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ABSTRACT

Quantum circuit simulation is the basic tool for reasoning over
quantum programs. Despite the tremendous advance in the simula-
tor technology in the recent years, the performance of simulators
is still unsatisfactory on non-trivial circuits, which slows down the
development of new quantum systems. In this work, we develop
a loop summarizing simulator based on multi-terminal binary deci-
sion diagrams (MTBDDs) with efficiently customized quantum gate
operations. The simulator is capable of automatic loop summariza-
tion using symbolic execution, which saves repetitive computation
for circuits with iterative structures. Experimental results show the
simulator outperforms state-of-the-art simulators on some standard
circuits, such as Grover’s algorithm, by several orders of magnitude.
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1 INTRODUCTION

The development of quantum computers started in 1980s with
the promise to solve problems challenging for classical computers.
Later, quantum algorithms more efficient than their best classi-
cal counterparts for certain problems started appearing, such as
Shor’s algorithm for integer factoring [27] or Grover’s algorithm for
search in an unstructured database [19]. With multiple major play-
ers investing into quantum and the consistent improvement of the
hardware, it seems that quantum computers will occupy a promi-
nent role in the future. The development of quantum algorithms is
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an extremely challenging task so adequate computer-aided support
is needed for debugging and reasoning over quantum programs.

Debugging quantum programs is primarily done through simula-

tion, which is considerably more challenging in the quantum world
as compared to the classical world. This is because, in the quantum
world, we need to keep track of a potentially exponentially sized
quantum state that assigns every classical state a complex amplitude

instead of keeping track of a single evolving classical program state.
Simulators of quantum programs have advanced tremendously

in recent years, moving from the basic vector- and matrix-based
representation [26] into representations based on decision dia-
grams [25, 28, 30, 32, 33, 36], graphical languages [14], or model
counting [24]. Despite this advance, simulating quantum circuits
of a moderate size is still considered infeasible. Therefore, faster
simulators are needed to provide quantum developers with basic
means to observe behaviour of quantum programs.

In this paper, we focus on accelerating the simulation of quan-
tum circuits that contain repetition of some sub-structure. Some
notable examples of such circuits include Grover’s search [19], pe-
riod finding [23], and quantum counting [8]. Current standards
for describing quantum circuits, such as the OpenQASM 3.0 for-
mat [15], allow describing such repeated sub-structures compactly
using loops or hierarchical gate definitions.

Our method for accelerating simulation involves computing
a symbolic summary of a sequence of quantum gates that occur
repeatedly, such as a loop body or the definition of a hierarchical
gate. This summary is computed with respect to a particular quan-
tum state and can be reused to execute the sequence of quantum
gates from any state that shares the same high-level structure, i.e.,
computational bases with the same amplitudes in the first state will
also have the same amplitudes in the second state, though these
amplitude values may differ from those in the first state. We de-
rive these summaries using symbolic execution, which is similar to
standard quantum simulation but instead computes symbolic terms
that remember the arithmetic operations to be performed, rather
than computing the results of arithmetic operations over numbers.

Moreover, similarly to [30], we represent quantum states alge-
braically for exact simulation without numerical precision loss,
which is crucial in tasks such as equivalence checking [34]. Un-
like [30], which works only for concrete value simulation, ours

https://orcid.org/0009-0003-5947-6206
https://orcid.org/0000-0003-2872-0336
https://orcid.org/0000-0002-2279-4732
https://orcid.org/0009-0002-8777-7228
https://orcid.org/ 0000-0002-3038-5875
https://doi.org/10.1145/3676536.3676711
https://doi.org/10.1145/3676536.3676711


ICCAD ’24, October 27–31, 2024, New York, NY, USA Tian-Fu Chen, Yu-Fang Chen, Jie-Hong Roland Jiang, Sára Jobranová, and Ondřej Lengál

𝑢 : 𝑥1

𝑣 : 𝑥2

𝑏𝑎

(a) MTBDD𝑀𝑞 for 𝑞

𝑢′ : 𝑥1

𝑣 ′ : 𝑥2

𝑏𝑎

(b) Applying 𝑋2 to 𝑞

𝑥1

𝑥2

𝑏𝜔2 𝑎𝜔2𝑎

(c) Applying 𝑆1 to 𝑞

𝑥1

𝑥2 𝑥2

𝑎+𝑏√
2

2𝑎√
2

𝑎−𝑏√
2 0

(d) Applying 𝐻1 to 𝑞

𝑥1

𝑥2

𝑏𝑎
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Figure 1: Examples of applying quantum gates on MTBDD-based representation of the state 𝑞 = 𝑎 |00⟩ + 𝑎 |01⟩ + 𝑏 |10⟩ + 𝑎 |11⟩.

allows symbolic simulation thanks to the use of multi-terminal bi-

nary decision diagrams (MTBDDs) [4, 9, 16]. We customize MTBDD
procedures for efficient quantum gate execution instead of using
only standard MTBDD functions Apply and Restrict as usual.

Our experimental evaluation shows that our proposed approach
can significantly speed up simulation for some well-established
quantum circuits. This allows us to tackle circuits of sizes that were
previously considered infeasible.

2 PRELIMINARIES

B = {0, 1} denotes the Booleans. We fix a set X = {𝑥1, . . . , 𝑥𝑛} of
Boolean variables with an order 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 ; we use ®𝑥 to
denote (𝑥1, . . . , 𝑥𝑛). Given an arbitrary set 𝑆 ≠ ∅, a pseudo-Boolean
function is a function 𝑓 : B𝑛 → 𝑆 ; 𝑓 is a Boolean function if 𝑆 = B.
𝜔 denotes the complex number 𝑒

𝑖𝜋
4 , i.e., the unit vector that makes

an angle of 45◦ with the positive real axis in the complex plane.

2.1 Decision diagrams

Given an arbitrary nonempty set 𝑆 with finitely representable ele-
ments, amulti-terminal binary decision diagram (MTBDD) [4, 9, 16]
is a graph 𝐺 = (𝑁,𝑇 , low, high, root, var) where 𝑁 is the set of in-
ternal nodes, 𝑇 ⊆ 𝑆 is the set of leaf nodes (𝑇 ∩ 𝑁 = ∅, 𝑇 ≠ ∅),
low, high : 𝑁 → (𝑁 ∪ 𝑇 ) are the low- and high-successor edges,
root ∈ 𝑁 ∪𝑇 is the root node, and var : 𝑁 → X is the node-variable
mapping, with the following three restrictions:
(i) (connectivity) every node from 𝑁 ∪𝑇 is reachable from root

over some sequence of low and high edges,
(ii) (order) for every 𝑢, 𝑣 ∈ 𝑁 , if low(𝑢) = 𝑣 or high(𝑢) = 𝑣 , then

var (𝑢) < var (𝑣), and
(iii) (reducedness) there is no node 𝑢 ∈ 𝑁 s.t. low(𝑢) = high(𝑢).
Each node 𝑣 ∈ 𝑁 ∪ 𝑇 represents a pseudo-Boolean function J𝑣K
defined inductively as follows: (1) if 𝑣 ∈ 𝑇 , then J𝑣K( ®𝑥) = 𝑣 , and
(2) if 𝑣 ∈ 𝑁 and var (𝑣) = 𝑥𝑖 , then

J𝑣K( ®𝑥) =
{
Jlow(𝑣)K( ®𝑥) if 𝑥𝑖 = 0 and
Jhigh(𝑣)K( ®𝑥) if 𝑥𝑖 = 1.

Moreover, we impose the following additional restriction on 𝐺 :
(iv) (canonicity) there are no two nodes 𝑢 ≠ 𝑣 such that J𝑢K = J𝑣K.
𝐺 then represents the function J𝐺K defined as JrootK. We abuse
notation and confuse a function with the MTBDD representing it
and use a node 𝑟 to denote the MTBDD rooted in 𝑟 and vice versa.

We will use the following standard MTBDD operations. The
apply(𝑓1, 𝑓2, op2) operation is used to combine two MTBDDs 𝑓1
and 𝑓2 through a binary operation op2 : 𝑆×𝑆 → 𝑆 performed on the
corresponding leaf notes, obtaining the MTBDD representing the

pseudo-Boolean function {®𝑥 ↦→ op2 (𝑓1 ( ®𝑥), 𝑓2 ( ®𝑥)) | ®𝑥 ∈ B𝑛}. The
monadic_apply(𝑓 , op) operation updates the leaves of theMTBDD
𝑓 with a unary operation op1 : 𝑆 → 𝑆 , obtaining the MTBDD rep-
resenting the pseudo-Boolean function {®𝑥 ↦→ op1 (𝑓 ( ®𝑥)) | ®𝑥 ∈ B𝑛}.
We often use lambda expression for defining op1/2. Additionally,
MTBDDs provide the spawn(𝑙, ℎ, 𝑥) function that works as follows:
(i) if 𝑙 = ℎ, then the result is 𝑙 ,otherwise (ii) the result is the unique
node 𝑛 such that low(𝑛) = 𝑙 , high(𝑛) = ℎ, and var (𝑛) = 𝑥 .

2.2 Quantum Computing Fundamentals

Quantum computers are programmed through quantum gates, which
update the global quantum state. A quantum circuit is a sequence of
gates, combined with programming constructs like loops or hierar-
chical gate definitions that allow a more concise presentation [15].

Quantum states: In a traditional computer system with 𝑛 bits,
a state is represented by 𝑛 Booleans. In the quantum world, such
states are called computational basis states. E.g., in a system with
three bits labeled 𝑥1, 𝑥2, and 𝑥3, the computational basis state |011⟩
indicates that the value of 𝑥1 is 0 and the values of 𝑥2 and 𝑥3 are 1.

In a quantum system, an 𝑛-qubit quantum state is a probabilis-
tic distribution over 𝑛-bit basis states, denoted either as a column
vector (𝑎0, . . . , 𝑎2𝑛−1)𝑇 (given here as a transposed row vector) or
as a formal sum

∑
𝑗∈{0,1}𝑛 𝑎 𝑗 · | 𝑗⟩, where 𝑎0, 𝑎1, . . . , 𝑎2𝑛−1 ∈ C are

complex amplitudes satisfying the property that
∑

𝑗∈{0,1}𝑛 |𝑎 𝑗 |2 = 1.
Intuitively, |𝑎 𝑗 |2 is the probability that when we measure the quan-
tum state in the computational basis, we obtain the classical state | 𝑗⟩;
these probabilities must sum up to 1 for all basis states. We can
view a quantum state as a function mapping each basis state in B𝑛

to a complex amplitude and represent them using MTBDDs; cf. Fig-
ure 1a for an MTBDD𝑀𝑞 representing the state 𝑞 = 𝑎 |00⟩ +𝑎 |01⟩ +
𝑏 |10⟩ + 𝑎 |11⟩ (for some 𝑎, 𝑏 ∈ C s.t. 𝑎 ≠ 𝑏 and 3|𝑎 |2 + |𝑏 |2 = 1).

Quantum gates: Two main types of quantum gates are being
used: single-qubit gates and controlled gates. We support all com-
monly used gates except the arbitrary rotation single-qubit gate
due to the use a precise complex number representation (cf. Sec. 5).

Single-qubit gates. In general, a single-qubit gate is presented as
a unitary complex matrix. We directly support the following gates:

X =

(
0 1
1 0

)
, Y =

(
0 −𝑖
𝑖 0

)
, Z =

(
1 0
0 −1

)
,

S =

(
1 0
0 𝑖

)
, T =

(
1 0
0 𝜔

)
, H =

1
√
2

(
1 1
1 −1

)
,

RX
(𝜋
2

)
=

1
√
2

(
1 −𝑖
−𝑖 1

)
, RY

(𝜋
2

)
=

1
√
2

(
1 −1
1 1

)
.
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Algorithm 1: Execution of a single-qubit gate U𝑡

Input:MTBDD𝑀𝑞 = (𝑁,𝑇 , low, high, root, var),
target qubit 𝑥𝑡 , single qubit gate U

Output:MTBDD representing U𝑡 (𝑀𝑞)
1 return recurse(root);

2 Function recurse(node)
3 𝑙 ← low(node);ℎ ← high(node);𝑥𝑖 ← var (node);
4 if 𝑖 < 𝑡 then

5 𝑙new ← recurse(l); ℎnew ← recurse(h);
6 return spawn(𝑙new , ℎnew , 𝑥𝑖);
7 else // 𝑖 ≥ 𝑡 or a leaf
8 if 𝑖 = 𝑡 then 𝑙 ′ ← 𝑙 ; ℎ′ ← ℎ ;
9 else 𝑙 ′ ← ℎ′ ← node;

10 if U = X then return spawn(ℎ′, 𝑙 ′, 𝑥𝑡) ;
11 if U ∈ {T, S,Z} then
12 if 𝑈 = 𝑇 then 𝑐 ← 𝜔 ;
13 if 𝑈 = 𝑆 then 𝑐 ← 𝜔2;
14 if 𝑈 = 𝑍 then 𝑐 ← −1;
15 ℎnew ←monadic_apply(ℎ′, 𝜆𝑥 (𝑐 · 𝑥));
16 return spawn(𝑙 ′, ℎnew , 𝑥𝑡);
17 if U = Y then

18 𝑙new ←monadic_apply(ℎ′, 𝜆𝑥 (−𝜔2 · 𝑥));
19 ℎnew ←monadic_apply(𝑙 ′, 𝜆𝑥 (𝜔2 · 𝑥));
20 return spawn(𝑙new , ℎnew , 𝑥𝑡);
21 if U = H then

22 𝑙new ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 ( 1√
2
· (𝑥 + 𝑦)));

23 ℎnew ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 ( 1√
2
· (𝑥 − 𝑦)));

24 return spawn(𝑙new , ℎnew , 𝑥𝑡);
25 if U = RX

(
𝜋
2
)
then

26 𝑙new ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 ( 1√
2
· (𝑥 − 𝜔2 · 𝑦)));

27 ℎnew ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 ( 1√
2
· (𝑦 − 𝜔2 · 𝑥)));

28 return spawn(𝑙new , ℎnew , 𝑥𝑡);
29 if U = RY

(
𝜋
2
)
then

30 𝑙new ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 ( 1√
2
· (𝑥 − 𝑦)));

31 ℎnew ←apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 ( 1√
2
· (𝑥 + 𝑦)));

32 return spawn(𝑙new , ℎnew , 𝑥𝑡);

For a single-qubit gate U, we often use a subscript to denote the
qubit that it is applied to, e.g., U𝑖 means we apply U to qubit 𝑥𝑖 .

The X gate is the quantum “negation” gate. Applying gate X to
a single-qubit state

(
𝑙
ℎ

)
produces the state X ·

(
𝑙
ℎ

)
=

(
ℎ
𝑙

)
. In the

case of an MTBDD-based representation of
(
𝑙
ℎ

)
, which would have

a root node with the low-successor 𝑙 ∈ 𝑇 and high-successor ℎ ∈ 𝑇 ,
this would effectively mean swapping the low and high successors
of the root. For the general case, applying X𝑖 to a quantum state’s
MTBDD swaps the high and low-successor edges of all nodes at
level 𝑖 . See Figure 1b for an example of applying X2 to the MTBDD
𝑀𝑞 introduced above (the edges leaving 𝑣 ′ got swapped).

Algorithm 2: Execution of a controlled gate CU𝑐𝑡
Input:MTBDD𝑀 = (𝑁,𝑇 , low, high, root, var),

control qubit 𝑥𝑐 , target qubit 𝑥𝑡 , single qubit gate U
Output:MTBDD representing CU𝑐𝑡 (𝑀𝑞)

1 𝑀𝑙 ← recurse(root, L);
2 𝑀ℎ ← recurse(U𝑡 (𝑀𝑞), H);
3 return apply(𝑀𝑙 , 𝑀ℎ, 𝜆𝑥,𝑦 (𝑥 + 𝑦));
4 Function recurse(node, dir)
5 𝑙 ← low(node);ℎ ← high(node);𝑥𝑖 ← var (node);
6 if 𝑖 < 𝑐 then

7 𝑙new ← recurse(l, dir); ℎnew ← recurse(h, dir);
8 return spawn(𝑙new , ℎnew , 𝑥𝑖);
9 else // 𝑖 ≥ 𝑐 or a leaf
10 if 𝑖 = 𝑐 then 𝑙 ′ ← 𝑙 ; ℎ′ ← ℎ ;
11 else 𝑙 ′ ← ℎ′ ← node;

12 if dir = L then return spawn(𝑙 ′, 0, 𝑥𝑐) ;
13 else return spawn(0, ℎ′, 𝑥𝑐) ;

Behaviours of Z, S, and T gates are similar to each other. In
particular, applying the gates to

(
𝑙
ℎ

)
produces the states Z ·

(
𝑙
ℎ

)
=(

𝑙
−ℎ

)
, S ·

(
𝑙
ℎ

)
=

(
𝑙
𝑖 ·ℎ

)
, and T ·

(
𝑙
ℎ

)
=

(
𝑙

𝜔 ·ℎ

)
, which multiply the

|1⟩-position with −1, 𝑖 , and 𝜔 , respectively. Similarly, applying Z,
S, and T to a quantum state’s MTBDD multiplies all leaves in the
high-subtrees of all nodes at level 𝑖 with −1, 𝑖 , and 𝜔 , respectively
(cf. Figure 1c for an example of applying S1 to𝑀𝑞 ).

The last group of single-qubit gates we mention includes H
(the Hadamard gate), RX

(
𝜋
2
)
, and RY

(
𝜋
2
)
. These gates are more

challening for implementation, since they fuse the amplitudes of
the two basis states to form a new state. Taking H as an example,
it updates the state

(
𝑙
ℎ

)
to the state 𝐻 ·

(
𝑙
ℎ

)
= 1√

2
·
(
𝑙+ℎ
𝑙−ℎ

)
. See

Figure 1d for the result of applying H1 to𝑀𝑞 . We refer the readers
to Sec. 3 for the corresponding MTBDD constructions.

Controlled gates. A controlled gate CU uses another quantum
gate U as its parameter. We often use CU𝑐𝑡 to denote applying the
controlled-gate with control qubit 𝑥𝑐 and target qubit 𝑥𝑡 . The effect
of the controlled-U gate is that the gate U𝑡 is applied only when
the control qubit 𝑥𝑐 has the value 1. For example, the controlled-X
gate CNOT12 has the control qubit 𝑥1 and would apply X2 when 𝑥1
is valued 1. See Figure 1e for an example of applying CNOT12 to𝑀𝑞 .

3 ALGORITHM FOR QUANTUM GATES

Single-qubit gates. In Algorithm 1, we present our procedure for
applying single-qubit gates to anMTBDD𝑀𝑞 = (𝑁,𝑇 , low, high, root,
var) at the target qubit 𝑥𝑡 . The procedure performs the operations
on𝑀𝑞 directly, as opposed to the standard approach (used, e.g., in
SliQSim [30]), which uses only the standard (MT)BDD interface
(in particular, functions Apply and Restrict).

The algorithm is as a modification of a standard monadic_apply.
In particular, it performs a depth-first search (Line 5) until it reaches
an 𝑥𝑡 node, then it performs the semantic of the gate on the succes-
sors. The semantic differs for the particular gate, and was already
briefly discussed in Sec. 2.2. We, however, need to be careful about
“don’t care” edges, i.e., edges that skip some variable in the MTBDD
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(such as the low edge from 𝑢 in Figure 1a). In such a situation, we
need to stop the recursion and perform the gate operation bymateri-
alizing the missing node (with the same low and high, cf. Line 9. E.g.,
when applying X2 to the state 𝑞 in Figure 1a, we have 𝑙 ′ = ℎ′ = 𝑎
when handling the low-successor of 𝑢. Calling spawn(𝑎, 𝑎, 𝑥2) will
just return the 𝑎 leaf. On the other hand, high(𝑢′) will be set to
spawn(high(𝑣), low(𝑣), 𝑥2) = spawn(𝑎, 𝑏, 𝑥2) = 𝑣 ′.

To apply T, S, and Z gates, we use monadic_apply to multiply
the leaf nodes of high-successors of the nodes labelled by 𝑥𝑡 with
𝜔 , 𝜔2, and −1, respectively. When applying 𝑆1, one step would
be computing monadic_apply(𝑣, 𝜆𝑥 (𝜔2 · 𝑥)) and connecting the
result to high of the new root via the spawn function (Figure 1c).
Meanwhile, the Y gate does for each node at level 𝑖 the following:
(1) it multiplies the high with −𝜔2 and sets it as the new low, and
(2) it multiplies the low with 𝜔2 and sets it as the new high.

For each node at level 𝑖 , applying the H, RX
(
𝜋
2
)
, or RY

(
𝜋
2
)
gates

merges the high and low-successors using the apply function, creat-
ing new high and low-successors according to the gate’s behaviour.
In the case of the H gate, the new low-successor is apply(𝑙 ′, ℎ′,
𝜆𝑥,𝑦 ( 1√

2
· (𝑥 + 𝑦))) and the new high-successor is apply(𝑙 ′, ℎ′,

𝜆𝑥,𝑦 ( 1√
2
· (𝑥−𝑦))). When applying𝐻1 to the state 𝑞, we haveℎ′ = 𝑣

and 𝑙 ′ = 𝑎. Fusing the two via apply(𝑙 ′, ℎ′, 𝜆𝑥,𝑦 ( 1√
2
· (𝑥 +𝑦))) gives

us the low-successor of the root in Figure 1d and via apply(𝑙 ′, ℎ′,
𝜆𝑥,𝑦 ( 1√

2
· (𝑥 − 𝑦))) gives us the high-successor of the root.

Controlled gates. Our procedure for applying controlled-U gates

to𝑀𝑞 at the control qubit 𝑥𝑐 for some quantum gate U is presented
in Algorithm 2. The procedure involves three steps. First, in𝑀𝑙 , we
will store a copy of𝑀𝑞 modified such that every base with 𝑥𝑐 = 1
has amplitude 0 (Line 1). Second, we compute an MTBDD U𝑡 (𝑀)
using some of Algorithms 1 and 2 (depending on U, which can again
be a controlled gate) and modify it such that every base with 𝑥𝑐 = 0
has amplitude 0 (Line 2). Finally, both MTBDDs are summed up
using the apply function (Line 3), which will, effectively, combine
the two MTBDDs together (one operand of the + is always 0). Note
that the Toffoli gate can be obtained by using the CNOT gate for U.
A specialized more efficient version of the algorithm for phase gates
(e.g., Z, S, T) can be used (omitted here due to space constraints).

Memoization. In order to avoid redundant computation, calls to
the recurse functions in Algorithms 1 and 2 should be memoized.

Concrete execution and symbolic execution. Our gate operations
work for both concrete and symbolic amplitude values. When leaf
values are concrete, e.g., when 𝑥 = 1

2 and 𝑦 = 1
4 , the function

𝜆𝑥,𝑦 ( 1√
2
· (𝑥 + 𝑦))) will compute the value 1√

2
· ( 12 +

1
4 ) =

3
4
√
2
.

When leaf values are symbolic, e.g, , when 𝑥 = 𝑥0 and 𝑦 = 𝑦0, the
same function will compute the symbolic term 1√

2
· (𝑥0 + 𝑦0)).

4 LOOP SUMMARIZATION

Our main contribution is an optimization that targets algorithms
with loops1, such as various amplitude amplification algorithms [7],
with the most famous one being Grover’s unstructured search [19].
The optimization is particularly effective in the case that the number
of distinct amplitudes is small (which is the case for amplitude
1W.l.o.g., in the basic version of the optimization presented here, we assume the loop
bodies are unitaries, i.e., do not contain measurements, and that they are not nested.

Algorithm 3: Loop summarization
Input: An MTBDD𝑀𝑞 , a loop body 𝐶
Output: An MTBDD𝑀𝛼 over S and a mapping 𝜏 : S→ TS

1 𝛼 ← ∅ (type 𝛼 : C ⇀ S); // init abstraction

2 𝑀
refined

𝛼 ← monadic_apply(𝑀𝑞, abstract[𝛼]);
3 repeat

4 𝑀𝛼 ← 𝑀
refined

𝛼 ;
5 𝑀′𝛼 ← 𝐶𝑆 (𝑀𝛼 );
6 𝜏 ← ∅ (type 𝜏 : S ⇀ TS); // update

7 𝜎 ← ∅ (type 𝜎 : S ⇀ S); // refinement subst

8 𝑀
refined

𝛼 ← apply(𝑀𝛼 , 𝑀
′
𝛼 , refine[𝜏, 𝜎, 𝛼]);

9 until𝑀𝛼 = 𝑀
refined

𝛼 ;
10 return (𝑀𝛼 , 𝜏);
11 Function abstract(val)

Data: 𝛼 : C ⇀ S
12 if 𝛼 (val) = ⊥ then

13 let 𝑠new ∈ S \ rng(𝛼) be a fresh symbolic var.;
14 𝛼 ← 𝛼 ∪ {val ↦→ 𝑠new};
15 return 𝛼 (val);

16 Function refine(lhs, rhs)
Data: 𝜏 : S ⇀ TS, 𝜎 : S ⇀ S, 𝛼 : C ⇀ S

17 if 𝜏 (lhs) = ⊥ then

18 𝜏 ← 𝜏 ∪ {lhs ↦→ rhs};
19 else if ⊭ 𝜏 (lhs) = rhs then
20 if 𝜎 (lhs) = ⊥ then

21 let 𝑠new ∈ S \ rng(𝛼) be a fresh symbolic var.;
22 𝜎 ← 𝜎 ∪ {lhs ↦→ 𝑠new};
23 return 𝜎 (lhs);
24 return lhs;

amplification algorithms, where there are typically only a limited
number of different amplitudes at the beginning of a loop body, e.g.,
high amplitude, low amplitude, and zero).

Intuitively, the optimization works as follows. Consider a circuit
with the following loop (in the OpenQASM 3.0 format [15]):

for int i in [1:K] { C; }

where𝐶 is the unitary for the loop body composed of standard gates
and 𝐾 is a constant. When a simulation of the circuit arrives to the
loop with a quantum state 𝑞 represented by MTBDD𝑀𝑞 , it will first
create an MTBDD 𝑀𝛼 with leaves containing symbolic variables
(from a set S, an infinite set of symbolic names). Then, it will run
circuit 𝐶 of the loop body with 𝑀𝛼 as its input, with operations
being done symbolically, i.e., instead of numbers, the leaves of the
resulting MTBDD𝑀′𝛼 contain terms over S; we denote the set of
terms over S as TS.𝑀′𝛼 contains information about how each of the
computational bases needs to be updated. The information in 𝑀′𝛼
is, however, fine-tuned for𝑀𝑞 , which can make the representation
quite compact. This fine-tuning is done in the initial step called
abstraction, when symbolic variables are being introduced—we start
by introducing one symbolic variable for every distinct leaf value
in𝑀𝑞 . The assumption is that computational bases with the same
valuewill behave similarly. This does not need to hold, so after𝑀′𝛼 is
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𝑥

𝑦
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after𝑀 ′𝛼2

Figure 2: An example run of Algorithm 3 on the circuit in Figure 3.

computed, we check it by observing whether bases mapping to the
same symbolic variable in𝑀𝛼 also map to the same update in𝑀′𝛼 . If
not, we introduce more symbolic variables (for the differing bases)
and run the algorithm again, until the condition holds.

The formal algorithm is given in Algorithm 3. In the algorithm,
we use the following formal notation: 𝑓 [𝑝1, . . . , 𝑝𝑘 ] denotes the
closure of function 𝑓 with parameters 𝑝1, . . . , 𝑝𝑘 assigned to the
variables in the Data declaration of 𝑓 (passed by reference). Given
a (partial) function 𝑓 of the type 𝑓 : 𝑋 ⇀ 𝑌 , we use rng(𝑓 ) to denote
the range of 𝑓 , i.e., the set {𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑦}. Moreover,
given an 𝑥 ∈ 𝑋 , if there is no (𝑥,𝑦) ∈ 𝑓 , we write 𝑓 (𝑥) = ⊥.

Example 1. We first demonstrate a run of the algorithm on the
example circuit in Figure 3. The circuit starts in state 𝑞 with 𝑥 = 1
and 𝑦 = 0. Then, it performs 𝐾 executions of the loop body 𝐶 . In
each execution of the loop body, first, the T gate is applied to 𝑥 ,
performing the multiplication of its |1⟩ amplitude by 𝜔 and then
CNOT of 𝑦 controlled by 𝑥 is performed. Therefore, the resulting
state after 𝐾 executions is 𝐾𝜔 |11⟩ if 𝐾 is odd and 𝐾𝜔 |10⟩ if 𝐾 is
even. The run of Algorithm 3 on the circuit is shown in Figure 2.
𝑀𝑞 is in Figure 2a. In Figure 2b, we can see the initial abstrac-

tion 𝑀𝛼1 of 𝑀𝑞 after Line 2; in this case, 𝛼1 = {0 ↦→ 𝑎, 1 ↦→ 𝑏}
for symbolic variables 𝑎 and 𝑏. Then, we run (Line 5) the loop
body with𝑀𝛼1 , obtaining first the tree in Figure 2c (after 𝑇𝑥 ) and
then the tree𝑀′𝛼1 in Figure 2d (after CNOT𝑥𝑦 ). Then, when we call
apply(𝑀𝛼1 , 𝑀

′
𝛼1 , refine[𝜏1, 𝜎1, 𝛼1]) at Line 8, we realize that the

inital abstraction 𝛼1 was too coarse (going from left to right, we
will construct 𝜏1 = {𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑎𝜔} for bases |00⟩, |01⟩, and
|10⟩; then, when processing |11⟩, which would give us 𝑎 ↦→ 𝑏𝜔 ,
which is in conflict with 𝑎 ↦→ 𝑎, we will introduce a new sym-
bolic variable 𝑐 for the base |11⟩ and obtain a new abstraction𝑀𝛼2
(cf. Figure 2e). Then, in the second iteration of the refinement loop,
we will run the loop body on 𝑀𝛼2 (cf. Figure 2f), obtaining 𝑀′𝛼2 .
Running apply(𝑀𝛼2 , 𝑀

′
𝛼2 , refine[𝜏2, 𝜎2, 𝛼2]) will not find any in-

consistency this time (𝜏2 = {𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑐𝜔, 𝑐 ↦→ 𝑏𝜔}), so we can
terminate the refinement. Applying 𝑀′𝛼2 on 𝑀𝑞 with 𝜏2 once, we
obtain the tree in Figure 2g. □

𝐶1 𝐶2

𝑥 : |1⟩ T T

𝑦 : |0⟩
. . .

Figure 3: An example circuit for loop summarization

Formally, the algorithm computes a summary for a sequence of
gates𝐶 w.r.t. a quantum state𝑞 (represented by anMTBDD𝑀𝑞 ). The
summary is a pair (𝑀𝛼 , 𝜏) where𝑀𝛼 is a stable abstraction of𝑀𝑞

(w.r.t. 𝐶) and 𝜏 denotes how the symbolic variables should be up-
dated during one loop iteration, computed as follows. On Line 2, we
perform the initial abstraction of𝑀𝑞 , obtaining an MTBDD𝑀refined

𝛼

with one symbolic variable from S (the set of symbolic variables) for
every amplitude occurring in𝑀𝑞 (the mapping is remembered in 𝛼).
Then, we execute the sequence of gates 𝐶 over 𝑀𝑞 obtaining 𝑀′𝑞 ,
where the resulting amplitudes are represented by symbolic terms
over S (Line 5). On Line 8, we collect into 𝜏 the information about
how the symbolic variables were updated and check whether all
bases mapping to the same symbolic variable are updated in the
same way—if not (on Line 19, we emphasize that we do not just
check the identity of the two symbolic terms but, instead, check
their semantic equivalence), we refine the abstraction (by introduc-
ing new symbolic variables for bases that have a different update)
and try again. When we reach the fixpoint, we return the resulting
abstracted MTBDD𝑀𝛼 together with the updates 𝜏 .

5 IMPLEMENTATION

We implemented the proposed techniques in a prototype called
Medusa [22]. Medusa is written in C and uses Sylvan [31] for
handling MTBDDs and the GNU GMP library [1] for handling
integers of arbitrary length. We use two configurations of Medusa:
with (Medusa

loop
) and without (Medusa

base
) loop summarization.

To achieve accuracy, we represent complex numbers algebraically
as proposed in [37] and first realized in [30] (used also later in [11,
12]). The algebraic representation is given by the form( 1

√
2

)
𝑘 (𝑎 + 𝑏𝜔 + 𝑐 𝜔2 + 𝑑 𝜔3), (1)

where 𝑎, 𝑏, 𝑐 , 𝑑 , and 𝑘 are integers. A complex number is then rep-
resented by a five-tuple (𝑎, 𝑏, 𝑐, 𝑑, 𝑘). Although it only represents
a countable subset of C, it can approximate any complex number
up to a specified precision and suffices to support a set of quantum
gates for universal quantum computation. The algebraic represen-
tation also allows for efficient encoding of some operations. For
example, because 𝜔4 = −1, the multiplication of (𝑎, 𝑏, 𝑐, 𝑑, 𝑘) by
𝜔 can be carried out by a simple right circular shift of the first
four entries and then taking the opposite number for the first en-
try, namely (−𝑑, 𝑎, 𝑏, 𝑐, 𝑘), which represents the complex number( 1√

2

)
𝑘 (−𝑑 + 𝑎𝜔 + 𝑏𝜔2 + 𝑐 𝜔3).
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(a) Grover’s search
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(c) Quantum counting

Figure 4: Runtimes of the simulators on the Loops benchmark.

6 EXPERIMENTAL RESULTS

Simulators. We compared the performance of Medusa against
the following state-of-the-art quantum circuit simulators: SliQSim [30],
Quasimodo [28], DDSIM [38] (v1.21.0), and Quokka# [24]. For
Quasimodo, which contains 3 different backends (BDD, WBDD,
and CFLOBDD), we use Quas[𝐵] to denote the version that uses
backend 𝐵 (we note that its WBDD backend uses a decision diagram
package from DDSIM). To the best of our knowledge, onlyMedusa
and SliQSim perform accurate simulation (using algebraic encoding
of complex numbers) while the other tools use floating-point num-
bers (with possible numerical errors). The importance of accurate
simulation has been demonstrated in applications such as quantum
circuit equivalence checking [34]. All experiments were conducted
on a server with two Intel Xeon X5650 (2.67GHz) CPUs, 32GiB of
RAM running Debian GNU/Linux 12, with the timeout of 60min.

Benchmarks. We performed experiments on the following two
benchmark sets of quantum circuits in OpenQASM:
• Loops: This benchmark set contains circuits containing loops
with fixed numbers of iterations. The particular circuits are
implementations of Grover’s search algorithm [19] (with
a single solution), quantum counting [8], and period find-
ing [23], the last two without the final inverse quantum
Fourier transform (QFT)2. For quantum counting and period
finding, we created several families of circuits with increas-
ing size, denoted as ⟨𝐹𝑅⟩_⟨𝑆𝑅⟩_⟨𝑀𝑇 ⟩, where 𝐹𝑅 denotes the
number of qubits in the first register, 𝑆𝑅 denotes the number
of qubits in the second register (cf. [8]), and𝑀𝑇 denotes the
number of randomly generated multi-control Toffoli gates in
the oracle. We always set 𝑆𝑅 =

⌊
𝐹𝑅
2
⌋
and 𝑀𝑇 ∈ {5, 10, 15}.

We unfolded the loops for tools that did not support them.
• StraightLine: This benchmark set contains circuits with-
out loops implementing Bernstein-Vazirani’s algorithm [6]
(from 2 to 100 qubits { 99 circuits), multi-control Toffoli
gates (from 6 to 198 qubits with a step of 2{ 97 circuits),

2We did not include the inverse QFT because it requires rotations by 𝜋
2𝑛 for arbitrary𝑛,

which are not supported by our prototype, since it uses the algebraic encoding of
complex numbers from Sec. 5. Note that this is not a conceptual limitation; one could
solve it precisely by, e.g., dynamically refining the algebraic encoding to use finer base
rotation than 𝜋

4 , in particular 𝜋
2𝑛 , or, not preserving accuracy, one could convert the

algebraic encoding into floating-point numbers and continue with them. We wish to
develop such solutions in our future work.

benchmarks from the toolkit Feynman [3] (43 circuits), multi-
oracle version of Grover’s search (without loops; 9 circuits;
MOG) from [2], randomly generated circuits from [2] (97 cir-
cuits), RevLib benchmarks [35] (80 circuits), and modifica-
tions of certain RevLib benchmarks from [30] (16 circuits)
denoted as RevLib-H (these were obtained by inserting an
H gate at each unassigned input).

The experiments measured the time it took for the final quantum
state to be obtained in the given representation exceptQuokka#,
where we measured the time to obtain the probability of the first
qubit being zero (Quokka# does not compute representations of
quantum states). The benchmarks did not contain measurements.
A reproduction package for the experiments is available at [10].

Research questions. We were interested in the following two key
research questions related to the proposed approach.

RQ1 What is the impact of loop summarization on the perfor-
mance of quantum simulators?

RQ2 How does the MTBDD-based representation with custom
gate operations compare to other simulators?

RQ1: Loop Summarization

For answering the first research question, which is the main tar-
get of this paper, we ran the simulators on the Loops benchmark
set. The results can be seen in Figure 4 (for period finding and
quantum counting, we show results for the families of circuits with
oracle composed of 5 random multi-control Toffoli gates). More-
over, in Table 1, we give selected concrete results (we included for
every simulator the largest circuit in the family where it finished).
Quokka# is not included since it did not finish on any of the circuits.
We also encountered some issues when running Quas[CFLOBDD]
(internal error) andQuas[BDD] (incorrect implementation of the
multi-control Toffoli mcx gate), which are labelled as ERR .

We first focus on comparing the performance ofMedusa
loop

and
Medusa

base
, which differ only in loop summarization. The results

show that in all three algorithms,Medusa
loop

scales much better
thanMedusa

base
—it manages to simulate circuits of a size (the num-

ber of gates) one to three orders of magnitude larger. According to
the results, the amount of necessary computation is significantly
decreased, so we believe we can expect a similar behaviour if loop
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Table 1: Results for the Loops benchmark set (for every family, we include circuits which were the largest ones that some of the

simulators managed to simulate before timeout). The columns “#q” and “#G” denote the number of qubits and gates (after loop

unrolling) respectively. Times are given in seconds (“0” denotes a time <0.5 s), memory in MiB. TO denotes a timeout, ERR

denotes an error, num denotes the fastest time, and num denotes the fastest accurate simulator (Medusa or SliQSim).

Medusa
loop

Medusa
base

SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD]
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

G
ro
ve
r

7 14 480 0 99 0 37 0 12 0 30 0 463 0 444 1 445
11 22 3,337 0 122 0 42 1 12 0 34 37 774 0 450 TO TO
14 28 12,115 0 145 1 56 17 13 1 50 3,530 9,532 0 470 TO TO
20 40 140,721 0 187 32 387 3,176 25 12 118 TO TO 73 769 TO TO
22 44 310,367 0 196 85 1,088 TO TO 32 254 TO TO 583 1,083 TO TO
23 46 461,646 0 200 136 1,735 TO TO TO TO TO TO 1,750 1,708 TO TO
29 58 4,676,916 2 214 2,190 10,032 TO TO TO TO TO TO TO TO TO TO
40 80 292,359,936 3,290 251 TO TO TO TO TO TO TO TO TO TO TO TO

Pe
rio

d
Fi
nd

in
g 16_08_05 24 1,507,322 83 600 8 24 23 130 4 1,235 ERR ERR 7 449 ERR ERR

19_09_15 28 39,321,545 109 2,154 247 32 587 3,002 178 31,144 ERR ERR 198 452 ERR ERR
22_11_05 33 146,800,628 125 922 1,830 38 2,046 10,293 TO TO ERR ERR 849 454 ERR ERR
22_11_15 33 448,790,444 128 1,662 3,020 27 TO TO TO TO ERR ERR 2,650 454 ERR ERR
31_15_15 46 277,025,390,495 673 1,973 TO TO TO TO TO TO ERR ERR TO TO ERR ERR

Co
un

tin
g 10_05_05 16 40,937 45 2,115 3 83 60 15 0 42 4 459 0 446 ERR ERR

11_05_05 17 81,898 52 2,116 5 109 TO TO 0 65 TO TO 0 447 ERR ERR
12_06_15 19 376,760 250 7,691 TO TO TO TO 1,280 294 TO TO TO TO ERR ERR
13_06_15 20 753,593 919 9,502 TO TO TO TO TO TO TO TO TO TO ERR ERR

summarization is implemented for other representations. There-
fore, the answer to RQ1 is that the impact of loop summarization is

profound for the performance of the simulator on circuits with loops.
Let us also compare the performance with the other simulators

in this benchmark set. We can see that in the case of Grover’s algo-
rithm (Figure 4a),Medusa

loop
managed to verify instances of a size

far beyond the capabilities of any other simulator, in particular
80 qubits. The second best-performing simulator was Medusa

base
,

which scaled up to 58 qubits, followed byQuas[WBDD] (46 qubits),
DDSIM (44 qubits), and SliQSim (40 qubits). The situation is sim-
ilar for period finding (Figure 4b), where Medusa

loop
can scale

up to 46 qubits, while the second best ones, Quas[WBDD] and
Medusa

base
, can scale only to 33 qubits. Let us note the size of the

largest period finding circuit thatMedusa
loop

managed to simulate
in 12 minutes: over 277 billion gates. To the best of our knowledge,
no existing quantum simulator is able to scale up to circuits of this
size. Similar situation repeats for quantum counting,Medusa

loop

can, again, scale up to circuits of complexities that no other simula-
tor could handle (although, due to the complexity of the circuits, it
does not perform so well on smaller-sized circuits).

RQ2: MTBDD-Based Simulator

To answer the second research question, in addition to the results
from the Loops benchmark set, we also evaluated the performance
of simulators on the StraightLine benchmark (these circuits did
not use loops, so we do not includeMedusa

loop
, since it would be

the same asMedusa
base

). Due to space limitations, we present only
selected results. We chose circuits that took over one second to
finish for three better-performing toolsMedusa

base
, SliQSim, and

DDSIM. However, RevLib-H circuits were challenging for most
tools, except for SliQSim which solved 13 cases. Both Medusa

base

and DDSIM solved 5 cases in RevLib-H. SliQSim splits amplitude
values into bits and uses multiple BDDs to store a quantum state,
resulting in better compression in this benchmark. Instead of show-
ing a large table filled with TO , we show only the 5 solved cases

in RevLib-H and refer readers to [30] for a more extensive compar-
ison of SliQSim and DDSIM. Note that some tools had issues on
some of the benchmarks due to unsupported gates.

The results show thatMedusa
base

is competitive to other simula-
tors and in many cases, especially for the challenging benchmarks
from Feynman, is the best available accurate simulator. For the
Loops benchmark, as mentioned previously, Medusa

base
is per-

forming well also compared to other simulators: it is the best one
on Grover and performs well also on the other two (it beats SliQSim,
the only other accurate simulator). To conclude, the answer to RQ2
is that the MTBDD-based representation with custom gate operations

is competitive to other simulators, often complementary to SliQSim.

7 RELATEDWORK

DDSIM [38] is a quantum circuit simulator based on quantum

multiple-valued decision diagrams (QMDDs) [25], which support
representation and multiplication of state vectors and operator
matrices. In [21], a QMDD variant, called tensor decision diagrams

(TDDs), is proposed to allow tensor-network-like quantum circuit
simulation. The TDD performance is comparable to DDSIM [21].

SliQSim [30] exploits the standard reduced ordered binary deci-

sion diagrams (ROBDDs) [9] to represent quantum states exactly
with an algebraic number system and achieves precise quantum op-
erations through Boolean formula manipulation. Note that similarly
to Medusa, the supported quantum gate set of SliQSim, though
universal, is restricted to those algebraically representable.

The paper [12] proposes verification of quantum circuits using
tree automata to model their pre- and post-conditions. This method
helps create an automatic verification framework that checks the
correctness of the quantum circuit against a user-specified specifica-
tion. Tree automata, similarly to decision diagrams, can efficiently
represent identical subtrees using the same structure. Furthermore,
they can use non-deterministic choice to represent multiple states
in the same structure. We took inspiration from their extension to
symbolic amplitudes in [11] to develop our symbolic execution.
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Table 2: Selection of results for the StraightLine benchmark. The columns “#q” and “#G” denote the number of qubits and

gates respectively. Times are given in seconds (“0.00” denotes a time <0.01 s), memory in MiB. TO denotes a timeout, ERR

denotes an error, num denotes the fastest time, and num denotes the fastest accurate simulator (Medusa or SliQSim). We

do not mark Quokka# as the fastest because it does not compute the quantum state representation.

Medusa
base

SliQSim DDSIM Quas[CFLOBDD] Quas[WBDD] Quas[BDD] Quokka#
circuit #q #G time mem time mem time mem time mem time mem time mem time mem

Fe
yn

m
an

gf232_mult 96 3,322 0.26 39 1.34 12 0.10 70 0.72 459 0.11 501 0.91 449 0.86 45
gf264_mult 192 12,731 1.82 65 17.11 19 0.74 126 2.76 463 0.68 600 4.35 461 3.56 148
gf2128_mult 384 50,043 20.40 231 264.81 37 5.28 234 10.70 477 4.76 1,158 27.40 498 15.39 570
gf2256_mult 768 198,395 163.00 1,634 TO TO 41.21 538 42.50 531 38.50 4,988 231.00 632 71.28 2,324
hwb8 12 6,446 0.16 38 3.69 12 0.03 33 1.04 460 0.03 443 1.09 443 TO TO
hwb10 16 31,764 0.79 50 84.20 15 0.21 38 4.74 465 0.22 447 1.70 445 TO TO
hwb11 15 87,789 2.64 103 660.92 22 0.49 70 12.70 474 0.51 448 1.59 448 TO TO
hwb12 20 171,482 5.80 204 2,568.02 34 1.13 132 26.90 509 1.35 455 6.48 457 3,193.78 1,069

M
O
G 10 30 2,433 0.20 41 1.25 12 0.07 34 9.50 594 0.05 456 TO TO 62.68 40

11 33 3,746 0.36 44 3.12 12 0.12 42 52.00 905 0.08 462 TO TO 167.00 56

Ra
nd

om

85 85 255 0.99 51 0.46 14 2.11 63 ERR ERR 0.10 485 ERR ERR 0.03 12
86 86 258 15.30 213 0.47 14 2.24 72 ERR ERR 3.25 553 ERR ERR 0.07 12
89 89 267 9.48 105 0.67 14 0.72 65 ERR ERR 0.59 491 ERR ERR 0.06 12
93 93 279 1.68 61 0.32 13 0.18 67 ERR ERR 0.10 493 ERR ERR 0.04 12
94 94 282 79.60 337 0.77 17 4.45 76 ERR ERR 74.30 521 ERR ERR 0.07 12
97 97 291 5.70 117 0.42 13 1.46 77 ERR ERR 0.42 524 ERR ERR 0.03 12
99 99 297 9.58 173 0.38 12 2.61 78 ERR ERR 0.67 525 ERR ERR 0.08 12

Re
vL

ib

apex5_290 1,025 2,909 1.75 61 0.37 43 1.02 535 0.30 466 1.33 1,214 4.16 516 2.10 72
cps_292 923 2,763 1.19 57 0.20 30 1.25 484 0.24 464 1.09 1,035 2.99 527 1.38 59
frg2_297 1,219 3,724 2.32 93 0.49 48 1.51 633 0.36 468 1.90 1,307 6.32 497 2.15 84
seq_314 1,617 5,990 4.96 97 1.35 108 4.11 834 0.62 476 3.71 1,775 13.90 536 3.65 124

Re
vL

ib
-H

add64_184 193 385 0.19 203 0.02 13 0.09 117 ERR ERR 0.07 545 ERR ERR ERR ERR
cpu_register_32_405 328 890 0.46 213 0.08 14 0.41 194 ERR ERR 0.70 668 ERR ERR ERR ERR
e64-bdd_295 195 452 1.98 238 2.48 13 2.00 126 0.65 476 0.54 613 ERR ERR ERR ERR
ex5p_296 206 655 7.61 283 12.02 21 3.56 132 ERR ERR 1.15 691 ERR ERR ERR ERR
hwb9_304 170 708 33.00 662 13.50 20 12.16 114 ERR ERR 4.90 1,105 ERR ERR ERR ERR

SymQV [5] encodes quantum circuit verification problems into
SMT with the theory of real numbers, using variables in trigono-
metric functions, which might lose precision in corner cases. Their
approach requires 2𝑛 variables to encode a 𝑛-qubit circuit in the
worst case. A polynomial SMT encoding of quantum circuits was
introduced in [13], where an extension of array theory, named the

theory of cartesian arrays (CaAL), was proposed and used to encode
quantum gates. Both methods are effective only for small circuits.

Quasimodo [28] is a simulation tool with multiple backends,
including BDDs, weighted BDDs (using the backend of DDSIM),
and context-free language ordered binary decision diagrams (CFLOB-
DDs) [29], which combine BDDs with pushdown automata.

Hong et al. [20] proposed symbolic TDDs (symTDDs) for symbol-
ically executing and representing quantum circuits and quantum
states. However, in quantum circuit simulation, parameters are
typically predetermined, making this approach useful mainly for
parameterized quantum circuit equivalence checking.

Quokka# [24] extended the standard stabilizer formalism [17]
to present a general pure state using its stabilizers. The representa-
tion circumvents complex numbers and only requires manipulating
weights in real (possibly negative) numbers for the supported quan-
tum gate operations. Thereby, quantum circuit simulation can be
encoded into a weighted model counting problem. Quokka# only
supports Clifford+T and rotation gates (which is, however, univer-
sal). Experimental results show the advantages of Quokka# on
certain benchmarks such as quantum Fourier transform (QFT).

Although Clifford circuits should be efficiently simulatable ac-
cording to the Gottesman–Knill theorem [18], simulating them in

decision diagrams may suffer from exponential growth in size. To
overcome this problem, Vinkhuijzen et al. [32, 33] proposed the local
invertible map decision diagrams (LIMDDs), a data structure based
on QMDDs that further merges nodes that are equivalent up to
a local invertible map (LIM). LIMDDs successfully combine decision
diagrams and the stabilizer formalism, and they efficiently over-
come the challenge of exponential growth in decision diagrams on
Clifford circuits. The authors of [32, 33] demonstrated that LIMDDs
are more scalable in simulating QFT circuits than QMDDs.
8 CONCLUSION

We presented a technique for accelerating the simulation of quan-
tum circuits with loops by computing the loops’ summaries using
symbolic execution. The experiments show that this technique en-
ables the simulation of quantum circuits previously believed to
be infeasible. In the future, we wish to further develop the loop
summarization by integrating it with other data structures. More-
over, we wish to look at the problem of automatically generalizing
a computed summary into a closed form (such as the description
“𝐾𝜔 |11⟩ if 𝐾 is odd and 𝐾𝜔 |10⟩ if 𝐾 is even” from Example 1), and
use the technique also in the verification framework of [12].
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