validity of entailments
of the form ¢ = ¢ where ¢ may contain existential quantifiers and v is a quantifier-
free formula. Such a decision procedure can be used in Hoare-style reasoning to check
inductive invariants but also in program analysis frameworks to decide termination of
fixpoint computations. As usual, checking entailments of the form \/, ¢; = \/j 1 can
be soundly reduced to checking that for each ¢ there exists j such that ¢; = ;.

The key insight of our decision procedure is an idea to use the semantics of the
separating conjunction in order to reduce the problem of checking ¢ = % to the problem
of checking a set of simpler entailments where the right-hand side is an inductively-
defined predicate P(...). This reduction shows that the compositionality principle holds
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not only for deciding the validity of Hoare triples but also for deciding the validity of
entailments between two formulae. To infer (dis)equalities implied by spatial atoms, our
reduction to checking simpler entailments is based on Boolean unsatisfiability checking,
which is in co-NP but can usually be checked efficiently by current SAT solvers.

Further, to check entailments ¢ = P(...) resulting from the above reduction, we
define a decision procedure based on the membership problem for tree automata (TAs).
In particular, we reduce the entailment to testing membership of a tree derived from ¢ in
the language of a TA A[P] derived from P(...). The tree encoding of ¢ preserves some
edges of the graph, called backbone edges, while others are re-directed to new nodes,
related to the original destination by special symbols. Roughly, such a symbol may
be a variable represented by the original destination, or it may show how to reach the
original destination using backbone edges only.

Our procedure is complete for formulae speaking about non-nested singly as well as
doubly linked lists. Moreover, it runs in polynomial time modulo an oracle for deciding
validity of a Boolean formula. The procedure is incomplete for nested list structures due
to not considering all possible ways in which targets of inner pointer fields of nested list
predicates can be aliased. The construction can be easily extended to become complete
even in such cases, but then it becomes exponential. However, even in this case, it
is exponential in the size of the inductive predicates used, and not in the size of the
formulae, which remains acceptable in practice.

We implemented our decision procedure and tested it successfully on verification con-
ditions obtained from programs using singly and doubly linked nested lists as well as
skip lists. The results show that our procedure does not only have a theoretically fa-
vorable complexity (for the given context), but it also behaves nicely in practice, at
the same time offering the additional benefit of compositionality that can be exploited
within larger verification frameworks caching the simpler entailment queries.

Related Work. Several decision procedures for fragments of SL have been introduced
in the literature [BCO05, [CYOOL, [CHOT11, [ESS13, TRS13, TRV14, PR1l, PWZ13,
BGP12]. Some of these works [BCOO05, [CYOO01, ICHO™ 11, [PR11] consider a fragment
of SL that uses only a single predicate describing singly linked lists, which is a much
more restricted setting than what is considered in this work. In particular, Cook et
al |[CHO™11] prove that the satisfiability /entailment problem can be solved in polyno-
mial time. Piskac et al [PWZ13] show that the Boolean closure of this fragment can
be translated to a decidable fragment of first-order logic, and in this way they prove
that the satisfiability /entailment problem can be decided in NP/co-NP. Furthermore,
they consider the problem of combining SL formulae with constraints on data using
the Nelson-Oppen theory combination framework. Adding constraints on data to SL
formulae is considered also in Qiu et al [QGSM13].

A fragment of SL covering overlaid nested lists was considered by Enea et al [ESS13].
Compared with it, we currently do not consider overlaid lists, but we have enlarged the
set of inductively-defined predicates to allow nesting of cyclic lists and doubly linked lists
(DLLs). We also provide a novel and more efficient TA-based procedure for checking
simple entailments.
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Brotherston et al [BGPI12] define a generic automated theorem prover relying on
the notion of cyclic proofs and instantiate it to prove entailments in a fragment of SL
with inductive definitions and disjunctions more general than what we consider here.
However, they do not provide a fragment for which completeness is guaranteed. losif et
al [IRS13| also introduce a decidable fragment of SL that can describe more complex
data structures than those considered by the work presetned in this chapter, including
e.g. trees with parent pointers or trees with linked leaves. However, [IRS13] reduces
the entailment problem to MSO on graphs with a bounded tree width, resulting in
a multiply-exponential complexity.

The recent work [IRV14] considers a more restricted fragment than [IRS13] (incom-
parable with ours). The work proposes a more practical, purely TA-based decision
procedure, which reduces the entailment problem to language inclusion on TAs, estab-
lishing EXPTIME-completeness of the considered fragment. Our decision procedure
deals with the Boolean structure of SL formulae using SAT solvers, thus reducing the
entailment problem to the problem of entailment between a formula and an atom. Such
simpler entailments are then checked using a polynomial semi-decision procedure based
on the membership problem for TAs. The approach of [IRV14] can deal with various
forms of trees and with entailment of structures with skeletons based on different se-
lectors (e.g. DLLs viewed from the beginning and DLLs viewed from the end). On the
other hand, it currently cannot deal with structures of zero length and with some forms
of structure concatenation (such as concatenation of two DLL segments), which we can
handle.

Contribution. Overall, the contribution of the work presented in this chapter is
a novel (semi-)decision procedure for a rich class of verification conditions with singly
as well as doubly linked lists, nested lists, and skip lists. As discussed in more detail
in the previous paragraph, existing works that can efficiently deal with fragments of SL
capable of expressing verification conditions for programs handling complex dynamic
data structures are still rare. Indeed, we are not aware of any techniques that could
decide the class of verification conditions considered in this work at the same level of
efficiency as our procedure. In particular, compared with other approaches using TAs
[IRSl?;, IRV14], our procedure is compositional as it uses TAs recognising models of
predicates, not models of entire formulae. Moreover, our TAs recognise in fact formulae
that entail a given predicate, reducing SL entailment to the membership problem for
TAs, not the more expensive inclusion problem as in other works.

6.1. Separation Logic Fragment

Let Vars be a set of program wvariables, ranged over using x, y, z, and LVars a set of
logical variables, disjoint from Vars, ranged over using X, Y, Z. We assume that Vars
contains a variable null. Also, let IF be a set of fields.
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We consider the fragment of separation logic whose syntax is given below:

z,y € Vars program variables feF fields
XY € LVars logical variables PeP predicates
B e (Vars U LVars)* vectors of variables EF =z |X

pi=(f,E)|pp

Mu=FE=F|E#F|IIANI pure formulae
Yu=emp| E~ {p}| P(E,F, E) | E* X spatial formulae
0= IXIAY formulae

W.l.o.g., we assume that existentially quantified logical variables have unique names.
The set of program variables used in a formula ¢ is denoted by pv(y¢). By go(ﬁ ) (resp.
p(E)), we denote a formula (resp. a set of field-variable pairs) whose set of free variables
is E. Given a formula o, pure(yp) denotes its pure part II. We allow set operations to
be applied on vectors. Moreover, E # B is a shorthand for A B.cB E # B;.

The points-to atom E +— {(f;, F;) }iez specifies that the heap contains a location F
whose f; field points to F;, for all . W.l.o.g., we assume that each field f; appears at
most once in a set of pairs p. The fragment is parameterised by a set P of inductively
defined predicates; intuitively, P(E, F, E) describes a possibly empty nested list segment
delimited by its arguments, i.e. all the locations it represents are reachable from E and
allocated on the heap except the locations in {F'} U B.

Inductively defined predicates. We consider predicates defined as

P(E,F,B)2(E = F A emp) V

(E #{F}U B A IX1 Z(E,th,g) * P(Xe1, I, E)) o

where Y is an existentially-quantified formula, called the matriz of P, of the form:

S(E, X41,B) 237 : E— {p({Xe1} UV)} x5 where V C Z U B and
Y = Q(Z,UY) | O QIZ,Y]| S « ¥ (6.2)
for Z€ Z,U€ ZUBU{E,Xu}, Y C BU{E, X1}, and
O QZ, Y237 :x0(2,2.Y)xQ(Z,2,Y) where ¥ is the matrix of Q.

The formula ¥ specifies the values of the fields defined in F (using the atom E +—
{p({Xe1}U 17)}, where the fields in p are constants in IF) and the (possibly cyclic) nested
list segments starting at the locations Z referenced by fields of E. We assume that X
contains a single points-to atom in order to simplify the presentation. Notice that the
matrix of a predicate P does not contain applications of P. The macro (' QlZ, }_;] is
used to represent a non-empty cyclic (nested) list segment on Z whose shape is described
by the predicate Q.
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We consider several restrictions on 3 which are defined using its Gaifman graph Gf[%].
The set of vertices of Gf[X] is given by the set of free and existentially quantified variables
in ¥, ie {E, X1 }UBUZ. The edges in Gf[X] represent spatial atoms: for every (f, X)
in p, Gf[X] contains an edge from F to X labelled by f; for every predicate Q(Z, U, ?)7
Gf[Y] contains an edge from Z to U labelled by Q; and for every macro Ot Q[Z, 1_;],
Gf[X] contains a self-loop on Z labelled by Q.

The first restriction is that Gf[X] contains no cycles other than self-loops built solely
of edges labelled by predicates. This ensures that the predicate is precise, i.e. for any
heap, there exists at most one sub-heap on which the predicate holds. Precise assertions
are very important for concurrent separation logic [GBC11].

The second restriction requires that all the maximal paths of Gf[X] start in E and
end either in a self-loop or in a node from B U {E, Xt1}. This restriction ensures that (a)
all the heap locations in the interpretation of a predicate are reachable from the head of
the list and that (b) only the locations represented by variables in F'U B are dangling.
Moreover, for simplicity, we require that every vertex of Gf[X] has at most one outgoing
edge labelled by a predicate.

For example, the predicates given in Figure describe singly linked lists, lists of
acyclic lists, lists of cyclic lists, and skip lists with three levels.

We define the relation <p on P by P, <p P» iff P» appears in the matrix of Pj.
The reflexive and transitive closure of <p is denoted by <p. For example, if P =
{skli,skly, skls}, then sklz <p skly and sklz <p sklj.

Given a predicate P of the matrix ¥ as in Equation let F,(P) denote the set of
fields f occurring in a pair (f, X) of p. For example, F,,(n1l) = {s,h} and F,,(skl3) =
F.,(sk1l1) = {f3, f2, fi}. Also, let F},(P) denote the union of F.,(P’) for all P <} P’
For example, F}, (nl11) = {s, h, f}.

We assume that <y is a partial order, i.e. there are no mutually recursive definitions
in P. Moreover, for simplicity, we assume that for any two predicates P; and P» which
are incomparable w.r.t. <p, it holds that F.,(P;) NF,,(P2) = (). This assumption avoids
predicates named differently but having exactly the same set of models.

Semantics. Let Locs be a set of locations. A heap is a pair (S, H) where S : Vars U
LVars — Locs maps variables to locations and H : Locs x F — Locs is a partial function
that defines values of fields for some of the locations in Locs. The domain of H is
denoted by dom(H) and the set of locations in the domain of H is denoted by ldom(H).
We say that a location ¢ (resp. a variable E) is allocated in the heap (S, H) or that
(S, H) allocates ¢ (resp. E) iff ¢ (resp. S(E)) belongs to ldom(H).

The set of heaps satisfying a formula ¢ is defined by the relation (S, H) = ¢ given in
Figure Note that a heap satisfying a predicate P(E, F, E) should not allocate any
variable in F'U B since these variables are considered not to be a part of its domain.
A heap satisfying this property is called well-formed w.r.t. the atom P(E, F, E) The set
of models of a formula ¢ is denoted by [¢]. Given two formulae ¢; and 2, we say
that ¢ entails @9, denoted by 1 = @9, iff [¢1] C [p2]. By an abuse of notation,
p1 = E = F (resp. ¢1 = E # F) denotes the fact that F and F' are interpreted to the
same location (resp. different locations) in all models of ;.
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singly linked lists:
1s(E,F) £ lemp(E,F)V (E # F A3Xg : E = {(f, Xa1)} x 1s(X¢1, F))
lists of acyclic lists:

nll(E,F,B) £ lemp(E,F)V (E # {F,B} N3X1,Z : E— {(s, X1), (h, Z)}
*1s(Z, B) xnl11(X¢1, F, B))

lists of cyclic lists:
nlcl(E,F) £ lemp(E,F)V (E# FA3Xe1,Z : E v {(s, Xu1), (h, Z)}
« O 1s[Z] ¥ n1cl(Xe1, F))
skip lists with three levels:

skl3(E,F) £ lemp(E,F)V (E # F AN3Xq, 21,725

E— {(f37th)7 (f27 ZQ)) (flu Zl)} *
sk11(Z1, Z2) * sklo(Zo, X11) * skl3(Xe1, F))

skly(E,F) = lemp(E,F)V (E # F AN3Xq, 71 -
E = {(f3,null), (f2, X1), (f1, Z1)} =
sk11(Z1, X¢1) * sklp(Xg, F))

skli(E,F) £ lemp(E,F)V (E # F AN3Xy
E — {(f3,null), (fo,null), (f1, X¢1)} * sk1li(Xs1, F))

Figure 6.1.: Examples of inductive definitions (lemp(E, F) £ E = F A emp).

6.2. Compositional Entailment Checking

We define a procedure for reducing the problem of checking the validity of an entail-
ment between two formulae to the problem of checking the validity of an entailment
between a formula and an atom. We assume that the right-hand side of the entailment
is a quantifier-free formula (which usually suffices for checking verification conditions in
practice). The reduction can be extended to the general case, but it becomes incomplete.

6.2.1. Overview of the Reduction Procedure

We consider the problem of deciding validity of entailments ¢; = 9 with 2 quantifier-
free. We assume pv(p2) C pv(p1); otherwise, the entailment is trivially not valid.

The main steps of the reduction are given in Algorithm The reduction starts by
a normalisation step (described in Section , which adds to each of the two formulae
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(S, H)FE=F iff S(E)=S(F)

(S,H) F E#F iff  S(E) # S(F)

(S,H) EoNny iff (S,H) ¢ and (S, H) ¢

(S,H) = emp ifft dom(H) =10

(S,H) = E— {p} iff  dom(H) ={(S(E), fi) | (fi, Ei) € {p}} and

for every pair (fi, E;) € {p}, it holds that
H(S(E), f;) = S(E))
(S,H) E X1 % X9 iff there exist Hi, Hy s.t.
ldom(H) = ldom(H1) W ldom(H3),
(S, Hl) ): El, and (S, HQ) |: 22
(S,H) = P(E,F, E) iff there exists k € N s.t.
(S,H) |= P*(E, F, B) and
ldom(H) N ({S(F)} U{S(B) | Be B}) =0
(S,H) = PY(E,F,B) iff (S,H)EE=FA emp
(S, H) = P**Y(B,F,B) iff (S,H)EE#{F}UBA
X4 : X(E, X1, B) * P*(Xq1, F, B)
(S H)E3X 1o iff 3¢ € Locs st. (S[X «{],H) E ¢

Figure 6.2.: The [= relation (W denotes the disjoint union of sets and S[X < ¢] denotes
the function S’ such that S'(X) = ¢ and S'(Y) = S(Y) for any Y # X)

all (dis-)equalities implied by spatial sub-formulae and removes all atoms P(E, F, E)
representing empty list segments, i.e. those where F = F' occurs in the pure part. The
normalisation of a formula outputs false iff the input formula is unsatisfiable.

In the second step, the procedure tests the entailment between the pure parts of the
normalised formulae. This can be done using any decision procedure for quantifier-free
formulae in the first-order theory with equality.

For the spatial parts, the procedure builds a mapping from spatial atoms of 5 to
sub-formulae of ¢}. Intuitively, the sub-formula ¢! [as] associated to an atom ag of 5,
computed by select, describes the region ( of a heap modelled by ¢7 that should sat-
isfy ag. For predicate atoms ag = Pa(E, F, B) select is called (in the second loop) only
if there exists a model of ¢} where the heap region that should satisfy as is non-empty,
i.e. E = F does not occur in ¢!'. In this case, select does also check that for any model
of o7, the sub-heap corresponding to the atoms in ¢} [az] is well-formed w.r.t. as (see
Section . This is needed since all heaps described by as are well-formed.

Note that in the well-formedness check above, one cannot speak about ¢}[az] alone.
This is because without the rest of ¢!, ¢{'[az] may have models which are not well-formed
w.r.t. ag even if the sub-heap corresponding to ¢ [as] is well-formed for any model of
7. For example, let ¢} = 1s(x,y) * 1s(y, 2) x 2 = {(f, 1)}, aa = 1s(z, 2), and ¢}[az] =
1s(x,y) * 1s(y,2). If we consider only models of ¢, the sub-heaps corresponding to
©]az] are all well-formed w.r.t. ag, i.e. the location bound to z is not allocated in these
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Algorithm 6.1: Compositional entailment checking of ¢1 = 9 (< is any total
order compatible with <})

' < norm(y1); ¢ < norm(ysz); // normalisation

if ¢ = false then return true;

if 5 = false then return false;

if pure(¢}) # pure(¢h) then return false ; // pure parts

// shape parts

foreach points-to atom az in ¢y do // points-to atoms
o az] < select(pl, az);
if p7az] # a2 then return false;

B W N =

for P, + max~(P) downto min.(P) do // predicate atoms
foreach ay = P2(E, F, B) in ¢f s.t. pure(¢}) # E = F do

10 Y ]az] < select(pl, az);
11 if 7]az] # s, a2 then return false;

© 0 N O O

12 return isMarked(o?);

sub-heaps. However, ¢7[as] alone has lasso-shaped models where the location bound to
z is allocated on the path between x and y.

Once @7 [az] is obtained, one needs to check that all sub-heaps modelled by ¢} ]as] are
also models of ag. For points-to atoms a9, this boils down to a syntactic identity (modulo
some renaming given by the equalities in the pure part of ¢!'). For predicate atoms as,
a special entailment operator =g, (defined in Section is used. We cannot use the
usual entailment = since, as we have seen in the example above, ¢'[a2] may have models
which are not sub-heaps of models of ¢}. Thus, ¢][az] =4, a2 holds iff all models of
©]az], which are well-formed w.r.t. ag, are also models of as.

If there exists an atom ag of ¢4 that is not entailed by the associated sub-formula,
then ¢1 = @9 is not valid. By the semantics of the separating conjunction, the sub-
formulae of 7 associated with two different atoms of 5 must not share spatial atoms.
In order to avoid such a scenario, the spatial atoms obtained from each application of
select are marked and cannot be reused in the future. Note that the mapping is built
by enumerating the atoms of ¢4 in a particular order: first, the points-to atoms and
then the inductive predicates, in a decreasing order w.r.t. <p. This is important for the
completeness of the procedure (see Section .

The procedure select is described in Section It returns emp if the construction
of the sub-formula of ¢} associated with the input atom fails (this implies that also the
entailment ¢1 = ¢y is not valid). If all entailments between formulae and atoms are
valid, then ¢1 = @92 holds provided that all spatial atoms of ¢} are marked (tested by
isMarked). In Section we introduce a procedure for checking entailments between
a formula and a spatial atom.
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Initially: ¢; = 9

\\“ Yy _ L
select(v1, skla(y,t))

\\"select(%, nll(z,y,z))

Figure 6.3.: An example of applying compositional entailment checking. Points-to edges
are represented by simple lines, predicate edges by double lines, and dise-
quality edges by dotted lines. For readability, we omit some of the labelling
with existentially-quantified variables and some of the disequality edges in
the normalised graphs.

Graph representations. Some of the sub-procedures mentioned in the previous work
on a graph representation of the input formulae, called SL graphs (which are different
from the Gaifman graphs of Section . Thus, a formula ¢ is represented by a directed
graph G|p] where each node represents a maximal set of variables equal w.r.t. the pure
part of ¢, and each edge represents a disequality F # F or a spatial atom. Every
node n is labelled by the set of variables Var(n) it represents; for every variable E,
Node(FE) denotes the node n such that E € Var(n). Next, (1) a disequality E # F is
represented by an undirected edge from Node(FE) to Node(F'), (2) a spatial atom E —»
{(f1,E1),...,(fn, En)} is represented by n directed edges from Node(FE) to Node(E;)
labelled by f; for each 1 < i < n, and (3) a spatial atom P(FE,F, E) is represented by
a directed edge from Node(E) to Node(F') labelled by P(E) Edges are referred to as
disequality, points-to, or predicate edges, depending on the atom they represent. For
simplicity, we may say that the graph representation of a formula is simply a formula.
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a=E—{p}eX a=P(E,F,B)ex
o [Ey = 1] A ([E1 = Bs) & [Ba = B1]) A
- /\ ( (([El = By A [Ey = E3)) = [Ey =E3}> )

E1,E2,E3
variables in ¢

F.2 N ([E=F]A[E,d)) = —[Fd]

E,F variables in ¢
a #a' atoms in X

Figure 6.4.: Definition of the components of BoolAbs[y] (¢ denotes xor)

Running example. In the following, we use as a running example the entailment
11 = 12 between the following formulae:

1 =3IV, Yo, Y3, Yy, 21, 20, Zs cx £ 2N Zy # 2z Nax v {(s,Z2), (h, Z1)}
Zy — {(s,y), (h,Z3)} *1s(Z1, z) x 1s(Z3, z) x 1s(y, Y1) * (6.3)
sklo(y,Y3) x 1s(Y7,Y2) x Y3 = {(fo, 1), (f1,Ya)} xt — {(s,Y2)} *
Yy = {(f2,null), (f1,1)}

o =y # t Anll(z,y, z) * skla(y,t) xt — {(s,y)} (6.4)

The graph representations of these formulae are drawn in the top part of Figure [6.3]

6.2.2. Normalisation

To infer the implicit (dis-)equalities in a formula, we adapt the Boolean abstraction
proposed in [ESS13] for our logic. Therefore, given a formula ¢, we define an equisat-
isfiable Boolean formula BoolAbs[p] in CNF over a set of Boolean variables containing
the Boolean variable [E = F] for every two variables E and F' occuring in ¢ and the
Boolean variable [E, a] for every variable E and spatial atom a of the form E — {p} or
P(E,F, E) in ¢. The variable [E = F] denotes the equality between E and F', while
[E, a] denotes the fact that the atom a describes a heap where E is allocated.

Given p £ 3X : TIAY, BoolAbs[p] £ F(II) A F(X) A F— A F, where the components of
BoolAbs|p], defined in Figure intuitively mean the following: F'(II) and F'(X) encode
the atoms of ¢, F_ encodes reflexivity, symmetry, and transitivity of equality, and F
encodes the semantics of the separating conjunction.
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For the formula t; in our running example (Equation[6.3), BoolAbs[t;] is a conjunction
of several formulae including;:

1. [y, skla(y, Y3)] @ [y = Y3], which encodes the atom skla(y, Y3),
2. [V3,Y3 = {(fa, 1), (f1,Ya)}] and [t,t — {(s,Y2)}], encoding points-to atoms, of 1)1,

3. ([t = y At = {(s,Y2)}]) = [y, skla(y,Y3)], which encodes the separating
conjunction between ¢ — {(s,Y2)} and skla(y, Ys),

4. ([t = Y] A[t,t = {(s,Y2)}]) = —[¥3,Y3 = {(fo, ), (f1,Ya)}], which encodes the
separating conjunction between t — {(s,Y2)} and Y3 — {(f2,t), (f1, Y1)}

Proposition 6.1. Let ¢ be a formula. Then, BoolAbs[yp| is equisatisfiable with ¢, and
for any variables E and F of ¢, BoolAbs[p] = [E = F] (resp. BoolAbs[¢] = —[E = F])
iff o= E=F (resp. p = E #F).

Example 6.1. [t holds that BoolAbs[y] = —[y = t]. This is a consequence of the
following propositional reasoning. From the encoding of the points-to atoms from[3, the
formula from and modus tollens, we infer =[t = Y3]. F= contains the formula

(It =yl Ay =Ys]) = [t = Y3]. (6.5)

Because —[t = Y3], when we apply modus tollens on the previous formula, we obtain the
formula
—[t =yl v ly = Yal. (6.6)

The xor in |1 is equivalent to the following formula:

([y, sk1a(y, Y3)] V [y = Y3]) A (=ly, skla(y, Y3)] V [y = Y3]). (6.7)
Further, from [t,t — {(s,Y2)}] and the formula from[3, we infer that

[t =y V -y, skla(y, Y3)). (6.8)

Using resolution on the clause in FEquation |6.0| and the first clause of the formula in

Equation [6.7, we obtain
—[t =yl V [y, skla(y, Y3)], (6.9)

and using resolution on the just obtained clause in Equation[6.9 and the clause in Equa-
tion we finally infer —[t = y]. O

If BoolAbs[y] is unsatisfiable, then the output of norm(y) is false. Otherwise, the
output of norm(y) is the formula ¢’ obtained from ¢ by (1) adding all (dis-)equalities
E = F (resp. E # F) such that [ = F] (resp. =[E = F]) is implied by BoolAbs[¢]
and (2) removing all predicates P(F, F, B) such that E = F occurs in the pure part,
creating formulae ¢ and 5. For example, the normalisations of 11 and 5 are given
in the bottom part of Figure Note that the 1s atoms reachable from y are removed
because BoolAbs[¢1] = [y = Yi] and BoolAbs[i);] = [V1 = Y], as justified in the
following example.
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Example 6.2. We show that BoolAbs[y1] = [y = Y1]. We start with the observation
that F, contains the following formula:

([Yé - y] A [Y3aYE’> — {(f27t>7 (f17Y4)}]) = _'[y7ls(y7)/i)]‘ (6‘10)
Because the encoding of the points-to Y3, Ys — {(fa,t), (f1,Ya)}] holds, this implies that
[Y3 = y] = -y, 1s(y, Y1)]. (6.11)

From F(X), we have that [y, skla(y, Y3)] ® [y = Y3], from which we infer (with the help
of F— containing [y = Y3] <= [Y3 =y]|) that

~[Yz =y] = [y, skla(y, Y3)]. (6.12)
Further, F, contains the following formula:
(ly = ] A [y, sk1a(y, ¥3)]) = [y, 1s(y, V1)), (6.13)
from which, together with [y = y| from F— and Equation we infer that
—[Ys =yl = ~ly, 1s(y, 11)]. (6.14)

Resolution on the clauses in Equations and gives us =y, 1s(y, Y1)], and from
the formula y,1s(y,Y1)] @ [y = Yi| contained in F(X) we finally deduce that [y = Y7].
Similar reasoning can be applied to deduce that [Y1 = Ya] is also implied by BoolAbs[p].

O

The following result is important for the completeness of the select procedure.

Proposition 6.2. Let norm(yp) be the result of the normalisation of a formula ¢. For
any two distinct nodes n and n' in the SL graph of norm(y), there cannot exist two
disjoint sets of atoms A and A’ in norm(yp) such that both A and A’ represent paths
between n and n’.

If we assume, for the sake of contradiction, that norm(y) contains two such sets of
atoms, then, by the semantics of the separating conjunction, it needs to holds that one
of the paths is empty, so that ¢ = E = F where E and F label n and n’ respectively.
Therefore, norm(y) does not include all equalities implied by ¢, which contradicts its
definition.

6.2.3. Selection of Spatial Atoms

Points-to atoms. Let ¢ 23X . II; A 21 be a normalised formula. The procedure
select(p1, Eo — {p2}) outputs the sub-formula 3X I AE; — {p1} such that £y = F,
occurs in Il if it exists, or emp otherwise. The procedure select is called only if ¢
is satisfiable and consequently, ¢ cannot contain two different atoms E; — {p;} and
E{ — {p}} such that E; = E] = FEs. Also, if there exists no such points-to atom, then
(1 = 2 is not valid. Indeed, since ¢ does not contain existentially quantified variables,
a points-to atom in @9 could be entailed only by a points-to atom in ;.

In the running example, select(yn,t— {(s,y)}) = a1y =Ya A... At = {(s,Y2)}
(we have omitted some existential variables and pure atoms).
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Predicate atoms. Given an atom ag = P»(FE2, Fa, Eg), select(pi,az) builds a sub-
graph G’ of G[¢1], and then it checks whether the sub-heaps described by G’ are well-
formed w.r.t. as. If this is not true or if G’ is empty, then it outputs emp. Otherwise, it
outputs the formula 3xX - IT; AY where X' consists of all atoms represented by edges of
the sub-graph G’. Let Dangling|as] = Node(F») U {Node(B) | B € E;}

The sub-graph G’ is defined as the union of all paths of G[p;] that (1) consist of
edges labelled by fields in F, (P2) or predicates @ with P» <3 @, (2) start in the node
labelled by Es, and (3) end either in a node from Danglingfas] or in a cycle, in which
case they must not traverse nodes in Dangling[as]. The paths in G’ that end in a node
from Dangling[as] must not traverse other nodes from Danglinglas]. Therefore, G’
does not contain edges that start in a node from Dangling[as]. The instances of G’ for
select(¢1,nll(z,y, 2)) and select(v1,skla(y,t)) are highlighted in the bottom part
of Figure [6.3

Next, the procedure select checks that in every model of @1, the sub-heap described
by G’ is well-formed w.r.t. as. Intuitively, this means that all cycles in the sub-heap are
explicitly described in the inductive definition of P,. For example, if ¢1 = 1s(z,y) *
1s(y, z) and g2 = ag = 1s(z,z), then the graph G’ corresponds to the entire formula
1 and it may have lasso-shaped models (z may belong to the path between x and
y) that are not well-formed w.r.t. 1s(x,z) (whose inductive definition describes only
acyclic heaps). Therefore, the procedure select returns emp, which proves that the
entailment ¢; = @2 does not hold. For our running example, for any model of 11, in
the sub-heap modelled by the graph select(v1, skls(y,t)) in Figure t should not
be (1) interpreted as an allocated location in the list segment skls(y, Y3) or (2) aliased
to one of nodes labelled by Y3 and Yj.

The well-formedness test is equivalent to the fact that for every variable V' € {F»} UB;
and every model of 1, the interpretation of V is different from all allocated locations
in the sub-heap described by G’. This is in turn equivalent to the fact that for every
variable V € {Fy} U Bs, the two following conditions hold:

1. For every predicate edge e included in G’ that does not end in Node(V), V is
allocated in all models of E # F A (¢1 \ G') where E and F' are variables labelling
the source and the destination of e, respectively, and ¢1 \ G’ is obtained from ¢4
by deleting all spatial atoms represented by edges of G.

2. For every variable V' labelling the source of a points-to edge of G', o1 =V # V.

The first condition guarantees that V is not interpreted as an allocated location in
a list segment described by a predicate edge of G’ (this trivially holds for predicate edges
ending in Node(V)). If V was not allocated in some model (S, Hy) of E # F A (o1 \ G'),
then one could construct a model (S, H2) of G’ where e would be interpreted to a non-
empty list and S(V') would equal an allocated location inside this list. Therefore, there
would exist a model of 1, defined as the union of (S, H;) and (S, Hz2), in which the heap
region described by G’ would not be well-formed w.r.t. as.

For example, in the graph select(t1, skla(y,t)) in Figure t is not interpreted as
an allocated location in the list segment sk1s(y, Y3) since ¢ is allocated (due to the atom
t — {(s,Y2)}) in all models of y # Y3 A (11 \ select(v1, skla(y,t))).
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To check that variables are allocated, we use the following property: given a formula
p = X IA 3, a variable V is allocated in every model of ¢ iff X TIAS«V >
{(f,V1)} is unsatisfiable. Here, we assume that f and V] are not used in . Note that, by
Proposition [6.1] unsatisfiability can be decided using the Boolean abstraction BoolAbs.

The second condition guarantees that V is different from all allocated locations rep-
resented by sources of points-to edges in G’. For the subgraph select(v1,nll(z,y, 2))
in Figure the variable z must be different from all existential variables labelling
a node which is the source of a points-to edge. These disequalities appear explicitly in
the formula. By Proposition p1 = V # V' can be again decided using the Boolean
abstraction of 1.

6.2.4. Soundness and Completeness

The following theorem states that the procedure given in Algorithm is sound and
complete. The soundness is a direct consequence of the semantics. The completeness is
a consequence of Propositions and In particular, Proposition [6.2] implies that
the sub-formula returned by select(y1,a2) is the only one that can describe a heap
region satisfying as.

Theorem 6.1. Let o1 and @2 be a pair of formulae such that po is quantifier-free. Then,
it holds that 1 = o iff the procedure in Algorithm[6.]] returns true.

6.2.5. Checking Entailments between formulae and Predicate Atoms

Given a formula_’ ¢ and an atom P(FE,F, E), we define a procedure for checking that
¢ =g P(E,F,B), which works as follows: (1) G[y] is transformed into a tree T[y]
by splitting nodes that have multiple incoming edges, (2) the inductive definition of
P(E,F, E) is used to define a TA A[P] such that T[g] belongs to the language of
A[P] only if ¢ =4, P(E,F, E) Notice that we do not require the reverse implication
in order to keep the size of A[P] polynomial in the size of the inductive definition of
P. Thus, A[P] does not recognise the tree representations of all formulae ¢ such that
© = P(E,F, E) The transformation of graphs into trees is presented in Section
while the construction of the TA is introduced in Section In Section we also
discuss how to obtain a complete method by generating a TA A[P] of an exponential
size.

6.3. Representing SL Graphs as Trees

We define a canonical representation of SL graphs in the form of trees, which we use
for checking =4,. In this representation, the disequality edges are ignored because they
have been dealt with previously when checking entailment of pure parts.

We start by explaining the main concepts of the tree encoding using the generic
labelled graph in Figure[6.5h. We consider a graph G where all nodes are reachable from
a distinguished node called Root (this property is satisfied by all SL graphs returned
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. OO
O alias [ f1 fo]
a) A labelled graph G b) A tree representation of G

Figure 6.5.: The tree representation of a generic graph

by the select procedure). To construct a tree representation of G, we start with its
spanning tree (highlighted using bold edges) and proceed with splitting any node with
at least two incoming edges, called a join node, into several copies, one for each incoming
edge not contained in the spanning tree. The obtained tree is given in Figure [6.5b.

In order not to loose any information, the copies of nodes should be labelled with the
identity of the original node, which is kept in the spanning tree. However, since the
representation does not use node identities, we label every original node with a repre-
sentation of the path from Root to this node in the spanning tree, and we assign every
copied node a “routing” label describing how it can reach the original node in the span-
ning tree. For example, if a node n has the label alias1[g;1], this denotes the fact that
n is a copy of some join node, such that this join node is the lowest ancestor of n that
is reachable from Root by a path formed of a (non-empty) sequence of ¢g; edges in the
spanning tree. Further, n labelled by alias 1|[f1 f2] denotes roughly that (1) the original
node is reachable from Root by a path formed by a (non-empty) sequence of f; edges
followed by a (non-empty) sequence of fo edges, and (2) the original node can be reached
from n by going up in the tree until the first node that is labelled by a prefix of fi fo
and then down until the first node labelled with f; fo. The exact definition of these
labels can be found later in this section. In general, a label of the form alias?]...] will
be used when breaking loops while a label of the form aliast|[...] will be used when
breaking parallel paths between nodes. Moreover, if the original node is labelled by
a non-quantified variable, e.g. z, then we will use a label of the form alias [z]. This set of
labels is enough to obtain a tree representation from SL graphs that can entail a spatial
atom from the considered fragment; for arbitrary graphs, this is not the case.

When applying this construction to an SL graph, the most technical part consists of
defining the spanning tree. Based on the inductive definition of predicates, we consider
a total order on fields <y that is extended to sequences of fields, <p~ in a lexicographic
way. Then, the spanning tree is defined by the set of paths labelled by sequences of
fields that are minimum according to the order <p«.

Intuitively, the order <p reflects the order in which the unfolding of the inductive
definition of P is done: (1) Fields used in the atom E + p of the matrix of P are
ordered before fields of any other predicate called by P. (2) Fields appearing in p and
going “one-step forward” (i.e. occurring in a pair (f, Xy;)) are ordered before fields going
“down” (i.e. occurring in a pair (f, Z) with Z € 2), which are ordered before fields going
to the “border” (i.e. occurring in a pair (f, B) with B € E)
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Algorithm 6.2: Function toTree() encoding SL graphs to trees

Input: G :SL graph with all nodes reachable from the node of E,
P(E,F, E) : predicate atom
Output: A labelled tree that encodes G
// compute the spanning tree
1 M := nodeMarking(G, P, E, <p+);
// split nodes of Vars
2 G’ := splitlabelledJoin(G,M, E,{F} U E),
// split unlabelled join nodes
3 T := splitJoin(G’,M);
// move labels from edges to src nodes
T’ := updateLabels(T);
5 return 7";

Formally, given a predicate P with the matrix > as in Equation we split the set
F.,(P) in three disjoint sets: (a) F.,x,,(P) is the set of fields f occurring in a pair
(f, Xu) of p, (b) F_, 5(P) the set of fields f occurring in a pair (f, Z) of p with Z € Z,
and (c) F_, 5(P) the set of fields f occurring in a pair (f, B) of p with B € B. Then, we
assume that there exists a total order <y on fields such that for all P, P;, P> in P:

Vfi € Fx, (P), Vfa €F_ 2(P), Vfs € F_ 5(P): fi <r f2 <F f3 and
(freFo(P) A fa €FL(P) A f1# faAPL <p P2) = f1 <F fo.

For example, if P = {nll,1s} or P = {nlcl,1s}, then s <p h <p f; and if P =
{skly, skl }, then fo <p fi. The order <p is extended to a lexicographic order <p+ over
sequences in F*.

An f-edge of an SL graph is a points-to edge labelled by f or a predicate edge labelled
by P(ﬁ) such that the minimum field in F,,(P) w.r.t. <p is f.

Let G be an SL graph and P(E,F, E) an atom for which we want to prove that
G =4 P(E,F, E) We assume that all nodes of G are reachable from the node Root
labelled by E, which is ensured when G is constructed by select. The tree encoding of
G is computed by the procedure toTree(G, P(E, F, E)) (given in Algorithm that
consists of four consecutive steps that are presented below.

(6.15)

Node marking. First, toTree computes a mapping M, called node marking, defining
the spanning tree of G. Intuitively, for each node n, M(n) is the sequence of fields
labelling a path reaching n from Root that is minimal w.r.t. <p+. Formally, let 7 be a path
in G starting in Root and consisting of the sequence of edges ey es ...e,. The labelling
of m, denoted by L(7), is the sequence of fields fi fa... f, such that for all i, e; is an
fi-edge. The marking of a node n in G is defined by

M(n) £ Reduce(min <, (F.(P)).Lmin(rn)), where (6.16)
Lmin(n) £ min . {I.(7) | Root =+ n} (6.17)
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Figure 6.6.: Tree encodings.

where Reduce rewrites the sub-words of the form fT to f for any field f, and Root —n
means that 7 is a path from the node Root to the node n. For technical reasons, we add
the minimum field (w.r.t. <) in F.,(P) at the beginning of all M(n).

Figures fc depict two graphs and the markings of their nodes (for readability, we
omit the markings of the nodes labelled by y and ).

Splitting join nodes. The join nodes are split in two consecutive steps, denoted as
splitlabelledJoin and splitJoin, depending on whether they are labelled by vari-
ables in {E, F'} U B or not. In both cases, only the edges of the spanning tree are kept
in the tree, the other edges are redirected to fresh copies labelled by some alias|..].

For any join node n, the spanning tree edge is the f-edge (m,n) such that it holds
that Reduce(M(m). f) = M(n), i.e. (m,n) is at the end of the minimum path leading
to n. (For Root, no incoming edge is in the spanning tree.)

In splitlabelledJoin, a graph G’ is obtained from G by replacing any edge (m,n)
such that n is labelled by some V € {E,F} U B and (m,n) is not in the spanning tree
by an edge (m,n’) with the same label, where n’ is a fresh copy of n labelled by alias [V].
Moreover, for uniformity, all (even non-join) nodes labelled by a variable V' € {F'} U B
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are labelled by alias [V] in G'. Figure gives the output graph of splitlabelledJoin
on the SL graphs returned in our running example by select(v1,nll(z,y,2)) and
select (1, skla(y,t)).

Subsequently, splitJoin builds from G’ a tree by splitting unlabelled join nodes as
follows. Let n be a join node and (m,n) an edge not in the spanning tree of G’ (and G).
The edge (m,n) is replaced in the tree by an edge (m,n’) with the same edge label,
where n' is a fresh copy of n labelled by:

e aliast[M(n)] if m is reachable from n in G’ and all predecessors of m in G’ (by a sim-
ple path) marked by M(n) are also predecessors of n. Intuitively, this label is used
to break loops, and it refers to the closest predecessor of n’ having the given mark-
ing. The use of this labelling is illustrated in Figure [6.6p.

e alias 1| [M(n)] if there is a node p which is a predecessor of m such that all predeces-
sors of m that have a unique successor marked by M(n) are also predecessors of p,
and n is the unique successor of p marked by M(n). Intuitively, this transformation
is used to break multiple paths between p and n as illustrated in Figure E|

If the relation between n and n’ does not satisfy the constraints mentioned above, i.e.
the formula does not belong to the considered fragment, the result of splitJoin is an
error represented by the L tree.

At the end of these steps, we obtain a tree with labels on edges (using fields f € F or
predicates Q(E)) and labels on nodes of the form alias[..]; the root of the tree is labelled
by E.

Updating the labels. In the last step, two transformations are done on the tree.
First, the labels of predicate edges are changed in order to replace each argument X
different from elements of the set {F}UE by the argument alias T1[M(n)] or alias T/[M(n)],
which describes the position of the node n labelled by X w.r.t. the node of G labelled
by E. In the case this is not possible, the algorithm returns L.

Finally, as the generated trees will be tested for membership in the language of a TA
which accepts node-labelled trees only, the labels of edges are moved to the labels of
their source nodes and concatenated in the order given by <y (predicates in the labels
are ordered according to the minimum field in their matrix).

The following property ensures the soundness of the entailment procedure:

Proposition 6.3. Let P(E, F, E) be a predicate atom and C_{ an SL graph. If the pro-
cedure toTree(G, P(E, F, B)) returns L, then G # P(E,F,B).

!The combination of up and down arrows in the label corresponds to the need of going up and then
down in the resulting tree—whereas in the previous case, it suffices to go up only.
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(1) q — fl(q0)7f2(Q1)vf3(Q2)
(2) ¢ — aliasT)[f1]

(3) q2 <— alias[B]

(4) a0 <= fi(gs), f2(g3), f3(q2)
(5) g3 < alias[F]

(6) @ <= Pi(B)(q)

(M) @0 = Pi(B)(gs)

Figure 6.7.: A[P\(E, F, B)]

6.4. Tree Automata Recognising Tree Encodings of SL
Graphs

Next, we proceed to the construction of tree automata A[P(E, F, E)] that recognise
tree encodings of SL graphs that entail atoms of the form P(E, F, E) We start with
an intuitive description on two typical examples and give a full description of the TA
construction later. First, to simplify the exposition, we give a modified definition of tree
automata for the use in the rest of this chapter (cf. Chapter [2)).

Tree automata. A (nondeterministic) tree automaton (TA) recognising tree encodings
of SL graphs is a tuple A = (@, qo, A) where @ is a finite set of states, go € @ is the initial
state, and A is a finite set of transitions of the form (q,a1 - an,q1 -+ qn) or (q,a,€),
where n > 0, ¢,q1,...,q, € @, a; is an SL graph edge label (we assume them to be
ordered w.r.t. the same ordering of fields <y as for tree encodings), and a is alias 1[m],
aliast{[m], or alias [V] for a marking m and a variable V.. We use ¢ < a1(q1), ..., an(qn)
to denote (q,a1--an,q1---qn) and ¢ < a to denote (g,a,€). The set of trees L(.A)
recognised by A, called the language of A, is defined in the same way as in Chapter

Construction of A[P(E, F, E)] The tree automaton A[P(E, F, E)] is constructed by
a procedure starting from the inductive definition of P. If P does not call other predi-
cates, the TA simply recognises the tree encodings of the SL graphs that are obtained by
“concatenating” a sequence of Gaifman graphs representing the matrix X(FE, X, B ) and
predicate edges P(F, Xi1, E) In these sequences, occurrences of the Gaifman graphs
representing the matrix and the predicate edges can be mixed in an arbitrary order
and in an arbitrary number. Intuitively, this corresponds to a partial unfolding of the
predicate P in which there appear concrete segments described by points-to edges as
well as (possibly multiple) segments described by predicate edges. Concatenating two
Gaifman graphs means that the node labelled by Xt; in the first graph is merged with
the node labelled by F in the other graph. We first illustrate this in the following exam-
ples and give the formal algorithm later. The TAs for the running examples are given

in Section [6.4.3
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alias [F
(w0l Ja)
775

Figure 6.8.: A[ls(E, F)]

Consider a predicate P;(F, F, B) that does not invoke any other predicates and that
is defined using the matrix 1 2 E ~ {(f1, Xt1), (f2, Xt1), (f3, B)}. The tree automa-
ton A[Pi(E, F, B)] for P;(E, F, B) has transitions given in Figure Transitions 1-3
recognise the tree encoding of the Gaifman graph of 3;, assuming the following total
order on the fields: f; <p fo < f3. Transition 4 is used to distinguish the “last” in-
stance of this tree encoding, which ends in the node labelled by alias[F] accepted by
Transition 5. Finally, Transitions 6 and 7 recognise predicate edges labelled by P;(B).
As in the previous case, we distinguish the predicate edge that ends in the node labelled
by alias [F]].

Note that the TA given above exhibits the simple and generic skeleton of TAs accepting
tree encodings of list segments defined in our SL fragment: The initial state g is used
in a loop to traverse over an arbitrary number of folded (Transition 6) and unfolded
(Transition 1) occurrences of the list segments, and the state g3 is used to recognise the
end of the backbone (Transition 5). The other states (here, g2) are used to accept alias
labels only. The same skeleton can be observed in the TA recognising tree encodings of
singly linked lists, which is given in Figure

When P invokes other predicates, the automaton recognises tree encodings of concate-
nations of more general SL graphs, obtained from Gf[X] by replacing predicate edges
with unfoldings of these predicates. On the level of TAs, this operation corresponds to
a substitution of transitions labelled by predicates with TAs for the nested predicates.
During this substitution, alias [..] labels occurring in the TA for the nested predicate need
to be modified. Labels of the form aliasf[m] and alias t}[m| are adjusted by prefixing
m with the marking of the source state of the transition. On the contrary, labels of the
form alias [V] are substituted by the marking of Node(V') w.r.t. the higher-level matrix.

Let us consider a predicate P»(F, F') that calls P; and that has the matrix defined as
Yo 237 E = {(g1,X01), (g2, Z)}N O'F P1[Z,E]. The TA A[Py(E, F)] for P»(E, F)
consists of the following transitions:

(1) gq0 = 91(gq90), 92(qo0) 2') qq0 = g1(qq1), 92(qo)

(2')
transitions of A[P;(E, F, B)], where (3") qq1 — alias [F]
alias [F] is substituted by alias T[g1 g2], (4") qq0 — Pa(qqo)
alias [B] by alias 1]g1], and (5") qq0 — Pa(qq1)

alias [ f1] is substituted by aliast{[g1 g2 f1]

(Transition 1) and the transitions imported (after renaming of the respective labels) from
A[P;(E, F, B)] describe trees obtained from the tree encoding of Gf[¥2] by replacing the
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edge looping in Z with a tree recognised by A[P;(E, F, B)]. According to Gf[¥s], the
node marking of Z is g g2, and so the label alias [F'] shall be substituted by alias 1[g1 g2],
and the marking alias 1}[f1] shall be substituted by alias1}[g1 g2 f1].

In the next sections, we describe our algorithm for construction of tree automata for
predicates. First, we start with a description of the basic algorithm for constructing tree
automata accepting unfoldings of the predicate where every singly linked list segment
(both top-level and nested) is non-empty. Then, we proceed with a description of an
extension of the algorithm for list segments that may be empty.

6.4.1. Basic Algorithm for Non-Empty List Segments

Consider the definition of the matrix of the predicate P(E, F, B ) as given in Section
repeated for the sake of convenience here:

P(E,F,B)2(E = F A emp) V
(E# {F}UB A 3Xq1 : %(E, Xu1, B) * P(Xq1, F, B))

where X is of the form:

S(E,Xe1,B) 237 : E— {p({Xe1} UV)} %% where V C Z U B and
Y o= Q(Z,U,Y) | O Q[Z,Y] | & X
for Z€ Z,U€ ZUBU{E,Xu}, Y C BU{E, Xy}, and
O QZ,Y]232 :%0(2,2,Y)«Q(Z,2,Y) where ¥ is the matrix of Q.

The construction of the automaton A[P] is described in the following. To ease its
presentation, let us suppose that the matrix of P is of the form X(F, Xi1, E) 237 .
E— {(fi,Z1),...,(fn, Zn)} *X'. W.lo.g. we further assume that f; <g -+ < fn,
i.e. f1 is the minimum field in F,,(P).

The construction uses the SL graph of the following formula, which represents two
unfoldings of the recursive definition of the predicate:

—

X1 : B(E, Xe1, B) * 2(Xe1, F, B). (6.18)

The unfolding is done twice in order to capture all the markings (including the ones of
the nodes allocated inside the list segment) that may appear in tree encodings that shall
be recognised by A[P]. The graph G is obtained from the SL graph of the formula in
Equation in such a way that the macro O'* Q[Z, 3—;] is not expanded but translated
into a predicate edge from Node(Z) to Node(Z) labelled with Q(Y).

Then, we get the tree encoding 7 [G] of G and check that it is not equal to L, otherwise
we abort the procedure. Notice that the variable Xy, is existentially quantified in the
formula, so T[G] does not use the aliasing relation alias [X1]. Instead, a node that is
a copy of the node labelled with Xy; in G needs to use either the relation alias1[f1]
or the relation aliast}[f1], because the marking of Node(X¢1) is fi. Recall also that
the nodes of G labelled by parameters or existentially quantified variables are pushed

89



directly in T[G]. So, we overload the notation Node(Z) to denote the node of T[G]
obtained from the node of G labelled by Z.

The construction starts with an empty automaton A[P]. It calls the procedure
buildTACall, which adds states and transitions to A[P] to recognise tree encodings of
unfoldings of the atom P(E, F, B ). This procedure is recursive, because it is called for all
atoms Q(U,V, 1717) inside the formula in Equation The arguments of buildTACall
are: the predicate called, a mapping o of the formal parameters of the predicate to an
aliasing relation, the states gy and ¢; to be used for the source resp. the continuation
of the construction, and the marking mg of the state qg. The initial values of these
parameters are, in order: P, {F + alias[E], F' +— alias[F], B — alias[B]}, fresh states
q0,q1, and fi. By B+ alias [B] we denote the set of mappings {B + alias[B] | B € E}
The state go is marked as the root state of A[P].

The procedure buildTACall consists of the following four steps.

I. Importing the tree encoding 7[G]. In the first step, we construct the skeleton
of A[P] by taking T[G] and transforming it in the following way:

(a) For each node u of T[G], we create a unique state ¢(u) in A[P], except for the nodes
Node(FE) and Node(F'), for which we use the states gy and ¢; respectively.

(b) If the node u is labelled in 7[G] with an aliasing relation r € {alias[B] | B €
B} ud{aliasA[m] | A € {1, 1}}}, where m is a marking, we add the transition

q(u) = B(r,o,mo) (6.19)

where 3(r, 0, mg) changes 7 in the following way: If r is of the form alias [B] for any
B € B, the result is o(B). On the other hand, when r is a relation alias A[m] for
A e {1, 1)}, it is changed to alias A[Reduce(mg . m)].

(c) If there is a predicate edge from u to v labelled with Q(?), we add the transition
q(u) = Q(B'(Y,0,m0))(q(v)). (6.20)

where [’ ()7, o, mgp) changes every Y in Y according to the following rules:
e If YV is an argument of the function call, it is changed to o(Y);

e if Y is an existentially quantified variable in the formula in Equation |6.18] m is
the marking of Node(E), and the relation between Node(FE) and Node(Y') is
alias A[m] for A € {1,1)}, we change Y to alias A[Reduce(mg . m)];

e otherwise, we abort the procedure.

(d) If the node w is the source of points-to edges ey,...,er labelled with the fields

hi, ..., hi respectively, assuming that h; < - -+ <r hg, and entering nodes vy, ..., vg
in this order, we add the transition
q(u) =hi(q(v1)), ..., hi(q(vg)). (6.21)
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Note that this rule also creates the backbone transition
qo — f1(q(Node(Xt1))), f2(q(Z2)), ..., fu(a(Zy)). (6.22)
(e) If the call to buildTACall is not nested, we add the transition

@ — ofF). (6.23)

Observe that the created skeleton is able to accept precisely two unfoldings of the pred-
icate P between F and F' such that nested predicates are not unfolded.

II. Accepting non empty list segments. Next, we make A[P] accept an arbitrary
number of these unfoldings along the backbone field of the predicate. To do this, we take
the initial transition from Equation and insert into A[P] the following transitions:

(a) a transition that accepts exactly one unfolding:
g0 = fi(q1), f2(q(Z2)), . . ., fala(Zn)). (6.24)
(b) a looping transition that allows to insert arbitrarily many unfoldings:

q(Node(Xy1)) — fi1(g(Node(X+1))), f2(q(Z2)), - -, fn(q(Zn)). (6.25)

ITI. Interleave with predicate edges. We add transitions allowing an arbitrary
interleaving of folded and unfolded occurrences of the translated predicate P:

go —+P(B[o]])(q(Node(X:1))) (6.26)
q(Node(X41)) %P(B’[a])(q(Node(th))) (6.27)
g(Node(X+1)) —P(Blo])(q1). (6.28)

IV. Inserting tree automata of nested predicate edges. For each transition
inserted in A[P] of the form:

g(Node(R)) = Q(Y)(g(Node(S))), (6.29)

with Q # P, we call recursively the procedure builTACall to insert_’into A[P] the
automaton for the call of the predicate Q with the parameters (R,S,Y). The states
created by each call of builTACall are new. The procedure builTACall is called with
the process identifier @,

e the mapping {F +— rg, F — rg, B — ry}, where for any Z € {R, S} U Y:
— if Z€ {E,F}UB then ry is 0(2),

~if 7 e Z (the set of existentially quantified variables in P) then ryz is
aliast}[mz] where mz is the marking of Node(Z) in T[G],
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b) The tree encoding of the graph in (a)

Figure 6.9.: Illustration of the issue with possibly empty nested list segments. The label
of the node accessible from x5 over fi (labelled with alias1|[f3]) reflects the
fact that the second-level skip list from the node x4 to the node xz¢ is empty.

e the states g(Node(R)) and ¢(Node(S)), and
e the marking Reduce(mg.mp), where mp is the marking of Node(R) in T[G].
The following result states the correctness of the tree automata construction.

Theorem 6.2. For any predicate atom P(E,F, E) and any iL graph G, if the tree gen-
erated by toTree(G, P(E, F, B)) is recognised by A[P(E, F, B)|, then G = P(E, F, B).

6.4.2. Extending the Basic Algorithm to Possibly Empty Nested List
Segments

This extension creates tree automata that can accept such unfoldings of the predicate
where nested list segments may be empty. The difficulties this creates are shown in
Figure The label of the node accessible from x5 over fi (labelled with alias1}[f3])
reflects the fact that the second-level skip list from the node z4 to the node x¢ is empty.
Therefore, when the automaton is traversing the segment between x4 and xg, it needs to
remember that if the second level list segment leaving x4 is empty, the label at the end
of the first level list segment leaving z4 is not aliasT)[f3f2] but alias1)[f3]. Note that
the top-level list segment predicate is always non-empty; the case when it is empty is
dealt with during the normalisation phase (see Section .
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Suppose there are nested list segments Ry, ..., R, in the matrix X(E, X3, E) of the
predicate P(E, F, E) (note that the predicate of some distinct R; and R; can be the
same, e.g. R; = 1s(S,T) and R; = 1s(U,V)). For every subset S of the set of nested list
segments, S C {Ry,...,R,}, we run the procedure in Section such that we first
modify X(E, X1, E) in such a way that all nested list segments not in .S are substituted
by their ground case and obtain the automaton AS. We then obtain the automaton
A[P(E, F, §)] by uniting all the automata retrieved in the previous step together and
merging their initial states into one.

Formally, given the automata A% = (Q7, qo ,AS) forall § C {Rl, ..., Ry} (supposing
their sets of states are pairwise disjoint) we create A[P(E, F, B)] (Q,qo0,A) in the
following way.

Q={otu U (@ \{a}) (6.30)
SC{R1,....Rn}

A= ] A% w/46] (6.31)

SC{Ri,....,Rn}

where AS [qo/qfﬂ denotes the set of transitions A® where every occurrence of qf)q is
substituted with go. It is easy to observe that the number of automata A% is 27; the
construction is therefore exponential.

6.4.3. Tree Automata for the Running Example

This section lists tree automata for the predicates from Figure The automaton
A[ls(E, F)] contains the following set of transitions (with gy being the initial state):

g = f(20)  qo < 1s(qo)
q = f(a1)  qo— 1s(q1)
q1 < alias [F]

The automaton A[nll(G, H, B)] contains the following set of transitions (with ggo being
the initial state):

q90 = 5(q90), h(qo) q90 = 5(qq1), h(qo)
qqu < alias [H] q90 — n11(B)(qqo)
transitions of A[ls(E, B)] qqo — nl11(B)(qq1)

The automaton A[sk1; (K, L)] contains the following set of transitions (pg is the initial
state):

po — f3(pL), fo(p1), filpo)  po — skli(po)

po = f3(pL), fa(pr), fi(p1)  po — skli(p1)
p1 < alias[L] p1 <> alias [NULL]
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The automaton A[skly(M, N)] contains the following set of transitions (ppy is the initial
state):

ppo = f3(p1), fa(ppo), f1(po) ppo < skla(ppo)

ppo = f3(p1), f2(pp1), f1(Po) ppo — sklz(pp1)

transitions of A[skl; (K, L)], where pp1 — alias [N]

alias [L] is substituted by alias 1}[f2]

The automaton A[skl3(P, R)] contains the following set of transitions (pppo is the initial
state):

pppo — f3(pppo), f2(pro), f1(po) pppo — sk13(pppo)
pppo = f3(ppp1), f2(ppo), f1(po) pppo — sk13(ppp1)
transitions of A[skla(M, N)], where ppp1 — alias [R]

alias [N] is substituted by alias 1 [f3]
alias [ f2] is substituted by alias t{[f5 f2]

The automaton A[nlcl(S,T")] contains the following set of transitions (with ggp being
the initial state):

a0 = s(qq0), h(qo) qaq0 = s(qaqu), h(qo)
qq1 <> alias [T qq0 — nlcl(qqo)
transitions of A[1ls(E, F)|, where qqo — nlcl(qqr)

alias [F] is substituted by alias 1[s h]

6.5. Extensions

The procedures presented above can be extended to a larger fragment of SL that uses
more general inductively defined predicates. In particular, they can be extended to cover
finite nestings of singly or doubly linked lists. To describe doubly linked segments, we
extend the definition of a predicate from Equation to the following;:

Ry(E,F,P,S,B)2 (E=SANF=PAemp)V (E#SAF#PA
3X41 : B(E, Xu1, P, B) ¥ Ryy(Xu1, F, E, S, B))
where Y is an existentially-quantified matrix of the form:

S(E, Xe1, P,B) 237 : E— {p({Xe1, P} UV)} Y where V C ZUB and

(6.32)

S o= Q(Z,U,Y) | Qu(Z.U, Zy, Z,,Y) |
oW Q[Z,Y]| oM QulZ, Y] | X « %
for Z € Z; U, Zy, Zs € ZUBU{E, X41,P}; Y C BU{E, X4, P},
O Qz, Y237 :x0(2,2.Y)«Q(Z,2,Y)
where X is the matrix of @, or
O QulZ, Y232, 2, So,(2, 2", 2y, Y ) x Qu(Z', Zy, 2, Z,Y)
where X, is the matrix of Q4.
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b) The tree encoding of the graph from (a)
Figure 6.10.: Tree encodings for doubly linked lists

In Equation [6.32] P corresponds to the predecessor of E and S corresponds to the
successor of F'. For instance, to describe DLL segments between two locations E and F,
one can use the predicate

d11(E,F,P,S)2(E=SANF=PAemp) V(E#SAF#PA

(6.33)
3X41 : E = {(n, Xu1), (p, P)} * d11(X¢1, F, E, S)).

To describe a singly linked list of cyclic doubly linked lists, we may use the following
predicate:

nlcdl(E,F) £ (E=FAemp)V (E#F A (6.34)
X1, Z : E = {(s, Xt1), (h, Z)}+ O'F d11(Z) * nlcdl(Xe1, F))

where O'* d11(Z) is a macro describing non-empty cyclic doubly linked lists defined by

O Q1121 £ 321,25 1 Z v {(n, Z1), (p, Zo)} % A11(Z1, Zo, Z, Z). (6.35)

Representing SL Graphs as Trees. The splitJoin operation from Section is
extended with considering the following two more possible labellings: alias1?[a] and
aliasT4st[@]). If n is a join node in a graph and (m,n) is an edge that is not in its
spanning tree, then (m,n) is replaced by the edge (m,n’) with the same edge label, such
that n’ is a fresh copy of n labelled by (in addition to the labellings from Section

e alias1?[M(n)] if m is reachable from n, m further reaches n in the spanning tree
of the graph and in the spanning tree there is exactly one node marked with M(n)
between m and n. Intuitively, this label is needed to handle inner nodes of doubly
linked lists, which have two incoming edges, one from their successor and one from

their predecessor (see Figure [6.10]).
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b) The tree encoding of the graph from (a)

Figure 6.11.: Tree encodings for lists of nested cyclic doubly linked lists

e alias T}j4s¢:[M(n)] if there is a node p that is an ancestor of m (or it is m itself),
such that p is also an ancestor of n, and n has no non-alias successors with the
marking M(n). Intuitively, the label is needed for a doubly linked cyclic list to
allow referring to the predecessor of the head node of the list (see Figure [6.11)).

6.6. Completeness and Complexity

In general, there exist SL graphs that entail P(FE, F, E) whose tree encodings are not
recognised by A[P(E, F, B )] created using the algorithm from Section The models
of these SL graphs are nested list segments where inner pointer fields specified by the
matrix of P are aliased. For example, the TA for skls does not recognise the tree
encodings of SL graphs modelled by heaps where X1 and Z; are interpreted to the
same location.

This issue is dealt with by the algorithm presented in Section [6.4.2l However, the
size of the TA created in this way may become exponential in the size of P (defined
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Table 6.1.: Average running times for SPEN on the benchmarks from [PR11].

Bolognesa | Time [ms] || Spaguetti | Time [ms] || Clones | Time [ms] |

bo-10 352 || sp-10 146 || cl-01 316
bo-11 386 || sp-11 156 || cl-02 314
bo-12 385 || sp-12 145 || cl-03 335
bo-13 394 || sp-13 153 || cl-04 336
bo-14 483 || sp-14 189 || cl-05 321
bo-15 562 || sp-15 258 || cl-06 334
bo-16 424 || sp-16 198 || cl-07 351
bo-17 510 || sp-17 254 || cl-08 374
bo-18 503 || sp-18 249 || cl-09 407
bo-19 516 || sp-19 252 || cl-10 436
bo-20 522 || sp-20 282

as the number of symbols in the matrices of all @ with P <} @), as the construction
considers all possible aliasing scenarios of targets of inner pointer fields permitted by the
predicate.

For the verification conditions that we have encountered in our experiments, the TAs
constructed using the former algorithm are precise enough in the vast majority of the
cases. In particular, note that the TAs generated for non-nested predicates, such as
the predicates for 1s and dl1, are precise. We have, however, implemented even the
latter algorithm (which is complete even for nested predicates) and evaluated that it
also provides good performance on practical examples (where the number of nestings is
given by the use in real-world programs).

In conclusion, the overall complexity of the incomplete semi-decision procedure (where
aliases between variables in the definition of a predicate are ignored) runs in polynomial
time modulo an oracle for deciding validity of a Boolean formula (needed in the normal-
isation part of the procedure). The complete decision procedure is exponential in the
size of the predicates, which remains acceptable in practice, rather than in the size of
the formulae.

6.7. Implementation and Experimental Results

We implemented our decision procedure in a solver called SPEN (SeParation logic EN-
tailment). The tool takes as the input an entailment problem ¢ = @2 (including the
definition of the predicates used) encoded in the SMTLI1B2 format. For non-valid entail-
ments, SPEN prints the atom of s which is not entailed by a sub-formula of ¢;. The
tool is based on the MINISAT solver for deciding unsatisfiability of Boolean formulae and
the VATA library (described in Chapter as the tree automata backend.

We applied SPEN to entailment problems that use various recursive predicates. First,
we considered the benchmark provided in [PR11], which uses only the 1s predicate.
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Table 6.2.: Running SPEN on entailments between formulae and atoms.

. States/Trans. | Nodes/Edges

w2 | ¢1 || Time [ms] | Status of Alips] of T(Gf[p1))
tcl 344 valid 7/7
nll | tc2 335 valid 6/17 7/7
tc3 319 invalid 6/7
tcl 318 valid 10/9
nlcl | tc2 316 valid 6/15 7/7
tc3 317 invalid 6/6
tcl 334 valid 7/7
skls | tc2 349 valid 80,/193 8/8
tc3 326 invalid 6/6
tcl 358 valid 7/7
dll | tc2 324 valid 9/16 7/7
tc3 322 invalid 5/5

It consists of three classes of entailment problems called Spaguetti, Bolognesa, and
Clones. The first two classes contain 110 problems each (split into 11 groups) generated
randomly according to the rules specified in [PR11], whereas the last class contains 100
problems (split into 10 groups) obtained from the verification conditions generated by the
tool SMALLFOOT [BCOOQ6]. In all experimentsﬂ SPEN finished in less than 1 second with
the deviation of running times +100 ms w.r.t. the ones reported for SELOGER [HIOP 13]@,
the most efficient tool for deciding entailments of SL formulae with singly linked lists we
are aware of (average times for each group are given in Table .

The TA for the predicate 1s is quite small, and so the above experiments did not eval-
uate much the performance of our procedure for checking entailments between formulae
and atoms. For a more thorough evaluation, we further considered the experiments listed
in Table (among which, skls required the extension of our approach to a full decision
procedure as discussed at the end of Section . The full benchmark is available with
our tool [ELSV14b]. The entailment problems are extracted from verification conditions
of operations like adding or deleting an element at the beginning, in the middle, or at
the end of various kinds of list segments (see Figure . Table gives for each
example the running time, whether the entailment is valid or invalid, and the size of
the tree encoding and TA for ¢; and 9, respectively. We find the resulting times quite
encouraging.

Moreover, SPEN participated in three divisions of the first competition of separation
logic solvers SL-COMP’14 [sl-14]: division FDB_entl containing problems with extended
acyclic lists, such as doubly linked lists, nested lists, or skip lists (the results for this

20ur experiments were performed on a PC with an Intel Core 2 Duo @2.53 GHz processor and 4 GiB
DDR3 @1067 MHz running a virtual machine with Fedora 20 (64-bit).

3The times reported for SELOGER in [HIOP13] were obtained on a PC with an Intel Core i5-2467M
@1.60 GHz processor and 4 GiB DDR3 @1066 MHz under Windows 7 (64-bit).
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2 =nll(z,y,2)
tcl £ 2 {(s,u), (h,a)} *u s {(s,y), (h,b)} x 1s(a, 2) * 1s(b, 2)
tc2 £ nll(w,u,2) *u— {(s,w), (h,a)} *a— {(f,b)} * 1s(b, 2) * nll(w,y, 2)
tc3 = nll(z,u,2) *u — {(s,w), (h,a)} xa— {(f,b)} xbr {(f,a)} *
nll(w,y, z)
w2 =nlcl(z,y)
tcl =2 {(s,u), (h,a)} xa— {(f,b)} b {(f,a)} xur {(s,9), (h,c)} *
c— {(f,d)} *1s(d,c)
tc2 = nlcl(z,u) *u — {(s,v), (h,a)} *a > {(f,b)} * 1s(b,a) * nlcl(v,y)
tc3 2 nlcl(w,u) *u > {(s,v), (h,a)} xa— {(f,y)} *nlcl(v,y)
P2 = sklz(z,y)
tcl £z {(f1,2), (f2, 2), (f3,2)} * 2 = {(f1,9), (f2, ), (f3, 1)}

tc2 2 skls(w, 2) * 2 = {(f3,w), (f2, 22)(f1, 21)} * skli(21, 20) * skla(22, w) *
Skl3(w7y)

te3 2w {(f1,w), (fo,w), (f3,10)} % w = {(f1, 2), (fosw2), (f3,2)}
Sle(’LUQ, Z) * Skl3(27 y)

w9 = dll(z,y, z,v)

tel 2 e {(n,u), (p,2)} xu e {(n,9), (0, 2)} xy = {(n,0), (p,u)}
tc2 2 x> {(n,u), (p,2)} * dll(u, w, z,y) *y — {(n,v), (p,w)
tc3 =z {(n,u), (p, 2)} * d1l(u, w,z,y) *y — {(n,v)}

Figure 6.12.: Definition of formulae for ¢; in the experiments

division are in Table ), and divisions sll0a_ent] and sll0a_sat containing problems with
singly linked lists (the results for these divisions are in Table ) The tables contain for
each solver the number of problems for which the solver responded incorrectly (column
Errors), the number of problems for which it responded correctly (column Solved), the
number of problems for which it did not give an answer (column —Solved), and the total
time of the solver in seconds (column Time). SPEN won division FDB_entl with a huge
difference, solving all problems in less than a minute; further, notice that SPEN is the
only tool that correctly answered all problems in this division. In addition to this, SPEN
was also placed second in both divisions with singly linked lists, where the first placed
was won by Asterix, a solver specialised for this particular data structure.
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Table 6.3.: Results of SL-COMP’14

a) Results for extended acyclic lists (FDB_entl)

’ Solver H Errors ‘ Solved ‘ —Solved ‘ Time ‘
SPEN 0 43 0 0.61
Cyclist-SL 0 19 24 | 141.78
SLIDE 0 0 43 0.00
SLEEK-06 1 31 11 | 43.65

b) Results for singly linked lists

Solver sll0a_entl sll0a_sat
Errors \ Solved \ —Solved \ Time || Errors \ Solved \ —Solved \ Time
Asterix 0 292 0] 2.98 0 110 0| 1.06
SPEN 0 292 0] 7.58 0 110 0| 3.27
SLEEK-06 0 292 0] 14.13 0 110 0| 4.99
Cyclist-SL 0 55 237 | 11.78 55 55 0| 0.55

6.8. Conclusion

This chapter presented a novel (semi-)decision procedure for a fragment of SL with
inductive predicates describing various forms of lists (singly or doubly linked, nested,
circular, with skip links, etc.). The procedure is compositional in that it reduces the
given entailment query to a set of simpler queries between a formula and an atom.
For solving them, we proposed a novel reduction to testing membership of a tree derived
from the formula in the language of a TA derived from a predicate. We implemented
the procedure, and our experiments show that it has not only a favourable theoretical
complexity, but also efficiently handles practical verification conditions. Moreover, when
compared with other tools for deciding separation logic formulae in the first competition
of separation logic solvers SL-COMP’14 [sl-14], SPEN won the first place in one divi-
sion (being by several orders of magnitude faster and even more successful in correctly
deciding the decision problems), and the second place in two divisions.

In the future, we plan to investigate extensions of our approach to formulae with a more
general Boolean structure or using more general inductive definitions. Concerning the
latter, we plan to investigate whether some ideas from [IRV14] could be used to extend
our decision procedure for entailments between formulae and atoms. From a practical
point of view, apart from improving the implementation of our procedure, we plan to
integrate it into a complete program analysis framework.
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7. Deciding WS1S Formulae Using
Nested Antichains

Weak monadic second-order logic of one successor (WS1S) is a powerful, concise, and
decidable logic for describing regular properties of finite words. Despite its nonele-
mentary worst case complexity [Mey72|, it has been shown useful in numerous appli-
cations. Most of the successful applications were due to the tool MONA [EKMO9S],
which implements a finite automata-based decision procedure for WS1S and WS2S
(a generalisation of WSIS to finite binary trees). The authors of MONA list a mul-
titude of its diverse applications [KMO1], ranging from software and hardware verifica-
tion through controller synthesis to computational linguistics, and further on. Among
more recent applications, verification of pointer programs and deciding related log-
ics [MPQI1, MQ11], IRS13, [CDNQ124), [ZKROS] can be mentioned, as well as synthesis
from regular specifications [HJK10]. MONA is still the standard tool and the most com-
mon choice when it comes to deciding WS1S/WS2S. There are other related automata-
based tools that are more recent, such as jMosel [TWMS06] for the M2L(Str) logic, and
other than automata-based approaches, such as [GK10]. They implement optimisations
that allow them to outperform MONA on some benchmarks, however, none provides an
evidence of being consistently more efficient. Despite many optimisations implemented
in MONA and the other tools, the worst case complexity of the problem sometimes
strikes back. Authors of methods using the translation of their problem to WS1S/WS2S
are then forced to either find workarounds to circumvent the complexity blowup, such
as in [MQ11], or, often restricting the input of their approach, give up translating to
WS1S/WS2S altogether [WMKT1].

The decision procedure of MONA works with deterministic automata; it uses deter-
minisation extensively and relies on minimisation of deterministic automata to suppress
the complexity blow-up. However, the worst case exponential complexity of determini-
sation often significantly harms the performance of the tool. Recent works on efficient
methods for handling nondeterministic automata suggest a way of alleviating this prob-
lem, in particular works on efficient testing of language inclusion and universality of finite
automata [DRI0, WDHRO06, IACHT10] and size reduction [BGO0, ABHT08| based on
a simulation relation. Handling nondeterministic automata using these methods, while
avoiding determinisation, has been shown to provide great efficiency improvements in
[BHHT 08| (abstract regular model checking) and also [HHR™12] (shape analysis). In this
chapter, we present a work that makes a major step towards building the entire decision
procedure of WS1S on nondeterministic automata using similar techniques. We propose
a generalisation of the antichain algorithms of [DR10] that addresses the main bottle-
neck of the automata-based decision procedure for WS1S, which is also the source of its
nonelementary complexity: elimination of alternating quantifiers on the automata level.
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More concretely, the automata-based decision procedure translates the input WS1S
formula into a finite word automaton such that its language represents exactly all mod-
els of the formula. The automaton is built in a bottom-up manner according to the
structure of the formula, starting with predefined atomic automata for literals and ap-
plying a corresponding automata operation for every logical connective and quantifier
(A,V,7,3). The cause of the nonelementary complexity of the procedure can be ex-
plained on an example formula of the form ¢’ = 3X,,VX,,_1...VX23X; : ¢9. The uni-
versal quantifiers are first replaced by negation and existential quantification, which
results in p = 3X,,,—3IX ;1 ... ~IX2-3X7 : 9. The algorithm then builds a sequence
of automata for the sub-formulae g, ¢y, . .. ,gpm_l,gofn_l of ¢ where for 0 < i < m,

cpg = 3Xit1 ¢ @i, and @41 = ﬂgog. Every automaton in the sequence is created from
the previous one by applying the automata operations corresponding to negation or
elimination of the existential quantifier, the latter of which may introduce nondetermin-
ism. Negation applied on a nondeterministic automaton may then yield an exponential
blowup: given an automaton for ¢, the automaton for =) is constructed by the classical
automata-theoretic construction consisting of determinisation by the subset construction
followed by swapping of the sets of final and non-final states. The subset construction
is exponential in the worst case. The worst case complexity of the procedure run on
@ is then a tower of exponentials with one level for every quantifier alternation in ¢;
note that, in general, we cannot do much better—this nonelementary complexity is an
inherent property of the problem.

Main ideas of our approach. Our new algorithm for processing alternating quan-
tifiers in the prefix of a formula avoids the explicit determinisation of automata in the
classical procedure and significantly reduces the state space explosion associated with it.
It is based on a generalisation of the antichain principle used for deciding universality
and language inclusion of finite automata [WDHRO06, IACHT10]. It generalises the an-
tichain algorithms so that instead of being used to process only one level of the chain of
automata, it processes the whole chain of quantifications with ¢ alternations on the fly.
This leads to working with automata states that are sets of sets of sets ... of states
of the automaton representing g of the nesting depth i (this corresponds to ¢ levels of
subset construction being done on the fly). The algorithm uses nested symbolic terms to
represent sets of such automata states and a generalised version of antichain subsump-
tion pruning which descends recursively down the structure of the terms while pruning
on all its levels.

Our nested antichain algorithm can be—in its current form—used only to process
a quantifier prefix of a formula, after which we return the answer to the validity query,
but not an automaton representing all models of the input formula. That is, we cannot
use the optimised algorithm for processing inner negations and alternating quantifiers
which are not a part of the quantifier prefix. However, despite this and the fact that our
implementation is far less mature than that of MONA, our experimental results still show
significant improvements over its performance, especially in terms of generated state
space. We consider this a strong indication that using techniques for nondeterministic
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automata to decide WSIS (and WSkKS) is highly promising. There are many more
opportunities of improving the decision procedure based on nondeterministic automata,
by using techniques such as simulation relations or bisimulation up-to congruence [BP13],
and applying them to process not only the quantifier prefix, but all logical connectives
of a formula. We consider the work presented in this chapter to be the first step towards
a decision procedure for WS1S/WSES with an entirely different scalability than the
current state of the art.

Outline. The structure of this chapter is as folows: We define the logic WS1S in
Section[7.1] In Sections[7.2]and [7.3] we introduce finite word automata and describe the
classical decision procedure for WS1S based on finite word automata. In Section
we introduce our method for dealing with alternating quantifiers. Finally, we give an
experimental evaluation and conclude the chapter in Sections and

7.1. WS1S

In this section we give an introduction into the weak monadic second-order logic of one
successor (WS1S). We introduce only its minimal syntax here, for the full standard
syntax and a more thorough introduction, see Section 3.3 in [CDGT07].

WSI1S is a monadic second-order logic over the universe of discourse Ny. This means
that the logic allows second-order wariables, usually denoted using upper-case letters
X,Y,..., that range over finite subsets of Ny, e.g. X = {0, 3,42}. Atomic formulae are
of the form (i) X CY, (ii) Sing(X), (iii) X = {0}, and (iv) X =Y +1, where X and Y
are variables. The atomic formulae are interpreted in turn as (i) standard set inclusion,
(ii) the singleton predicate, (iii) X is a singleton containing 0, and (iv) X = {z} and
Y = {y} are singletons and z is the successor of y, i.e. z = y + 1. Formulae are built
from the atomic formulae using the logical connectives A, V, -, and the quantifier 3X
(for a second-order variable X).

Given a WSIS formula ¢(X7q,..., X,) with free variables Xj,..., X,,, the assignment
p=A{X1— S1,....X,, — Sy}, where Si,...,S5, are finite subsets of Ny, satisfies ¢,
written as p = ¢, if the formula holds when every variable X; is replaced with its
corresponding value S; = p(X;). We say that ¢ is valid, denoted as |= ¢, if it is satisfied
by all assignments of its free variables to finite subsets of Ny. Observe the limitation to
finite subsets of Ny (related to the adjective weak in the name of the logic); a WS1S
formula can indeed only have finite models (although there may be infinitely many of
them).

7.2. Preliminaries and Finite Automata

For a set D and a set S C 2P we use |S to denote the downward closure of S, i.e. the
set JfS={RCD|3SeS:RCS} and 1S to denote the upward closure of S, i.e. the
set 1S ={R C D |35 €S :R DS} ThesetSisin both cases called the set of
generators of TS or |'S respectively. A set S is downward closed if it equals its downward
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closure, S = |S, and upward closed if it equals to its upward closure, S = 1S. The choice
operator ] (sometimes also called the unordered Cartesian product) is an operator that,
given a set of sets D = {Dy, ..., D,}, returns the set of all sets {dy,...,d,} obtained by
taking one element d; from every set D;. Formally,

n

[0 = {{d1,...,dn} | (d1,...,dn) € [ D:} (7.1)

i=1

where [] denotes the Cartesian product. Note that for a set D, [[{D} is the set of all
singleton subsets of D, i.e. [[{D} = {{d} | d € D}. Further note that if any D; is the
empty set ), the result is [[D = 0.

Let X be a set of variables. A symbol T over X is a mapping of all variables in X to
either O or 1, e.g. 7 = {X1 — 0, X2 — 1} for X = {X1, X2}. An alphabet over X is the
set of all symbols over X, denoted as Yx. For any X (even empty), we use 0 to denote
the symbol which maps all variables from X to 0, 0 € Xx.

A (nondeterministic) finite (word) automaton (abbreviated as NFA in the following)
over a set of variables X is a quadruple A = (Q, A, I, F)) where @ is a finite set of states,
I C Q is a set of initial states, F'C () is a set of final states, and A is a set of transitions
of the form (p,7,q) where p,q € @Q and 7 € Xx. We use p 5 ¢ € A to denote that
(p,7,q) € A. Note that for an NFA A over X = (), A is a unary NFA with the alphabet
Yx = {0}.

A run r of A over a word w = 1y 72... 7, € X% from the state p € @ to the state s € Q
is a sequence of states r = qoq1...¢, € QT such that g = p, g, =sand forall1 <i<n
there is a transition ¢i_; —= ¢; in A. If s € F, we say that r is an accepting run. We write
p = s to denote that there exists a run from the state p to the state s over the word w.
The language accepted by a state g is defined by L4(q) = {w|q == qr,q¢ € F}, while
the language of a set of states S C @ is defined as La(5) = U,cg La(g). When it is clear
which NFA A we refer to, we only write L(q) or L(S). The language of A is defined as
L(A) = L4(I). We say that the state ¢ accepts w and that the automaton 4 accepts
w to express that w € L4(q) and w € L(A) respectively. We call a language L C X%
universal iff L = ¥%.

For a set of states S C @Q, we define

postiaql(S) = | J{t | s =t € A},
seS

pre[aq](S) = U{t |t = s € A}, and
seS

cpre[a](S) = {t | postia]({t}) C S}.

The complement of A is the automaton Ac = (29, A¢, {I},1{Q\ F}) where Ac =
{P 5 post[ar)(P) ‘ PC Q}; this corresponds to the standard procedure that first

determinises A by the subset construction and then swaps its sets of final and non-final
states, and |{Q \ F'} is the set of all subsets of @) that do not contain a final state of A.
The language of A¢ is the complement of the language of A, i.e. L(A¢) = L(A).
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For a set of variables X and a variable X, the projection of X from X, denoted as
mx)(X), is the set X \ {X}. For a symbol 7, the projection of X from 7, denoted
mx)(7), is obtained from 7 by restricting 7 to the domain 7x)(X). For a transition
relation A, the projection of X from A, denoted as 7 xj(A), is the transition relation

{pﬁﬂ;)QIpLﬂzeA}-

7.3. Deciding WS1S with Finite Automata

The classical decision procedure for WS1S by Biichi [Biich9] (as described in Section 3.3
of [CDG™07]) is based on a logic-automata connection and decides validity (satisfiability)
of a WS1S formula ¢(X1, ..., X,) by constructing the NFA A, over { X7, ..., X, } which
recognises encodings of exactly the models of ¢. The automaton is built in a bottom-up
manner, according to the structure of p, starting with predefined atomic automata for
literals and applying a corresponding automata operation for every logical connective
and quantifier (A,V,—,3). Hence, for every sub-formula 1 of ¢, the procedure will
compute the automaton Ay, such that the language of Ay, L(Ay), represents exactly all
models of ¢, terminating with the result A,,.

The alphabet of A, consists of all symbols over the set X = {X1,...,X,} of free

variables of ¢ (for a,b € {0,1} and X = {X1, X2}, we use 2 Z to denote the symbol

{X1 = a, X2~ b}). A word w from the language of A, is a sequence of these symbols,

X1:e Xp:011 X1 :01100 . . .
€8 Xbio Xbi101" % 110100° We denote the i-th symbol of w as w[i], for i € N.

An assignment p : X — 2N mapping free variables X of ¢ to subsets of Ny is encoded
into a word w, of symbols over X in the following way: w, contains 1 in the j-th position
of the row for X; iff j € X; in p. Formally, for every i € Ny and X; € X, if i € p(Xj),
then w,[i] maps X; — 1. On the other hand, if i &€ p(Xj;), then either w,[i] maps
X; + 0, or the length of w is smaller than or equal to 7. Notice that there exist an
infinite number of encodings of p. The shortest one is wy of the length n + 1, where
n is the largest number appearing in any of the sets that is assigned to a variable of
X in p, or —1 when all these sets are empty. The rest of the encodings are all those

corresponding to wy, extended with an arbitrary number of 0 symbols appended to its

X1:0 X;:00 X;:000 X;:000...0
7 Xo9:17 X2:107 X2:100° X3 :100...0
p={X1+—0,Xs+— {0}}. For the soundness of the decision procedure, it is important
that A, always accepts either all encodings of p or none of them.

The automata Agny and Agyy are constructed from the automata A, and A, by
standard automata-theoretic union and intersection operations, preceded by the so-called
cylindrification which unifies the alphabets of A, and Ay. Since these operations, as
well as the automata for the atomic formulae, are not the subject of the contribution
proposed in the presented work, we refer the interested reader to [CDG™07] for details.

The part of the procedure which is central for the work presented in this chapter
is processing negation and existential quantification; we will therefore describe it in
detail. The NFA A_, is constructed as the complement of 4,. Then, all encodings

end. For example are all encodings of the assignment
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of the assignments that were accepted by A, are rejected by A-, and vice versa. The
NFA Asx., is obtained from the NFA A, = (Q, A, I, F) by first projecting X from the
transition relation A, yielding the NFA .Afp = (Q,mx)(A), I, F). However, .Afp cannot
be directly used as A3x.,. The reason is that .AZD may now be inconsistent in accepting
some encodings of an assignment p while rejecting other encodings of p. For example,

X7 :010 X;:0100 X;:0100...0
suppose that A, accepts the words X2 10017 Xp :0010° Xy :0010...0

the NFA for 9X5 : . When we remove the Xs row from all symbols, we obtain the NFA
.A:D that accepts the words X; :010, X;:0100, X;:0100...0, but does not accept the word

and we are computing

X; :01 that encodes the same assignment (because ;(; g,} ¢ L(A,) for any values in the

places of “?”s). As a remedy for this situation, we need to modify Afp to also accept the
rest of the encodings of p. This is done by enlarging the set of final states of A;, to also
contain all states that can reach a final state of A:O by a sequence of 0 symbols. Formally,
Asx., = (@, mx)(A), I, F%) is obtained from A, = (Q,mx)(A), I, F) by computing Ft
from F using the fixpoint computation F* = uZ.F U pre[rx(2),0(Z). Intuitively, the
least fixpoint denotes the set of states backward-reachable from F following transitions
of mx)(A) labelled by the symbol 0.

The procedure returns an automaton A, that accepts exactly all encodings of the
models of ¢. This means that the language of A, is (i) universal iff ¢ is valid, (ii) non-
universal iff ¢ is invalid, (iii) empty iff ¢ is unsatisfiable, and (iv) non-empty iff ¢ is
satisfiable. Notice that in the particular case of ground formulae (i.e. formulae without
free variables), the language of A, is either L(A,) = {0}* in the case ¢ is valid, or
L(A,) =0 in the case ¢ is invalid.

7.4. Nested Antichain-based Approach for Alternating

Quantifiers

We now present our approach for dealing with alternating quantifiers in WS1S formulae.
We consider a ground formula ¢ of the form

0 ==3Xp ...~ 33X =3 ¢ o(X) (7.2)
—_——
1
Pm
where each Xj is a set of variables { X, ..., Xp}, 3&; is an abbreviation for a non-empty

sequence 31X, ...3X} of consecutive existential quantifications, and g is an arbitrary
formula called the matriz of . Note that the problem of checking validity or satisfiability
of a formula with free variables can be easily reduced to this form.

The classical procedure presented in Section computes a sequence of automata
‘A‘/’O’Ag@%’ .. ’Awfnfl"A“’m where for all 0 < ¢ <m—1, go? =3X; 41 : ¢ and @11 = ﬂcpg.
The ¢;’s are the subformulae of ¢ shown in Equation Since eliminating existential
quantification on the automata level introduces nondeterminism (due to the projection
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on the transition relation), every 4 o4 may be nondeterministic. The computation of

Ag,,, then involves subset constructlon and becomes exponential. The worst case com-
plexity of eliminating the prefix is therefore the tower of exponentials of the height m.
Even though the construction may be optimised, e.g. by minimising every Ay, (which
is implemented by MONA), the size of the generated automata can quickly become
intractable.

The main idea of our algorithm is inspired by the so-called antichain algorithms [DR10]
(a general description of the principles of antichain algorithms can be found in Chapter
for testing language universality of an automaton A. In a nutshell, testing universality
of A is testing whether in the complement A of A (which is created by determinisation
via subset construction, followed by swapping final and non-final states), an initial state
can reach a final state. The crucial idea of the antichain algorithms is based on the
following: (i) The search can be done on the fly while constructing A. (ii) The sets
of states that arise during the search are closed (upward or downward, depending on
the variant of the algorithm). (iii) The computation can be done symbolically on the
generators of these closed sets. It is enough to keep only the extreme generators of the
closed sets (maximal for downward closed, minimal for upward closed). The generators
that are not extreme (we say that they are subsumed) can be pruned away, which vastly
reduces the search space.

We notice that individual steps of the algorithm for constructing A, are very similar

to testing universality. Automaton A, arises by subset construction from Asﬂ’j , and
1—1

to compute A o it is necessary to compute the set of final states Fti Those are states
backward reachable from the final states of A,, via a subset of transitions of A; (those
labelled by symbols projected to 0 by m;11). To compute Fiﬁ, the antichain algorithms
could be actually taken off-the-shelf and run with A o in the role of the input A and

Pi—1
A(pn in the role of A. However, this approach has the following two problems. First, an-

tichain algorithms do not produce the automaton A (here A ) but only a symbolic

representation of a set of (backward) reachable states (here of F jj) Since A o is the in-

put of the construction of Ay, ,, the construction of A, could not contlnue ‘The other
problem is that the size of the input A ol of the antlcham algorithm is only limited by

the tower of exponentials of the helght i 1 and this might be already far out of reach.

The main contribution of the work presented in this chapter is an algorithm that
alleviates the two problems mentioned above. It is based on a novel way of performing
not only one, but all the 2m steps of the construction of A, on the fly. It uses a nested
symbolic representation of sets of states and a form of nested subsumption pruning on
all levels of their structure. This is achieved by a substantial refinement of the basic
ideas of antichain algorithms.

7.4.1. Structure of the Algorithm

Let us now start explaining our on-the-fly algorithm for handling quantifier alternation.
Following the construction of automata described in Section the structure of the
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automata from the previous section, A, A(pﬁ yenn ,A¢n , Ag,., can be described using
0 m—1

the following recursive definition. We use 7;(C) for any mathematical structure C' to
denote projection of all variables in X} U ---U & from C.
Let Ay, = (Qo, Ao, 1o, Fp) be an NFA over X. Then, for each 0 < i < m, A(pg and

Ay, are NFAs over m;11(X) that have from the construction the following structure:

A = (Q@-,Ag,h,Ff) where | Ay, = (Qi+1,Ait1, Lit1, Fiy1) where

A' =71 (Ai)  and Qi1 = 29,

FZ-ti =pZ . F;Uprelafo)(Z). | Aip1 = {R T post[at7|(R) ‘ R e QiJrl} ,
Iivy ={;}, and

Fipa = 1{Qi\ F}.

We recall that ‘Aeo” directly corresponds to existential quantification of the variable X;

(cf. Section , énd Ag;,, directly corresponds to the complement of A@g (cf. Sec-
tion .

A crucial observation behind our approach is that, because ¢ is ground, A, is an NFA
over an empty set of variables, and, therefore, L(A,) is either the empty set () or the
set {0}* (as described in Section [7.3]). Therefore, we need to distinguish between these
two cases only. To determine which of them holds, we do not need to explicitly construct
the automaton A,. Instead, it suffices to check whether A, accepts the empty string e.
This is equivalent to checking existence of a state that is at the same time final and
initial, that is

= iff LN Fy, #0. (7.3)

To compute I,,, from Iy is straightforward (it equals {{...{{lo}}...}} nested m-times).
In the rest of the section, we will describe how to compute F,, (its symbolic representa-
tion), and how to test whether it intersects with I,,.

The algorithm takes advantage of the fact that to represent final states, one can
use their complement, the set of non-final states. For 0 < i < m, we write IV; and
Nf to denote the sets of non-final states Q; \ F; of A; and Q; \ Fiti of Ag respectively.
The algorithm will then instead of computing the sequence of automata A, A(pg s e

A¢n , Ay, compute the sequence Fy, Fg,Nl, Nf, ... up to either F,, (if m is even) or
m—1
Ny, (if m is odd), which suffices for testing the validity of ¢. The algorithm starts with

Fy and uses the following recursive equations:

(i) Fip1 = NP, (i) F} =pZ.F;Upreatn(2),

(]

(i) Nip1 =1[H{ED,  (iv) N} =vZ.N;ncpreato(2).

7

(7.4)

Intuitively, Equations (i) and (ii) are directly from the definition of A; and A?. Equa-
tion (iii) is a dual of Equation (i): ;41 contains all subsets of @); that contain at least
one state from Fl-ti (cf. the definition of the ] operator). Finally, Equation (iv) is a dual
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of Equation (ii): in the k-th iteration of the greatest fixpoint computation, the current
set of states Z will contain all states that cannot reach an Fj; state over 0 within & steps.
In the next iteration, only those states of Z are kept such that all their O-successors are
in Z. Hence, the new value of Z is the set of states that cannot reach F; over 0 in k + 1
steps, and the computation stabilises with the set of states that cannot reach F; over 0
in any number of steps.

In the next two sections, we will show that both of the above fixpoint computations
can be carried out symbolically on representatives of upward /downward closed sets. Par-
ticularly, in Sections and we show how the fixpoints from Equations (ii) and
(iv) can be computed symbolically, using subsets of );_1 as representatives (generators)
of upward /downward closed subsets of Q;. Section explains how the above symbolic
fixpoint computations can be carried out using nested terms of depth i as a symbolic
representation of computed states of );. Section shows how to test emptiness of
I, N F,, on the symbolic terms, and Section describes the subsumption relation
used to minimise the symbolic term representation used within computations of Equa-
tions (ii) and (iv). Proofs of the lemmas can be found at the ends of the respective
sections.

7.4.2. Computing Nf on Representatives of 1][R-sets

Computing Nf at each odd level of the hierarchy of automata is done by computing the
greatest fixpoint of the function from Equation iv):

fni(Z) = Ny eprelal)(Z). (7.5)

We will show that the whole fixpoint computation from Equation (iv) can be carried
out symbolically on the representatives of Z. We will explain that: (a) All intermediate
values of Z have the form T][R, R C @Qj, so the sets R can be used as their sym-
bolic representatives. (b) cpre and N can be computed on such symbolic representation
efficiently.

Let us start with the computation of cpre[a?,r](Z) where 7 € 7;11(X), assuming that
Z is of the form 1][R, represented by R = {Ry, ..., R,}. Observe that a set of symbolic
representatives R stands for the intersection of denotations of individual representatives,
formalised in the following lemma.

Lemma 7.1. Let R be a finite set of sets. Then, it holds that

IR = () IR} (7.6)

Rj ER

Z can thus be written as the cpre-image cpre[af,7]((S) of the intersection of the
elements of a set S having the form 1][{R;}, R; € R. Further, because cpre distributes
over N, we can compute the cpre-image of an intersection by computing intersection of
the cpre-images, i.e.

cpre[Ag,T](ﬂ S) = ﬂ cpre[af7)(S). (7.7)
Ses
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By the definition of Ag (where A? =mi+1(A;)), cpre[al 7](S) can be computed using the
transition relation A; for the price of further refining the intersection. In particular,

cpre[A ﬂ cpre[A;w) (S (7.8)

w€7rl+1( T)

Intuitively, cpre[a?,r](S) contains states from which every transition labelled by any sym-
bol that is projected to 7 by ;41 has its target in S. Using Lemma/[7.1]and Equations
and we can write cpre[a?r](Z) as

m cpre[n; w)(S). (7.9)
Ses
w67ri_+11 (1)

To compute the individual conjuncts cpre[A;«](S), we take advantage of the fact that
every S is in the special form T][{R;}, and that A; is, by its definition (obtained from
determinisation via subset construction), monotone w.r.t. 2. That is, if P s PeA
for some P,P' € Q;, then for every R D P, there is R* D P’ st. R = R € A,
Due to monotonicity, the cpre[a;w]-image of an upward closed set is also upward closed.
Moreover, we observe that it can be computed symbolically using pre on elements of
its generators. Particularly, for a set of singletons S = T][{R;}, we get the following
lemma:

Lemma 7.2. Let R; C Q;—1 and w be a symbol over m;(X) for i > 0. Then

epre(a; W) (TTI{R;}) = 111 {preial_, «wI(R;)}. (7.10)

Intuitively, the sets with post-images above a singleton {p} € {{p} | p € R;} =

T1I{R;} are those that contain at least one state ¢ € Qi1 s.t. ¢ —> p € Ag_l. Using
Lemma -, cpre[af 7)(Z) can be rewritten as

() T {preiat , wl(R))}. (7.11)
ReR
w67ri_+11 ()

By applying Lemma we get the final formula for cprejaf,s] shown in the lemma
below.

Lemma 7.3. Let R C Q; and 7 be a symbol over m;+1(X). Then

cpre(afA(T1IR) = T {prelal_wl(R)) |w € (7). Rj € R} (7.12)
In order to compute pr(Z), it remains to intersect cpre[a?n](Z), computed using

Lemma with N;. By Equation (iii), N; equals T]_[{Fiﬂ_l}, and, by Lemma
the intersection can be done symbolically as

fyi(2) = TIL({FL U {preist_l(Ry) |w € 4 (0), Ry € RY). (7.13)
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Finally, note that a symbolic application of f,: to Z = T]IR represented as the set R

reduces to computing pre-images of the elements of R, which are then put next to each
other, together with Fiﬂ_l. The computation starts from N; = T]_[{Fiﬂ_l}, represented

by {Fiu_l}, and each of its steps, implemented by Equation preserves the form of
sets T][R, represented by R.

Proofs of the Used Lemmas

Lemma 7.4. Let X and Y be sets of sets. Then it holds that

TIXNTIY =1 (XUY). (7.14)
Proof. From the definition of the ] operator, it holds that

THX:T{{xl,...,xn} ‘ (T1,...,2py) € HX} and
Y =t {{y1, - ym} | (W1, ym) € HY}

Notice that the intersection of a pair of upward closed sets given by their generators
can be constructed by taking all pairs of generators (X,Y), s.t. X is from [[X and Y is
from JJY, and constructing the set X UY. It is easy to see that X UY is a generator of
TIXNT]IY and that T][XNT]]Y is generated by all such pairs, i.e. that 1] [XN1T]]Y

is equal to

t{{z1, o Uy, ) | (21, ) € HX/\(yl,...,ym) € HY} (7.16)

We observe that this set can be also expressed as

T{{xl,...,xn,yl,...,ymH(xl,...,xn,yl,...ym) IS H(XUY)} (7.17)

or, to conclude the proof, as ][ (XUY). O

(7.15)

Lemma 7.1. Let R be a finite set of sets. Then, it holds that

TR = () T1I{R;}- (7.6)
Rj ER
Proof. Because intersection and union are both associative operations and R is a finite

set R = {Ry,...,R,}, this lemma is a simple consequence of Lemma O

Lemma 7.2. Let R; C Q;—1 and w be a symbol over 7;(X) fori > 0. Then

eprefdi @) (TTI{R;}) = T {pre(al_, wI(R))}. (7.10)

Proof. First, we show that the set cpre[a; w](T][{R;}) is upward closed. Second, we show
that all elements of the set [ {pre(a’_ w|(R;)} are contained in cpre[a;w)(T[[{R;}).

Finally, we show that for every element T in the set cpre[a;«](T[[{R;}) there is a smaller
element S in the set [ {pre(a’_ w)(R;)}.
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1. Proving that cpre[a, w](T][{R;}) is upward closed: Consider a state S € Q; s.t.
S € cpre[n;w](TLI{R;}). From the definition of cpre, it holds that

postiacwl({S}) € 1TT{R;, (7.18)

and from the definition of 4;, it holds that

post[a;w)({S}) = {postiai_,w)(S)}- (7.19)
For T' D S, it clearly holds that

post[al_ w|(T) 2 post[al_, w](S) (7.20)

K3

and, therefore, it also holds that

post|a;w)({T}) = {postial_, «|(T)} € T1I{R;}. (7.21)

Therefore, T € cpre[a;w](T][{R;}) and the set cpre(a,«](T[[{R;}) is upward
closed.

1—17
cpre[A; ) (TTI{R;}): From the properties of [], it holds that S = {s} is a single-
ton. Because s € pre[a? | «|(R;), there is a transition s — r € A§71 for some
r € Rj. Since postial_ w)(S) 2 {r}, it follows from the definition of A; that
post|a;wl({S}) = {T} where T' D {r}, and so T' € T][{R;} and post[a;w]({S}) C
T1I{R;}. We use the definition of cpre to conclude that S € cpreja;w](T][{R;})-

2. Proving that for every element S from []{pre(a’_ w|(R;)} it holds that S is in

3. Proving that for every T' € cpre[a;w](T][{R;}) there exists some element S €
[T {preia’_, «I(R;)} such that S C T: From T € cpre[a.«)(T][{R;}) and the
definition of A;, we have that

postia;w)({T}) = {P} C TTI{R;} (7.22)

for P s.t. post[a!_, w](T) = P. Since P € T][{R;}, there exists r € R; N P and

3

teTst. t=5rc qu- Because t € pre[a? | w]({r}), we choose S = {t} and we
are done. O

7.4.3. Computing Fiﬁ on Representatives of | R-sets

Similarly as in the previous section, computation of FZ-li at each even level of the automata
hierarchy is done by computing the least fixpoint of the function

fpt(Z) = F; U pre[alo)(2). (7.23)

i

We will show that the whole fixpoint computation from Equation (ii) can be again
carried out symbolically. We will explain the following: (a) All intermediate values of
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Z are of the form | R, R C @Q;, so the sets R can be used as their symbolic represen-
tatives. (b) pre and U can be computed efficiently on such a symbolic representation.
The computation is a simpler analogy of the one in Section [7.4.2

We start with the computation of pre[a?+](Z) where 7 € m;41(X), assuming that Z is
of the form | R, represented by R = {Ry,..., R,}. A simple analogy to Lemma and
Equation [7.7] of Section [7.4:2] is that the union of downward closed sets is a downward
closed set generated by the union of their generators, i.e. J|R = |J R,eR HR;} and that
pre distributes over union, i.e.

preiataA((JR) = | preat1({R;}). (7.24)

Rj ER

An analogy of Equation [7.§ holds too:

pre[af 71(S) = U pre[a;w)(S). (7.25)

w67r;+11 (1)

Intuitively, pre[af 7](S) contains states from which at least one transition labelled by any
symbol that is projected to 7 by m;11 leaves with the target in S. Using Equation [7.25]
we can write pre[A?,7](Z) as

U preaiwl({R;}). (7.26)
R;eR
w€7ri_+11 (7)

To compute the individual disjuncts pre[a; w](J{R;}), we take advantage of the fact
that every |[{R;} is downward closed, and that A; is, by its definition (obtained from
determinisation by subset construction), monotone w.r.t. C. That is, if P 5 P e A
for some P,P’ € Q;, then for every R C P, there is R* C P’ st. R = R’ € A
Due to monotonicity, the pre[A;w]-image of a downward closed set is downward closed.
Moreover, we observe that it can be computed symbolically using cpre on elements of its
generators. In particular, for a set [{R;}, we get the following lemma, which is a dual
of Lemma [7.2

Lemma 7.5. Let R; C Q;—1 and w be a symbol over m;(X) for i > 0. Then
prelaw(H{R;}) = Heprelal , w)(Ry)}. (7.27)

Intuitively, the sets with the post-images below the set R, are those which do not
have an outgoing transition leading outside R;. The largest such set is cpre[al_, w](R;).
Using Lemma pre[Af 7](Z) can be rewritten as

U Hepreat, wi(Ry)} (7.28)
Rj ER
w67r;+11 (1)

which gives us the final formula for preja?r] described in Lemma
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Lemma 7.6. Let R C Q; and 7 be a symbol over m;1+1(X). Then
pre(at (L R) = epreal , w)(R)) |w € 7, (1), Rj € R}. (7.29)

In order to compute f,:(Z), it remains to unite pre[af,0)(Z), which is computed using

Lemma with F;. From Equation (i), F; equals i{Niﬁfl}, so the union can be done
symbolically as

frpe(Z) =1 <{fo1} U {epreiai  wl(R;) |w € 715 (0), Ry € R}) (7.30)

Therefore, a symbolic application of f,+ to Z = | 'R represented using the set R reduces

to computing cpre-images of elements of R, which are put next to each other, together
with N z'ﬁ—l- The computation starts from F; = i{Nf_l}, represented by {Niﬁ_l}, and each
of its steps, implemented by Equation preserves the form of sets | R, represented
by R.

Proofs of the Used Lemmas

Lemma 7.5. Let R; C Q;—1 and w be a symbol over m;(X) for i > 0. Then

pre(a; wl(H{R;}) = {eprelal_, w(R;)}. (7.27)

Proof. First, we show that pre[a;w](J{R;}) is downward closed. Second, we show that
S = cpre[a!_ | w](R;) is in pre[a;w](J{R;}). Finally, we show that every element 7' in

3

pre[d;w](J{R;}) is smaller than S.

1. Proving that pre[a;«](J{R;}) is downward closed: Consider a state S € Q; s.t.
S" e preja;w](J{R;}). From the definitions of pre and A;, it holds that

post(aiw]({S'}) = {post(al_,«I(S)} € HR;}, (7.31)
and, therefore, post|a?_ w](S") € {R;}. For T C S, it clearly holds that
post[al_, w|(T) C post(al_, w|(S") (7.32)
and so it also holds that
post[aiw|({T}) = {post(al_, w|(T)} € {R;}. (7.33)
Therefore, T' € pre[a;w](I{R;}) and pre[a;w](J{R;}) is downward closed.

2. Proving that S = cprejal_| w)(R;) € pre[a;w](J{R;}): From the definition of cpre,
it holds that
postial_ w](S) =S C R;. (7.34)

Further, from the definition of A;, it holds that S —= S’ € A; and, therefore,
S e pT@[Ai,w](\L{Rj}).
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3. Proving that for every T' € pre[a;w](J{R;}) it holds that 7" C S: From T €
pre[a; w]({R;}), we have that T s PeAforPC Rj, and, from the definition of
A;, we have that P = post[a? | w)(T). From P = post|a? | w](T') and the definition
of cpre, it is easy to see that T C cpre[a?_ | w](P), and, moreover

PCR; = cpreial ,wl(P) C cpreiai ,wl(Ry). (7.35)

Therefore, we can conclude that T' C cpre[a?_ w](R;) = S. O

7.4.4. Computation of Ff and Nf on Symbolic Terms

Sections and show how sets of states arising within the fixpoint computations
from Equations ii) and (iv) can be represented symbolically using representatives
which are sets of states of the lower level. The sets of states of the lower level will be
again represented symbolically. When computing the fixpoint of level ¢, we will work
with nested symbolic representation of states of depth i. Particularly, sets of states of Qy,
0 < k <1, are represented by terms of level k where a term of level 0 is a subset of Qo,
a term of level 25 + 1, 7 > 0, is of the form T][{t1,...,t,} where t1,...,t, are terms of
level 2j, and a term of level 25, j > 0, is of the form [{¢,...,¢,} where ¢,... t, are
terms of level 25 — 1.

The computation of cpre and fNu on a term of level 25 + 1 and computation of

+
pre and fFu on a term of level 2j then becomes a recursive procedure that descends via

the structure of the terms and produces again a term of level 2j 4+ 1 or 2j respectively.

In the case of cpre and f,: called on a term of level 25 + 1, Lemma [7.3) reduces the
2j+1
computation to a computation of pre on its sub-terms of level 25, which is again reduced

by Lemma to a computation of cpre on terms of level 25 — 1, and so on until the
bottom level where the algorithm computes pre on the terms of level 0 (subsets of Qo).
The case of pre and [ called on a term of level 2j is symmetrical.

2j

Example. We will demonstrate the run of our algorithm on the following abstract
example. Consider a ground WS1S formula ¢ = —3X3-3X;—-3X] : ¢y and an NFA
Aog = (Qo, Ao, In = {a}, Fy = {a,b}) that represents ¢o. Recall that our method decides
validity of ¢ by computing symbolically the sequence of sets Fg , N1, Nf, Fy, Fg, N3, each
of them represented using a symbolic term, and then checks if I3 N N3 # (). In the
following paragraph, we will show how such a sequence is computed and interleave the
description with examples of possible intermediate results.

The fixpoint computation from Equation (ii) of the first set in the sequence, Fg , 18
an explicit computation of the set of states backward-reachable from Fy via 0 transitions
of A%. It is done using Equation yielding e.g. the term

tFl = FE = {a,b, c}.

The fixpoint computation of Nf from Equation (iv) is done symbolically. It starts
from the set Nj represented using Equation iii) as the term ¢[N;] = TH{{a, b, c}},
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and each of its iterations is carried out using Equation Equation transforms
the problem of computing cpre[A; «']-image of a term into a computation of a series of
pre[Al w]-images of its sub-terms, which is carried out using Equation in the same
way as when computing t[F], ending with e.g. the term

tivf) = t11{{a. b, c}, {b,c}, {c, d}}.

The term representing Fj is then t[m] = [{t[N?]}, due to Equation [7.4(i). The symbolic
fixpoint computation of Fg from Equation [7.4(ii) then starts from ¢[F], in our example

ti) = L{1T1{{a .}, {b.c} {e d} ).

Its steps are computed using Equation [7.30] which transforms the computation of the
image of pre[af,w”] into computations of a series of cpre[a? w/l-images of sub-terms. These
are in turn transformed by Lemma into computations of pre[Af w]-images of sub-sub-
terms, subsets of g, in our example yielding e.g. the term

tir) = L{ I {{a b b, 0, ch {e a ) LR} 4} ) T T {ah e b}

Using Equation [7.4[iv), the final term representing N3 is then

e = 1T (e, ) (e TR A1) T, e -

In the next section, we will describe how we check whether I3NF3 # () using the computed
term t[Ns].

?
7.4.5. Testing I,, N F,, # ) on Symbolic Terms

Due to the special form of the set I,,, (every I;,1 < ¢ < m, is the singleton set {I;_1},
cf. Section , the test I,, N Fy,, # () can be done efficiently over the symbolic terms
representing Fy,. Because I, = {[,,—1} is a singleton set, testing I,, N F,, # 0 is
equivalent to testing I,,_1 € F,,. If m is odd, our approach computes the symbolic
representation of N, instead of F;,. Obviously, since IN,, is the complement of F},, it
holds that I,,,_1 € F, <= I_1 & Np. Our way of testing I,,,_1 € Y, on a symbolic
representation of the set Y,,, of level m is based on the following equations:

{z} elY — JYeY:zxeY (7.36)
{z} et][]Y <<= WeY:zeY (7.37)
and for i = 0, Ihet]]lY <« WeY:IhjnY #0. (7.38)

Given a symbolic term t[x] of level m representing a set X C @Q),,, testing emptiness of
I, NF,, or I, N Ny, can be done over t[X] by a recursive procedure that descends along
the structure of ¢[x] using Equations and essentially generating an And-Or
tree, terminating the descent by the use of Equation [7.38]
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Example. In the example of Section we would test whether {{{{a}}}} " N3 =10
over t[N3]. This is equivalent to testing whether Iy = {{{a}}} € N3. From Equation
we get that

IeNs — I, ={{a}} € F} (7.39)

because F2ti is the denotation of the only sub-term ¢[F}] of ¢[N;]. Equation implies
that

I = {{a}} € F} < {a} € NIv{a} e t11{{b}, {d}} v{a} € t][{{a}, {c,d}}. (7.40)

Each of the disjuncts could then be further reduced by Equation [7.37]into a conjunction
of membership queries on the base level which would be solved by Equation Since
none of the disjuncts is satisfied, we conclude that [; & Fg , so Iy € N3, implying that
I, € F3 and thus obtain the result = ¢.

7.4.6. Subsumption of Symbolic Terms

Although the use of symbolic terms instead of an explicit enumeration of sets of states
itself considerably reduces the searched space, an even greater degree of reduction can
be obtained using subsumption inside the symbolic representatives to reduce their size,
similarly as in the antichain algorithms [WDHRO06]. For any set of sets X containing
a pair of distinct elements Y, Z € X s.t. Y C Z, it holds that

IX=1(X\Y) and T]IX=1]I(X\ 2). (7.41)

Therefore, if X is used to represent the set | X, the element Y is subsumed by Z and can
be removed from X without changing its denotation. Likewise, if X is used to represent
111X, the element Z is subsumed by Y and can be removed from X without changing
its denotation. We can thus simplify any symbolic term by pruning out its sub-terms
that represent elements subsumed by elements represented by other sub-terms, without
changing the denotation of the term.

Computing subsumption on terms can be done using the following two equations:

IXClY = VXeXIVeY:XCY (7.42)

FIXCHY <= VYeVYiXeX:XCY. (7.43)
Using Equations and testing subsumption of terms of level i reduces to testing
subsumption of terms of level ¢ — 1. The procedure for testing subsumption of two
terms descends along the structure of the term, using Equations and on levels

greater than 0, and on level 0, where terms are subsets of (g, it tests subsumption by
set inclusion.

Example. In the example from Section we can use the inclusion {b, ¢} C {a,b, ¢}
and Equation to reduce t[Nf] = T]_[{{a, b, c}, {b,c}, {c, d}} to the term

v = TH{{b, c} {c, d}}
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Table 7.1.: Results for practical examples

Time s] Space [states]

Benchmark MONA | dWiNA || MONA | dWiNA
reverse-before-loop || 0.01 0.01 179 47
insert-in-loop 0.01 0.01 463 110
bubblesort-else 0.01 0.01 || 1285 271
reverse-in-loop 0.02 0.02 || 1311 274
bubblesort-if-else 0.02 0.23 || 4260 1040
bubblesort-if-if 0.12 1.14 || 8390 2065

Moreover, Equation implies that the term t[[{{b,c},{c,d}} is subsumed by the
term TH{{b}, {d}}, and, therefore, we can reduce the term t[F] to the term

st = L{TTI{{0} (a3}, 11T {{al, {e, a} )}

7.5. Experimental Evaluation

We implemented a prototype of the approach presented in this chapter in the tool
dwiNA [FHLV14] and evaluated it in a benchmark of both practical and generated ex-
amples. The tool uses the frontend of MONA to parse input formulae and also for
the construction of the base automaton A, and further uses the semi-symbolic encod-
ing of NFAs (represented as unary TAs) from the VATA library, which is described in
Chapters [9 and [I0] The tool supports the following two modes of operation.

In mode I, we use MONA to generate the deterministic automaton A, corresponding
to the matrix of the formula ¢, translate it to VATA and run our algorithm for handling
the prefix of ¢ using VATA. In mode II, we first translate the formula ¢ into the formula
¢’ in prenex normal form (i.e. it consists of a quantifier prefix and a quantifier-free
matrix) where the occurence of negation in the matrix is limited to literals, and then
construct the nondeterministic automaton A, directly using VATA.

Our experiments were performed on an Intel Core i7-4770@3.4 GHz processor with
32 GiB RAM. The practical formulae for our experiments that we report on here were
obtained from the shape analysis of [MQ11] and evaluated using mode I of our tool;
the results are shown in Table (see [FHLV14] for additional experimental results).
We measure the time of runs of the tools for processing only the prefix of the formulae.
We can observe that w.r.t. the speed, we get comparable results; in some cases dWiNA is
slower than MONA, which we attribute to the fact that our prototype implementation
is, when compared with MONA | quite immature. Regarding space, we compare the sum
of the number of states of all automata generated by MONA when processing the prefix
of ¢ with the number of symbolic terms generated by dWiNA for processing the same.
We can observe a significant reduction in the generated state space. We also tried to
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Table 7.2.: Results for generated formulae

Time [s] Space [states]
k|| MONA [ dWwiNA || MONA | dWiNA
1 0.11 | 0.01 || 10718 39
2 0.20 | 0.01 | 25517 44
3 0.57 | 0.01 || 60924 50
4 179 | 0.02 || 145765 58
5 4.98 | 0.02 || 349314 70
6 oo | 047 00 90

run dWiNA on the modified formulae in mode II but ran into the problem that we were
not able to construct the nondeterministic automaton for the quantifier-free matrix g
in reasonable time. This was because after transformation of ¢ into prenex normal form,
if g contains many conjunctions, the sizes of the automata generated using intersection
grow too large (one of the reasons for this is that VATA in its current version does not
support efficient reduction of automata).

To better evaluate the scalability of our approach, we created several parameterised
families of WS1S formulae. We start with basic formulae encoding interesting relations
among subsets of Ny, such as existence of certain transitive relations, singleton sets, or
intervals (their full definition can be found in [FHLV14]). From these we algorithmically
create families of formulae with larger quantifier depth, regardless of the meaning of the
created formulae (though their semantics is still nontrivial). In Table we give the
results for one of the families where the basic formula expresses existence of an ascending
chain of n sets ordered w.r.t. C (the value oo denotes a timeout). The parameter k stands
for the number of alternations in the prefix of the formulae:

IV -3X - 23X X A (X CY AKX C X)) = X C Y.
1<i<n

We ran the experiments in mode IT of dWiNA (the experiment in mode I was not successful
due to a too costly conversion of a large base automaton from MONA to VATA).

7.6. Conclusion and Future Work

We presented a new approach for dealing with alternating quantifications within the
automata-based decision procedure for WS1S. Our approach is based on a generalisa-
tion of the idea of the so-called antichain algorithm for testing universality or language
inclusion of finite automata. Our approach processes a prefix of the formula with an
arbitrary number of quantifier alternations on the fly using an efficient symbolic rep-
resentation of the state space, enhanced with subsumption pruning. Our experimental
results are encouraging (our tool outperforms MONA in many cases) and show that the
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direction started in this work—using modern techniques for nondeterministic automata
in the context of deciding WS1S formulae—is promising.

An interesting direction of further development seems to be lifting the symbolic
pre/cpre operators to a more general notion of terms that would allow one to work
with general sub-formulae (which may include logical connectives and nested quanti-
fiers). The algorithm could then be run over arbitrary formulae, without the need of the
transformation into the prenex form. This would open a way of adopting optimisations
used in other tools as well as syntactical optimisations of the input formula such as anti-
prenexing. Another way of improvement is using simulation-based techniques to reduce
the generated automata as well as to weaken the term-subsumption relation (an efficient
algorithm for computing simulation over BDD-represented automata is needed). We also
plan to extend the algorithms to WSES and tree-automata, and perhaps even further to
more general inductive structures.
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Part 111.

Efficient Techniques for
Manipulation of Nondeterministic
Tree Automata
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8. Downward Inclusion Checking for
Tree Automata

The previous chapters of this thesis introduced several formal verification techniques
that rely on finite tree automata. Even before, there have been numerous other ap-
plications of TAs, such as (abstract) regular tree model checking [AJMd02, BHRV12],
verification of programs with complex dynamic data structures [BHRV06], analysis of
network firewalls [Boull], and implementation of decision procedures of logics such as
WS2S or MSO [KMS02], which themselves have numerous applications (among the most
recent and promising ones, let us mention at least verification of programs manipulating
heap structures with data [MPQ11]).

Recently, there has been notable progress in the development of algorithms for effi-
cient manipulation of nondeterministic finite tree automata (TAs), more specifically, in
solving the crucial problems of automata reduction [ABH™08] and of checking language
inclusion [THO3, BHH08, ACH"10]. As shown e.g. in [BHHT08], replacing determin-
istic automata by nondeterministic ones can—in combination with the new methods for
handling TAs—Ilead to great efficiency gains. In the work presented in this chapter, we
further advance the research on efficient algorithms for handling TAs by proposing a new
algorithm for inclusion checking that turns out to significantly outperform the existing
algorithms in most of our experiments.

Upward inclusion checking. The classic textbook algorithm for checking inclu-
sion L(Ag) C L(Ap) between two TAs Ag (Small) and Ap (Big) first bottom-up
determinises Ap, computes the complement automaton Ap of Ap (the states, called
macrostates, of which are sets of states of Ap), and then checks language emptiness of
the product automaton accepting L(Ag) N L(Ag). This approach has been optimised in
[THO3, BHH™ 08, IACH™10] by avoiding the construction of the whole product automaton
(which can be exponentially larger than Ap and which is indeed extremely large in many
practical cases) by constructing its states and checking language emptiness on the fly.
The optimised algorithm is based on starting from the leaf states of both automata and
maintaining a set of reachable pairs (qg, Pg) where ¢g is a state of Ag and Pp is a set
of states of Ap. New pairs (gg, Pg) are generated by taking a tuple of states qi1,...,¢qn
such that every ¢; appears in some reachable pair (¢;, P;) and ¢g is a bottom-up post
of the tuple in Ag over some symbol a. The set Pp is then obtained as the bottom-up
a-post in Apg of all tuples in P; X - - - X P,. In case ¢g is a root state and Pg, on the other
hand, contains no root state, the algorithm terminates with the answer L(Ag) Z L(Ap)
(this corresponds to finding a witness from the set L(Ag) N L(Ag)). If no new pair can
be generated, the algorithm concludes that L(As) C L(Ap).
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The particular optimisation used in [TH03, BHHT08, ACH" 10|, called the antichain
principle, is based on removing from the set of reachable pairs those pairs (¢g, Pg) for
which there is already a reachable pair (¢g, Pj;) in the set, with Pj; C Pg. The argument
why this pruning is correct is that Py has a higher chance to generate a set of states that
contains no root state. On the other hand, for every set of states reachable from Pp,
there will be a corresponding larger (w.r.t. inclusion) set of states reachable from Pg, so
if the set reachable from Pj; contains a root state r, the set reachable from Pp will also
contain r. This can be even more optimized by the approach of [ACH™ 10|, which uses
the upward simulation relation to weaken the conditions for removing a pair from the
set of reachable states. The mentioned optimisations in practice often prove or refute
inclusion by constructing a small part of the product automaton onlyﬂ We denote these
algorithms as upward algorithms to reflect the direction in which they traverse automata
Ag and Ap.

The upward algorithms are sufficiently efficient in many practical cases. However,
they have two drawbacks: (i) When generating the bottom-up post-image of a set S
of macrostates (which are sets of states of Apg), all possible n-tuples of states from all
possible products S; x ... x S, where S; € S need to be enumeratedﬂ (ii) Moreover,
these algorithms are known to be compatible with only upward simulations as a means
of their possible optimisation, which is a disadvantage since downward simulations are
often much richer and also cheaper to compute.

Downward inclusion checking. The alternative downward approach to checking TA
language inclusion was first proposed in [HVP05] in the context of subtyping of XML
types. With hindsight, we can consider it as an on-the-fly version of the algorithm for
constructing the difference automaton for a pair of TAs, proposed by Hosoya [Hos11].
The inclusion algorithm is not derivable from the textbook approach and has a more
complex structure with its own weak points; nevertheless, it does not suffer from the
two issues of the upward algorithm mentioned above. We generalise the algorithm of
[HVPO05] for automata over alphabets with an arbitrary rank ([HVPO05] considers rank
at most two), and, most importantly, we improve it significantly by using the antichain
principle, empowered by a use of the cheap and usually large downward simulation.
In this way, we obtain an algorithm which is complementary to and highly competitive
with the upward algorithm as shown by our experimental results (in which the newly
proposed algorithm significantly dominates in most of the considered cases).

! The work of [THO3] does, in fact, not use the terminology of antichains despite implementing them in
a symbolic, BDD-based way. It specialises to binary tree automata only. A more general introduction
of antichains within a lattice-theoretic framework appeared in the context of finite word automata in
[WDHRO06]. Subsequently, [BHHT08] generalised [WDHRO6] for explicit upward inclusion checking
on TAs and experimentally advocated its use within the abstract regular tree model checking frame-
work [BHHT08|. See also [DR10] for other combinations of antichains and simulations for finite word
automata.

ZNote that this can be slightly optimised by a technique presented in Chapter
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Outline. The rest of this chapter is organised as follows. Section describes our
basic downward inclusion checking algorithm, followed by Section that contains a de-
scription of its further optimisations. Section presents experimental comparison of
the downward algorithms with the upward algorithms, and Section concludes the
chapter.

8.1. Downward Inclusion Checking

Let us fix two tree automata Ag = (Qg,%,Ag,Rs) and Ap = (@p,%,Ap, Rp) for
which we want to check whether the language inclusion L(Ag) C L(Ap) holds. If we try
to answer this query top-down and we proceed in a naive way, we immediately realise
that the fact that the top-down successors of particular states are tuples of states leads
us to checking inclusion of the languages of tuples of states. Subsequently, the need to
compare the languages of each corresponding pair of states in these tuples will again
lead to comparing the languages of tuples of states, and hence, we end up comparing the
languages of tuples of tuples of states, and the need to deal with more and more nested
tuples of states never stops.

For instance, given a transition ¢ — a(pi1,p2) in Ag, transitions r — a(s1, s2) and
r — a(ti,t2) in Ap, and assuming that there are no further top-down transitions
from ¢ and 7, it holds that L(q) € L(r) if and only if L((p1,p2)) € L((s1,s2)) U
L((t1,t2)). Note that the union L((s1,s2))UL((t1,t2)) cannot be computed component-
wise, this is, L((s1,s2)) U L((t1,t2)) # (L(s1) U L(t1)) x (L(s2) U L(t2)). For instance,
provided L(s1) = L(s2) = {b} and L(t1) = L(t2) = {c}, it holds that L((s1,s2)) U
L((t1,t2)) = {(b,b), (¢, )}, but the component-wise union is a larger set (L(s1) U L(t1)) x
(L(s2) U L(t2)) = {(b,b),(b,¢),(c,b),(c,c)}. Hence, we cannot simply check whether
L(p1) € L(s1) U L(t1) and L(p2) C L(s2) U L(t2) to answer the original query, and we
have to proceed by checking inclusion on the obtained tuples of states. However, explor-
ing the top-down transitions that lead from the states that appear in these tuples will
lead us to dealing with tuples of tuples of states, etc.

Fortunately, there is a way out of the above trap. In particular, as first observed
in [HVPO05] in the context of XML type checking, we can exploit the following property
of the Cartesian product of sets G, H C U for a universe U:

GxH=(GxU)NUx H). (8.1)
Continuing in our example, this means that we can rewrite the expression
L(p1) x L(p2) € L((s1,52)) U L((t1, t2)), (82)
which is equivalent to
L(p1) x L(p2) € (L(s1) x L(s2)) U (L(t1) x L(t2)), (8.3)
as the expression

L(pl) X L(pg) C ((L(Sl) X TE) N (TE X L(Sg))) U
((L(t1) x Tx) N (Tx x L(t2))).
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This can further be rewritten, using the distributive laws in the (275*7s, Q) lattice, as

(
L(py) x L(p2) S ((L(s1) x Tx) U (L(t1) x T%)) N
((L(s1) x Ts) U (Tx, x L(t2))) N
(T x L(s2)) U(L(t1) x Tg)) N
((Tx; x L(s2)) U (Tx, x L(t2))).
It is easy to see that inclusion between a set and an intersection of several sets holds

exactly if it holds for all components of the intersection. In our example, this means
that the inclusion from Equation [8.5] holds if and only if the following formula is true:

(8.5)

AA,_\/_\

L(p) x L(p2) S ((L(s1) x To) U (L(t1) x Tx)) A

L(p1) x L(p2) € ((L(s1) x Tx) U (TZ x L(t2))) A (8.6)
L(p1) x L(p2) < (( Tz X L (s2)) U (L(t1) x Tx)) A ‘
L(p1) x L(p2) € ((Tx x L(s2)) U (Tg X L (t2))).

Two things should be noted in the previous formula.

1. If we are computing the union of languages of a pair of tuples such that they have
Tx, at all indices other than some index ¢, we can compute it component-wise,
i.e. the inclusion test

L(p1) x L(p2) € ((L(s1) x Tx) U (L(t1) x Tx)) (8.7)
can be simplified to the test
L(p1) x L(p2) € (L(s1) U L(t1)) x Ts. (8.8)

Because L(p2) is always a subset of T, the above clearly holds iff L(p;) C L(s1)U
L(ty).

2. If Ty, does not appear at the same positions as in the inclusion
L(p1) x L(p2) € ((L(s1) x Tx) U (Tx x L(t2))), (8.9)
it must hold that either
L(p1) C L(s1) or L(p2) C L(t2). (8.10)
Using the above observation and Equation we can finally rewrite the equation

L(p1) x L(p2) € L((s1,52)) U L((t1, 2)) (8.11)

into the following formula, which does not contain languages of tuples but of single states
only:

L(p1) € L(s1) U L(t1) A

(L(p1) € L(s1) V. L(p2) C Litz)) A (8.12)

(L(p1) € L(t1) V. L(p2) C L(s2)) A '
L(p2) € L(s2) U L(t2)
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The above reasoning can be generalised to dealing with transitions of any arity as
shown in Theorem In the theorem, we conveniently exploit the notion of choice
functions. Given Pg C Qp and a € X, #a = n > 1, we denote by c¢f(Pp,a) the set of
all choice functions f that assign an index i, 1 < i <mn, to all n-tuples (q1,...,qn) € Q%
such that there exists a state in Pp that can make a top-down transition over a to

(q1s- -, qn); formally, cf(Pp,a) ={f | f: down,(Pg) — {1,...,#a}}.

Theorem 8.1. Let Ag = (Qs, %, Ag, Rs) and Ap = (Qp, %X, Ap, Rp) be tree automata.
For sets Ps C Qg and Pg C Qp it holds that L(Ps) C L(Pg) if and only if ¥ps €
Ps,Ya € ¥ :ifps = a(ry,...,r4aq),

downq(Pp) = {()} if #a =0,
then Vf € cf(Pp,ya),31 <i < #a: L(r;) C U L(u;) if #a > 0.
uedowng (Pg)
f(@)=i

Proof. For two sets Ps C Qg, Pp C @p, it clearly holds that L(Pgs) C L(Pp) if and only
if Vpg € Pg,Va € X :

ps = a(ri,...,rn) = L((r1,...,m)) C U L((u1, ..., uy)). (8.13)
(w1,....un)Edowng (Pp)

For the case when #a = 0, the above formula collapses to

ps—a() = L) S [J L) (8.14)

()edownq(Pp)

Since down,(Pp) C {()} for #a = 0, the first part of the theorem is proven. We prove the
second part (when #a > 0) in the following steps. Let us fix n = #a, © = (u1,...,u),

7= (r1,...,m). Then we can observe that the inclusion
L((ry,...,m) € | L, un) (8.15)
wedownq (Pp)

is equivalent to the inclusion

[[reoc U J]Zw), (8.16)

=1 ucedowng(Pp) =1

where [];", S; denotes the Cartesian product of a family of sets {S,...,S,}. We can
further observe that for a universe U and a family of sets {S1,...,S,} such that S; CU
for all 1 <7 <n, it holds that

n n

[[si= " xSi=xu. (8.17)
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Given the family of sets {L(u1),. .., L(u,)} and the decomposition from Equation
we can rewrite the formula from Equation [3.16]as

n n

I[[reoc U () [T5" x Lws) x T& | (8.18)

=1 u€downg (Pp) Li=1

Since the power set lattice (295, C) is completely distributive, we can exploit the fact
that for any doubly indexed set {z;x € 297 | j € J,k € K;} it holds

U M@= Uzise (8.19)
jET kEK; feFjed

where F' is the set of all choice functions f choosing for each index j € J some index
f(j) € Kj. For our purpose, we introduce the set of choice functions:

cf(Pp,a) ={f| f:down,(Pg) — {1,...,n}} (8.20)

where every f assigns to every tuple from down,(Pp) an index. Therefore, after applying
the distributive law on Equation [8.18| we obtain

n

[Teeac N U [T L) x5 7] 8.21)

i=1 fecf(Pp,a) |ucdownq(PR)

Due to the fact that for a universe U, a set T C U in this universe, and an intersection
of a family of sets R C 2“4, it holds that
TC (]S < VSieR:TCS, (8.22)
S:€R

we can simplify our case to

Vf € of(Ppa): [[L) € | [Tg@—l X L(ugm) x T T (8.23)
i=1

uedowng (Pg)

Further, observe that for a fixed choice function f, we can use f to split the tuples from
down,(Pp) into n sets, each of them containing tuples @ that are assigned by f the same
index i = f(w). We can then rewrite the right-hand side of the previous inclusion query
to the following:

U [Tg@‘l X L{upm) x To! @} - (8.24)

uedowng (PB)

U U [T xLw) T8 | = (8.25)
=1 [ Gedownq(Pg)
f@)=i
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U |75 % U Zu)| <18 (8.26)
i=1 uedowng (PB)
f@)=i

It can be observed that for a universe & and two families of sets {S1,...,S5,} and
{51,...,5},} such that S;, S, C U for all 1 <i <mn, it holds that
n n ) )
I[s ¢ YU =xsixur] if 3J<i<n:SCS; (8.27)
i=1 i=1

We can now finally deduce that the formula

VieF:[[L() c |J |75 x U L(uw)| x18" (8.28)
i=1 i=1 uedownq (Pg)
f@)=i
is equivalent to the formula
VfeFIl<i<n:L(rm) € |J L(w), (8.29)
uedowng (Pp)
f@)=i
which concludes the proof. O

8.1.1. Basic Algorithm for Downward Inclusion Checking

Next, we construct a basic algorithm for downward inclusion checking on tree automata
As = (Qs,2,As,Rg) and Ap = (Qp, %X, Ap,Rp). The algorithm is shown as Algo-
rithm Its main idea relies on a recursive application of Theorem in function
expandl. The function is given a pair (ps, Pg) € Qs x 295 for which we want to
prove that L(pg) C L(Pp)—initially, the function is called for every pair (gg, Fp) where
qs € Fg. The function enumerates all possible top-down transitions that Ag can do
from pg (lines . For each such transition, the function either checks whether there
is some transition pgp — a() for pp € Pp if #a = 0 (line , or it starts enumerating
and recursively checking queries L(py) € L(Pj;) on which the result of L(ps) C L(Pg)
depends according to Theorem (lines [9H16)).

The expandl function keeps track of which inclusion queries are currently being
evaluated in the set workset (line [2). Encountering a query L(py) C L(Pp) with
(py, Pp) € workset means that the result of L(ply) € L(Pp) depends on the result
of L(ply) C L(Pp) itself. In this case, the function immediately successfully returns
because the result of the query then depends only on the other branches of the call tree.
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Algorithm 8.1: Downward inclusion
Input: TAs As = (Qs,%,Ag,Rs), Ap = (Qp,%,Ap, Rp)
Output: true if L(Ag) C L(Ap), false otherwise

1 foreach ¢qg € Rg do

2 L if —expandi(qs, Rp,0) then return false;

3 return true;

Function expandl(pg, Pp, workset)
// ps € Qg, PpC Qp, and workset C Qg x 29B

1 if (pg, Pp) € workset then return true;

2 workset := workset U {(ps, Pp)};

3 foreach a € ¥ do

4 if #a = 0 then

5 | if downg(ps) # 0 A downg(Pp) = 0 then return false ;

6 else

7 W := down,(Pg);

8 foreach (ri,...,744) € downy(ps) do /! ps = a(ri, ..., T4q)
9 foreach fe {W — {1,...,#a}} do // Vf e cf(Pp,a)
10 found := false;

11 foreach 1< i< #ado // 31 < i< #a

12 S={qi | (q1,- - qpa) €W, f((q1,-- -, q3a)) = i};

13 if expandi(r;, S, workset) then // if L(r;) C L(S)
14 found := true;

15 break;

16 if =found then return false;

17 return true;

Using Theorem [8.1] and noting that Algorithm [8.1] necessarily terminates because all
its loops are bounded, and the recursion in function expand1 is also bounded due to the
use of workset, it is not difficult to see that the following theorem holds.

Theorem 8.2. When applied on a pair of TAs As = (Qs,%,As,Rg) and Ap =
(@B, %, Ap,Rp) s.t. Qs N Qp = 0, Algorithm terminates and returns true if and
only if L(As) € L(Ap).

8.2. Optimisations of Downward Inclusion Checking

In this section, we propose several optimisations of the basic algorithm presented above
that, according to our experiments, often have a huge impact on the efficiency of the
algorithm—making it in many cases the most efficient algorithm for checking inclusion
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Algorithm 8.2: Downward inclusion (antichains + preorder)
Input: TAs As = (Qs,%,As, Rs), Ap = (@B, %, A, Rp),
preorder < C (Qs UQp)?
Output: true if L(Ag) C L(Apg), false otherwise
Data: NN := 0);
1 foreach ¢qs € Rg do
2 L if —expand2(qs, Rp, ) then return false;

3 return ftrue;

on tree automata that we are currently aware of. In general, the optimisations are based
on an original use of simulations and antichains in a way suitable for the context of
downward inclusion checking.

In what follows, we assume that there is available a preorder < C (QsUQp)? compat-
ible with language inclusion, i.e. such that p < ¢ = L(p) C L(q), and we use P <3 R
where P,R C (Qs U @p)? to denote that ¥p € P3r € R: p < r. An example of such
a preorder, which can be efficiently computed, is the maximal downward simulation <p
(see [HS09]).

8.2.1. Optimisation with Antichains and Simulation-based Pruning

First, we propose the following concrete optimisations of the downward checking of
L(ps) € L(Pp):

a) If there exists a state pp € Pp such that pg < pp, then the inclusion clearly holds
(from the assumption made about <), and no further checking is needed.

b) Next, it can be seen without any further computation that the inclusion does not hold
if there exists some (ply, Pj) such that ply < ps and P <"3 P}, and we have already
established that L(py) € L(Pg). Indeed, we have L(Pp) C L(Pg) 2 L(p) € L(ps),
and therefore L(ps) € L(Pp).

c) Finally, we can stop evaluating the given inclusion query if there is some (p, Pp) €
workset such that pg =< p and Pp <¥3 Pg. Indeed, this means that the result of
L(py) € L(Py) depends on the result of L(pg) C L(Pg). However, if L(py) C L(Pf)
holds, then also L(ps) € L(Pg) holds because we have L(ps) C L(ps) € L(Pp) C
L(Pg). On the other hand, if L(ply) C L(Pj) does not hold, the path between
(Pls, Pg) and (pg, Pg) cannot be the only reason for that since a counterexample has
not been found on that path yet, and the chance of finding a counterexample is only
smaller from (pg, Pp).

The version of Algorithm including all the above proposed optimisations is shown
as Algorithm (the changes are highlighted in the pseudocode). The optimisations can
be found in the function expand2 that replaces the function expandi. In particular, line[2]
implements optimisation @, line|l|optimisation @, and line optimisation . In order
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Function expand2(pg, Pp, workset)
// ps € Qg, PpC Qp, and workset C Qg x 29B

1 if 3(pl, Pp) € NN : ply < ps A Pg <77 Pj, then return false ;

2 if dp € Pp : ps X p then return true ;

3 if 3(ply, Pp) € workset : ps < pls A P <77 Pg then return true ;

4 workset := workset U {(ps, Pg)};

5 foreach a € ¥ do

6 if #a =0 then

7 ‘ if downg(ps) # 0 A downg(Pg) = () then return false ;

8 else

9 W = downy(Pp);

10 foreach (ri,...,7r4,) € down,(ps) do /] ps —a(ri,...,r4q)
11 foreach fe{W — {1,...,#a}} do // Yf € cf(Pp,a)
12 found := false;

13 foreach 1 < i < #a do // A1 <i < #a

14 Si={aq|(q, - q%a) €W, f((q1,- -, qa)) = i};

15 if expand2(r;, S, workset) then // if L(r;) C L(S)
16 found := true;

17 break ;

18 if (' H)€ NN :v' <r; AS <3 H then

19 |_ NN := (NN\{(+',H) | H <" S,r; =P U{(r,9)};
20 if =found then return false;

21 return true;

to implement optimisation @, the algorithm maintains a new set NN. This set stores
pairs (pg, Pp) for which it has already been shown that the inclusion L(ps) € L(Pg)
does not hold.

As a further optimisation, the set NN is maintained as an antichain w.r.t. the preorder
that compares the pairs stored in NN such that the states from Qg on the left are
compared w.r.t. <, and the sets from 295 on the right are compared w.r.t. =37 (line.
Clearly, there is no need to store a pair (pg, Pg) that is bigger in the described sense
than some other pair (py, Pp) since every time (pg, Pg) can be used to prune the search,
(pls, Pp;) can also be used.

Taking into account Theorem and the above presented facts, it is not difficult to
see that the following holds.

Theorem 8.3. When applied on a pair of TAs As = (Qs,%,As,Rg) and Ap =
(@B, X, Ap,Rp) s.t. Qs N Qp = 0, Algorithm terminates and returns true if and
only if L(As) C L(Ag).
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Algorithm 8.3: Downward inclusion (antichains + preorder + IN)
Input: TAs As = (Qs,%,As, Rs), Ap = (@B, %, A, Rp),
preorder < C (Qs U Qp)?
Output: true if L(Ag) C L(Apg), false otherwise
Data: NN := (); IN := 0);
1 foreach ¢qs € Rg do
2 L if expand2e(qs, Rp, () = (false, -, -) then return false;

3 return ftrue;

8.2.2. Optimisation with Caching of Inclusion Pairs

The algorithm from the previous section can be optimised even more. Recall that the
algorithm caches pairs for which the inclusion does not hold, i.e. pairs (pg, Pp) such
that L(ps) € L(Pg), in the set NN (which is maintained as an antichain). A natural
question that arises is whether there is a similar option for pairs for which the inclusion
does hold, i.e. pairs (pg, Pg) such that L(pg) C L(Pg). Such an option indeed exists
and is presented in the rest of this section.

Let us denote the set of the above-mentioned pairs for which the inclusion holds as IN.
Then, when checking the inclusion L(ps) C L(Pg), when there is a pair (p, Py) € IN
such that ps < ply and Pj <Y3 Pg, then we immediately know that the checked inclusion
holds because L(ps) € L(ps) € L(Pp) € L(Pp).

The set IN can again be optimised as an antichain but with the opposite ordering
than NN. This means that there are no two pairs (pg, Pg), (P, Pg) such that pg < pls
and Pp <"3 Pg in IN. Tt is easy to understand that a pair (pg, Pg) does not have to
be stored since whenever (pg, Pg) can be used to prune the search, (py, P;) can also be
used.

However, adding new pairs to IN is not as straightforward as for NN. Assume that we
add a pair (pg, Pp) to IN immediately when the function call expand2(pg, Pg, workset)
at line of function expand2 returns true for some workset. This is not correct as
shown in the following example.

Suppose that when checking inclusion L(p'y) C L(Pf), a test for inclusion L(ps) C
L(Pg) where ps < ply and Ppg <¥3 Py is encountered somewhere deep in the recursive
calls of expand2. As stated previously, the inclusion L(ps) C L(Pg) does not need to
be tested since if L(py) € L(Pp), then L(ps) € L(Pg), and if L(p'y) € L(Py), then this
cannot be caused solely by L(ps) € L(Pg). Hence, expand2(pg, Pp, workset) returns
true, and the result of the query L(ply) € L(Pp) will be given by other branches of the
call tree generated for the L(py) C L(Py) query. However, if we put the pair (pg, Pg)
into IN and later proved that L(ps) Z L(Pp), then the set IN would become invalid.

A solution to this issue is given in Algorithm (the changes from Algorithm are
highlighted). The expand2e function is a modified version of expand?2 that additionally
returns a formula of the form A Ant — A Con where Con (consequents) is a set of
inclusion queries that can be answered positively provided that the inclusion queries in
Ant (antecedents) are all answered positively.
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Function expand2e(pg, Pp, workset)

© W N O R W N
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24
25
26
27
28

29
30

if 3(pl, Pp) € IN : ps =< pls A Py <3 Pp then return (true,0,0) ;
if 3(pl, Py) € NN : pls < ps A Pg <3 P} then return (false,0,0) ;
if Jp e Pp:ps =< pthen return (true,,0) ;
if 3(pl, Pp) € workset : ps < ply A Py <% Pg then

L return (true, {(ps, Pg)},0);

workset := workset U {(ps, Pp)}; Ant := 0; Con := (;
foreach a € ¥ do

if #a =0 then

| if downg(ps) # 0 A downg(Pp) = () then return (false,0,0) ;
else
W = downy(Pp);

found = false;

S = {QZ | (Q17~~7Q#a) € VV:f((Qlan#a)) = 7’} ;
(x, Ant’, Con') := expand2e(r;, S, workset);

Con := Con U Con’; break;
if A’ H)€ NN :7' <r; AS <3 H then

\\ found := true; Ant := AntU Ant’;

if —found then return (false,(,0) ;

Ant == Ant \ {(ps, Pp)}; Con := Con U{(ps, Ps)};
if Ant =0 then
foreach (z,Y) € Con do
if B(pl, Py) € IN : x < pls A Py <2 Y then
L | IN:=(IN\{(,H)|Y 2 H,7' 2 z}) U{(z,Y)};
Con := 0;

return (true, Ant, Con);

When the recursive call of expand2e(pg, Pp, workset) is at the bottom of the call
tree and there is (ply, Pg) € workset such that pg < ply and P <"2 Py (line {4, then,
according to the above, the formula returned from expand2e along with true could be
MNML(ps) € L(Pg)} — N{L(ps) € L(Pg)} because L(ps) C L(Pp) cannot be considered
guaranteed before L(py) C L(Pp) is positively answered. This formula is, however,
simplified to A{L(ps) C L(Pg)} — 0 since L(ps) C L(Pp) can be forgotten as it is

weaker than L(py) C L(Pp).
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foreach (ri,...,744) € downy(ps) do // ps — a(ry,..
foreach fe{W — {1,...,#a}} do // Vf e cf(Pp,a)
foreach 1 <i < #a do // A1 <i<H#a

if z then // if L(r;) C L(S)

| NN = (NN\{(, H) | H <3 S,ri 7'} U{(ri, S)};



A situation similar to what we have just discussed arises when the recursive call of
expand2e(pg, Pp, workset) is at the bottom of the call tree and there is (p, Py) € IN
such that pg < ply and Pj <"7 Pp (line 1). In this case, A — A0 is returned (along
with true) since the validity of L(py) C L(Pp) has already been established. Next, if
the recursive call of expand2e(pgs, Pg, workset) is at the bottom of the call tree and
there is p € Pp such that pg < p (line[3), A® — A0 is again returned since for any
inclusion query L(ply) C L(Py) such that ply < ps and Pg <"3 Pp, it will be the case
that there is p’ € Pp such that ply < p’ (and hence the computation will be immediately
stopped without a need to use IN for this purpose). Finally, when expand2e returns
false (line , it is accompanied by the formula A ) — A 0, which, however, is ignored in
this case and is returned just to make the result of expand2e have the same structure.

For inner nodes of the call tree, this is, nodes that correspond to function calls
expand2e(pg, Pp) that themselves call expand2e, all antecedents and consequents re-
turned from successful nested calls are collected into sets Ant and Con. Then, the
condition L(ps) C L(Pp) is removed from Ant (if it is there) and added to Con since
it has just been proved that L(ps) C L(Pp) holds provided that the elements from
Ant\{L(ps) € L(Pg)} are later proved to also hold. When the set Ant becomes empty,
yielding the formula A® — A Con, all elements of Con can be added to IN (while
respecting the antichain property of IN) and the set Con cleared.

Taking into account Theorem and the above presented facts, it can be seen that
the following holds.

Theorem 8.4. When applied on a pair of TAs As = (Qs,%,As,Rg) and Ap =
(@B, 2, Ap,Rp) s.t. Qs N Qp = 0, Algorithm terminates and returns true if and
only if L(As) C L(Ap).

8.3. Experimental Results

We implemented Algorithm [8.1f (which we mark as down in what follows), Algorithm
with the maximum downward simulation as the input preorder (marked as down+s), and
Algorithm inside the VATA library (about which we give further details in Chap-
ter . We provide two configurations of Algorithm that differ in the input pre-
order: The first of them uses identity (we mark this configuration as down-opt), while
the other also uses the maximum downward simulation (marked as down-opt+s. In the
experiments, we evaluated the performance of the four algorithms with the algorithm for
upward inclusion checking using antichains from [BHH'08| (marked as up) and its mod-
ification that uses the maximum upward simulation parameterised by identity (proposed
in [ACH'10] and marked as up+s below), which are provided in VATA. The evaluation
?

was testing language inclusion L(A) C L(B) of almost 2000 tree automata pairs of dif-
ferent sizes (ranging from 50 to 1000 states), including automata from the intermediate
steps of abstract regular tree model checking of the algorithm for rebalancing red-black
trees after insertion or deletion of a leaf node [BHHT08|. The timeout was set to 30s.
The results of the experiments are presented in Table The table compares the
methods according to the percentage of the cases in which they were the fastest when
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Table 8.1.: Results of the experiments (timeout 30s)

. All pairs L(A L(B L(A) C L(B
Algorithm Winner \ Timeouts Wimger) \gTin(ae())uts Wimger)\ Tin(ne())uts
down 36.35 % 32.51% || 39.85% 26.01 % 0.00 % 90.80 %
down+s 4.15% 18.27% 0.00% 20.31% || 47.28% 0.00 %
down-opt 32.20 % 32.51% || 35.30% 26.01 % 0.00 % 90.80 %
down-opt+s 3.15% 18.27% 0.00 % 20.31% || 35.87% 0.00 %
up 24.14 % 0.00% || 24.84% 0.00% || 16.85% 0.00 %
up+s 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

checking inclusion on the same automata pair, and also according to the percentage of
timeouts. The set of results in the column labelled with “All pairs” contains data for all
pairs.

We also checked the performance of the algorithms for cases when inclusion either
does or does mot hold in order to explore the ability of the algorithms to either find
a counterexample in the case when inclusion does not hold, or prove the inclusion in
case it does. The results below “L(A) Z L(B)” in the table are for the pairs A, B where
the inclusion does not hold, and the column under “L(.A) C L(B)” reports on the cases
where the inclusion holds.

The results show that the overhead of computing upward simulation is too high in all
the cases that we have considered, causing upward inclusion checking using simulation
to be the slowest when the time for computing the simulation used by the algorithm is
includedﬂ Next, it can be seen that for each of the remaining approaches there are cases
in which they win in a significant way. However, the downward approaches are clearly
dominating in significantly more of our test cases (with the only exception being the case
of small automata when the time of computing simulations is not included). On the other
hand, it can be observed that for some particular cases, the more complex structure of
the downward algorithms (which resembles an And-Or tree) causes an unmanageable
state explosion and the algorithms timeout (in contrast to the upward algorithms, which
always, though often slowly, terminate).

8.4. Conclusion

In this section, we proposed a new algorithm for checking language inclusion over non-
deterministic TAs (based on the one from [HVP05]) that traverses automata in the
downward manner and uses both antichains and simulations to optimise its computation.
This algorithm is, according to our experimental results, mostly superior to the known
upward algorithms.

%Note that up+s was winning over up in the experiments of [ACHT10] even with the time for comput-
ing simulation included, which seems to be caused by a much less efficient implementation of the
antichains in the original algorithm.
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One of the interesting future research directions would be an extension of the tech-
niques used in the optimisations of the downward algorithm to the recently introduced
technique for testing language equivalence of nondeterministic finite automata based on
the so-called bisimulation up-to congruence [BP13]. Apart from that, it would be in-
teresting to explore an efficient implementation of the data structure used for storing
the antichain, e.g. symbolically using some BDD-like data structure, as e.g. in [THO03].
An interesting problem here is how to efficiently encode antichains based not on the
subset inclusion but on a simulation relation.
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9. Semi-symbolic Tree Automata

Certain important applications of TAs, such as formal verification of programs with
complex dynamic data structures [BHRVI12| or decision procedures of logics such as
WSES or MSO, require finite (tree) automata with very large alphabets. For instance,
the automata manipulated by the decision procedure for WS1S in Chapter [7] use an
alphabet of the size 2" where n is the number of variables in the considered formula.
Here, the common choice is to use the tree automata library of MONA [KMS02], which
is based on representing transitions of TAs symbolically using multi-terminal binary
decision diagrams (MTBDDs). The encoding used by MONA is, however, restricted to
deterministic automata only. This implies a necessity of immediate determinisation after
each operation over TAs that introduces nondeterminism and may, in turn, easily lead
to a state space explosion. Despite the extensive engineering effort spent to optimise the
implementation of MONA | the focus on deterministic automata significantly limits its
applicability.

As a way to overcome this issue, in this chapter, we propose a semi-symbolic represen-
tation of nondeterministic TAs that generalises the one used by MONA, and we develop
algorithms implementing the basic operations on TAs (such as computation of union,
intersection, etc.) as well as more involved algorithms for computing simulations and for
checking language inclusion (using simulations and antichains to optimise it) over the
proposed representation.

Outline. The structure of this chapter is the following. In Section we give our
definitions of BDDs and MTBDDs. The two dual semi-symbolic encodings of TAs are
presented in Section and the algorithms for operations on TAs over these encodings
are described in Section Section describes our implementation of an MTBDD
library. Section gives experimental results and, finally, Section concludes the
chapter.

9.1. Binary Decision Diagrams

Let B = {0, 1} be the set of Boolean values. A Boolean function of arity k is a function
of the form f : B¥ — B. We extend the notion of Boolean functions to an arbitrary
nonempty set S where a k-ary Boolean function extended to the domain set S is a func-
tion of the form f : B¥ — S.

A reduced ordered binary decision diagram (ROBDD) [Bry86| r over a set of n Boolean
variables x1, ..., z, is a connected directed acyclic graph with a single source node (de-
noted as r.root) and at least one of the two sink nodes 0 and 1. We call internal the nodes

137



which are not sink nodes. A function Var assigns each internal node a Boolean variable
from the set X = {x1,...,2,}, ordered by the ordering x; < s < --- < x,. For every
internal node v there exists a pair of outgoing edges labelled low and high. We denote by
v.low a node w and by v.high a node z such that there exists a directed edge from v to
w labelled by low and a directed edge from v to z labelled by high respectively. For each
internal node v, it must hold that Var(v) < Var(v.low) and Var(v) < Var(v.high), and
also v.low # v.high. A node v represents an n-ary Boolean function [v] : B" — B that
assigns to each assignment to the Boolean variables in X a corresponding Boolean value
defined in the following way (using T as an abbreviation for xj ... x,):

[0] = A\Z.0,
1] =Az.1,

[o] = AT [vlow](z) ifx; =0
= AT . [v.high](Z) ifx; =1

(9.1)
for Var(v) = ;.

For every pair of distinct nodes v and w, it further holds that they represent a different
function, i.e. [v] # [w]. We say that an ROBDD r represents the Boolean function [r]
defined as [r] = [r.root]. Dually, for a Boolean function f, we use (f) to denote the
(unique up to isomorphism) ROBDD representing f, i.e. f = [(f)] and r = ([r]).

We generalise the standard Apply operation for manipulation of Boolean functions
represented by ROBDDs in the following way: let op;, opy, and opsz be in turn arbitrary
unary, binary, and ternary Boolean functions. Then the functions Apply;, Applys, and
Applys produce a new ROBDD that is defined for ROBDDs f, g, and h as follows:

Apply: (f, opy) = (AT . op: ([f](2))),
Applys (f, g, 0pg) = (AT . opo ([f1(T), [9](Z))), (9.2)
Applys(f, g, h, op3) = (AT . op3([f]1(@), [9] (), [P]())).

In practice, opy, opy, and ops can be implemented as functions with side-effects.

The notion of ROBDDs is further generalised to multi-terminal binary decision di-
agrams (MTBDDs) [CMZ797]. MTBDDs are essentially the same data structures as
ROBDDs, the only difference being the fact that the set of sink nodes is not restricted
to two nodes. Instead, it can contain an arbitrary number of nodes labelled uniquely by
elements of an arbitrary domain set S. All standard notions for ROBDDs can naturally
be extended to MTBDDs. An MTBDD m then represents a Boolean function extended
to S, [m] : B" — S. Further, the concept of shared MTBDDs is used. A shared MTBDD
s is an MTBDD with multiple source nodes (or roots) that represents a mapping of every
element of the set of roots R to a function induced by the MTBDD corresponding to the
given root, [s] : R — (B™ — S). We abuse notation and use f(r) for a shared MTBDD
f and a root r € R to denote the MTBDD ([f](r)).

Apply operations for MTBDDs are extended in such a way that the MTBDDs for
Applys and Applys may have different domain sets. Not only this, even the result of
the Apply operation may be over a different domain set than any of the parameters.
Formally, suppose a triple of MTBDDs: f (over a domain F'), g (over a domain G),
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Figure 9.1.: The (a) bottom-up and (b) top-down semi-symbolic encodings of a transition
relation. Paths in the MTBDD correspond to symbols from X.

and h (over a domain H). Further, assume a domain K for the resulting MTBDD.
(Note that some of the considered domains may be identical.) Then, for op, : F — K,
opy : (FxG) — K, and opg : (F x G x H) — K, the results of Apply;(f,op;),
Applys(f, g, ops), and Applys(f, g, h, ops) are all MTBDDs over the domain K.

9.2. Semi-Symbolic Representations of Tree Automata

We next consider a natural, semi-symbolic, MTBDD-based encoding of nondeterministic
TAs, suitable for handling automata with huge alphabets. A shared MTBDD is used
to encode the transition relation of a TA by connecting states with tuples of states in
a particular way, depending on the direction of the encoding.

We fix a tree automaton A = (Q,3, A, R) for the rest of the section. We consider
both top-down and bottom-up representations of its transition relation A, because some
operations on A are easier to do on the former representation while others are easier on
the latter. Moreover, we also provide an algorithm for translation between the considered
representations. We assume w.l.o.g. that the input alphabet 3 of A is represented in
binary using n bits. Each bit in the binary encoding of ¥ is assigned a Boolean variable
from the set {x1,...,2,}. We can then use shared MTBDDs with a set of roots R and
a domain S for encoding various functions of the form R — (¥ — ) that we shall need.

9.2.1. Bottom-up Representation

Our bottom-up representation of the transition relation A of A uses a shared MTBDD
AP over ¥ where the set of root nodes is @Q# and the domain of labels of sink nodes is 2%
(see Figure ) The shared MTBDD A" then represents the following function [A"]:

[AY] : Q7 — (% — 29),

bun (9.3)
[A™] =X a1, qp)a-{q | alqr,--,q) = g}
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Algorithm 9.1: Inversion of a shared MTBDD

Input: Shared MTBDD f such that [f] : R — (B" — 25)
Output: Shared MTBDD g such that [g] : S — (B® — 2F) and

r € gl(s,a) = se[f](r,a)

1g:=A\rz.0); // [g] : S — (B™ — 2%)
2 foreach s € S such that Ir € R, 37 € B" : s € [f](r,Z) do

3 | foreach r € R such that f(r) # (A\T.0) do

4 L g(s) = Apply2(f(r),g(s), A XY .if s € X then Y U {r} else Y));

5 return g;

It is easy to observe that the shared MTBDD A% is a semi-symbolic representation
of A, in particular [A™]((q1,-..,qp),a) = upa((q1,-- -, qp))-
9.2.2. Top-down Representation

Our top-down representation of the transition relation A of A uses a shared MTBDD
A over ¥ where the set of root nodes is @, and the domain of labels of sink nodes
is 20" (see Figure ) The MTBDD A! represents the following function [A*]:

[AM] - Q — (2 — 297),
[AY] = Xga. {(q1, .-, ap) | @ — alqr,- .- qp)}-

Again, we can easily see that [A'](q, a) = down,(q).

(9.4)

9.2.3. Conversion Between Bottom-up and Top-down Representations

Sometimes it is necessary to convert between the bottom-up and top-down representa-
tion of a TA, for instance, when computing downward simulations (as explained later
in the text). The transformation can be done using the generic algorithm given in
Algorithm The algorithm converts a shared MTBDD f representing a function
[f] : R — (B® — 2%) over n Boolean variables to a shared MTBDD g that represents
the function [g] : S — (B™ — 2%) such that r € [g](s,a) <= s € [f](r,a). The al-
gorithm first initialises g to map all elements of S and all valuations of the Boolean
variables to the empty set. Then, for each element of s € S and r € R and for each
valuation of the Boolean variables, which are implicitly traversed by the Applys function,
if s is in the sink node of f(r) for some valuation of the Boolean variables, r is added to
the sink node of g(s) for the same valuation of the Boolean variables.

9.3. Tree Automata Algorithms over Semi-Symbolic
Encoding

In this section, we propose algorithms for removing unreachable states, computing the
union, intersection, and (maximum) downward simulation, as well as algorithms for
upward and downward inclusion checking on the considered representation of TAs.
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9.3.1. Removing Unreachable States

As the performance of many operations on automata depends on the size of the automa-
ton (in the sense of the size of the state set and the size of the transition table), it is
often desirable to remove both bottom-up and top-down unreachable states. Indeed,
such states are useless: bottom-up unreachable states cannot be used to generate a fi-
nite tree and although top-down unreachable states can generate a finite tree, this tree
cannot be a subtree of any tree accepted by the automaton.

Removing both bottom-up unreachable states for the bottom-up representation and
top-down unreachable states for the top-down representation can be easily done by
a single traversal through the automaton. Nevertheless, sometimes, e.g. when checking
language inclusion of automata, it is useful to also remove states unreachable in the
opposite direction.

The procedure for removing top-down unreachable states from a TA A = (Q, %, A, R)
represented bottom-up generates a directed graph (Q, E) where E contains the edge
(g,r) if there is a transition ¢ — a(qi,...,q,) € A such that r = ¢; for some 1 <i <n
and a € Y. When the graph is created, the states that correspond to nodes that are
backward unreachable from the nodes corresponding to root states of A are removed
from the automaton in a simple traversal.

Removing bottom-up unreachable states for the top-down semi-symbolic representa-
tion of A is more complex. First, A is traversed in the top-down manner while creating
a directed And-Or graph (Ny, N3, E) where Ny = @ represents the And nodes of the
graph and N3 C Q* represents the Or nodes. The set of edges E contains the edge
(¢, (q1,-..,qn)) if there exists the transition ¢ — a(q1,...,qn) € A for some a € 3, and
the edge ((q1,.-.,9n),q) if ¢ = q for some 1 < i < n. The algorithm starts by marking
the node labelled by () (which is an Or node) and proceeds by marking the nodes of
the graph using the following rules: an Or node n, is marked if there exists a marked
node n, such that (ny,n,) € E, and an And node n, is marked if all nodes n, such
that (nq,n,) € E are marked. When no new nodes can be marked, the states of A are
reduced to only those that correspond to the marked And nodes in the graph.

9.3.2. Union

An algorithm for computing the union of a pair of TAs represented bottom-up follows
as Algorithm The presented algorithm simply unites the sets of states 1 and Qo,
and the sets of root states R and Ry. We slightly abuse the notation and use A% U A5
to denote the union ([A%] U [A%“]) of the considered shared MTBDDs. In order to
carry out the union operation on the leaf transitions of the automaton (denoted by ()),
a single Apply operation needs to be performed. The Apply operation is given the lambda
expression A X Y . X UY as the function to perform on the sink nodes of the MTBDD.
Correspondingly, when the Apply operation is evaluated, X and Y are mapped to the
sets of states that are the values of the corresponding sink nodes of the first and second
argument of the Apply operation, producing new sink nodes with the value of X UY.

Performing the union on TAs represented top-down is more straightforward: A, =
(Q1UQ2, %, AU AL Ry U Ry), provided that Q1 N Q2 = 0.
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Algorithm 9.2: Union of TAs represented bottom-up
IHPUt Al = (Qla Ea Aliuv Rl) and AQ = (QQ) E) Agua R2)7 Ql N QQ = @
Output: AU = (Qu, E, Al&u,Ru) s.t. L(.Au) = L(Al) U L(AQ)

1 A= Abru Ay

2 AN(() == Apply2 (AT(()), A3((), A X Y. X UY));

3 return A = (Q1 UQ2,, A, Ry U Ry);

9.3.3. Intersection

Algorithm performs intersection of a pair of TAs A® = (Q%, %, A2 R%) and A® =
(Qb, %, AbwP RP) that use the bottom-up representation. It constructs the intersection
of A% and A® by creating a product automaton An = (Q* x Q°, ¥, A R® x R®) where

AR = {f((q?,q’{), g ) = (@) | flats - dh) — gt e AT

(9.5)

f(d,....%) = P e AM™P V1 <i<n:(¢f ) is reachable},
where a product state (q%, qb) is reachable if there exists a symbol g € 3, states
qf,...,q¢% € Q% and states ¢},...,q% € QP such that g(qf,...,q%) — ¢* € AP and
9(¢t, ..., %) — ¢® € A¥P and, further, for all 1 < i < n, the product state (¢2,q?) is
reachable (note that leaf states are trivially reachable).

The transitions in A% basically run the two automata in parallel such that An contains
only bottom-up reachable states and transitions. The algorithm detects reachable states
by starting from leaf transitions of A% and A, analysing all transitions over leaf symbols,
and collecting reachable product states into the set newStates. Then, until newStates is
empty, a pair (¢, ¢%) is removed from newStates. For every such pair, we compute the
set of product states reachable from any pairs of tuples ((¢¢,...,q2), (¢}, ..., %)) where
q* = ¢¢ and ¢® = ¢ for some i, and at all positions j # 4, it holds that (¢%,q?) € Qn.
We add the product states of the computed set to newStates and continue with the next
iteration of the loop.

9.3.4. Downward Simulation

We next give an algorithm for computing the maximum downward simulation relation
on the states of the TA A whose transition relation is encoded using our semi-symbolic
representation. The algorithm is inspired by the algorithm of Ilie et al [INY04] (which
is based on the same ideas as the algorithm of Henzinger et ol [HHK95], but is more
convenient for us because it uses only a single remove set) proposed for computing
simulations on finite (word) automata. For use in the algorithm, we extend the notion
of downward simulation to tuples of states by defining (q1,...,9,) =p (r1,...,7) to
hold iff V1 <i < n:q <pr;.

Our algorithm for computing downward simulations, shown as Algorithm starts
with a relation that grossly over-approximates of the maximum downward simulation.
The relation is then pruned in a loop, removing pairs that do not satisfy the simulation
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Algorithm 9.3: Intersection of TAs represented bottom-up

© W N & Rk WY =

= e
N = O

13

Input: TAs A% = (Q%, X, A2 R) and A® = (Q°, %, Ab»b Rb)
Output: An = (Qn, S, A%, RA) s.t. L(AR) = L(A%) N L(A?)
Qn := 0; R := 0; newStates := ();
AB = (N (g1, .., q0) a. 0);
AR() = Applyz (A"(()), A"*(()), (isect newStates));
while 3(¢%, ¢) € newStates do
newStates := newStates \ {(q%, ¢*)};
if (¢*,¢") € Q- then continue;
Qn = QnU{(¢* "}
if ¢ € R* A ¢® € R® then R~ := RnU{(¢% ¢")} ;
foreach (qf,...,q%) € Q" such that 31 <i < n:q® = ¢ do
foreach (¢%,...,¢%) € Qb# such that ¢® = qf’ do
if V1 <i<n:(¢% ) € Qn then
L Ab (gt b)) -+ (a5, 05)) == Applyo (AP ((¢f, - -, 45)),
AVb((gb) . . qR)), (isect newStates));

return An = (Qn, X, A% Rp);

Function isect(&newStates, up®, up?)

1
2
3

productSet = up® x up®;
newStates := newStates U productSet;
return productSet;

condition, until it stabilises and the maximum downward simulation is obtained. The
algorithm uses the following main data structures:

e For every ¢ € @, the set sim(q) C @ contains states that are considered to simu-

late ¢ at the current step of the computation. Its value is gradually pruned during
the computation. At the end, sim encodes the maximum downward simulation
being computed.

e The set remove C Q% x Q¥ contains pairs ((ql, cesn), (71, .. ,rn)) of tuples of

states added there when it is found out that for some 4, it holds that ¢; Zp r;.
The pairs are removed from the set and processed in a fixpoint computation.

e Finally, cnt is a shared MTBDD encoding the function [ent] : Q% — (£ — (Q —

N)) that for each (q1,...,q,) € Q7, a € ¥, and r € Q gives the value h € N
denoting that r can make a top-down transition to A distinct tuples (r1,...,7,)
such that (¢1,...,qn) =p (r1,...,7,) in the current approximation of sim.

The algorithm works in two phases. We assume that we start with a TA whose
transition relation is represented bottom-up. In the initialisation phase, the dual top-
down representation of the transition relation is first computed (note that we can also

143



Algorithm 9.4: Computing downward simulation on a semi-symbolic TA

© 000 N O kR W N

e el e e
B W N = O
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20

Input: TA A = (Q,%, A" R)
Output: Maximum downward simulation <p C Q?

A := invertMTBDD(A");
remove := ;
initCnt == (A a . 0) ; // [initCnt] : £ — (Q — N)
foreach ¢ € @ do // initialisation loop
sim(q) = 0;
initCnt := Applys(A'(q), initCnt, A X Y .Y U{(q,|X)}) ;
foreach r € Q do
isSim = true;
Applys (A¥(q), A¥(r), A XY .if (X #0AY = 0) then isSim := false)) ;
if isSim then sim(q) := sim(q) U{r} ;
else
foreach (qi,...,q,) € Q7. (r1,...,m,) € Q7 do
if d1<i<n:q¢;,=qAr; =r then
L L remove := remove U { ((q1,...,qn), (r1,...,m0)) };
ent == (A (q1y.-.,qn)a. >7 /! [ent] : Q7 = (X — (Q — N))
foreach (qi,...,qn) € Q7 do cnt((qi,...,qn)) := initCnt ;
while 3((q1,-..,qn), (7“1, ) € remove do // fixpoint comp.
remove 1= remove \ {( ql, cesGn), (r1, ... ,rn))
ent((q, ..., qn)) = Applys (AP ((r1,...,r0)), AP ((q1, ..., qn)),
ent((qiy -, qn)), (refine sim remove));
return {(q¢,7) | ¢ € Q,r € sim(q)};

start with a top-down representation and compute the bottom-up representation since
both are needed in the algorithm). The three main data structures are then initialised
as follows:

e For each ¢ € Q, the set sim(q) is initialised as the set of states that can make top-

down transitions over the same symbols as ¢, which is determined using the Apply
operation on line [0l That is, when starting the main computation loop on line
the value of sim for each ¢ € Q is sim(q) = {r |[Va € ¥ :q — a(q1,...,qn) =
r— a(ry,...,ry) for some q1,...,qn,71,...,m € Q}.

The remove set is initialised to contain each pair of tuples of states ((Q1, cesn),
(rl,...,rn)) such that it holds that the relation (qi,...,¢n) <p (r1,...,7) is
broken even for the initial approximation of <p, i.e. for some position 1 < i < n,
there is a pair (g;,r;) such that r; ¢ sim(q;).

To initialise the shared MTBDD cnt, the algorithm first constructs an auxiliary
MTBDD initCnt representing a function [initCnt] : ¥ — (Q — N). Via the Apply
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Function refine(&sim, &remove, up, R, up,Q, cnt,Q)

1 newCnt,Q = cnt,Q;

2 foreach s € up,R do

3 newCnt,Q(s) := newCnt,Q(s) — 1;

4 if newCnt,Q(s) =0 then

5 foreach p € up,Q : s € sim(p) do
6

7

8

9

foreach (pi,...,pn) € Q7 (s1,...,5,) € Q7 do
if d1<i<n:p,=pAs; =sthen
if V1<j<n:s;esim(p;)then
L remove := remove U {((pl,...,pn), (s1,.. .,sn))};

10 | sim(p) := sim(p) \ {s};

11 return newCnt,Q;

operation on line [ this MTBDD gradually collects for every symbol a € 3 the
set of pairs (g, h) such that ¢ can make a top-down transition over the symbol a
to h distinct tuples. This MTBDD is then copied to the shared MTBDD e¢nt for
each tuple of states (q1,...,¢,) € Q¥. This is justified by the fact that we start by
assuming that the simulation relation is equal to @ x @, which, for a symbol ¢ € X
and a pair (¢, h) € ent((q1,---,qn)), means that (¢, ..., q,) can make a bottom-up
transition over a to h distinct states r € sim(q).

After that, the main computation phase proceeds by gradually restricting the ini-
tial over-approximation of the maximum downward simulation being computed. As we
have said, the remove set contains pairs ((q1, cesn)s (1, ,rn)) for which it holds
that (q1,...,¢s,) cannot be simulated by (ri,...,r,), i.e. (q1,-..,qn) ZD (T1,...,7n).
When such a pair is processed, the algorithm proceeds by decrementing the counter
[ent]((q1,---,qn),a,s) for each state s for which there exists a bottom-up transition
over a symbol a € ¥ such that a(rq,...,r,) = s. The meaning is that s can make one
less top-down transition over a to some (t1,...,t,) such that (qi,...,¢,) =<p (t1,...,tn).
If [ent]((q1,---,qn),a,s) drops to zero, it means that s cannot make a top-down tran-
sition over a to any such (¢1,...,%,). This means, for all p € @ such that p can make
a top-down transition over a to (qi,...,qn), that s no longer simulates p, i.e. p Ap s.
When the simulation relation between p and s breaks, the simulation relation between
all m-tuples (p1,...,pm) and (s1,...,5y,) such that 31 < j <m:p; =p A sj = s must
also be broken. As a result, the pair ((pl, cesDm)s (81500 sm)) is put to the remove set
(unless the simulation relation between some other states in the tuples has already been
broken before).

Correctness of the algorithm is summarised in the below theorem, which can be proven
analogically as correctness of the algorithm proposed in [INY04], taking into account the
meaning of the above described MTBDD-based structures and the operations performed
on them.
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Function expandSymb(pg, Pp, workset)

// ps € Qg, PpC Qp, and workset C Qg x 29B
if 3(ply, Pp) € workset : ps < ply A Py <V Pg then return true ;
if 3(pl, Py) € NN : pls < ps A Pg <3 P4 then return false ;
if dp € Pg:pg = p then return true ;
workset := workset U{(ps, Pp)};
tmp :=(Xa.0); // [[tmp]]:Z—>2QzE
foreach pp € Pp do
| tmp := Applyz (tmp, A (pp), AX Y . X UY));
doesInclHold := true;
Applys (Agfl(ps), tmp, (procDown doesInclHold workset));
10 return doesinclHold;

B W N

© 0w N O O

Theorem 9.1. When applied on a« TA A = (Q,%, A, R) whose transition relation is
encoded semi-symbolically in the bottom-up way as A", Algorithm terminates and
returns the maximum downward simulation on Q.

9.3.5. Downward Inclusion Checking

We now proceed to an algorithm for efficient downward inclusion checking on top-down
semi-symbolically represented TAs. The algorithm we propose for this purpose is de-
rived from Algorithm by plugging the expandSymb function instead of the expand?2
function. It is based on the same basic principle as expand?2, but it has to cope with the
symbolically encoded transition relation. In particular, in order to inspect whether, for
a pair (pg, Pp) and all symbols a € ¥, the inclusion between each tuple from down,(ps)
and the set of tuples down,(Ppg) holds, the doesInclHold parameter, initialised to true,
is passed to the Apply operation on line [J] of the expandSymb function. If the algorithm
finds out that the inclusion does not hold in some execution of the procDown function
in the context of a single Apply, doesInclHold is assigned the false value, which is later
returned by expandSymb; otherwise, expandSymb returns the original value true. Note
that the optimisations of expand2 presented in Section (function expand2e) can
be easily adopted also to function expandSymb.

9.3.6. Upward Inclusion Checking

We next present an algorithm for upward inclusion checking on semi-symbolically en-
coded TAs. We present a version that is not combined with a use of simulation since the
experiments that we have done with explicitly represented automata in Chapter [§| were
not very favourable for upward inclusion checking combined with a use of simulation.
We note, however, that for the future, providing such an algorithm and testing it on
a broader set of experiments is still useful.
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Function procDown(&doesInclHold, &workset, down,ps, down,Ppg)

1 if () € downgps A () ¢ downgPp then doesInclHold := false ;

2 else

3 W := down,Ppg;

4 foreach (ri,...,7r,) € downgps do // ps —alri,...,rm)
5 foreach fe{W — {1,...,n}} do // Vf € cf(Pp,a)

6 found = false;

7 foreach 1 <:<ndo

8 S=Aq | (q1,--- ) €W, f(q1,--.,qn)) =i}

9 if expandSymb(r;, S, workset) then // if L(r;) C L(S)
10 found := true;

11 L break;

12 if A(+',H)€ NN :7' <r; AS <2 H then

13 | NN := (NN\{(',H) | H =" S,r; = r'}) U{(ri,9)};

14 if —found then

15 doesInclHold := false;

16 return;

Our upward inclusion checking algorithm is based on the algorithm of Bouajjani et
al [BHHT08]. The intuition behind this algorithm is that when checking inclusion of
languages of two automata Ag = (QS,E,A%”,RS) and Ap = (Qp, %, A% Rp), the
algorithm works with a set antichain C Qgx2%95 such that (¢, D) € antichain if q accepts
some tree in Ag, and D is the set of all states in Apg that accept the same tree. If it holds
that ¢ € Rg and DN R = (), then Ag can accept a tree that Ag cannot accept, and
therefore the inclusion L(Ag) C L(Ag) does not hold. Also, when the algorithm reaches
a pair (g, E') such that D C E for some (q, D) € antichain, the pair (¢, F') is dropped
and not added into antichain. This is justified by the fact that if a counterexample to
inclusion can be shown from (¢, E), it can be found from (¢, D) too (since the possible
moves of Ap from D are even more limited than from E). Furthermore, when a pair
(¢, F) is reached such that F' C D for some (q, D) € antichain, then all pairs (¢, D) with
F C D are removed from antichain and (q, F') is added in their place. Hence, the set
antichain is indeed an antichain in the poset (Qg,idgy) X (ZQB7 Q), i.e. for a given state
¢s € Qg there are no two sets G, H € 295 in antichain such that G C H.

Our algorithm for upward inclusion checking is shown as Algorithm In the algo-
rithm, the Apply operation on line[3|first collects into the sets antichain and notProcessed
the pairs (¢, D) € Qg X 2B consisting of states accessible through equilabelled leaf tran-
sitions in Ag and Ap. Then, until the notProcessed set is empty or a counterexample
to inclusion is found, the algorithm removes a pair (¢, D) from the set notProcessed and
processes it. The processing consists of finding a tuple (qi,...,q,) € Qﬁ containing ¢
as some ¢; such that all other states of the tuple also appear in the first position of
some pair in antichain, and also finding all tuples (s1,...,s,) € Q'} such that s; € D
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Algorithm 9.5: Upward antichain-based inclusion for semi-symbolic TAs

Input: TAs Ag = (QS7Z7A%“,RS) and Ap = (@p, E,A%“,RB)
Output: true if L(Ag) C L(Ap), false otherwise

1 notProcessed := {;
2 antichain := (;
3 Applys(A%(()), A%(()), (collectProducts antichain notProcessed)) ;
4 while 3(q, D) € notProcessed do
5 notProcessed := notProcessed \ {(q, D)};
6 if g€ RsADNRp =0 then return false ;
7 foreach (qi,...,qn) € Qﬁ such that 31 <i<n:q = qdo
8 if V1<j<n:3R; CQp:(gj,R;) € antichain then
9 tmp :== (X a . 0);
10 foreach (si,...,s,) € Q% such that s; € D do
11 if V1<j<n:s; € R;then
12 L L tmp = Applys (tmp, A% ((s1,...,5,)), A X Y . X UY));
13 Applyz (A% (a1, -, qn)), tmp,
(collectProducts antichain notProcessed));

14 return true;

Function collectProducts(&antichain, &notProcessed, upg, uppg)

1 foreach g € upg do

2 if #(q, E) € antichain such that E C upg then
3 antichain = (antichain \ {(¢, F) | upp C F}) U{(¢q, upp)};
4 notProcessed := (notProcessed \ {(¢, F) | upg C F}) U{(q, upp)};

and all states s;, for ¢ # j, appear in the second position of some pair from antichain.
The transition relations of the said tuples are united by the Apply operation on line
(Note that it is possible to optimise the computation of the set of tuples by a technique
similar to the one proposed in Section for explicitly represented TAs.) The Apply
operation on line 13| then collects the reachable pairs, and the loop continues.

9.4. An MTBDD Library

Efficient algorithms over a symbolic representation of the transition relation of a TA
require an efficient implementation of the underlying MTBDD library. Our first imple-
mentation of algorithms for handling semi-symbolically represented tree automata used
a customisation of the CUDD library [Som11] for manipulating MTBDDs. The experi-
ments in [HLSV11] and profiling of the code showed that the overhead of the customised
library is too large. Moreover, the customisation of CUDD did not provide an easy and
transparent way of manipulating MTBDDs. These two facts hinted that the implemen-
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tation of the algorithms would greatly benefit from a major redesign of the MTBDD
back-end. Therefore, we created our own generic implementation of MTBDDs with
a clean and simple-to-use interface.

The new MTBDD library uses shared MTBDDs for every domain. In order to prevent
memory leaks, each node of the MTBDD contains a reference counter of other nodes
or variables pointing to it. In case the counter reaches zero, the node is deleted from
the memory. Because of these implementation choices, copying an MTBDD can be
easily done by simply copying the pointer to the root node of the copied MTBDD and
incrementing its reference counter.

There are two types of nodes of the MTBDD: internal nodes and leaf nodes. A leaf
node contains a value from the domain of the MTBDD, while an internal node contains
a variable name and pointers to the low and high children of the node. In addition,
nodes of both types also contain the aforementioned reference counter. The nodes are
manipulated using pointers to them only, and the distinction between a leaf node and an
internal node is done according to the least significant bit of the pointer (the compiler
aligns these data structures to addresses which are multiples of 4, this bit can therefore
be neglected and simply masked out when accessing the value of a node pointer).

For our use, we implemented unary, binary, and ternary Apply operations. Further,
we also provide VoidApply operations, which are Apply operations that do not build
a new MTBDD but have a side-effect only. For operations that do not need to build new
MTBDDs but rather e.g. only collect data from the leaf nodes, using VoidApply saves
a considerable and unnecessary overhead. During the execution of an Apply operation,
both internal and leaf nodes are cached in hash tables.

The newly implemented MTBDD library does not support MTBDD reordering so far,
yet the library performs better when compared to our first implementation of a semi-
symbolic encoding that used customised CUDD (the speed-up was over 300 times for
upward inclusion checking and over 3000 times for downward inclusion checking). Note
that for some applications, e.g. the decision procedure for the WS1S logic presented in
Chapter [7] reordering is not really necessary, because a good variable ordering can be
chosen in advance, e.g. in the particular decision procedure, it can follow the order of
quantifiers in the prefix of the decided formula.

9.5. Experimental Results

We implemented and evaluated the algorithms proposed in this chapter inside the frame-
work of the VATA library, which is presented in more detail in Chapter We focused
on an evaluation of the various language inclusion checking algorithms presented in Sec-
tion The row down gives results for our implementation of the downward algorithm,
Algorithm with the function expandSymb from Section [9.3.5 plugged in and the
identity relation used as the input preorder. The row down+s gives results for the same
algorithm with the only exception that the maximum downward simulation is used in-
stead of the identity as the input preorder. The rows down-opt and down-opt+s are
based on Algorithm the optimised version of the algorithm. Results of the upward
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Table 9.1.: Results of the experiments (timeout 30s)

. All pairs L(A L(B L(A) C L(B
Algorithm Winner \ Timeouts Wimger) \gTin(ae())uts Wimger)\ Tin(ne())uts
down 44.02% 5.87% || 45.03% 2.48% || 19.74 % 72.37 %
down+s 0.00 % 77.93% 0.00% 80.03 % 0.00 % 36.84 %
down-opt 31.73% 5.87% || 33.06 % 2.48 % 0.00 % 72.37 %
down-opt+s 0.00 % 78.00 % 0.00 % 80.09 % 0.00% 36.84 %
up 24.25 % 22.26 % || 21.91% 23.39% || 80.26 % 0.00 %

inclusion checking algorithm (Algorithm are in the table represented in the row
labelled with up. For the algorithms that use simulation, the simulation is computed
using Algorithm and the time of computation of the simulation relation is included
in the running time of the algorithm.

The table compares the methods according to the percentage of the cases in which they
were the fastest when checking inclusion on the same automata pair, and also according
to the percentage of timeouts (the timeout was set to 30s). The results for runs of the
inclusion checking algorithms on almost 2000 pairs of TAs are in the column labelled
with “All pairs”. We also checked the performance of the algorithms for cases when
inclusion either does or does not hold in order to explore the ability of the algorithms
to either find a counterexample in the case when inclusion does not hold, or prove the
inclusion in case it does. The results below “L(A) € L(B)” in the table are for the
pairs A, B of the test set where the inclusion does not hold, and the column under
“L(A) C L(B)” reports on the cases where the inclusion holds.

The output of the experiments shows (again, cf. the results in Chapter the domina-
tion of the downward approach. It can be, however, noted that the downward simulation
did not help much (in rows down+s and down-opt+s). This was caused by the overhead
of the computation of the simulation relation. Our symbolic downward simulation al-
gorithm is still immature when compared to the one used for the explicit encoding.
Despite this, we can observe that for the cases inclusion holds, the use of simulation can
significantly decrease the number of timeouts.

9.6. Conclusion

This chapter presented a semi-symbolic MTBDD-based representation of nondetermin-
istic TAs generalising the one used by MONA, together with important tree automata
algorithms working over this representation, most notably an algorithm for computing
downward simulations over TAs inspired by [INY04] and the downward language inclu-
sion algorithm improved by simulations and antichains proposed in Chapter |8 We have
experimentally justified usefulness of the symbolic encoding for nondeterministic TAs
with large alphabets.
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In the future, we wish to advance the algorithms presented in this chapter even fur-
ther. A particular candidate would be the algorithm for computing the downward simu-
lation relation on a semi-symbolically encoded automaton, which is still quite immature
when compared with current state-of-the-art algorithms for explicitly represented au-
tomata [RT07, HSOQ]. Moreover, we plan to also explore other symbolic representations
of finite automata on both words and trees, and advanced algorithms on these repre-
sentations. We are currently working on an algorithm for computing forward simulation
on fully-symbolically represented finite automata. The representation stores the entire
transition function of the automaton in a single BDD. Using this representation, we wish
to avoid the issue with storing the counters from the algorithm presented in Section[9.3.4]
inside an MTBDD, which is one of the main bottlenecks of the algorithm, due to the
counters being frequently accessed.
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10. An Efficient Tree Automata Library

The techniques presented in Chapters[3H7] as well as many other formal verification tech-
niques, rely on an efficient underlying implementation of tree automata, and their success
can be hindered by a poor performance of a naive TA implementation. Some of these
techniques are: abstract regular tree model checking (ARTMC) [AIMd02, BHRV12] ap-
plied e.g. for verification of programs with complex dynamic data structures [BHRV06],
verification of programs handling dynamically linked structures with data [MPQI1], or
decision procedures for separation logic [IRV14].

Currently, there exist several available tree automata libraries; they are, however,
mostly written in OCaml (e.g. Timbuk/Taml [Gen03|) or Java (e.g. LETHAL |CJHT09])
and they do not always use the most advanced algorithms known to date. Therefore,
they are not suitable for tasks that require the available processing power be utilised
as efficiently as possible. An exception from these libraries is MONA [KMS02] imple-
menting decision procedures over WS1S/WS2S. MONA contains a highly optimised TA
package written in C, but, alas, it supports only binary deterministic tree automata.
At the same time, it turns out that determinisation is often a very significant bottleneck
of using TAs, and a lot of effort has therefore been invested into developing efficient algo-
rithms for handling nondeterministic tree automata without a need to ever determinise
them (e.g. the techniques presented in Chapters 8| and @)

In order to allow researchers focus on developing verification techniques rather than
reimplementing and optimising a TA package, we provide VATAEL an easy-to-use open
source library for efficient manipulation of nondeterministic TAs. VATA supports many of
the operations commonly used in automata-based formal verification techniques over two
complementary encodings: explicit and semi-symbolic. The explicit encoding is suitable
for most applications that do not need to use alphabets with a large number of symbols.
On the other hand, the semi-symbolic encoding (described in more detail in Chapter @
is suitable for applications that make use of such alphabets, e.g. the ARTMC-based
verification of programs with complex dynamic data structures [BHRV12] or decision
procedures of the MSO or WSKS logics [KMS02] (cf. the procedure in Chapter [7)).

At the present time, the main application of the structures and algorithms imple-
mented in VATA for handling explicitly encoded TAs are the Forester tool for verifica-
tion of programs with complex dynamic data structures (see Chapters and the tools
implementing TA-based decision procedures for separation logic: SPEN (see Chapter @
and SLIDE [[RV14]. The semi-symbolic encoding of TAs has been used in our decision
procedure for WS1S in Chapter 7| (where we use unary tree automata in the place of
finite automata).

"http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
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Figure 10.1.: The architecture of the VATA library

In this chapter, we give an overview of the algorithms available and mention various
interesting optimisations that we used when implementing them. Based on experimental
evidence, we argue that these optimisations are important for the performance of the
library.

Outline. The structure of this chapter is the following. In Section we describe
the design of VATA. Section gives a description of the operations that we support.
In Section we report on our experiments with the implementation. Section [10.4]
briefly concludes the chapter.

10.1. Design of the Library

The library is designed in a modular way (see Figure . The user can choose a module
encapsulating his preferred automata encoding and its corresponding operations. Various
encodings share the same general interface so it is easy to swap one encoding for another,
unless the user takes advantage of encoding-specific functions or operations.

Thanks to the modular design of the library, it is easy to provide an own encoding of
tree (or word) automata and effectively exploit the remaining parts of the infrastructure,
such as parsers and serialisers from/to different formats, the unit testing framework,
performance tests, etc.

The VATA library is implemented in C++ using the C++11 standard library. In order
to avoid expensive look-ups of entry points of virtual methods in the virtual-method table
of an object and to fully exploit compiler’s capabilities of code inlining and optimisation
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of code according to static analysis, the library heavily exploits polymorphism using
C—++ function templates instead of using virtual methods for core functions. We believe
that this is one of the reasons why the performance of the optimised code (the -03 flag of
gcc) is up to 10 times better than the performance of the non-optimised code (the -00
flag of gcc).

10.1.1. Explicit Encoding

In the explicit representation of TAs used in VATA, transitions are stored in the top-
down manner inside a hierarchical data structure similar to a hash table. More precisely,
the top-level lookup table maps states to transition clusters. Each such cluster is itself
a lookup table that maps alphabet symbols to a set of pointers to tuples of states. The
set of pointers to tuples of states is represented using a red-black tree. The tuples of
states are stored in a designated hash table to further reduce the required amount of
space (by not storing the same tuples of states multiple times). An example of the
encoding is depicted in Figure [10.2

In order to insert a transition ¢ — a(qi, ..., q,) into the transition table, one proceeds
using the following algorithm:

1. Find a transition cluster that corresponds to the state g in the top-level lookup
table. If such a cluster does not exist, create one.

2. In the given cluster, find a set of pointers to tuples of states reachable from ¢
over a. If the set does not exist, create one.

3. Obtain the pointer to the tuple (g1, ..., q,) from the tuple lookup table and insert
it into the found or created set of pointers.

If one ignores the worst case time complexity of the underlying data structures (which,
according to our experience, has usually a negligible real impact only), then inserting
a single transition into the transition table requires a constant number of steps. Yet the
representation provides a more efficient encoding than a plain list of transitions because
some transitions share the space required to store the parent states (e.g. state ¢ in
the transition ¢ — a(qi,...,qn)). Moreover, some transitions also share the alphabet
symbol and each tuple of states appearing in the set of transitions is stored only once.
Additionally, the encoding allows us to easily perform certain critical operations, such
as finding a set of transitions ¢ — a(q1,...,qy) for a given state ¢. This is useful e.g.
during the elimination of (top-down) unreachable states or for the downward inclusion
checking algorithm.

In some situations, one needs to manipulate many tree automata at the same time.
To give an example, in the forest automata-based program analysis framework considered
in Chapters[3|and [5] where (in theory) one needs to store one automaton representing the
content of a heap for each reachable state of the program. To improve the performance
of our library in such scenarios, we adapt the copy-on-write principle. Every time one
needs to create a copy of an automaton A to be subsequently modified, it is enough to
create a new automaton A’ that obtains a pointer to the transition table of A (which
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Figure 10.2.: An example of the VATA’s explicit encoding of transition functions of three
automata A, B, C. In particular, one can see that A contains a transition
@1 — ¢(q1,q2): it suffices to follow the corresponding arrows. Moreover,
B also contains the same transition (and the corresponding part of the
transition table is shared with A). Finally, C shares its transitions with B.

requires constant time). Subsequently, as more transitions are inserted into A’ (or A),
only the part of the shared transition table that gets modified is copied (Figure also
provides an illustration of this feature).

10.2. Supported Operations

VATA allows the user to choose one of three available encodings: explicit, semi-symbolic
top-down, and semi-symbolic bottom-up. Depending on the choice, certain TA opera-
tions may or may not be available. Here we describe only operations for the explicit
encoding; the description of the operations for the two semi-symbolic encodings is pro-
vided in Chapter [9] The supported operations for the explicit representation are the
following: union, intersection, elimination of (bottom-up, top-down) unreachable states,
inclusion checking (both upward and downward), computation of the maximum simu-
lation relations (both upward and downward simulations), and language-preserving size
reduction based on the simulation equivalence. In the case of testing language inclusion,
we provide several implementations of the operation, because, as observed in the exper-
imental section of Chapter [§] the performance of different approaches varies on different
use cases.
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Below, we do not discuss the relatively straightforward implementation of the basic
operations on TAs and we comment on the more advanced operations only, in particu-
lar on computing the (maximum) simulation relations and upward testing of language
inclusion (the used algorithms for downward inclusion testing are described in Chapter

10.2.1. Downward and Upward Simulation

Computation of the (maximum) downward and upward simulation relations for the ex-
plicit representation of the TAs is in VATA performed in three steps. For the downward
simulation, the input TA is first translated into a labelled transition system (LTS) using
the technique described in [ABHT08|. In the second step, the simulation relation for the
LTS is computed using an implementation of the state-of-the-art algorithms for com-
puting simulations on LTS’s [RT07, HSOQJ, with some further optimisations mentioned
in Section Finally, the result is projected back to the set of states of the original
automaton.

For the upward simulation, the steps are the same, with the exception of the translation
of a TA into an LTS, which is in this case performed using the algorithm from |[ABHT0S].

10.2.2. Simulation-based Size Reduction

In a typical setting, one often wants to use a representation of tree automata that is
as small as possible in order to reduce the memory consumption and speed up opera-
tions on the automata (especially the potentially costly ones, such as inclusion testing).
To achieve that, the classical approach is to use determinisation and minimisation. How-
ever, the minimal deterministic tree automata can still be much bigger than the original
nondeterministic ones. Therefore, VATA offers a possibility to reduce the size of tree
automata without determinisation by their quotienting w.r.t. an equivalence relation—
currently, only the downward simulation equivalence is supported.

The procedure works as follows: first, the downward simulation relation <p is com-
puted for the automaton. Then, the symmetric fragment of <p (which is an equiva-
lence relation) is extracted, and each state appearing within the transition function is
replaced by a representative of the corresponding equivalence class. A further reduc-
tion is then based on the following observation: if an automaton contains a transition
q — a(qi,...,qn), any additional transition ¢ — a(ri,...,r,) can be omitted if r; <p ¢
for all 1 <14 < n: such a transition does not contribute to the language of the result (recall
that, for the downward simulation preorder <p, it holds that ¢ <p r = L(q) C L(r)).

10.2.3. Upward Inclusion

The algorithm for upward inclusion testing using the explicit encodings of TAs of VATA
(which was used in the experiments of Chapter is based on, as its name suggests,
upward traverse through the TAs. Our top-down representation of the transition relation
is therefore not very suitable here. We can, however, afford to build a temporary bottom-
up encoding, since the overhead of a translation into this encoding is negligible compared
to the complexity of the subsequent operations.
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The upward algorithm for language inclusion testing is based on the approach intro-
duced in [BHHT08|. Here, the main principle used for checking whether L(A) C L(B)
is to search for a tree that is accepted by A and not by B (thus being a witness for
L(A) € L(B)). This is done by simultaneously traversing both A and B from their leaf
transitions while generating pairs (p4, Pg) € Q.4 X 205 where p4 represents a state into
which A can get on some input tree and Pg is the set of all states into which B can get
over the same tree. The inclusion then does clearly not hold iff it is possible to generate
a pair consisting of an accepting state of A and of exclusively non-accepting states of B.

The algorithm collects the so far generated pairs (p4, Pg) in a set called Visited.
Another set called Next is used to store the generated pairs whose successors are still to
be explored. One can then observe that whenever one can reach a counterexample to
inclusion from (p4, Pg), one can also reach a counterexample from any (p4, P C Pg)
as Pj allows even less runs of B than Pg. Using this observation, both mentioned
sets can be represented using antichains. In particular, one does not need to store and
further explore any two elements comparable w.r.t. (=, C), i.e. by equality on the first
component and inclusion on the other component.

Clearly, the running time of the above algorithm strongly depends on the total number
of pairs (p4, Pg) taken from Next for further processing. Indeed, this is one of the reasons
why the antichain-based optimisations helps. According to our experience, the number
of pairs that need to be processed can further be reduced when processing the pairs
stored in Next in a suitable order. Our experimental results have shown that we can
achieve a very good improvement by preferring those pairs (p 4, Pg) that have a smaller
(w.r.t. the size of the set) second component.

Yet another way that we found useful when improving the above algorithm is to
optimise the way the algorithm computes the successors of a pair from Nezt. The original
algorithm picks a pair (p4, Pg) from Next and puts it into Visited. Then, it finds all
transitions of the form a(pa1,...,pan) = pin A such that (pa;, Pg;) € Visited for all
1 <i<nand (paj, Ps;) = (pa, Pg) for some 1 < j < n. For each such transition,
it finds all transitions of the form a(qi,...,¢,) — ¢ in B such that ¢; € Pg; for all
1 < i < n. Here, the process of finding the needed B transitions is especially costly.
In order to speed it up, we cache for each alphabet symbol a, each position 7, and each
set Pg;, the set of transitions {a(q1,...,qn) = ¢ € Ap: q; € Pg;} at the first time it is
used in the computation of successors. Then, whenever we need to find all transitions
of the form a(q1,...,qn) — ¢ in B such that ¢; € Pg; for all 1 < i < n, we find them
simply by intersecting the sets of transitions cached for each (Pg;,1,a).

Next, we propose another modification of the algorithm that aims to improve the per-
formance especially in those cases where finding a counterexample to inclusion requires
us to build representatives of trees with higher depths or in the cases where the inclu-
sion holds. Unlike the original approach that moves only one pair from Nezt to Visited
at the beginning of each iteration of the main loop, we add the newly created pairs
(pa, Pg) into Next and Visited at the same time (immediately after they are generated).
Our experiments showed that this allows Visited converge faster towards the fixpoint.

Finally, yet another optimisation of the algorithm presented in [BHHT08] appeared
in [ACH"T10]. This optimisation maintains the sets Visited and Next as antichains
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w.r.t. (2y, EHUV) Hence, more pairs can be discarded from these sets. Moreover, for
pairs that cannot be discarded, one can at least reduce the sets on their right-hand side
by removing states that are simulated by some other state in these sets (this is based
on the observation that any tree accepted from an upward-simulation-smaller state is
accepted from an upward-simulation-bigger state too). Finally, one can also use upward
simulations between states of the two automata being compared. Then, one can discard
any pair (p4, Pg) such that there is some pp € P that upward-simulates p4 because it
is then clear that no tree can be accepted from p 4 that could not be accepted from pg.
All these optimisations are also available in VATA and can optionally be used—they are
not used by default since the computation of the upward simulation can be quite costly
(as observed by the experimental results of Chapter

10.2.4. Computing Simulation over LTS

The explicit part of VATA uses a highly optimised LTS simulation algorithm proposed
in [RTQ7] and further improved in [HS09]. The main idea of the algorithm is to start
with an over-approximation of the simulation preorder (a possible initial approximation
is the relation @ x @), which is then iteratively pruned whenever it is discovered that
the simulation relation cannot hold for certain pairs of states. For a better efficiency,
the algorithm represents the current approximation R of the simulation using a so-called
partition-relation pair. The partition splits the set of states into subsets (called blocks)
whose elements are equivalent w.r.t. R, and the relation R is lifted to these blocks.

In order to be able to deal with the partition-relation pair efficiently, the algorithm
needs to record for each block a matrix of counters of size |Q||X| where, for the given
LTS, @ is the set of states and X is the set of labels. The counters are used to count
how many transitions going from the given state via a given symbol a lead to states
in the given block (or blocks currently considered to be bigger w.r.t. the simulation).
This information is then used to optimise re-computation of the partition-relation pair
when pruning the current approximation of the simulation relation being computed
(for details see e.g. [RT07]). Since the number of blocks can (and often does) reach the
number of states, the naive solution requires |@Q|?|%| counters in the worst case. It turns
out that this is one of the main barriers which prevents the algorithm from scaling to
systems with large alphabets and/or large sets of states.

Working towards a remedy for the above problem, one can observe that the mentioned
algorithm actually works in several phases. At the beginning, it creates an initial esti-
mation of the partition-relation pair, which typically contains large equivalence classes.
Then it initialises the counters for each element of the partition. Finally, it starts the
iterative partition splitting. During this last phase, the counters are only decremented
or copied to the newly created blocks. Moreover, the splitting of some block is itself
triggered by decrementing some set of counters to 0. In practice, late phases of the iter-
ation typically witness a lot of small equivalence classes having very sparsely populated
counters with 0 being the most abundant value.

20ne says that P <3¥ Q holds if Vp € P 3¢ € Q : p <u ¢. Note also that the upward simulation must
be parameterised by the identity in this case [ACH'10].
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This suggests that one could use sparse matrices containing only the non-zero ele-
ments. Unfortunately, according to our experience, this turns out to be the worst possi-
ble solution which strongly degrades the performance. The reason is that the algorithm
accesses the counters very frequently (it either increments them by one or decrements
them by one), hence any data structure with non-constant time access causes the com-
putation to stall. A somewhat better solution is to record the non-zero counters using
a hash table, but the memory requirements of such representation are not yet reasonable.

Instead, we are currently experimenting with storing the counters in blocks, using
a copy-on-write approach and a zeroed-block deallocation. In short, we divide the matrix
of counters into a list of blocks of some fixed size. Each block contains an additional
counter (a block-level counter) that sums up all the elements within the block. As soon
as a block contains a single non-zero counter only, it can safely be deallocated—the
content of the non-zero counter is then recorded in the block-level counter.

Our initial experiments show that, using the above approach, one can easily reduce the
memory consumption by the factor of 5 for very large instances of the problem compared
to the array-based representation used in [HHS09]. The best value to be used as the size of
blocks of counters is still to be studied—after some initial experiments, we are currently

using blocks of size /|Q)|.

10.3. Experimental Evaluation of VATA

In order to illustrate the level of optimisation that has been achieved in VATA and that
can be exploited in its applications (such as the Forester tool considered in Chapters
, we compared its performance against Timbuk and the prototype library considered
in [HLSVHJ, which—despite its prototype status—already contained a quite efficient
TA implementation.

We compared the performance of the explicit encoding of VATA with Timbuk for union
and intersection of more than 3000 pairs of TAs. On average, VATA was over 20 000
times faster on union and over 100000 times faster on intersection. The comparison of
the implemented inclusion checking algorithms can be found in Chapters [§ and [9]

10.4. Conclusion

In this chapter, we gave a description of VATA, a new efficient and open-source nondeter-
ministic tree automata library, which supports both explicit and semi-symbolic encoding
of the tree automata transition function. Up to our knowledge, it is currently the most
efficient library for manipulating tree automata. Since its introduction, it has already
been used by a few researchers around the world as an efficient underlying library for
handling nondeterministic automata for their own techniques (such as for testing lan-
guage inclusion of TAs in the decision procedure for separation logic of [IRV14], or for the
computation of the simulation relation in algorithm for checking language equivalence
of nondeterministic finite automata of [BP13]).
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In the future, we wish to extend the library with more representations of automata
(e.g. with a fully-symbolic representation) and support more operations, such as de-
terminisation (which, however, is generally desired to be avoided), or complementation
(which we so far do not know how to compute without first determinising the automa-

ton).
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11. Conclusions and Future Directions

Each of the main chapters contains detailed conclusions concerning the specific topic.
Here, we summarise once more the main points and discuss possible further research
directions.

11.1. A Summary of the Contributions

The main focus of this thesis was on improving the state of the art in shape analysis.
This high-level goal was addressed by contributions in the following three areas. In the
first area of forest automata-based shape analysis, we developed an extension of the
analysis proposed in [HHR™12| that allows it to run fully automatically, without user
intervention. The extension is based on learning boxes, i.e. lower-level forest automata
describing repeated substructures of the considered complex dynamic data structure,
which needed to be manually provided by the user in the original analysis. The boxes
are inferred automatically from the structure of the sets of heap graph that occur during
the run of the analysis. Moreover, we extended the analysis even further by considering
the relations between the data stored in the heap cells. We trace ordering relations
between the data stored, which allows us to verify programs such as various sorting
algorithms (bubblesort and insertsort over lists), programs with binary search trees, or
programs with skip lists of two and three levels.

In the second area, which focused on the development of decision procedures for various
logics, we proposed the following two procedures: First, we proposed a decision procedure
for testing entailment in a fragment of separation logic that contains various flavours of
lists that appear in practice. The decision procedure is based on decomposing the whole
entailment query into several lower-level queries and deciding those by translating them
into the tree automata membership problem. Second, we proposed a decision procedure
for testing validity of WS1S formulae. The decision procedure is based on transforming
the formula to be decided into the prenex normal form, constructing a finite automaton
for the matrix of the formula, and, finally, processing the prefix of the formula using
a technique that is a generalisation of the antichain principle from testing universality
and language inclusion of finite automata.

In the third area focusing on finding new and improving existing techniques for manip-
ulating nondeterministic tree automata, we contributed by the following results. We de-
veloped a new technique for testing language inclusion that is based on a downward
traversal through the automaton. We further augmented the basic technique with the
use of antichains and simulations, and also proposed more advanced optimisations. Ac-
cording to our experiments, the technique performs often better than the so far used
upward inclusion checking, which is based on upward determinisation of the automaton.
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Moreover, we also proposed a semi-symbolic encoding of nondeterministic tree automata
and developed algorithms for automata operations (including some more advanced like
computing the maximum downward simulation relation on the states of the automaton,
or checking language inclusion of a pair of automata) over this encoding. Our work in
exploring efficient techniques for handling nondeterministic tree automata culminated
in the development of the VATA library, where these techniques are implemented, and
which is, as far as we know, currently the most efficient library for manipulating nonde-
terministic tree automata available.

11.2. Further Directions

There are many interesting directions of further work. In the area of automata-based
shape analysis, an interesting direction is to consider a more general notion than the cur-
rently used formalism of forest automata. One option would be to remove the restriction
that the boxes cannot be recursive. Such a change would increase the expressive power
of forest automata, allowing them to express such data structures as trees with linked
leaves or skip lists of an arbitrary height. On the other hand, the box folding and learn-
ing algorithms would need to be significantly re-designed. Another option would be to
adopt a different model, based e.g. on the encoding of inductive higher-order predicates
used in the decision procedure for separation logic of Tosif et al [[RV14]. Yet another op-
tion, this one relating to the data-related component of the analysis, is extension of the
abstract data domain to more general relations than currently considered, or even cre-
ating a generalised framework that would allow one to plug in any abstract domain that
meets certain requirements. In any case, we wish to extend the forest automata-based
shape analysis with a counterexample-guided abstraction refinement (CEGAR) loop and
use predicate language abstraction on the forest automata instead of the coarse finite
height abstraction used now. We believe that the use of the more refined abstraction
should allow us to verify some data structures that we currently cannot handle due to
the abstraction used, such as red-black trees.

A further interesting future direction is the development of an approach that would
allow verification of memory allocators (such as the ptmalloc() allocator used in the
glibc library), which is a truly challenging task due to the complex overlaid shape of
the used data structures. A more general representation would also be needed for the
verification of some concurrent programs with dynamic memory, e.g. lock-free imple-
mentations of concurrent skip lists. In this setting, the invariant of the sequential skip
list, which we are currently able to infer, is broken in this particular lock-free concurrent
setting, and forest automata, as defined, cannot represent it (because the pointers in the
structure overlap and do not create the nested hierarchy from the sequential algorithm,
we cannot fold the lower levels into boxes any more). Nevertheless, we plan to apply the
shape analysis to verification of concurrent programs, combining it e.g. with the ideas
of Abdulla et al [AHHT13].

Regarding our decision procedure for separation logic, in future, we wish to continue
with extending its generality. In particular, we would like to weaken the limitations
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on the Boolean structure of the formulae, and, moreover, we would also like to explore
whether it is possible to combine it with the decision procedure from [[RV14], which
considers more general inductive definitions. For the decision procedure for WS1S, there
are several possibilities. We wish to extend the decision procedure to WSkS for an
arbitrary k by the use of tree automata and, probably, an algorithm with a structure
similar to the structure of the algorithms for downward language inclusion testing of
nondeterministic tree automata that were presented in this thesis. We also plan to
generalise our notion of symbolic terms in the algorithm to reduce the number of states
of the automaton for the matrix of a formula. We believe that our proposed decision
procedure is only the start of a new research direction searching for techniques for
efficiently deciding WSkS formulae, combining heuristics from both automata theory
and formal logic.

Even though the methods for manipulating nondeterministic finite tree (and word)
automata have seen a great advance in the recent years, as shown by a recent algorithm
for testing equivalence and inclusion of nondeterministic finite word automata of Bonchi
and Pous [BP13], there is still a space for improvement. We wish to generalise their
algorithm to testing inclusion of nondeterministic tree automata, both for the upward
and downward direction of traversal through the automata. We also wish to keep ex-
ploring yet other possibilities for reducing the state space in checking language inclusion
of nondeterministic finite and tree automata. Furthermore, one of our future goals is
to develop an efficient technique for reducing nondeterministic finite automata, both for
words and trees, going beyond the capabilities of the techniques based on the simulation
equivalence. In the area of symbolic representation of finite word and tree automata, we
wish to explore different encodings, suitable for particular needs, such as for the use in
the decision procedures of various logics (e.g. WSkS) or for the verification of hardware.

11.3. Publications Related to this Thesis

The results presented in this thesis were originally published in the following papers.
The automated approach for learning boxes in the forest automata-based shape analysis,
together with the refined technique for abstraction, appeared in [HLR™13|. The data ex-
tension of the forest automata-based shape analysis was published as [AHJ"13] (and later
extended in [AHJT15]). The decision procedures for separation logic with list predicates
was published in [ELSV14a)], and the decision procedure for WS1S has been accepted to
appear as [FHLV15]. Our algorithms for manipulating nondeterministic tree automata
were published in [HLSV11] (the downward inclusion checking and the algorithms for the
semi-symbolic representation) and the description of our tree automata library appeared
in [LSV12].
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