
Noname manuscript No.
(will be inserted by the editor)

Nested Antichains for WS1S?

Tomáš Fiedor · Lukáš Hoĺık ·
Ondřej Lengál · Tomáš Vojnar

Received: date / Accepted: date

Abstract We propose a novel approach for coping with alternating quan-
tification as the main source of nonelementary complexity of deciding WS1S
formulae. Our approach is applicable within the state-of-the-art automata-
based WS1S decision procedure implemented e.g. in Mona. The way in which
the standard decision procedure processes quantifiers involves determiniza-
tion, with its worst case exponential complexity, for every quantifier alter-
nation in the prefix of a formula. Our algorithm avoids building the deter-
ministic automata—instead, it constructs only those of their states needed
for (dis)proving validity of the formula. It uses a symbolic representation of
the states, which have a deeply nested structure stemming from the repeated
implicit subset construction, and prunes the search space by a nested sub-
sumption relation, a generalization of the one used by the so-called antichain
algorithms for handling nondeterministic automata. We have obtained encour-
aging experimental results, in some cases outperforming Mona, and some of
the other recently proposed approaches, by several orders of magnitude.

? An extended abstract of this paper was first presented in [1]. The current paper
extends [1] with a more detailed presentation of the approach, the needed proofs, an
illustrating example, and an extended experimental evaluation of the approach.

Tomáš Fiedor
ifiedortom@fit.vutbr.cz

Lukáš Hoĺık
holik@fit.vutbr.cz

Ondřej Lengál
lengal@fit.vutbr.cz

Tomáš Vojnar
vojnar@fit.vutbr.cz

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Božetěchova 2,
612 66 Brno, Czech Republic

2 Tomáš Fiedor et al.

1 Introduction

Weak monadic second-order logic of one successor (WS1S) is a powerful, con-
cise, and decidable logic for describing regular properties of finite words. De-
spite its nonelementary worst case complexity [2], it has been shown useful
in numerous applications. Most of the successful applications were due to the
tool Mona [3], which implements decision procedures for the WS1S and WS2S
(a generalization of WS1S to finite binary trees) based on finite automata.
The authors of Mona list a multitude of its diverse applications [4], rang-
ing from software and hardware verification through controller synthesis to
computational linguistics, and further on. Among more recent applications,
verification of pointer programs and deciding related logics [5,6,7,8,9,10] can
be mentioned, as well as synthesis from regular specifications [11].

Despite many optimizations implemented in Mona and other tools, the
worst case complexity of the problem sometimes strikes back. Authors of meth-
ods using the translation of their problem to WS1S/WS2S are then forced to
either find workarounds to circumvent the complexity blowup, such as in [6],
or give up translating to WS1S/WS2S altogether [12]—often for the price of
restricting the input of their approach.

The decision procedure of Mona works with deterministic automata; it uses
determinization extensively and relies on minimization of deterministic au-
tomata to suppress the complexity blow-up. Nevertheless, the worst case ex-
ponential complexity of determinization often significantly harms the perfor-
mance of the tool. Recent works on efficient methods for handling nondeter-
ministic automata—in particular, works on efficient testing of language in-
clusion and universality of finite automata [13,14,15] and works on reducing
the size of finite automata using simulation relations [16,17]—suggest a way
of alleviating this problem. Handling nondeterministic automata using these
methods, while avoiding determinization, has been shown to provide great ef-
ficiency improvements in [18] (abstract regular model checking) and also [19]
(shape analysis). In this paper, we make a major step towards building the
entire decision procedure of WS1S on nondeterministic automata using simi-
lar techniques. We propose a generalization of the antichain algorithms of [13]
that addresses the main bottleneck of the automata-based decision procedure
for WS1S, which is the source of its nonelementary complexity: elimination of
alternating quantifiers on the automata level.

More concretely, the automata-based decision procedure translates the in-
put WS1S formula into a finite word automaton such that its language repre-
sents exactly all models of the formula. The automaton is built in a bottom-up
manner according to the structure of the formula, starting with predefined
atomic automata for literals and applying a corresponding automata opera-
tion for every logical connective and quantifier (∧,∨,¬,∃). The cause of the
nonelementary complexity of the procedure can be explained on an example
formula of the form ϕ′ = ∃Xm∀Xm−1 . . . ∀X2∃X1 : ϕ0. The universal quanti-
fiers are first replaced by negation and existential quantification, which results
in ϕ = ∃Xm¬∃Xm−1 . . .¬∃X2¬∃X1 : ϕ0. The algorithm then builds a se-

Nested Antichains for WS1S 3

quence of automata for the sub-formulae ϕ0, ϕ
]
0, . . . , ϕm−1, ϕ

]
m−1 of ϕ where

ϕ]i = ∃Xi+1 : ϕi and ϕi+1 = ¬ϕ]i for 0 ≤ i < m. Every automaton in the se-
quence is created from the previous one by applying the automata operations
corresponding to negation or elimination of the existential quantifier, the latter
of which may introduce nondeterminism. Negation applied on a nondetermin-
istic automaton may then yield an exponential blowup: given an automaton
for ψ, the automaton for ¬ψ is constructed by the classical automata-theoretic
construction consisting of determinization by the subset construction followed
by swapping of the sets of final and non-final states. The subset construction
is exponential in the worst case. The worst case complexity of the procedure
run on ϕ is then a tower of exponentials with one level for every quantifier
alternation in ϕ; note that this high computational cost cannot be avoided
completely—indeed, the non-elementary complexity is an inherent property of
the problem.

Overview of the proposed algorithm. Our new algorithm for processing alter-
nating quantifiers in the prefix of a formula avoids the explicit determinization
of automata in the classical procedure and significantly reduces the state space
explosion associated with it. It is based on a generalization of the antichain
principle used for deciding universality and language inclusion of finite au-
tomata [14,15]. It generalizes the antichain algorithms so that instead of being
used to process only one level of the chain of automata, it processes the whole
chain of quantifications with i alternations on-the-fly. This leads to working
with automata states that are sets of sets of sets . . . of states of the automaton
representing ϕ0 with the nesting depth i (this corresponds to i levels of sub-
set construction being done on-the-fly). The algorithm uses nested symbolic
terms to represent sets of such automata states and a generalized version of
antichain pruning based on a notion of subsumption that descends recursively
down the structure of the terms while pruning on all their levels.

Experimental evaluation. We have implemented the proposed approach in
a prototype tool called dWiNA and compared its performance with other
publicly available WS1S solvers on both generated formulae and formulae ob-
tained from various verification tasks. From the experiments, we have obtained
encouraging results showing that there are cases in which dWiNA outperforms
Mona as well as other recently proposed decision procedures.

Related work. Mona is still the standard tool and the most common choice
when it comes to deciding WS1S/WS2S. Its efficiency stems from many op-
timizations, both higher-level (such as automata minimization or the use of
MTBDDs for encoding the transition relation of the automata) as well as
lower-level (e.g. optimizations of hash tables) [20]. There are other related
automata-based tools that are more recent—in particular, jMosel [21] for the
M2L(Str) logic and the procedure using symbolic finite automata implemented

4 Tomáš Fiedor et al.

within the Automata library of D’Antoni et al [22]. They implement optimiza-
tions that allow them to outperform Mona on some benchmarks, however,
none of them provides an evidence of being consistently more efficient.

Some other recent approaches are logic-based and completely avoid any
explicit automata construction. Ganzow and Kaizer [23] developed a new de-
cision procedure for the weak monadic second-order logic on inductive struc-
tures, a more general logic than WSkS. Their method is based on the Shelah’s
composition method, and it is implemented within the Toss tool. It some-
times performs better than Mona, but it lacks support of syntactic features
that would allow one to perform a comparison on more benchmarks.

Traytel [24], on the other hand, uses the classical decision procedure recast
in the framework of coalgebras. His work is based on testing equivalence of
a pair of formulae by finding a bisimulation between its derivatives. The im-
plementation is, however, not optimized enough, and it is easily outperformed
by the rest of the recent tools.

Plan of the paper. We define the WS1S logic in Section 2. In Sections 3 and 4,
we introduce finite word automata and describe the classical decision proce-
dure for WS1S based on finite word automata. In Section 5, we introduce our
method for dealing with alternating quantifiers. Finally, we give an experimen-
tal evaluation and conclude the paper in Sections 6 and 7.

2 WS1S

In this section, we introduce the weak monadic second-order logic of one succes-
sor (WS1S). We introduce only its minimal syntax here, for the full standard
syntax and a more thorough introduction, see Section 3.3 in [25].

WS1S is a monadic second-order logic over the set of non-negative in-
tegers N0. This means that the logic allows second-order variables, usually
denoted using upper-case letters X,Y, . . . , that range over finite subsets of N0,
e.g. X = {0, 3, 42}. Atomic formulae are of the form (i) X ⊆ Y and (ii) X =
Y + 1, where X and Y are variables. The atomic formulae are interpreted in
turn as (i) standard set inclusion, and (ii) X = {x} and Y = {y} are single-
tons and x is the successor of y, i.e. x = y + 1. Formulae are built from the
atomic formulae using the logical connectives ∧,∨,¬, and the quantifier ∃X
(for a second-order variable X).

Given a WS1S formula ϕ(X1, . . . , Xn) with free variables X1, . . . , Xn, the
assignment ρ = {X1 7→ S1, . . . , Xn 7→ Sn}, where S1, . . . , Sn are finite subsets
of N0, satisfies ϕ, written as ρ |= ϕ, if the formula holds when every variable Xi

is replaced with its corresponding value Si = ρ(Xi). We say that ϕ is valid,
denoted as |= ϕ, if it is satisfied by all assignments of its free variables to finite
subsets of N0. Observe the limitation to finite subsets of N0 (related to the
adjective weak in the name of the logic); a WS1S formula can indeed only have
finite models (although there may be infinitely many of them).

Nested Antichains for WS1S 5

3 Preliminaries

We now provide some preliminaries on downward and upward closed sets and
on finite automata.

Downward and upward closed sets. For a set D and a set S ⊆ 2D we use ↓S to
denote the downward closure of S, i.e. the set ↓S = {R ⊆ D | ∃S ∈ S : R ⊆ S},
and ↑S to denote the upward closure of S, i.e. the set ↑S = {R ⊆ D | ∃S ∈
S : R ⊇ S}. The set S is in both cases called the set of generators of ↑S or
↓S respectively. A set S is downward closed if it equals its downward closure,
S = ↓S, and upward closed if it equals its upward closure, S = ↑S. The choice
operator

∐
(sometimes also called the unordered Cartesian product) is an

operator that, given a set of sets D = {D1, . . . , Dn}, returns the set of all sets
{d1, . . . , dn} obtained by taking one element di from every set Di. Formally,

∐
D =

{
{d1, . . . , dn} | (d1, . . . , dn) ∈

n∏
i=1

Di

}
(1)

where
∏

denotes the Cartesian product. We use the
∐

operator to represent
the complement of a downward-closed set represented using its generators:
↑
∐
D = ↓D. Note that for a set D,

∐
{D} is the set of all singleton subsets

of D, i.e.
∐
{D} = {{d} | d ∈ D}. Further note that if any Di is the empty

set ∅, the result is
∐
D = ∅. The following lemmas show important properties

of
∐

that are used later.

Lemma 1 Let X and Y be sets of sets. Then it holds that

↑
∐
X ∩ ↑

∐
Y = ↑

∐
(X ∪ Y). (2)

Proof From the definition of the
∐

operator, it holds that

↑
∐
X = ↑

{
{x1, . . . , xn}

∣∣ (x1, . . . , xn) ∈
∏

X
}

and

↑
∐
Y = ↑

{
{y1, . . . , ym}

∣∣ (y1, . . . , ym) ∈
∏

Y
}
.

(3)

Notice that the intersection of a pair of upward closed sets given by their
generators can be constructed by taking all pairs of generators (X,Y), s.t. X
is from

∐
X and Y is from

∐
Y, and constructing the sets X ∪ Y . It is easy

to see that X ∪ Y is a generator of ↑
∐
X ∩ ↑

∐
Y and that ↑

∐
X ∩ ↑

∐
Y is

generated by all such pairs, i.e. that ↑
∐
X ∩ ↑

∐
Y is equal to

↑
{
{x1, . . . , xn} ∪ {y1, . . . , ym}

∣∣ (x1, . . . , xn) ∈
∏

X ∧ (y1, . . . , ym) ∈
∏

Y
}
.

(4)
We observe that this set can be also expressed as

↑
{
{x1, . . . , xn, y1, . . . , ym}

∣∣ (x1, . . . , xn, y1, . . . ym) ∈
∏

(X ∪ Y)
}

(5)

or, to conclude the proof, as ↑
∐

(X ∪ Y). ut

6 Tomáš Fiedor et al.

Lemma 2 Let R be a set of sets. Then, it holds that

↑
∐
R =

⋂
Rj∈R

↑
∐
{Rj}. (6)

Proof Because intersection and union are both associative operations and R =
{R1, . . . , Rn}, this lemma is a simple consequence of Lemma 1. ut

Let X be a set of variables. A symbol τ over X is a mapping of all variables
in X to either 0 or 1, e.g. τ = {X1 7→ 0, X2 7→ 1} for X = {X1, X2}. An alphabet
over X is the set of all symbols over X, denoted as ΣX. For any X (even empty),
we use 0 to denote the symbol which maps all variables from X to 0, 0 ∈ ΣX.

Finite automata. A (nondeterministic) finite (word) automaton (abbreviated
as FA in the following) over a set of variables X is a quadruple A = (Q,∆, I, F)
where Q is a finite set of states, I ⊆ Q is a set of initial states, F ⊆ Q is a set
of final states, and ∆ is a set of transitions of the form (p, τ, q) where p, q ∈ Q
and τ ∈ ΣX. We use p

τ−→ q ∈ ∆ to denote that (p, τ, q) ∈ ∆. Note that for
an FA A over X = ∅, A is a unary FA with the alphabet ΣX = {0}.

A run r of A over a word w = τ1τ2 . . . τn ∈ Σ∗X from the state p ∈ Q to
the state s ∈ Q is a sequence of states r = q0q1 . . . qn ∈ Q+ such that q0 = p,
qn = s and for all 1 ≤ i ≤ n there is a transition qi−1

τi−→ qi in ∆. If s ∈ F, we

say that r is an accepting run. We write p
w

=⇒ s to denote that there exists
a run from the state p to the state s over the word w. The language accepted
by a state q is defined by LA(q) = {w | q w

=⇒ qf , qf ∈ F}, while the language
of a set of states S ⊆ Q is defined as LA(S) =

⋃
q∈S LA(q). When it is clear

which FA A we refer to, we only write L(q) or L(S). The language of A is
defined as L(A) = LA(I). We say that the state q accepts w and that the
automaton A accepts w to express w ∈ LA(q) and w ∈ L(A) respectively.
We call a language L ⊆ Σ∗X universal iff L = Σ∗X.

For a set of states S ⊆ Q, we define

post [∆,τ](S) =
⋃
s∈S
{t | s τ−→ t ∈ ∆},

pre [∆,τ](S) =
⋃
s∈S
{t | t τ−→ s ∈ ∆}, and

cpre [∆,τ](S) = {t | post [∆,τ]({t}) ⊆ S}.

The complement of A is the automaton AC = (2Q, ∆C , {I}, ↓{Q \ F}) where

∆C =
{
P

τ−→ post [∆,τ](P)
∣∣∣ P ⊆ Q}; this corresponds to the standard proce-

dure that first determinizes A by the subset construction and then swaps its
sets of final and non-final states, and ↓{Q \ F} is the set of all subsets of Q
that do not contain a final state of A. The language of AC is the complement
of the language of A, i.e., L(AC) = L(A).

For a set of variables X and a variable X, the projection of X from X,
denoted as πX, is the set X \ {X}. For a symbol τ , the projection of X

Nested Antichains for WS1S 7

from τ , denoted π[X](τ), is obtained from τ by restricting τ to the domain
πX. For a transition relation ∆, the projection of X from ∆, denoted as

π[X](∆), is the transition relation
{
p
π[X](τ)−−−−−→ q | p τ−→ q ∈ ∆

}
.

4 Deciding WS1S with Finite Automata

The classical decision procedure for WS1S [26] (as described in Section 3.3
of [25]) is based on a logic-automata connection and decides validity (satis-
fiability) of a WS1S formula ϕ(X1, . . . , Xn) by constructing the FA Aϕ over
{X1, . . . , Xn} which recognizes encodings of exactly the models of ϕ. The au-
tomaton is built in a bottom-up manner, according to the structure of ϕ, start-
ing with predefined atomic automata for literals and applying a corresponding
automata operation for every logical connective and quantifier (∧,∨,¬,∃).
Hence, for every sub-formula ψ of ϕ, the procedure will compute the automa-
ton Aψ such that L(Aψ) represents exactly all models of ψ, terminating with
the result Aϕ.

The alphabet of Aϕ consists of all symbols over the set X = {X1, . . . , Xn}
of free variables of ϕ (for a, b ∈ {0, 1} and X = {X1, X2}, we use X1 : a

X2 : b
to

denote the symbol {X1 7→ a,X2 7→ b}). A word w from the language of Aϕ
is a sequence of these symbols, e.g. X1 : ε

X2 : ε
, X1 : 011
X2 : 101

, or X1 : 01100
X2 : 10100

. We denote

the i-th symbol of w as w[i], for i ∈ N0. An assignment ρ : X→ 2N0 mapping
free variables X of ϕ to subsets of N0 is encoded into a word wρ of symbols
over X in the following way: wρ contains 1 in the j-th position of the row
for Xi iff j ∈ Xi in ρ. Formally, for every i ∈ N0 and Xj ∈ X, if i ∈ ρ(Xj),
then wρ[i] maps Xj 7→ 1. On the other hand, if i 6∈ ρ(Xj), then either wρ[i]
maps Xj 7→ 0, or the length of w is smaller than or equal to i. Notice that
there exist an infinite number of encodings of ρ. The shortest one is wsρ of the
length n+1, where n is the largest number appearing in any of the sets that is
assigned to a variable of X in ρ, or −1 when all these sets are empty. The rest
of the encodings are all those corresponding to wsρ extended with an arbitrary

number of 0 symbols appended to its end.
For example, X1 : 0

X2 : 1
, X1 : 00
X2 : 10

, X1 : 000
X2 : 100

, X1 : 000 . . . 0
X2 : 100 . . . 0

are all encodings of the

assignment ρ = {X1 7→ ∅, X2 7→ {0}}. For the soundness of the decision proce-
dure, it is important that Aϕ always accepts either all encodings of ρ or none
of them.

The automata Aϕ∧ψ and Aϕ∨ψ are constructed from Aϕ and Aψ by stan-
dard automata-theoretic union and intersection operations, preceded by the
so-called cylindrification which unifies the alphabets of Aϕ and Aψ. Since these
operations, as well as the automata for the atomic formulae, are not the sub-
ject of the contribution proposed in this paper, we refer the interested reader
to [25] for details.

The part of the procedure which is central for this paper is processing
negation and existential quantification; we will therefore describe it in detail.

8 Tomáš Fiedor et al.

The FA A¬ϕ is constructed as the complement of Aϕ. Then, all encodings of
the assignments that were accepted by Aϕ are rejected by A¬ϕ and vice versa.
The FA A∃X:ϕ is obtained from the FA Aϕ = (Q,∆, I, F) by first projecting
X from the transition relation ∆, yielding the FA A′ϕ = (Q, π[X](∆), I, F).
However,A′ϕ cannot be directly used asA∃X:ϕ. The reason is thatA′ϕ may now
be inconsistent in accepting some encodings of an assignment ρ while rejecting
other encodings of ρ. For example, suppose that Aϕ accepts exactly all words

starting with X1 : 010
X2 : 001

, i.e., L(Aϕ) =
{
X1 : 010
X2 : 001 ,

X1 : 0100
X2 : 0010 , . . . ,

X1 : 0100 . . . 0
X2 : 0010 . . . 0

}
.

When computing the FA for ∃X2 : ϕ, we remove the X2 row from all symbols of
all words in L(Aϕ) and obtain the FA A′ϕ that accepts the language L(A′ϕ) =
{X1 : 010 , X1 : 0100 , . . . , X1 : 0100 . . . 0 }, but does not accept the word X1 : 01

that encodes the same assignment (because X1 : 01
X2 : ??

6∈ L(Aϕ) for any values in

the place of ‘?’s). As a remedy for this situation, we further need to modify A′ϕ
to also accept the rest of the encodings of ρ. This is done by enlarging the set
of final states of A′ϕ to also contain all states that can reach a final state of A′ϕ
by a sequence of 0 symbols.

Formally, the automaton A∃X:ϕ = (Q, π[X](∆), I, F]) is obtained from

A′ϕ = (Q, π[X](∆), I, F) by computing F] from F using the fixpoint com-

putation F] = µZ . F ∪ pre [π[X](∆),0](Z). Intuitively, the least fixpoint denotes
the set of states backward-reachable from F following transitions of π[X](∆)
labelled by 0.

The procedure returns an automaton Aϕ that accepts exactly all encodings
of the models of ϕ. This means that the language of Aϕ is (i) universal iff ϕ
is valid, (ii) non-universal iff ϕ is invalid, (iii) empty iff ϕ is unsatisfiable, and
(iv) non-empty iff ϕ is satisfiable. Notice that in the particular case of ground
formulae (i.e. formulae without free variables), the language of Aϕ is either
L(Aϕ) = {0}∗ in the case ϕ is valid, or L(Aϕ) = ∅ in the case ϕ is invalid.

5 Nested Antichain-based Approach for Alternating Quantifiers

We now present our approach for dealing with alternating quantifiers in WS1S
formulae. We consider a ground formula ϕ of the form

ϕ = ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : ϕ0(X)︸ ︷︷ ︸
ϕ1

. .
.︸ ︷︷ ︸

ϕm

(7)

where each Xi is a set of variables {Xa, . . . , Xb}, ∃Xi is an abbreviation for
a non-empty sequence ∃Xa . . . ∃Xb of consecutive existential quantifications,
and ϕ0 is an arbitrary formula called the matrix of ϕ. Note that the problem
of checking validity or satisfiability of a formula with free variables can be
easily reduced to this form.

Nested Antichains for WS1S 9

The classical procedure presented in Section 4 computes a sequence of au-
tomata Aϕ0 ,Aϕ]0 , . . . ,Aϕ]m−1

,Aϕm where for all 0 ≤ i ≤ m−1, ϕ]i = ∃Xi+1 : ϕi

and ϕi+1 = ¬ϕ]i . The ϕi’s are the subformulae of ϕ shown in (7). Since elim-
inating existential quantification on the automata level introduces nondeter-
minism (due to the projection on the transition relation), every Aϕ]i may be

nondeterministic. The computation of Aϕi+1
then involves subset construction

and becomes exponential. The worst case complexity of eliminating the pre-
fix is therefore the tower of exponentials of the height m. Even though the
construction may be optimized, e.g. by minimizing every Aϕi (which is im-
plemented by Mona), the size of the generated automata can quickly become
intractable.

The main idea of our algorithm is inspired by the antichain algorithms [13]
for testing language universality of an automaton A. In a nutshell, testing
universality of A is testing whether in the complement A of A (which is created
by determinization via subset construction, followed by swapping final and
non-final states), an initial state can reach a final state. The crucial idea of the
antichain algorithms is based on the following: (i) The search can be done on
the fly while constructing A. (ii) The sets of states that arise during the search
are closed (upward or downward, depending on the variant of the algorithm).
(iii) The computation can be done symbolically on the generators of these
closed sets. It is enough to keep only the extreme generators of the closed sets
(maximal for downward closed, minimal for upward closed). The generators
that are not extreme (we say that they are subsumed) can be pruned away,
which vastly reduces the search space.

We notice that individual steps of the algorithm for constructing Aϕ are
very similar to testing universality. Automaton Aϕi arises by subset construc-
tion from Aϕ]i−1

, and to compute Aϕ]i , it is necessary to compute the set of final

states F]i . Those are states backward reachable from the final states of Aϕi
via a subset of transitions of ∆i (those labelled by symbols projected to 0

by πi+1). To compute F]i , the antichain algorithms could be actually taken
off-the-shelf and run with Aϕ]i−1

in the role of the input A; then, Aϕ]i would

be in the role of A. This approach, however, has the following two problems.
First, antichain algorithms do not produce the automaton A (here Aϕ]i), but

only a symbolic representation of a set of (backward) reachable states (here

of F]i). Since Aϕ]i is the input of the construction of Aϕi+1
, the construction

of Aϕ could not continue. The other problem is that the size of the input Aϕ]i−1

of the antichain algorithm is only limited by the tower of exponentials of the
height i− 1, and this might be already far out of reach.

The main contribution of our paper is an algorithm that alleviates the two
problems mentioned above. It is based on a novel way of performing not only
one, but all the 2m steps of the construction of Aϕ on the fly. It uses a nested
symbolic representation of sets of states and a form of nested subsumption
pruning on all levels of their structure. This is achieved by a substantial re-
finement of the basic ideas of antichain algorithms.

10 Tomáš Fiedor et al.

5.1 Structure of the Algorithm

Let us now start explaining the architecture of our on-the-fly algorithm for
handling quantifier alternation. Following the construction of automata de-
scribed in Section 4, the structure of the automata from the previous section,
Aϕ0

,Aϕ]0 , . . . ,Aϕ]m−1
,Aϕm , can be described using the following recursive def-

inition. We use πi(C) for any mathematical object C to denote projection of
all variables in X1 ∪ · · · ∪ Xi from C.

Let Aϕ0
= (Q0, ∆0, I0, F0) be an FA over X. Then, for each 0 ≤ i < m,

the FAs Aϕ]i and Aϕi+1 are over the alphabet πi+1(X) and have from the

construction the following structure:

Aϕ]i = (Qi, ∆
]
i , Ii, F

]
i) where Aϕi+1

= (Qi+1, ∆i+1, Ii+1, Fi+1) where

∆]i =πi+1(∆i) and ∆i+1 =
{
R
τ−→post[∆]i ,τ](R)

∣∣∣R∈Qi+1

}
,

F]i =µZ . Fi∪pre[∆]i ,0](Z). Qi+1 =2Qi , Ii+1={Ii}, and Fi+1=↓{Qi\F]i }.

We recall that Aϕ]i directly corresponds to existential quantification of all vari-

ables in Xi (cf. Section 4), and Aϕi+1
directly corresponds to the complement

of Aϕ]i (cf. Section 3).

A crucial observation behind our approach is that, because ϕ is ground,
Aϕ is an FA over an empty set of variables, and, therefore, L(Aϕ) is either the
empty set ∅ or the set {0}∗ (as described in Section 4). Therefore, we need to
distinguish between these two cases only. To determine which of them holds,
we do not need to explicitly construct the automaton Aϕ. Instead, it suffices
to check whether Aϕ accepts the empty string ε. This is equivalent to checking
existence of a state that is at the same time final and initial, that is

|= ϕ iff Im ∩ Fm 6= ∅. (8)

To compute Im from I0 is straightforward (it equals {{. . . {{I0}} . . .}} nested
m-times). In the rest of the section, we will describe how to compute Fm (in the
form of its symbolic representation), and how to test whether it intersects
with Im.

The algorithm takes advantage of the fact that to represent final states, one
can use their complement, the set of non-final states. For 0 ≤ i ≤ m, we write
Ni and N]

i to denote the sets of non-final states Qi \ Fi of Ai and Qi \ F]i of

A]i respectively. The algorithm will then instead of computing the sequence of

automataAϕ0 ,Aϕ]0 , . . . ,Aϕ]m−1
,Aϕm compute the sequence F0, F

]
0 , N1, N

]
1 , . . .

up to either Fm (if m is even) or Nm (if m is odd), which suffices for testing
the validity of ϕ. The algorithm starts with F0 and uses the following recursive
equations:

(i) Fi+1 = ↓{N]
i }, (ii) F]i = µZ . Fi ∪ pre [∆]i ,0](Z),

(iii) Ni+1 = ↑
∐
{F]i }, (iv) N]

i = νZ .Ni ∩ cpre [∆]i ,0](Z).
(9)

Nested Antichains for WS1S 11

Intuitively, (i) and (ii) are directly from the definition of Ai and A]i . (iii) is
a dual of (i): Ni+1 contains all subsets of Qi that contain at least one state

from F]i (cf. the definition of the
∐

operator). Finally, (iv) is a dual of (ii):
in the k-th iteration of the greatest fixpoint computation, the current set of
states Z will contain all states that cannot reach an Fi state over 0 within
k steps. In the next iteration, only those states of Z are kept such that all
their 0-successors are in Z. Hence, the new value of Z is the set of states that
cannot reach Fi over 0 in k+ 1 steps, and the computation stabilises with the
set of states that cannot reach Fi over 0 in any number of steps.

In the next two sections, we will show that both of the above fixpoint
computations can be carried out symbolically on representatives of upward
and downward closed sets. Particularly, in Sections 5.2 and 5.3, we show how
the fixpoints from (ii) and (iv) can be computed symbolically, using subsets
of Qi−1 as representatives (generators) of upward/downward closed subsets
of Qi. Section 5.4 explains how the above symbolic fixpoint computations can
be carried out using nested terms of depth i as a symbolic representation of
computed states of Qi. Section 5.5 shows how to test emptiness of Im∩Fm on
the symbolic terms, and Section 5.6 describes the subsumption relation used
to minimize the symbolic term representation used within computations of (ii)
and (iv).

5.2 Computing N]
i on Representatives of ↑

∐
R-sets

Computing N]
i at each odd level of the hierarchy of automata is done by

computing the greatest fixpoint of the function from Equation 9(iv):

fN]i
(Z) = Ni ∩ cpre [∆]i ,0](Z). (10)

We will show that the whole fixpoint computation from Equation 9(iv) can be
carried out symbolically on the representatives of Z due to the following two
properties: (a) all intermediate values of Z have the form ↑

∐
R, whereR ⊆ Qi,

so the sets R can be used as their symbolic representatives, and (b) cpre and
∩ can be computed on such a symbolic representation efficiently.

Let us start with the computation of cpre [∆]i ,τ](Z) where τ ∈ πi+1(0),
assuming that Z is of the form Z = ↑

∐
R, represented by R = {R1, . . . , Rn}.

From Lemma 2, we have that a set of symbolic representatives R stands for
the intersection of denotations of individual representatives, that is

↑
∐
R =

⋂
Rj∈R

↑
∐
{Rj}. (11)

The set cpre [∆]i ,τ](Z) can thus be written as the cpre-image cpre [∆]i ,τ](
⋂
S)

of the intersection of the elements of a set S =
{
↑
∐
{R1}, . . . , ↑

∐
{Rn}

}
.

Further, because cpre distributes over ∩, we can compute the cpre-image of
an intersection by computing intersection of the cpre-images, i.e.

cpre [∆]i ,τ](
⋂
S) =

⋂
S∈S

cpre [∆]i ,τ](S). (12)

12 Tomáš Fiedor et al.

By the definition of ∆]
i (where ∆]

i = πi+1(∆i)), the set cpre [∆]i ,τ](S) can be
computed using the transition relation ∆i for the price of further refining the
intersection. In particular,

cpre [∆]i ,τ](S) =
⋂

ω∈π−1
i+1(τ)

cpre [∆i,ω](S). (13)

Intuitively, cpre [∆]i ,τ](S) contains states from which every transition labelled
by any symbol that is projected to τ by πi+1 has its target in S.

Using (12), (13), and the fact that Z =
⋂{
↑
∐
{Rj} | Rj ∈ R

}
, we obtain

cpre [∆]i ,τ](Z) =
⋂

Rj∈R
ω∈π−1

i+1(τ)

cpre [∆i,ω](↑
∐
{Rj}). (14)

To compute the individual conjuncts cpre [∆i,ω](↑
∐
{Rj}), we take advan-

tage of the special form of the operand ↑
∐
{Rj} and the fact that ∆i is, by its

definition (obtained from determinization via subset construction), monotone

w.r.t. ⊇. That is, if P
ω−→ P ′ ∈ ∆i for some P, P ′ ∈ Qi, then for every R ⊇ P ,

there is R′ ⊇ P ′ s.t. R
ω−→ R′ ∈ ∆i. Due to monotonicity, the cpre [∆i,ω]-image

of an upward closed set is also upward closed (proved below). Moreover, we
observe that it can be computed symbolically using pre on elements of its
generators. Particularly, for a set ↑

∐
{Rj}, we get the following lemma:

Lemma 3 Let Rj ⊆ Qi−1 and ω be a symbol over πi(X) for i > 0. Then

cpre [∆i,ω](↑
∐
{Rj}) = ↑

∐{
pre [∆]i−1,ω](Rj)

}
. (15)

Proof First, we show that the set cpre [∆i,ω](↑
∐
{Rj}) is upward closed. Sec-

ond, we show that all elements of the set
∐{

pre [∆]i−1,ω](Rj)
}

are contained
in cpre [∆i,ω](↑

∐
{Rj}). Finally, we show that for every element T in the set

cpre [∆i,ω](↑
∐
{Rj}), the set

∐{
pre [∆]i−1,ω](Rj)

}
contains a smaller or equal

element S.

1. Proving that cpre [∆i,ω](↑
∐
{Rj}) is upward closed: Consider a state S ∈ Qi

s.t. S ∈ cpre [∆i,ω](↑
∐
{Rj}). From the definition of cpre, it holds that

post [∆i,ω]({S}) ⊆ ↑
∐
{Rj}, (16)

and from the definition of ∆i, it holds that

post [∆i,ω]({S}) = {post [∆]i−1,ω](S)}. (17)

For T ⊇ S, it clearly holds that

post [∆]i−1,ω](T) ⊇ post [∆]i−1,ω](S) (18)

and, therefore, it also holds that

post [∆i,ω]({T}) = {post [∆]i−1,ω](T)} ⊆ ↑
∐
{Rj}. (19)

Therefore, T ∈ cpre [∆i,ω](↑
∐
{Rj}) and the set cpre [∆i,ω](↑

∐
{Rj}) is up-

ward closed.

Nested Antichains for WS1S 13

2. Proving that for all elements S ∈
∐{

pre [∆]i−1,ω](Rj)
}

it holds that S ∈
cpre [∆i,ω](↑

∐
{Rj}): From the properties of

∐
, it holds that S = {s} is

a singleton. Because s ∈ pre [∆]i−1,ω](Rj), there is a transition s
ω−→ r ∈ ∆]

i−1
for some r ∈ Rj . Since post [∆]i−1,ω](S) ⊇ {r}, it follows from the definition
of ∆i that post [∆i,ω]({S}) = {T} where T ⊇ {r}, and so T ∈ ↑

∐
{Rj} and

post [∆i,ω]({S}) ⊆ ↑
∐
{Rj}. We use the definition of cpre to conclude that

S ∈ cpre [∆i,ω](↑
∐
{Rj}).

3. Proving that for every T ∈ cpre [∆i,ω](↑
∐
{Rj}) there exists some element

S ∈
∐{

pre [∆]i−1,ω](Rj)
}

such that S ⊆ T : From T ∈ cpre [∆i,ω](↑
∐
{Rj})

and the definition of ∆i, we have that

post [∆i,ω]({T}) = {P} ⊆ ↑
∐
{Rj} (20)

for P s.t. post [∆]i−1,ω](T) = P . Since P ∈ ↑
∐
{Rj}, there exist r ∈ Rj ∩ P

and t ∈ T s.t. t
ω−→ r ∈ ∆]

i−1. Because t ∈ pre [∆]i−1,ω]({r}), we choose
S = {t} and we are done. ut

Intuitively, the sets with post-images above a singleton {p} ∈
{
{p} | p ∈

Rj
}

= ↑
∐
{Rj} in the ordering ⊆ are those that contain at least one state

q ∈ Qi−1 s.t. q
ω−→ p ∈ ∆]

i−1. Combining (14) and Lemma 3 yields

cpre [∆]i ,τ](Z) =
⋂

Rj∈R
ω∈π−1

i+1(τ)

↑
∐{

pre [∆]i−1,ω](Rj)
}
. (21)

By applying Lemma 2, we get the final formula for cpre [∆]i ,τ](Z):

cpre [∆]i ,τ](Z = ↑
∐
R) = ↑

∐{
pre [∆]i−1,ω](Rj) | ω ∈ π−1i+1(τ), Rj ∈ R

}
. (22)

In order to compute fN]i
(Z), it remains to intersect cpre [∆]i ,0](Z), computed us-

ing (22), with Ni. By Equation 9(iii), Ni equals ↑
∐
{F]i−1}, and, by Lemma 2,

the intersection can be done symbolically as

fN]i
(Z) = ↑

∐(
{F]i−1} ∪

{
pre [∆]i−1,ω](Rj) | ω ∈ π−1i+1(0), Rj ∈ R

})
. (23)

Finally, note that a symbolic application of fN]i
to Z = ↑

∐
R represented as

the set R reduces to computing pre-images of the elements of R, which are
then put next to each other, together with F]i−1. The computation starts from

Ni = ↑
∐
{F]i−1}, represented by {F]i−1}, and each of its steps, implemented

by (23), preserves the form of sets ↑
∐
R, represented by R.

5.3 Computing F]i on Representatives of ↓R-sets

Similarly as in the previous section, computation of F]i at each even level of
the automata hierarchy is done by computing the least fixpoint of the function

fF]i
(Z) = Fi ∪ pre [∆]i ,0](Z). (24)

14 Tomáš Fiedor et al.

We will show that the whole fixpoint computation from Equation 9(ii) can
be again carried out symbolically due to the following two properties: (a) all
intermediate values of Z are of the form ↓R, R ⊆ Qi, meaning that the sets
R can be used as their symbolic representatives, and (b) pre and ∪ can be
computed efficiently on such a symbolic representation. The computation is
a simpler analogy of the one in Section 5.2.

We start with the computation of pre [∆]i ,τ](Z) where τ ∈ πi+1(X), assuming
that Z is of the form ↓R, represented by R = {R1, . . . , Rn}. A simple analogy
to (11) and (12) of Section 5.2 is that the union of downward closed sets is
a downward closed set generated by the union of their generators, i.e.

↓R =
⋃

Rj∈R
↓{Rj} (25)

and that pre distributes over union, i.e.

pre [∆]i ,τ](↓R) =
⋃

Rj∈R
pre [∆]i ,τ](↓{Rj}). (26)

An analogy of (13) holds too:

pre [∆]i ,τ](S) =
⋃

ω∈π−1
i+1(τ)

pre [∆i,ω](S). (27)

Intuitively, pre [∆]i ,τ](S) contains states from which at least one transition la-
belled by any symbol that is projected to τ by πi+1 leaves with the target
in S. Using (26), (27), and the fact that Z =

⋃{
↓{Rj} | Rj ∈ R

}
, we obtain

pre [∆]i ,τ](Z) =
⋃

Rj∈R
ω∈π−1

i+1(τ)

pre [∆i,ω](↓{Rj}). (28)

To compute the individual disjuncts pre [∆i,ω](↓{Rj}), we take advantage of
the fact that every ↓{Rj} is downward closed, and that ∆i is, by its definition

(determinization by subset construction), monotone w.r.t. ⊆. That is, if P
ω−→

P ′ ∈ ∆i for some P, P ′ ∈ Qi, then for every R ⊆ P , there is R′ ⊆ P ′

s.t. R
ω−→ R′ ∈ ∆i. Due to monotonicity, the pre [∆i,ω]-image of a downward

closed set is downward closed (proved below). Moreover, we observe that it
can be computed symbolically using cpre on elements of its generators. In
particular, for a set ↓{Rj}, we get the following lemma, which is a dual of
Lemma 3:

Lemma 4 Let Rj ⊆ Qi−1 and ω be a symbol over πi(X) for i > 0. Then

pre [∆i,ω](↓{Rj}) = ↓{cpre [∆]i−1,ω](Rj)}. (29)

Proof First, we show that pre [∆i,ω](↓{Rj}) is downward closed. Second, we
show that S = cpre [∆]i−1,ω](Rj) is in pre [∆i,ω](↓{Rj}). Finally, we show that
every element T in pre [∆i,ω](↓{Rj}) is smaller than or equal to S.

Nested Antichains for WS1S 15

1. Proving that pre [∆i,ω](↓{Rj}) is downward closed: Consider a state S′ ∈ Qi
s.t. S′ ∈ pre [∆i,ω](↓{Rj}). From the definitions of pre and ∆i, it holds that

post [∆i,ω]({S′}) = {post [∆]i−1,ω](S
′)} ⊆ ↓{Rj}, (30)

(note that ∆i is deterministic) and, therefore, post [∆]i−1,ω](S
′) ∈ ↓{Rj}.

For T ⊆ S′, it clearly holds that

post [∆]i−1,ω](T) ⊆ post [∆]i−1,ω](S
′) (31)

and so it also holds that

post [∆i,ω]({T}) = {post [∆]i−1,ω](T)} ⊆ ↓{Rj}. (32)

Therefore, T ∈ pre [∆i,ω](↓{Rj}) and pre [∆i,ω](↓{Rj}) is downward closed.
2. Proving that S = cpre [∆]i−1,ω](Rj) ∈ pre [∆i,ω](↓{Rj}): From the definition

of cpre, it holds that

post [∆]i−1,ω](S) = S′ ⊆ Rj . (33)

Further, from the definition of ∆i, it holds that S
ω−→ S′ ∈ ∆i and, there-

fore, S ∈ pre [∆i,ω](↓{Rj}).
3. Proving that for every T ∈ pre [∆i,ω](↓{Rj}) it holds that T ⊆ S: From T ∈

pre [∆i,ω](↓{Rj}), we have that T
ω−→ P ∈ ∆i for P ⊆ Rj , and, from the def-

inition of ∆i, we have that P = post [∆]i−1,ω](T). From P = post [∆]i−1,ω](T)
and the definition of cpre, it is easy to see that T ⊆ cpre [∆]i−1,ω](P), and,
moreover,

P ⊆ Rj =⇒ cpre [∆]i−1,ω](P) ⊆ cpre [∆]i−1,ω](Rj). (34)

Therefore, we can conclude that T ⊆ cpre [∆]i−1,ω](Rj) = S. ut

Intuitively, the sets with the post-images below Rj in the ordering ⊆ are
those that do not have an outgoing transition leading outside Rj . The largest
such a set is cpre [∆]i−1,ω](Rj). Combining (28) with Lemma 4 yields

pre [∆]i ,τ](Z) =
⋃

Rj∈R
ω∈π−1

i+1(τ)

↓{cpre [∆]i−1,ω](Rj)}. (35)

Using (25), we get the final formula for pre [∆]i ,τ](Z):

pre [∆]i ,τ](Z = ↓R) = ↓{cpre [∆]i−1,ω](Rj) | ω ∈ π−1i+1(τ), Rj ∈ R}. (36)

To compute fF]i
(Z), it remains to unite pre [∆]i ,0](Z), computed using (36),

with Fi. From Equation 9(i), Fi equals ↓{N]
i−1}, so the union can be done

symbolically as

fF]i
(Z) = ↓

(
{N]

i−1} ∪
{

cpre [∆]i−1,ω](Rj) | ω ∈ π−1i+1(0), Rj ∈ R
})
. (37)

16 Tomáš Fiedor et al.

Therefore, a symbolic application of fF]i
to Z = ↓R represented by the set R

reduces to computing cpre-images of elements of R, which are put next to
each other, together with N]

i−1. The computation starts from Fi = ↓{N]
i−1},

represented by {N]
i−1}, and each of its steps, implemented by (37), preserves

the form of sets ↓R, which are represented by R.

5.4 Computation of F]i and N]
i on Symbolic Terms

Sections 5.2 and 5.3 show how sets of states arising within the fixpoint compu-
tations from Equations 9(ii) and 9(iv) can be represented symbolically using
representatives that are sets of states of the lower level. The sets of states of
the lower level will be again represented symbolically. When computing the
fixpoint of level i, we will work with a nested symbolic representation of states
of depth i. Particularly, sets of states of Qk, for 0 ≤ k ≤ i, are represented by
terms of level k where a term of level 0 is a subset of Q0, a term of level 2j+1,
for j ≥ 0, is of the form ↑

∐
{t1, . . . , tn} where t1, . . . , tn are terms of level 2j,

and a term of level 2j, for j > 0, is of the form ↓{t1, . . . , tn} where t1, . . . , tn
are terms of level 2j − 1.

The computation of cpre and fN]2j+1
on a term of level 2j+1 and computa-

tion of pre and fF]2j
on a term of level 2j then becomes a recursive procedure

that descends via the structure of the terms and produces again a term of level
2j + 1 or 2j respectively. In the case of cpre and fN]2j+1

called on a term of

level 2j + 1, Equation (22) reduces the computation to a computation of pre
on its sub-terms of level 2j, which is again reduced by (36) to a computation
of cpre on terms of level 2j − 1, and so on until the bottom level where the
algorithm computes pre on the terms of level 0 (subsets of Q0). The case of
pre and fF]2j

called on a term of level 2j is symmetrical.

Example 1 We will demonstrate the run of our algorithm on the following
example formula:

ϕ ≡ ¬∃X¬∃Y ¬∃Z : X < Y ∧ Y < Z︸ ︷︷ ︸
ϕ0︸ ︷︷ ︸

ϕ]0︸ ︷︷ ︸
ϕ1

. .
.︸ ︷︷ ︸

ϕ3

Note that we extend the minimal syntax introduced in Section 2 with two
additional atomic predicates and one additional logical connective (added to
easily obtain automata suitable for the demonstration of our algorithm). The

Nested Antichains for WS1S 17

p q r

X : 0
Y : 0

X : ?
Y : 0

X : ?
Y : ?

X : 1
Y : 0

X : ?
Y : 1

(a) AX<Y

s t u

Y : 0
Z : 0

Y : ?
Z : 0

Y : ?
Z : ?

Y : 1
Z : 0

Y : ?
Z : 1

(b) AY <Z

Fig. 1 Atomic automata AX<Y and AY <Z

1 2 3 4

X : 0
Y : 0
Z : 0

X : ?
Y : 0
Z : 0

X : ?
Y : ?
Z : 0

X : ?
Y : ?
Z : ?

X : 1
Y : 0
Z : 0

X : ?
Y : 1
Z : 0

X : ?
Y : ?
Z : 1

Fig. 2 Automaton A0 for the formula ϕ0 ≡ X < Y ∧ Y < Z

semantics of the atomic formula X < Y is defined as

X < Y ≡
(
∃x ∈ X : ∀y ∈ Y : ∃W :

(∃u ∈W : y = u+ 1) ∧(
∀w ∈W : (∃w′ ∈W : w = w′ + 1) ∨ w = x

))
∧ ∃y′ ∈ Y : true,

(38)

where we use first-order variable quantification in the standard meaning. In-
formally, X < Y denotes that both X and Y are non-empty and that the least
element of X is strictly smaller than every element of Y .

We build the base automaton Aϕ0
corresponding to the base formula

ϕ0 ≡ X < Y ∧ Y < Z by (i) cylindrification of the atomic automata AX<Y
and AY <Z depicted in Figures 1(a) and 1(b), respectively, and by (ii) con-
structing the intersection automaton A0 = AX<Y ∩AY <Z . The minimal non-
deterministic automaton A0 is depicted in Figure 2. The symbol ? denotes
that the value on the given track can contain both 0 or 1.

Recall that our method decides validity of ϕ by computing symbolically the
sequence of sets F]0 , N1, N

]
1 , F2, F

]
2 , N3, corresponding to the sequence of au-

tomata Aϕ]0 ,Aϕ1
,Aϕ]1 ,Aϕ2

,Aϕ]2 ,Aϕ3
, with each of the sets represented using

a symbolic term, and then finally checks whether I3 ∩N3 6= ∅.
Let us show how the sequence is computed. Once we have constructed

the base automaton, we first process the existential quantification of the vari-
able Z, i.e. the subformula ϕ]0 ≡ ∃Z : ϕ0. The first set in the sequence, F]0 , is
obtained using a fixpoint computation given by Equation 9(ii), that is,

F]0 = µW .F0 ∪ pre [∆]0,0](W).

18 Tomáš Fiedor et al.

This computation returns the set of states backward-reachable from F0 via 0
transitions of ∆]

0. Here, the zero symbol 0 corresponds to the mapping X : 0
Y : 0

of the free variables of the subformula ϕ]0. The set F0 of states of the base
automaton A0, from which the computation starts, equals {4}. Since we are

processing ∃Z in the formula, the transition relation ∆]
0 can be obtained by

removing the track corresponding to the variable Z from ∆0. For instance,

from the transition 1

X : 1
Y : 0
Z : 0−−−→ 2, we obtain 1

X : 1
Y : 0−−−→ 2. However, according to (28),

instead of removing the track, our algorithm rather computes the predecessors
on the original transition relation ∆0 according to symbols where the value in
the concerned Z-track is arbitrary. The set of such symbols is obtained using
the inverse operation of projection. In particular, the inverse operation of
projection π−1[Z](

X : 0
Y : 0), which is used in the fixpoint computation of F]0 , equals

the set
{
X : 0
Y : 0
Z : 0

,
X : 0
Y : 0
Z : 1

}
. The fixpoint computation is then carried out as follows:

F]0 = F0 ∪ pre
[
∆]0,

X : 0
Y : 0

]
(F0) ∪ pre2

[
∆]0,

X : 0
Y : 0

]
(F0) ∪ · · ·

= F0 ∪
(⋃
q∈F0={4}

ω∈π−1
[Z]

(
X : 0
Y : 0)

pre [∆0,ω](q)
)
∪ · · · [by (28)]

= F0 ∪
(

pre
[
∆0,

X : 0
Y : 0
Z : 0

]
(4) ∪ pre

[
∆0,

X : 0
Y : 0
Z : 1

]
(4)
)
∪ · · ·

= {4} ∪ ({3, 4} ∪ {4}) ∪ · · ·

After two iterations, the fixpoint is fully computed, yielding the term

t[F]0] = F]0 = {3, 4}.

Next, we have to process the negation in the subformula ϕ1 ≡ ¬∃Z : ϕ0, which
leads to computation of the term t[N1] using Equation 9(iii), yielding the term

t[N1] = ↑
∐
{F]0} = ↑

∐{
{3, 4}

}
.

The algorithm continues by computing the term for the set of states N]
1 ,

corresponding to the subformula ϕ]1 ≡ ∃Y : ϕ1, which implies a need to process
another quantifier level (namely, that of variable Y). Similarly to the previous

computation, the transition relation ∆]
1 can be obtained by removing the track

corresponding to the variable Y . This means that the fixpoint computation
needs to compute cpre with the symbol 0 that now corresponds to the sym-
bol X : 0 . Instead of that, however, a computation over ∆1 with symbols with
arbitrary values of Y will be used. In particular, the set of such symbols will
be obtained by Equation (14) using the inverse projection of Y , which yields

the set π−1[Y](X : 0) = {X : 0
Y : 0 ,

X : 0
Y : 1 }. More concretely, the computation of N]

1 is

performed according to Equation 9(iv) as follows:

N]
1 = νW .N1 ∩ cpre [∆]1,0](W).

Nested Antichains for WS1S 19

To compute the above, Equation (23) is used to transform the problem of
computing the cpre [∆1,ω

′]-image of a term into a computation of a series of
pre [∆]0,ω]-images of its sub-terms in the same way as Equation (37) is used
when computing t[F]0], resulting in the following fixpoint computation:

N]
1 = N1 ∩ cpre[∆]1, X : 0](N1) ∩ cpre2[∆]1, X : 0](N1) ∩ · · ·

= N1 ∩
(⋂
Q∈N1

ω∈π−1
[Y]

(X : 0)

cpre [∆1,ω](Q)
)
∩ · · · [by (14)]

= N1 ∩
(

cpre
[
∆1,

X : 0
Y : 0

]
(↑
∐
{{3, 4}}) ∩ cpre

[
∆1,

X : 0
Y : 1

]
(↑
∐
{{3, 4}})

)
∩ · · ·

= N1 ∩
(
↑
∐{

pre
[
∆]0,

X : 0
Y : 0

]
({3, 4})

}
∩ ↑
∐{

pre
[
∆]0,

X : 0
Y : 1

]
({3, 4})

})
∩ · · ·

[by Lemma 3]

= N1 ∩
(
↑
∐{ ⋃

q∈{3,4}
ω∈π−1

[Z]
(
X : 0
Y : 0)

pre [∆0,ω](q)
}
∩ ↑
∐{ ⋃

q∈{3,4}
ω∈π−1

[Z]
(
X : 0
Y : 1)

pre [∆0,ω](q)
})
∩ · · · [by (28)]

= N1 ∩
(
↑
∐{

pre
[
∆0,

X : 0
Y : 0
Z : 0

]
(3) ∪ pre

[
∆0,

X : 0
Y : 0
Z : 1

]
(3) ∪

pre
[
∆0,

X : 0
Y : 0
Z : 0

]
(4) ∪ pre

[
∆0,

X : 0
Y : 0
Z : 1

]
(4)
}
∩

↑
∐{

pre
[
∆0,

X : 0
Y : 1
Z : 0

]
(3) ∪ pre

[
∆0,

X : 0
Y : 1
Z : 1

]
(3) ∪

pre
[
∆0,

X : 0
Y : 1
Z : 0

]
(4) ∪ pre

[
∆0,

X : 0
Y : 1
Z : 1

]
(4)
})
∩ · · ·

= ↑
∐{
{3, 4}

}
∩
(
↑
∐{
{3, 4}

}
∩ ↑
∐{
{2, 3, 4}

})
∩ · · ·

= ↑
∐{
{3, 4}

}
∩
(
↑
∐{
{3, 4} ∪ {2, 3, 4}

})
∩ · · · [by Lemma 1]

= ↑
∐{
{3, 4}

}
∩ ↑
∐{
{2, 3, 4}

}
∩ · · ·

Note that we do not have to compute explictly the term pre
[
∆]0,

X : 0
Y : 0

]
({3, 4})

as it was computed in the previous iteration of the algorithm, and thus we can
use caching of intermediate results to obtain an even more efficient decision
procedure. We end up with the term

t[N]1] = ↑
∐{
{3, 4}, {2, 3, 4}

}
.

We continue with processing of the second negation by computing the term
corresponding to the set F2 of automaton Aϕ2 for the subformula ϕ2 ≡ ¬∃Y :
ϕ1 using Equation 9(i) to obtain the term

t[F2] = ↓{N]
1} = ↓

{
↑
∐{
{3, 4}, {2, 3, 4}

}}
.

Next, we process the last quantifier corresponding to the formula ϕ]2 ≡
∃X : ϕ2. The symbolic fixpoint computation of F]2 from Equation 9(ii) then

20 Tomáš Fiedor et al.

starts from F2 and uses an iterative application of pre [∆]2,0] according to the
equation

F]2 = µW .F2 ∪ pre [∆]2,0](W).

Note that, since in ϕ]2, all of the variables are projected away, the zero sym-
bol 0 now corresponds to the mapping ∅ of the empty set of free variables to
the set {0, 1}.The inverse projection of the symbol 0 is then the set π−1[X](∅) =

{X : 0 , X : 1}. The fixpoint computation proceedes similarly to the compu-
tation of t[F]0]. Using (36), we transform the computation of the image of
pre [∆]2,ω

′′] into the computation of a series of cpre [∆]1,ω
′]-images of the sub-

terms of t[N]1]. These are in turn transformed by (22) into a computation of
a series of pre [∆]0,ω]-images of sub-sub-terms of t[F]0], i.e. subsets of Q0. For
our example, this yields a fixpoint computation analogous to the previous
computation of the t[F]0], resulting in the term

t[F]2] = ↓
{
↑
∐{
{3, 4}, {2, 3, 4}

}
, ↑
∐{
{3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}}
.

Finally, using Equation 9(iii), we process the last negation corresponding to
the formula ϕ ≡ ϕ3 ≡ ¬∃X : ϕ2, which yields the final term representing N3,
namely,

t[N3] = ↑
∐{
↓
{
↑
∐{
{3, 4}, {2, 3, 4}

}
, ↑
∐{
{3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}}}
.

Now, it remains to check whether I3∩F3 6= ∅ using the computed term t[N3].
We will show how to evaluate this intersection in the next section. ut

5.5 Testing Im ∩ Fm
?

6= ∅ on Symbolic Terms

Due to the special form of the set Im (every Ii, where 1 ≤ i ≤ m, is the sin-
gleton set {Ii−1}, cf. Section 5.1), the test Im∩Fm 6= ∅ can be done efficiently
over the symbolic terms representing Fm. Since Im = {Im−1} is a singleton set,
testing Im ∩ Fm 6= ∅ is equivalent to testing Im−1 ∈ Fm. If m is odd, our ap-
proach computes the symbolic representation of Nm instead of Fm. Obviously,
since Nm is the complement of Fm, it holds that Im−1 ∈ Fm ⇐⇒ Im−1 6∈ Nm.
Our way of testing Im−1 ∈ ↓S on a symbolic representation of the set ↓S of
level m is based on the following equations:

{q} ∈ ↓S ⇐⇒ ∃S ∈ S : q ∈ S (44)

{q} ∈ ↑
∐
S ⇐⇒ ∀S ∈ S : q ∈ S (45)

and, for i = 0,

I0 ∈ ↑
∐
S ⇐⇒ ∀S ∈ S : I0 ∩ S 6= ∅. (46)

Nested Antichains for WS1S 21

Given a symbolic term t[R]m of level m representing a set Rm ⊆ Qm, test-
ing emptiness of Im ∩ Rm or Im ⊆ Rm can be done over t[Rm] by a recursive
procedure that descends along the structure of t[Rm] using (44) and (45), essen-
tially generating an AND-OR tree, terminating the descent by an application
of (46).

Example 2 To finish Example 1, we need to test whether I3 ∩ F3 = ∅. This is
equivalent to checking whether I3 ⊆ N3, i.e., whether {{{{1}}}} ⊆ N3, which

holds iff I2 = {{{1}}} ∈ N3, using t[N3] = ↑
∐
{F]2} to represent N3. From (45),

we get that

I2 = {{{1}}} ∈ ↑
∐
{F]2} ⇐⇒ I1 = {{1}} ∈ F]2

because F]2 is the denotation of the only sub-term t[F]2] of t[N3]. Equation (44)
establishes that

I1 = {{1}} ∈ F]2 ⇐⇒
{1} ∈ ↑

∐{
{3, 4}, {2, 3, 4}

}
∨ {1} ∈ ↑

∐{
{3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}
.

Each of the disjuncts can then be further reduced by (45) into a conjunction
of membership queries on the base level, which is solved using (46) as follows:

I1 = {{1}} ∈ F]2 ⇐⇒
(1 ∈ {3, 4} ∧ 1 ∈ {2, 3, 4}) ∨ (1 ∈ {3, 4} ∧ 1 ∈ {2, 3, 4} ∧ 1 ∈ {1, 2, 3, 4})

Since none of the disjuncts is satisfied, we have that I1 6∈ F]2 , so I2 6∈ N3,
implying that I2 ∈ F3. We conclude that I3 ⊆ N3 and hence |= ϕ. ut

5.6 Subsumption of Symbolic Terms

Although the use of symbolic terms instead of an explicit enumeration of sets of
states itself considerably reduces the searched space, an even greater degree of
reduction can be obtained using subsumption inside the symbolic representa-
tives to reduce their size, similarly as in the antichain algorithms [14]. For any
set of sets S containing a pair of distinct elements R, T ∈ S s.t. R ⊆ T , the
following holds:

↓S = ↓(S \ {R}) and ↑
∐
S = ↑

∐
(S \ {T}). (47)

Therefore, if S is used to represent the set ↓S, the element R is subsumed
by T and can be removed from S without changing its denotation. Likewise,
if S is used to represent ↑

∐
S, the element T is subsumed by R and can be

removed from S without changing its denotation. We can thus simplify any
symbolic term by pruning out its sub-terms that represent elements subsumed
by elements represented by other sub-terms, without changing the denotation
of the term.

22 Tomáš Fiedor et al.

Computing subsumption on terms can be done using the following two
equations:

↓R ⊆ ↓S ⇐⇒ ∀R ∈ R : ∃S ∈ S : R ⊆ S (48)

↑
∐
R ⊆ ↑

∐
S ⇐⇒ ∀S ∈ S : ∃R ∈ R : R ⊆ S. (49)

Using (48) and (49), testing subsumption of terms of level i reduces to testing
subsumption of terms of level i − 1. The procedure for testing subsumption
of two terms descends along the structure of the term, using (48) and (49) on
levels greater than 0, and on level 0, where terms are subsets of Q0, it tests
subsumption by set inclusion.

Example 3 In Example 1, we can use the inclusions of {3, 4} ⊆ {2, 3, 4} ⊆
{1, 2, 3, 4} and (47) to reduce t[N]1] = ↑

∐{
{3, 4}, {2, 3, 4}

}
and the intermedi-

ate term t = ↑
∐{
{3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}
to the terms

t[N]1]
′ = ↑

∐{
{2, 3, 4}

}
and

t′ = ↑
∐{
{1, 2, 3, 4}

}
respectively.

Moreover, Equation (49) implies that the term t′ = ↑
∐{
{1, 2, 3, 4}

}
is sub-

sumed by the term t[N]1]
′ = ↑

∐{
{2, 3, 4}

}
, and so we can reduce the term

t[F]2] = ↓
{
↑
∐{
{2, 3, 4}

}
, ↑
∐{
{1, 2, 3, 4}

}}
to the term

t[F]2]
′ = ↓

{
↑
∐{
{2, 3, 4}

}}
.

ut

6 Experimental Evaluation

We have implemented a prototype of the presented approach in the tool
dWiNA [27]. It uses the frontend of Mona to parse the input formula,
and it handles FAs encoded using the MTBDD-based representation from
the libvata library [28]. It has two modes of operation. In Mode I, we use
Mona to generate the minimal deterministic automaton Aϕ0

corresponding
to the matrix of the tested formula. Since the input formula may not be in the
prenex normal form (i.e., a prefix of quantifiers followed by a quantifier-free
matrix), the matrix here corresponds to the subformula under the topmost
quantifier, or, if there is no single top-most quantifier, to the entire formula.
The automaton is then translated into the libvata format, and our algo-
rithm is run on top of the libvata-represented automaton. In Mode II, we
first transform the input formula into the prenex normal form where the oc-
curence of negation in the matrix is limited to literals, and then construct
a nondeterministic automaton Aϕ0

for the matrix directly using libvata.
We evaluated dWiNA against two classes of benchmarks: formulae aris-

ing in verification of pointer programs using the method based on the logic

Nested Antichains for WS1S 23

Table 1 Results for formulae obtained from verification tasks of Strand [6]

Benchmark
Time [s] Space [states]

Mona dWiNA Mona dWiNA

bubblesort-else 0.01 0.01 1285 19
bubblesort-if-else 0.02 0.23 4260 234
bubblesort-if-if 0.12 1.14 8390 28
sorted-list-insert-after-loop 0.01 0.01 167 36
sorted-list-insert-before-head 0.01 0.01 43 45
sorted-list-insert-before-loop 0.01 0.01 103 47
sorted-list-insert-error-error 0.01 0.01 103 47
sorted-list-insert-in-loop 0.01 0.01 463 59
sorted-list-reverse-after-loop 0.01 0.01 179 110
sorted-list-reverse-before-loop 0.01 0.01 179 110
sorted-list-reverse-in-loop 0.02 0.02 1311 271
sorted-list-search-after-loop 0.01 0.01 90 274
sorted-list-search-before-loop 0.01 0.01 90 274
sorted-list-search-in-loop 0.01 0.02 1311 84

Strand [6], and several parametric families of manually constructed formu-
lae, from which some were originally designed as show cases for other tools.
The main focus of our experiment was on comparing dWiNA with Mona,
but we carried out some comparison with other available tools too. Namely, we
compared with an implementation of the coalgebraic decision procedure [24],
which we refer to as Coalg, a decision procedure based on symbolic au-
tomata [22], which we refer to as SFA, and the tool Toss implementing a pro-
cedure based on the Shelah’s decomposition [23].

A comparison of dWiNA with Mona on the Strand formulae. Table 1
shows the comparison of dWiNA and Mona against formulae arising in the
shape analysis based on the logic Strand [6]. dWiNA was used in Mode I.
We measured the time the tools took for processing the quantifier prefix of the
formulae. Overall, dWiNA was comparable and sometimes slightly slower than
Mona. We then compared the sum of the numbers of states of all automata
generated by Mona when processing the quantifier prefix with the number of
symbolic terms generated by dWiNA. The state spaces generated by dWiNA
are about one or two orders of magnitude smaller than those generated by
Mona. This makes us believe that with enough optimization, dWiNA could
become better even time-wise.

An attempt to run dWiNA on this benchmark in Mode II was unsuccessful
since libvata was not able to construct the matrix automaton in a reasonable
time. This is because the construction implemented within libvata, which is
based on nondeterministic automata, is not optimized. In particular, it uses
no automata reduction (whereas deterministic minimization is one of the key
features of Mona).

A comparison of dWiNA with Mona on synthetic benchmarks. To demon-
strate that our approach can scale significantly better than the explicit au-

24 Tomáš Fiedor et al.

Table 2 Results from experiments with the HornSub formulae

Time [s] Space [states]
k Mona dWiNA Mona dWiNA

2 0.20 0.01 25 517 44
3 0.57 0.01 60 924 50
4 1.79 0.02 145 765 58
5 4.98 0.02 349 314 70
6 ∞ 0.47 ∞ 90

tomata construction, we created several parameterized families of WS1S for-
mulae. Their basic formulae express relations among subsets of N0, such as
the existence of certain transitive relations, singleton sets, or intervals (their
definitions can be found in [27]). From these, we algorithmically generate fam-
ilies of formulae with a larger quantifier depth, regardless of the meaning of
the generated formulae (though their semantics is still nontrivial).

In Table 2, we give results that we obtained from experimenting with one
of the families, called HornSub, where the basic formula expresses existence of
an ascending chain of n sets ordered w.r.t. ⊂1:

∃Y : ¬∃X1¬ . . .¬∃Xk, . . . , Xn :
∧

1≤i<n

(
Xi ⊆ Y ∧Xi ⊂ Xi+1

)
⇒ Xi+1 ⊆ Y.

The parameter k stands for the number of alternations in the prefix of the
formula. We see that dWiNA clearly outperforms Mona. We use∞ in the case
the time exceeded 2 minutes or when the tool ran out of memory. We carried
out these experiments in Mode II of dWiNA (the experiment in Mode I was
not successful due to a too costly conversion of a large matrix automaton from
Mona to libvata).

All of the experiments above, targeted to compare the performance of dWiNA
and Mona only, were carried out on an Intel Core i7-4770@3.4 GHz processor
with 32 GiB RAM.

A comparison of dWiNA with other tools. Our last set of experiments aims
at a comparison with other available implementations of WS1S decision pro-
cedures, namely Toss [23], SFA [22], and Coalg [24]. Since the tools support
a limited set of syntactic features, we could only use a subset of the available
benchmark formulae. Namely, we took the parametric families of formulae
HornLeq from [22] and HornIn from [23], originally proposed to evaluate the
performance of SFA and Toss, respectively, and our parametric family of for-
mulae SetClosed.2 The basic formula of the SetClosed family expresses the

1 Results for the other families are very similar and hence skipped here. An interested
reader is referred to [27].

2 Note that the HornSub family is not supported by Toss and Coalg, and thus we chose
a comparably complex family of SetClosed to present the overall comparison.

Nested Antichains for WS1S 25

Table 3 Experiments with parametric families of formulae (times are given in seconds)

Benchmark Mona Toss Coalg SFA dWiNA

HornLeq [22]
horn-leq06 0.01 0.02 1.10 0.01 0.01
horn-leq07 0.01 0.02 11.09 0.01 0.01
horn-leq08 0.01 0.02 101.48 0.01 0.01
horn-leq09 0.01 0.02 ∞ 0.01 0.01
horn-leq10 0.01 0.03 ∞ 0.02 0.01
horn-leq11 0.05 0.03 ∞ 0.02 0.01
horn-leq12 0.09 0.04 ∞ 0.02 0.01
horn-leq13 0.19 0.04 ∞ 0.02 0.01
horn-leq14 0.45 0.04 ∞ 0.02 0.01
horn-leq15 1.19 0.05 ∞ 0.03 0.02
horn-leq16 3.35 0.05 ∞ 0.03 0.02
horn-leq17 9.07 0.05 ∞ 0.03 0.02
horn-leq18 22.89 0.06 ∞ 0.03 0.02
horn-leq19 oom 0.06 ∞ 0.03 0.03

HornIn [23]
horn-in04 0.01 0.01 0.02 0.27 0.01
horn-in05 0.01 0.01 0.14 0.76 0.03
horn-in06 0.01 0.02 1.07 2.65 0.13
horn-in07 0.01 0.02 8.50 8.31 0.29
horn-in08 0.01 0.02 68.05 32.44 1.16
horn-in09 0.03 0.03 ∞ ∞ 3.42
horn-in10 0.09 0.04 ∞ ∞ 18.40
horn-in11 0.20 0.04 ∞ ∞ 54.74
horn-in12 0.48 0.04 ∞ ∞ ∞
horn-in13 1.20 0.04 ∞ ∞ ∞
horn-in14 2.95 0.05 ∞ ∞ ∞
horn-in15 7.26 0.05 ∞ ∞ ∞
horn-in16 oom 0.06 ∞ ∞ ∞

SetClosed

set-closed01 0.01 0.02 0.04 0.01 0.01
set-closed02 0.01 0.02 ∞ 0.13 0.01
set-closed03 0.01 0.18 ∞ 0.14 0.01
set-closed04 0.34 ∞ ∞ 13.96 0.01
set-closed05 ∞ ∞ ∞ ∞ 0.01
set-closed06 ∞ ∞ ∞ ∞ 0.01
set-closed07 ∞ ∞ ∞ ∞ 0.01
set-closed08 ∞ ∞ ∞ ∞ 0.03
set-closed09 ∞ ∞ ∞ ∞ 0.10
set-closed10 ∞ ∞ ∞ ∞ 0.27
set-closed11 ∞ ∞ ∞ ∞ 0.95
set-closed12 ∞ ∞ ∞ ∞ 3.61
set-closed13 ∞ ∞ ∞ ∞ 14.30
set-closed14 ∞ ∞ ∞ ∞ 69.08
set-closed15 ∞ ∞ ∞ ∞ ∞

non-existence of an interval set. The parameter n stands for the number of
existential quantifications in the prefix of the formula:

∃X1, . . . , Xn : ∀x : ¬∀y, z :
∧

1≤i≤n

(
(x ∈ Xi ∧ x ≤ y ∧ y ≤ z ∧ z ∈ Xi)⇒ y ∈ Xi

)

26 Tomáš Fiedor et al.

This experiment had to be evaluated on a different machine with a system that
meets the requirements of all the tools, with an Intel Core i7-4770@3.4 GHz
processor and 16GiB RAM, running Debian GNU/Linux. Table 3 gives the
run times of the tools. We use ∞ in case the time exceeded 2 minutes and
oom to denote that the tool ran out of memory. While Toss performs best on
their own benchmarks, dWiNA outperforms the other tools on the rest of the
formulae.

7 Conclusion and Future Work

We presented a new approach for dealing with alternating quantifications
within the automata-based decision procedure for WS1S. Our approach is
based on a generalization of the idea of the so-called antichain algorithm for
testing universality or language inclusion of finite automata. Our approach
processes a prefix of the formula with an arbitrary number of quantifier al-
ternations on-the-fly using an efficient symbolic representation of the state
space, enhanced with subsumption pruning. Our experimental results are en-
couraging and show that the direction started in this paper—using modern
techniques for nondeterministic automata in the context of deciding WS1S
formulae—is promising.

An interesting direction of further development seems to be lifting the sym-
bolic pre/cpre operators to a more general notion of terms that allow working
with general sub-formulae (that may include logical connectives and nested
quantifiers). The algorithm could then be run over arbitrary formulae, without
the need of the transformation into the prenex form. This would open a way
of adopting optimizations used in other tools as well as syntactical optimiza-
tions of the input formula such as anti-prenexing. Another way of improvement
would be to use simulation-based techniques to reduce the generated automata
as well as to weaken the term-subsumption relation (an efficient algorithm for
computing simulation over BDD-represented automata is needed). We also
plan to extend the algorithms to WSkS and tree-automata, and perhaps even
further to more general inductive structures.

Acknowledgements We thank the anonymous reviewers for their helpful comments on
how to improve the presentation in this paper. The work in this paper was supported by
the Czech Science Foundation project 16-24707Y, the IT4IXS: IT4Innovations Excellence
in Science project (LQ1602), and the FIT BUT internal project FIT-S-17-4014.

References

1. Fiedor, T., Hoĺık, L., Lengál, O., Vojnar, T.: Nested antichains for WS1S. In: TACAS’15.
Volume 9035 of LNCS., Springer (2015) 658–674

2. Meyer, A.R.: Weak monadic second order theory of successor is not elementary-
recursive. In Parikh, R., ed.: Proc. of Logic Colloquium—Symposium on Logic Held
at Boston, 1972–73. Volume 453 of Lecture Notes in Mathematics., Springer (1972)
132–154

Nested Antichains for WS1S 27

3. Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: new techniques for WS1S and WS2S.
In: Proc. of CAV’98. Volume 1427 of Lecture Notes in Computer Science., Springer
(1998) 516–520

4. Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS, Department of
Computer Science, Aarhus University. (January 2001) Notes Series NS-01-1. Available
from http://www.brics.dk/mona/. Revision of BRICS NS-98-3.

5. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures and
data. In: Proc. of POPL’11, ACM (2011) 611–622

6. Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND. In:
Proc. of SAS’11. Volume 6887 of Lecture Notes in Computer Science., Springer (2011)
43–59

7. Iosif, R., Rogalewicz, A., Šimáček, J.: The tree width of separation logic with recursive
definitions. In: CADE 2013. Volume 7898 of Lecture Notes in Computer Science.,
Springer (2013) 21–38

8. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and
bag properties via user-defined predicates in separation logic. Sci. Comput. Program.
77(9) (2012) 1006–1036

9. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures.
In: Proc. of POPL’08, ACM (2008) 349–361

10. Zhou, M., He, F., Wang, B., Gu, M., Sun, J.: Array theory of bounded elements and
its applications. J. Autom. Reasoning 52(4) (2014) 379–405

11. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over un-
bounded domains. In: Proc. of FMCAD’10, IEEE (2010) 101–109

12. Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative tree
data structures. In Bjørner, N., Sofronie-Stokkermans, V., eds.: Proc. of CADE’11.
Volume 6803 of Lecture Notes in Computer Science., Springer (2011) 476–491

13. Doyen, L., Raskin, J.F.: Antichain algorithms for finite automata. In: Proc. of
TACAS’10. Volume 6015 of LNCS., Springer (2010) 2–22

14. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new algorithm for
checking universality of finite automata. In: Proc. of CAV’06. Volume 4144 of LNCS.,
Springer (2006) 17–30

15. Abdulla, P.A., Chen, Y.F., Hoĺık, L., Mayr, R., Vojnar, T.: When simulation meets
antichains (on checking language inclusion of nondeterministic finite (tree) automata).
In Esparza, J., Majumdar, R., eds.: Proc. of TACAS’10. Volume 6015 of Lecture Notes
in Computer Science., Springer (2010) 158–174

16. Bustan, D., Grumberg, O.: Simulation based minimization. In: Proc. of CADE’00.
Volume 1831 of Lecture Notes in Computer Science., Springer (2000) 255–270

17. Abdulla, P.A., Bouajjani, A., Hoĺık, L., Kaati, L., Vojnar, T.: Computing simula-
tions over tree automata: Efficient techniques for reducing tree automata. In: Proc. of
TACAS’08. Volume 4963 of LNCS., Springer (2008) 93–108

18. Bouajjani, A., Habermehl, P., Hoĺık, L., Touili, T., Vojnar, T.: Antichain-based uni-
versality and inclusion testing over nondeterministic finite tree automata. In: Proc. of
CIAA’08. Volume 5148 of LNCS., Springer (2008) 57–67

19. Habermehl, P., Hoĺık, L., Rogalewicz, A., Simácek, J., Vojnar, T.: Forest automata
for verification of heap manipulation. Formal Methods in System Design 41(1) (2012)
83–106

20. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Interna-
tional Journal of Foundations of Computer Science 13(4) (2002) 571–586

21. Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: A stand-alone tool and jABC
plugin for M2L(Str). In: Proc. of SPIN’06. Volume 3925 of Lecture Notes in Computer
Science., Springer (2006) 293–298

22. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: In Proc. of POPL’14.
(2014) 541–554

23. Ganzow, T., Kaiser, L.: New algorithm for weak monadic second-order logic on inductive
structures. In: Proc. CSL’10. Volume 6247 of Lecture Notes in Computer Science.,
Springer (2010) 366–380

24. Traytel, D.: A coalgebraic decision procedure for WS1S. In Kreutzer, S., ed.: 24th
EACSL Annual Conference on Computer Science Logic (CSL 2015). Volume 41 of

http://www.brics.dk/mona/

28 Tomáš Fiedor et al.

Leibniz International Proceedings in Informatics (LIPIcs)., Dagstuhl, Germany, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik (2015) 487–503

25. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison,
S., Tommasi, M.: Tree Automata Techniques and Applications. (2008)

26. Büchi, J.R.: Weak second-order arithmetic and finite automata. Technical report,
The University of Michigan (1959) Available at URL: http://hdl.handle.net/2027.
42/3930 (May 2010).

27. Fiedor, T., Hoĺık, L., Lengál, O., Vojnar, T.: dWiNA (2014) Available from http://www.

fit.vutbr.cz/research/groups/verifit/tools/dWiNA/.
28. Lengál, O., Šimáček, J., Vojnar, T.: VATA: A library for efficient manipulation of non-

deterministic tree automata. In: Proc. of TACAS’12. Volume 7214 of Lecture Notes in
Computer Science., Springer (2012) 79–94

http://hdl.handle.net/2027.42/3930
http://hdl.handle.net/2027.42/3930
http://www.fit.vutbr.cz/research/groups/verifit/tools/dWiNA/
http://www.fit.vutbr.cz/research/groups/verifit/tools/dWiNA/

	Introduction
	WS1S
	Preliminaries
	Deciding WS1S with Finite Automata
	Nested Antichain-based Approach for Alternating Quantifiers
	Experimental Evaluation
	Conclusion and Future Work

