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Abstract. Complementation of finite automata is a basic operation used in nu-
merous applications. The standard way to complement a nondeterministic finite
automaton (NFA) is to transform it into an equivalent deterministic finite automa-
ton (DFA) and complement the DFA. The DFA can, however, be exponentially
larger than the corresponding NFA. In this paper, we study several alternative ap-
proaches to complementation, which are based either on reverse powerset con-
struction or on two novel constructions that exploit a commonly occurring struc-
ture of NFAs. Our experiment on a large data set shows that using a different than
the classical approach can, in many cases, yield significantly smaller complements.

1 Introduction
Complementation of finite automata is an operation with many applications in formal
methods. It is used, e.g., in regular model checking [25,6,5], representing extended reg-
ular expressions [31,10], to implement negation in automata-based decision procedures
for logics such as Presburger arithmetic [33,17] or monadic second order theories like
WS1S or MSO(Str) [7,11,16,24,14,13,2], or as the basic underlying operation for testing
language inclusion and equivalence over automata. Complementing deterministic finite
automata (DFAs) is an easy task: it is sufficient to add a single state, direct all missing
transitions to this state, and swap accepting and non-accepting states.

In practice, nondeterministic finite automata (NFAs) are often favored over DFAs due
to their potentially much (up to exponentially) smaller size. The classical approach to
complementing NFAs goes through determinization of the input NFA using the powerset
construction into a DFA and then using DFA complementation. While easy to implement,
this approach is prone to cause a blow-up in the number of states, as determinizing an
NFA with n states may, in the worst case, result in a DFA with 2n states [28] and the size
of the complement would then also be exponential. Some automata-based algorithms
are highly sensitive to the sizes of complement automata, such as decision procedures of
certain logics [33,17,7,11,16,24,14,13,2], where the output of the complement may be the
basic structure over which another complementation is performed (usually after pro-
jection, which can turn a potentially deterministic automaton into a nondeterministic
one); for some of the logics, the increase in the size of the complement is the underlying
cause of their non-elementary complexity [27]. Due to this, some of the applications tried
to avoid complementation altogether, for instance using symbolic techniques [31,14,13].
This is, however, not always possible or feasible, as symbolic techniques often disallow
to use, e.g., standard automata reduction techniques (cf., [8,22]), which often have a great
impact on the performance of the applications.
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Since the lower bounds on the worst-case sizes of deterministic and complement
automata are both 2n [29,3,20,23], one might think that the determinization-based ap-
proach is optimal. In practice, this is, however, far from the truth. Consider, e.g., the
NFA A2 accepting the language {a, b}∗.{a}.{a, b}2 shown in Fig. 1 (left). While the
(minimal) deterministic complement has 8 states, there exists an NFA with 4 states given
in Fig. 1 (right) that is a complement of A2. This complement was obtained as follows.
We reversedA2, then determinized it (which is easy asA2 is reverse-deterministic), com-
plemented the output by swapping accepting and non-accepting states, reversed again,
and, finally, removed one unreachable state. We can generalize the example above to the
family of NFAs An whose languages are {a, b}∗.{a}.{a, b}n for n ∈ N. Here, the size
of the minimal complement DFA for the NFA An is 2n+1, while the complement NFA
constructed by the reverse powerset procedure mentioned above has n+2 states, the same
as An. This example is a motivation for a deeper study of NFA complementation.

In this paper, we present several alternative approaches to NFA complementation.
Besides the reverse powerset complementation (Section 3), we introduce two novel com-
plementation constructions that target NFAs with a particular structure (containing sev-
eral strongly connected components), common in practice. We first introduce a basic
version of the novel constructions on NFAs with a very restricted structure (Section 4)
and then we briefly present the generalized version of these constructions and the gener-
alized complementation problem that allows to combine these constructions (Section 5).
Our experimental evaluation (Section 6) shows that in a significant number of cases, us-
ing an alternative complementation method can give a much smaller complement than
the classical construction. Due to the page limit, many parts of the paper are relegated
to the technical report [21], including a precise description of the generalized comple-
mentation constructions with the corresponding correctness proofs, an example of NFA
subclass with a subexponential complement size, implementation details, and additional
experiments.

Related Work. While complementation of automata over infinite words is a lively topic
(e.g., [19,1,4]), complementation of NFAs seems to be under-researched with not many
relevant prior work. The powerset approach to determinization, which is the basic block
of the classical complementation, can be traced to Rabin and Scott [28]. Optimizations
of the powerset determinization were proposed in [15].

From the theoretical side, the exponential lower bound of NFA complementation
was studied with respect to various alphabet sizes (the larger the alphabet size, the easier
it is to construct an NFA whose complement is forced to be exponential) in [29,3,20,23].

2 Preliminaries

An alphabet Σ is a finite nonempty set of symbols. A word over Σ is a sequence u =
u1 . . . un where ui ∈ Σ for all 1 ≤ i ≤ n, with its lengthn denoted by |u|. The empty word
is denoted by ε. The set of all words overΣ is denoted byΣ∗, and its subsets are languages
overΣ. The concatenation of uwith a word v = un+1 . . . um is the word uv = u1 . . . um.
The reverse of u is the word rev(u) = unun−1 . . . u1. The concatenation of languages
L,L′ ⊆ Σ∗ is the language L.L′ = {uv | u ∈ L, v ∈ L′}. The reverse of L is the lan-
guage rev(L) = {rev(w) | w ∈ L} and its complement is the language co(L) = Σ∗ ∖L.
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Finite Automata. A nondeterministic finite automaton (NFA) is defined as a tuple A =
(Q,Σ, δ, I, F ), whereQ is a finite set of states,Σ is an alphabet, δ ⊆ Q×Σ×Q is a tran-
sition relation, I ⊆ Q is a set of initial states, andF ⊆ Q is a set of accepting states (also called
final states). We write q a−→ r ∈ δ instead of (q, a, r) ∈ δ. If δ is clear from the context, we
write just q a−→ r. The size of A is defined as |A| = |Q|. We abuse the notation and use δ
also as the function δ : Q × Σ → 2Q defined as δ(q, a) = {r ∈ Q | q a−→ r}. We also
extend the function δ to sets of states P ⊆ Q as δ(P, a) =

⋃
q∈P δ(q, a). A deterministic

finite automaton (DFA) is an NFA with |I| = 1 and |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ.
A DFA is complete if |δ(q, a)| = 1 for all q ∈ Q and a ∈ Σ. A run of an NFAA over a word
v = v1v2 . . . vn is a sequence of transitions q0

v1−→ q1, q1
v2−→ q2, . . . , qn−1

vn−→ qn with
q0 ∈ I . It is accepting if qn ∈ F . A state that appears in a run over some word v ∈ Σ∗

is reachable, else it is unreachable. A state is reachable from a state q if it is reachable in the
NFA (Q,Σ, δ, {q}, F ). A accepts the language L (A) of all words over Σ for which it has
an accepting run. Automata A and B are equivalent iff L (A) = L (B).

The reverse of A is the NFA rev(A) = (Q,Σ, rev(δ), F, I), where rev(δ) = {r a−→
q | q

a−→ r ∈ δ}. A is called reverse-deterministic iff rev(A) is a DFA. An NFA C is
called a complement of A with respect to an alphabet Λ if L (C) = Λ∗ ∖ L (A). If Λ is
not specified, we assume that Λ = Σ. Given two NFAs A1 = (Q1, Σ, δ1, I1, F1) and
A2 = (Q2, Σ, δ2, I2, F2) where Q1 ∩ Q2 = ∅, their union is the NFA A1 ⋓ A2 =
(Q1 ∪ Q2, Σ, δ1 ∪ δ2, I1 ∪ I2, F1 ∪ F2). A strongly connected component (SCC) of A is
a maximal subset C ⊆ Q in which every state is reachable from every state. Note that
the term component will be used in a more general sense later.

Forward Powerset Complementation. The standard complementation first uses
the powerset construction to transform a given NFAA = (Q,Σ, δ, I, F ) into an equivalent
complete DFA det(A) = (Q′, Σ, δ′, I ′, F ′), where Q′ = 2Q, δ′ = {P a−→ δ(P, a) |
P ∈ Q′, a ∈ Σ}, I ′ = {I}, and F ′ = {P ∈ Q′ | P ∩ F ̸= ∅}. In the following, we
assume that det(A) does not contain unreachable states (only the reachable part of Q′ is
constructed). This does not improve the upper bound on the size of the DFA, which is still
2|Q|. Given a complete DFA D = (Q,Σ, δ, I, F ), its complement can be constructed as
co(D) = (Q,Σ, δ, I,Q ∖ F ). A complement of an NFA A can thus be constructed as
co(det(A)). We call this construction forward powerset complementation.

3 Reverse Powerset Complementation
The idea of this approach to complementation is simple: if we reverse an automaton,
then complement it (for example using the powerset complementation given above) and
reverse again, we obtain the complement of the original automaton. Formally, given an
NFA A, its complement can be constructed as rev(co(det(rev(A)))). We call this ap-
proach reverse powerset complementation. Fig. 1 shows all phases of this complementation
process on an example automaton.

Contrary to the forward powerset construction, this method can yield a (forward-)
nondeterministic automaton, which may be significantly smaller than the minimal de-
terministic complement. This can be documented by a generalization of the automata in
Fig. 1. For any n ∈ N, there exists an NFA An with n+2 states that accepts the language
{a, b}∗.{a}.{a, b}n. While the minimal forward powerset complement of An has 2n+1

states (intuitively, the DFA must store a bit vector of n + 1 elements tracking which of
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Fig. 1: NFA A2 accepting language {a, b}∗.{a}.{a, b}2 and all phases of its reverse pow-
erset complementation; the dotted part of the complement automaton is unreachable.

the last n+1 symbols read were a), the reverse powerset complementation produces an
NFA with n+2 reachable states. This is due to An being reverse-deterministic. Our ex-
periments in [21] show that the reverse powerset construction outperforms the forward
one in many cases.

Heuristic for Forward vs. Reverse Powerset. Naturally, the powerset construction
can be efficient in one direction (forward or reverse) while causing a blow-up in the other.
To address this, we designed a cheap heuristic to choose the more favorable direction for
a given NFA, for cases when running a portfolio is too expensive.

The heuristic sums the sizes of all powerset successors of each state in a given NFA.
Formally, for an NFA A = (Q,Σ, δ, I, F ), we define sc(q) = {δ(q, a) | a ∈ Σ} for
each state q ∈ Q and compute powSC (A) = |I|+

∑
q∈Q

∑
S∈sc(q) |S|. We emphasize

that if q has the same successors under two different symbols a, b ∈ Σ, then the set
δ(q, a) = δ(q, b) contributes to the sum only once.

Intuitively, a higher value of powSC (A) should indicate a higher number of states
produced by the powerset construction applied to A. Hence, comparing powSC (A) and
powSC (rev(A)) gives a hint which of the powerset constructions has a greater risk of
blow-up. The heuristic’s performance is experimentally evaluated in [21].

4 Sequential and Gate Complementation
This section introduces the basic ideas of two techniques called sequential and gate com-
plementation with use on automata with a specific shape. The general form of these tech-
niques is presented in Section 5.

Consider an NFAA that can be seen as two disjoint NFAsA1 = (Q1, Σ, δ1, I1, {qF })
and A2 = (Q2, Σ, δ2, {qI}, F2) connected with a single transition qF

c−→ qI for some
c ∈ Σ, i.e., A = (Q1 ∪Q2, Σ, δ1 ∪ δ2 ∪ {qF

c−→ qI}, I1, F2). The automaton A accepts
the language L1.{c}.L2 where L1 = L (A1) and L2 = L (A2). An example of such an
NFAA and the corresponding automataA1 andA2 can be found in Fig. 2. The transition
qF

c−→ qI is called the transfer transition and automata A1 and A2 are referred to as the
front and the rear component of A, respectively.
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4.1 Sequential Complementation
Sequential complementation builds a potentially nondeterministic complement C ofA from
a complete DFAA′

1 = det(A1) equivalent toA1 and an NFA complement C2 ofA2. The
technique is called sequential complementation because we first complement A2 using
an arbitrary complementation approach, and only then we build the complement of A.

The construction is based on the following observation. The language co(L1.{c}.L2)
consists of words w such that, for all pairs of words u, v satisfying ucv = w, if u ∈ L1

then v ∈ co(L2). Note that ifw does not contain any c, the condition is trivially satisfied.
Therefore, C will simulateA′

1 and whenever a final state ofA′
1 is visited, that is, C finished

reading a prefix u ∈ L1, a transition under c initiates a new instance of C2 that will
check that the corresponding suffix v is indeed in co(L2). Automaton C will accept if
each initiated instance of C2 accepts, meaning that for all possible splittings of the input
word w into ucv where u ∈ L1, it holds that v ∈ co(L2).

Formally, let A′
1 = (Q′

1, Σ, δ′1, {q′0}, F ′
1) be a complete DFA representing the lan-

guage L1 and C2 = (Q̃2, Σ, δ̃2, Ĩ2, F̃2) be an NFA representing co(L2). We construct
an NFA C = (Q̃,Σ, δ̃, Ĩ, F̃ ) representing co(L1.{c}.L2) as follows.

– C ’s states are pairs composed of the current state of A′
1 and states of instances of C2,

Q̃ = Q′
1 × 2Q̃2 .

– For each a ∈ Σ, the transition relation δ̃ simulates the corresponding transition of
A′

1 and arbitrary transitions under a of the running instances of C2. Moreover, it
initiates a new instance of C2 whenever A′

1 moves from an accepting state by read-
ing c. Formally, for each (p, {r1, . . . , rn}) ∈ Q̃, a ∈ Σ, and transitions p a−→ q ∈ δ′1,
ri

a−→ si ∈ δ̃2 for all 1 ≤ i ≤ n, the transition relation δ̃ contains transitions
• (p, {r1, . . . , rn})

a−→ (q, {s1, . . . , sn}) if p ̸∈ F ′
1 or a ̸= c, and

• (p, {r1, . . . , rn})
a−→ (q, {s1, . . . , sn}∪{s0}) for all s0∈ Ĩ2 if p∈F ′

1 and a=c.
– C starts in the initial state q′0 ofA′

1 with no running instance of C2, i.e., Ĩ = {(q′0, ∅)}.
– C accepts whenever all running instances of C2 accept, i.e., F̃ = Q′

1 × 2F̃2 .

Theorem 1. The NFA C accepts co(L (A)).

Proof (sketch). Recall that L (A) = L1.{c}.L2. First, consider w ∈ L (A). Then there are
u ∈ L1 = L (A′

1) and v ∈ L2 such that w = ucv. As A′
1 is deterministic, it has to

reach a state qf ∈ F ′
1 after reading u. Hence, C can reach only states of the form (qf , R)

after reading u. When C reads c from this state, it reaches a state (q′, R′), where R′ has
to contain some initial state s0 of C2. However, v ∈ L2 implies that C2 does not accept v.
Hence, each state (q′′, R′′) of C reached from (q′, R′) by reading v is not accepting as it
cannot satisfy R′′ ⊆ F̃2. To sum up, C has no accepting run over ucv = w.

Now assume that w /∈ L (A). As A′
1 is deterministic and complete, it has a single run

over w. Whenever the run reaches an accepting state over some prefix u of w, we know
that u ∈ L1 and thus the corresponding suffix cannot be of the form cv ∈ {c}.L2 as
that would contradict the assumption w = ucv ̸∈ L (A). In other words, if the prefix u
is followed by c, then C2 has an accepting run over the corresponding suffix v as v ̸∈ L2.
We can construct an accepting run of C over w such that whenever the automaton A′

1

tracked in the first element of the states of C reaches an accepting state and C reads c, we
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Fig. 2: An NFA A, its front and rear components A1,A2, a complete DFA A′
1 equivalent

to A1, a complement C2 of A2, and the complement C of A constructed from A′
1 and C2.

add to the second element of the state of C the initial state of the corresponding accepting
run ofC2 and then follow this run in the future transitions ofC. After reading the wholew,
the second element of the reached state ofC will contain only accepting states of F̃2. Thus,
the constructed run of C over w is accepting and w ∈ L (C).

Fig. 2 shows sequential complementation of an automaton A built from A1 and A2

connected by the transition 1
a−→ 2 and illustrates that this complementation can pro-

duce nondeterministic results. Moreover, there exist automata for which the sequential
complementation produces complements of linear size while both forward and reverse
powerset complementations produce exponential complements. Consider the language
Ln = {a, b}n.{a}.{a, b}∗.{a}.{a, b}n for any n ∈ N. There exists an automaton Bn

with 2n + 3 states that accepts Ln (the automaton B1 is actually the automaton A in
Fig. 2). Analogously to the figure, Bn can be decomposed into Bn1 and Bn2 accepting
Ln1 = {a, b}n and Ln2 = {a, b}∗.{a}.{a, b}n, respectively. Complementing Bn2 into
Cn2 via the reverse powerset and applying sequential complementation yields a comple-
ment Cn with 2n+4 states. In contrast, complementingBn directly with either powerset
method leads to an exponential blow-up – both results have 2n+1+n+1 states due to the
loop under a, b and the nondeterminism in the middle of Bn. Moreover, Bn belongs to
an NFA class for which we prove a subexponential upper bound on the sequential com-
plement size in [21]. This upper bound is strictly better compared to forward powerset
for this NFA class.

4.2 Gate Complementation

Recall that we consider an automaton A that can be seen as two disjoint automata A1 =
(Q1, Σ, δ1, I1, {qF }) andA2 = (Q2, Σ, δ2, {qI}, F2) connected by a transfer transition
qF

c−→ qI for some c ∈ Σ, i.e., A = (Q1∪Q2, Σ, δ1∪ δ2∪{qF
c−→ qI}, I1, F2). Now we

additionally assume that the symbol c of the transfer transition does not appear in any
transition of the front component A1. The transfer transition is then called a gate and c is
the gate symbol. A scheme and an example of an NFA A with a gate can be found in Fig. 3.
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(bottom left), an instance of A for language {a, b}∗.{a}.{a, b}.{c}.{a, b}.{a}.{a, b}∗
(top right), and its gate complement C (bottom right).

Gate complementation utilizes the specific properties ofA. The automatonA accepts
the languageL1.{c}.L2 whereL1 = L (A1) andL2 = L (A2). A wordw ∈ Σ∗ belongs
to co(L1.{c}.L2) in the following cases:

1. w does not contain any c,
2. w = ucv where u ∈ (Σ ∖ {c})∗ and u /∈ L1, or
3. w = ucv where u ∈ (Σ ∖ {c})∗ and v /∈ L2.

Let C1 = (Q̃1, Σ ∖ {c}, δ̃1, Ĩ1, F̃1) be an arbitrary complement of A1 with re-
spect to the alphabet Σ ∖ {c} and C2 = (Q̃2, Σ, δ̃2, Ĩ2, F̃2) be an arbitrary complement
of A2 with respect to the alphabet Σ. Then, the complement C of A consists of two parts:
Cpre accepting the words according to Case 2 and Csuf accepting the words according to
Cases 1 and 3. Schemes of C, Cpre , and Csuf can be seen in Fig. 3.

Formally, we set C = Cpre ⋓ Csuf where Cpre = (Q̃1 ∪ {s}, Σ, δpre , Ĩ1, {s}) and
Csuf = (Q̃2 ∪ {t}, Σ, δsuf , {t}, {t} ∪ F̃2) such that s, t are fresh states,

δpre = δ̃1 ∪ {p c−→ s | p ∈ F̃1} ∪ {s a−→ s | a ∈ Σ}, and

δsuf = δ̃2 ∪ {t c−→ p | p ∈ Ĩ2} ∪ {t a−→ t | a ∈ Σ ∖ {c}}.

Theorem 2. The NFA C accepts co(L (A)).

Proof (sketch). Recall thatL (A) = L1.{c}.L2. First, considerw ∈ L (A). Thenw = ucv,
where u ∈ L1 and v ∈ L2. Because u ∈ L1, no run of C1 over u reaches F̃1. Hence, no
run of Cpre over a word starting with uc reaches s and thus w ̸∈ L (Cpre). The run of
Csuf over uc reaches Ĩ2 and it cannot be prolonged into an accepting run over w as C2
does not accept v. Altogether, we get w ̸∈ L (Cpre) ∪ L (Csuf ) = L (C).
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Now assume that w ̸∈ L (A). If w does not contain any c, it is accepted by Csuf . Let
w = ucv, where u ∈ (Σ ∖ {c})∗. As w ̸∈ L (A), we know that u ̸∈ L1 or v ̸∈ L2. In
the former case, u ∈ L (C1) and thus w is accepted by Cpre . In the latter case, v ∈ L (C2)
and thus w is accepted by Csuf . To sum up, w ∈ L (Cpre) ∪ L (Csuf ) = L (C).

Note that C has only |C1| + |C2| + 2 states. To see the advantage of this comple-
mentation approach, consider Ln = Ln1.{c}.Ln2, where Ln1 = {a, b}∗.{a}.{a, b}n,
Ln2 = {a, b}n.{a}.{a, b}∗, and n ∈ N. There exists an NFA Bn with only 2n + 4
states accepting Ln, which can be deconstructed into two components accepting Ln1

and Ln2, respectively (the automaton B1 is actually the automaton A in Fig. 3). If we use
reverse powerset to complement the front component, forward powerset for the rear
one, and combine the outputs by gate complementation, the result Cn has 2n+ 7 states.
Complementing the whole NFA Bn with either forward or reverse powerset causes an
exponential blow-up, with both results having 2n+1 + n+ 2 states. Sequential comple-
mentation (Section 4.1) also results in a blow-up (for all possible divisions of Bn into
front and rear components) due to the determinization of the front component and/or
tracking possibly many instances of the complement of the rear component.

5 Generalized Complementation Problem

This section briefly generalizes the ideas from Section 4. The generalized complement-
ation constructions are still applicable to automata consisting of two components, but
there can be an arbitrary number of transfer transitions under various symbols lead-
ing from the front to the rear component. The generalized constructions again use com-
plements of the components. These complements can be constructed either by forward
or reverse powerset complementation, or by a recursive application of (generalized) se-
quential or gate complementation.

Due to the potentially recursive application of our complementation constructions
and due to the fact that components can be connected by multiple transfer transitions, we
need to complement components with many incoming and outgoing transfer transitions.
Therefore, we work with automata that generalize initial and final states to multiple sets
of entry and exit states. These sets are called entry and exit port sets. We talk about port
automata and generalize the complementation problem to these automata as follows.

A port NFA or simply a port automaton is a tuple A = (Q,Σ, δ, I,F), where Q, Σ,
and δ are as in an NFA, and I = (I0, . . . , Ik) and F = (F0, . . . , Fℓ) are sequences
of subsets of Q called entry port sets, resp. exit port sets. A slice of A is an NFA with one
entry and one exit port set chosen as the initial, resp. final states, i.e., the NFA Ai,j =
(Q,Σ, δ, Ii, Fj) for 0 ≤ i ≤ k and 0 ≤ j ≤ ℓ. A is deterministic (port DFA) if all its slices
are deterministic (in particular, |Ii| = 1 must hold for every 0 ≤ i ≤ k). A port DFA is
complete if all its slices are complete. A complement ofA is a port NFA representing comple-
ments of all slices. More precisely, a complement ofA is a port NFA C = (Q̃,Σ, δ̃, Ĩ, F̃)

with Ĩ = (Ĩ0, . . . , Ĩk) and F̃ = (F̃1, . . . , F̃ℓ) such that L
(
Ci,j

)
= co(L

(
Ai,j

)
) for

each 0 ≤ i ≤ k and 0 ≤ j ≤ ℓ. We call Ĩi an entry port complement of Ii and F̃j an exit
port complement of Fj , together shortened to port complements.

In the rest of this section, we first generalize the powerset construction to port au-
tomata to get a determinization procedure needed in the sequential complementation.
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With that, we generalize the forward and reverse powerset complementation to port au-
tomata. Powerset complementations are applied to components that cannot be recur-
sively complemented by sequential or gate complementation (for example, because they
cannot be further decomposed into a front and a rear component). Finally, we outline
general versions of sequential and gate complementations.

5.1 Powerset Construction and Complementation for Port Automata

The powerset construction and complementation generalize to port automata as follows.
Given a port NFAA = (Q,Σ, δ, I,F)withI = (Ii)0≤i≤k andF = (Fj)0≤j≤ℓ, the port
powerset construction produces a port DFA det(A) = (Q′, Σ, δ′, I ′,F ′), where Q′ and δ′

are defined as in the standard powerset construction (see Section 2), I ′ = ({Ii})0≤i≤k ,
and F ′ = ({P ∈ Q′ | P ∩Fj ̸= ∅})0≤j≤ℓ. The original A and det(A) are equivalent,
i.e., L

(
Ai,j

)
= L

(
det(A)i,j

)
for all 0 ≤ i ≤ k and 0 ≤ j ≤ ℓ. Moreover, det(A) is

complete. The complement of any complete port DFA D = (Q′, Σ, δ′, I ′,F ′) with F ′ =
(F ′

j)0≤j≤ℓ is the port DFA co(D) = (Q′, Σ, δ′, I ′,F ′′) where F ′′ = (Q′ ∖ F ′
j)0≤j≤ℓ.

The forward powerset complement of a port NFA is, as for non-port NFAs, defined as
co(det(A)). The reverse of a port NFAA is the port NFA rev(A) = (Q,Σ, rev(δ),F , I).
The reverse powerset complement is then constructed as rev(co(det(rev(A)))).

5.2 Generalized Sequential Complementation

We now outline the generalization of sequential complementation to port NFAs, high-
lighting only the differences from Section 4.1 (see [21] for details). Let A be a component
constructed by merging A1 and A2. Hence, A is a port NFA consisting of the front com-
ponent A1 and the rear component A2, both port NFAs, connected by a set of transfer
transitions δtrans leading from A1 to A2. Unlike Section 4.1, we have a set of transfer
transitions δtrans instead of a single one, and both components have multiple entry/exit
port sets. We first construct det(A1) and a complement port NFA C2 ofA2. Analogously
to Section 4.1, the constructed complement C of A contains states (q,R), where q tracks
the only run of det(A1) and R tracks runs of C2 over suffixes of the input word.

The generalized construction closely follows the basic one. It differs in the following:

1. Given a state q of det(A1) and a symbol a ∈ Σ, let P be the set of states p of A2

such that A contains a transfer transition q′′
a−→ p from some q′′ ∈ q. Whenever C

reaches a state (q,R) with a next on input, it has to check that the rest of the word is
not accepted by A2 starting from any p ∈ P and thus it spawns a new instance of C2
for each p ∈ P . Formally, C has all transitions (q,R)

a−→ (q′, R′) where (1) q a−→ q′

is the transition from q under a in det(A1), (2) for each r ∈ R, R′ contains some
s such that r a−→ s is a transition in C2, and, additionally, (3) for every p ∈ P , R′

contains some state s from the port complement of the newly added entry port set
{p}.

2. SinceA1 may have exit ports with transitions leavingA andA2 may have entry ports
with incoming edges from outside, C must reject words accepted entirely within ei-
ther A1 or A2. Therefore, if a slice Ai,j has entry ports in A2, we activate one in-
stance of Ci,j

2 at the start: Ci,j has entry ports of the form (q, {r}), where q is the
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Fig. 4: Gate complement using the equal (left) and disjoint method (right).

only entry port in det(A1)
i,j and r is an entry port in Ci,j

2 . At the same time, a state
(q,R) is an exit port of Ci,j only if q is not an exit port of det(A1)

i,j , ensuring the
input word was not accepted in Ai,j

1 .

5.3 Generalized Gate Complementation

Here we outline the core ideas of generalized gate complementation as an extension of
Section 4.2, with full details in [21]. Recall that in Section 4.2, the NFA A was assumed to
consist of two components connected by a single gate transition labeled with a gate sym-
bol not occurring in the front component. We now generalize this by allowing arbitrary
transitions leading from the front to the rear component and labeled with gate symbols
Γ ⊆ Σ such that A1 has no transitions under Γ . We call a gate transition labeled with c
a c-gate. We also suppose that the input NFA may be a port NFA. We present two vari-
ants of the algorithm, equal and disjoint (illustrated in Fig. 4), each adding further
constraints on the input NFA.

The simpler variant equal more closely resembles Section 4.2. If we write the words
read by A as ucv with u ∈ (Σ ∖ Γ )∗, c ∈ Γ , and v ∈ Σ∗, this variant assumes that
for every gate symbol c ∈ Γ , every two entry ports of A2 with an incoming c-gate can
be reached by reading exactly the same prefixes of the form uc. To recognize all prefixes
that cannot be read in A1 and followed by c, we collect the ports of A1 with outgoing
c-gates into a new exit port set. We do the same for the suffixes that are not accepted
in A2 from states with an incoming c-gate, and give A2 a new entry port set consisting
of those states. These new port sets (one for each gate symbol) are preserved through
complementation, and in Cpre and Csuf , we can connect their complement port sets in C1
and C2 to the states s and t using an appropriate gate symbol, respectively. This way, Cpre
accepts words where the first-appearing gate symbol c follows an invalid prefix and Csuf
accepts words where c is followed by an invalid suffix.

The disjoint variant relaxes the requirement that all A2’s entry ports with an in-
coming c-gate must be reached by the same words of the form uc. Instead, Csuf tracks
used gates, assuming the complemented port NFA is partitioned as follows: for any c ∈ Γ
and any two gates p c−→ r, p′ c−→ r′, if the languages accepted by p and p′ in any slice Ai,j

1

are not disjoint, then the languages accepted from r and r′ in the sliceAi,j
2 must be equal.

Unlike the equal method, Csuf now depends on both A1 and C2 to track the used gate.
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6 Implementation and Evaluation

We have implemented the described algorithms in a tool called AliGater4 written in
Python and using the C++ library Mata [9] and the Python library Automata [12] as
backends. AliGater also integrates the Reduce tool [26] for NFA reduction.

AliGater calls Mata for forward (fwd powerset) and reverse (rev powerset)
powerset complementation, and Hopcroft’s minimization [22,30] (denoted by the suffix
+ min). Sequential (seq) and gate (gate) complementations are implemented inAliGater
in their generalized versions, described in Sections 5.2 and 5.3. Selected implementation
details for both of these methods are discussed below. Other details (e.g., the use of re-
ductions) and an extended description of AliGater settings used in the evaluation are
available in [21].

6.1 Implementation of Sequential Complementation

The implementation of sequential complementation first divides the NFAA into compo-
nents A1, . . . ,An. Then An is complemented using forward or reverse powerset com-
plementation, and A1, . . . ,An−1 are determinized. The automaton det(An−1) is then
composed with the complement ofAn to form a new complemented bottom component;
the same process is repeated with every preceding component up to A1.

We implemented three approaches to divide A into components:

1. Deterministic components. Because the components A1, . . . ,An−1 are determinized
during sequential complementation, this partitioning approach tries to avoid deter-
minization and use transfer transitions to cover some nondeterminism in A. We
first decompose A into SCCs and order them by topological ordering. If the first
SCC is nondeterministic, we set A1 to be this SCC. If it is deterministic, we set A1

to be the first SCC and we repeatedly add previously unused SCCs in the order of
the topological ordering (with the corresponding transfer transitions) until a max-
imal deterministic A1 is obtained. Note that A1 may not be connected. The rest of
the automaton A is then recursively divided in the same manner.

2. Deterministic components + reverse-deterministic bottom component. Sequential comple-
mentation requires An to be complemented, and if it is reverse-deterministic, we
can complement it easily by reverse powerset complementation. We compute An as
a maximal bottom reverse-deterministic part of A, analogously to the computation
of A1 in the previous approach. The rest of A is divided in the same way as above.

3. Min-cut. A is divided into two components, where the partition with the fewest
transfer transitions from A1 to A2 is chosen. To obtain this partition, we construct
a directed graph whose vertices are the SCCs of A. The capacity of each edge is the
amount of transitions between the SCCs. The function minimum_cut() from the
NetworkX library [18] is then used to compute the minimum cut of this graph. The
source is a fresh vertex with edges to all SCCs with no predecessors, the sink is the
last SCC in a topological ordering.

4 https://gitlab.fi.muni.cz/xstepkov/aligater

https://gitlab.fi.muni.cz/xstepkov/aligater
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6.2 Implementation of Gate Complementation

AliGater implements the generalized gate complementation methods. The implemen-
tation tries to find all possible partitions of the input NFA A satisfying the input condi-
tions of any of the methods presented in Section 5.3 (cf. [21] for more details). The input
conditions are formulated as the language equivalence or disjointness of certain states
and evaluated by Mata; language equivalence is tested using the antichains algorithm [34],
language disjointness is checked via an emptiness check on the product automaton. The
concrete details can be found in [21], but the main idea is to prefer partitions tagged with
equal to those tagged with disjoint, since they usually deliver smaller results, and that
we try to pick a partition where the two components have a similar size.

6.3 Evaluation

All experiments were run on computers with the Intel®Core™ i7-8700 CPU. Each com-
plementation algorithm was executed on each input NFA with the timeout of 5 min and
the memory limit of 8 GiB. We focus on the size (number of states) of the results and also
how often the individual methods were successful (finished within the time and memory
limits). TO and MO means that the time or memory limit was reached, respectively.

For the evaluation, we used a total of 9,450 benchmarks from nfa-bench [32], which
gathers automata benchmarks from diverse applications. Additional details regarding the
families of benchmarks are in [21].

Results. We evaluated the performance of the proposed algorithms seq and gate
compared to the best result of fwd powerset + min and rev powerset + min (Fig. 5,
left). The methods seq and gate are, in general, computationally more intensive than
the powerset constructions. Running seq often produces large automata unless reduced
during the process. The automata structure, however, allows Reduce to effectively re-
duce them, unlike automata generated by powerset constructions. Applicability of gate
is limited by input conditions (it produced results for 2,577 benchmarks) and evalu-
ating these conditions can be costly. Despite frequent timeouts, these methods some-
times achieve significantly better results than powerset-based methods, suggesting fur-
ther room for improvement in NFA complementation beyond powerset-based techniques.

We have also evaluated the benefit of using all available techniques (e.g., in a portfo-
lio) against fwd powerset + min as the baseline method (Fig. 5, right). This use case is
targeted at applications where it pays off to obtain as small automaton for the comple-
ment as possible, such as when translating an extended regex into an NFA that will be
used millions of times during matching. The results show that the proposed techniques
were in many cases able to bring significant benefits, in particular solving a number of
cases when fwd powerset + min ran out of resources.

7 Conclusion
We have presented, to the best of our knowledge, the first systematic empirical study of
NFA complementation approaches. We suggested several novel algorithms for comple-
mentation of (subclasses of) NFAs. We carried out an extensive experimental evaluation
of the approaches and showed that alternative complementation algorithms can often
give a significantly better result than the classic approach (sometimes even in orders of
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Fig. 5: Comparison of sizes of complements (number of states) given by the best of fwd
powerset + min and rev powerset + min against the best of seq and gate (left), and
fwd powerset + min against the best result of all techniques (right).

magnitude). We have also suggested a heuristic that helps to select between the classic
approach and reverse powerset complementation.

There are still multiple opportunities for improvement, e.g., in the partitioning pro-
cess for the sequential complementation. Moreover, other structural classes of automata
amenable for efficient complementation may exist.
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