
Form Methods Syst Des manuscript No.
(will be inserted by the editor)

Compositional Entailment Checking for a Fragment of
Separation Logic

Constantin Enea · Ondřej Lengál ·
Mihaela Sighireanu · Tomáš Vojnar

Received: June 30, 2017/ Accepted: date

Abstract We present a decision procedure for checking entailment between separa-
tion logic formulas with inductive predicates specifying complex data structures cor-
responding to finite nesting of various kinds of singly linked lists: acyclic or cyclic,
nested lists, skip lists, etc. The decision procedure is compositional in the sense that
it reduces the problem of checking entailment between two arbitrary formulas to the
problem of checking entailment between a formula and an atom. Subsequently, in
case the atom is a predicate, we reduce the entailment to testing membership of a tree
derived from the formula in the language of a tree automaton derived from the pred-
icate. The procedure is later also extended to doubly linked lists. We implemented
this decision procedure and tested it successfully on verification conditions obtained
from programs using both singly and doubly linked nested lists as well as skip lists.

Keywords program analysis · separation logic · decision procedure · tree automata

1 Introduction

Automatic verification of programs manipulating dynamic linked data structures is
highly challenging since it requires one to reason about complex program configura-
tions having the form of graphs of an unbounded size. For that, a highly expressive
formalism is needed. Moreover, in order to scale to large programs, the use of such
a formalism within program analysis should be highly efficient. In this context, sep-
aration logic (SL) [14,19] has emerged as one of the most promising formalisms,
offering both high expressiveness and scalability. The latter is due to its support of
compositional reasoning based on the separating conjunction ∗ and the frame rule,
which states that if a Hoare triple {φ}P{ψ} holds and P does not alter free variables
in σ, then {φ ∗ σ}P{ψ ∗ σ} holds too. Therefore, when reasoning about P , one has
to manipulate only specifications for the heap region altered by P .

C. Enea and M. Sighireanu
IRIF, University Paris Diderot and CNRS, 8 place Aurélie Nemours, F-75013 Paris, France
E-mail: {sighirea,cenea}@liafa.univ-paris-diderot.fr

O. Lengál and T. Vojnar
FIT, Brno University of Technology, IT4I Centre of Excellence, Božetěchova 2, 61266 Brno, Czech Rep.
E-mail: {lengal,vojnar}@fit.vutbr.cz

2 Constantin Enea et al.

Usually, SL is combined together with higher-order inductive definitions that
specify the data structures manipulated by the program. If we consider general in-
ductive definitions, then SL is undecidable [6]. Various decidable fragments of SL
have been introduced in the literature [2,12,17,4] by restricting the syntax of the
inductive definitions and the Boolean structure of the formulas.

In this work, we focus on a fragment of SL with inductive definitions that allows
one to specify program configurations (heaps) containing finite nestings of various
kinds of singly linked lists (acyclic, cyclic, skip lists, etc.) that are common in prac-
tice. (In Section 8, we show that the procedure can also be generalised to doubly
linked lists.) This fragment contains formulas of the form ∃ #‰

X : Π ∧ Σ where
#‰

X
is a set of variables, Π is a conjunction of (dis)equalities, and Σ is a set of spatial
atoms connected by the separating conjunction. Spatial atoms can be points-to atoms,
which describe values of pointer fields of a given heap location, or inductively defined
predicates, which describe data structures of an unbounded size. We propose a novel
decision procedure for checking the validity of entailments of the form ϕ⇒ ψ where
ϕ may contain existential quantifiers and ψ is a quantifier-free formula. Such a deci-
sion procedure can be used in Hoare-style reasoning to check inductive invariants but
also in program analysis frameworks to decide termination of fixpoint computations.
As usual, checking entailments of the form

∨
i ϕi ⇒

∨
j ψj can be soundly reduced

to checking that for each i there exists j such that ϕi ⇒ ψj .
The key insight of our decision procedure is the idea to use the semantics of the

separating conjunction in order to reduce the problem of checking ϕ ⇒ ψ to the
problem of checking a set of simpler entailments where the right-hand side is an
inductively-defined predicate P (. . .). This reduction shows that the compositionality
principle holds not only for deciding the validity of Hoare triples but also for decid-
ing the validity of entailments between two formulas. The reduction requires one to
infer (dis)equalities implied by spatial atoms. This inference is done by deriving from
the initial SL formulas equi-satisfiable Boolean formulas and checking their unsatis-
fiability. Boolean unsatisfiability checking is co-NP complete, but efficient decision
procedures are implemented in the existing SAT solvers.

Further, to check entailments ϕ ⇒ P (. . .) resulting from the above reduction,
we define a decision procedure based on the membership problem for tree automata
(TAs). In particular, we reduce the above simple entailment to testing membership of
a tree derived from ϕ in the language of a TA A[P] derived from P (. . .). The tree
encoding of ϕ preserves some edges of the Gaifman graph of ϕ, called backbone
edges, and re-directs other to new nodes, related to the original destination by special
symbols. Roughly, such a symbol may be a variable labelling the original destination,
or it may show how to reach the original destination using backbone edges only.

Our decision procedure is sound and complete for the considered fragment (de-
fined formally in Section 2). Its time complexity is polynomial in the size of the
formula, modulo an oracle for deciding validity of Boolean formulas. We also imple-
mented the procedure and tested it successfully on verification conditions obtained
from programs using singly (and doubly) linked nested lists as well as skip lists. The
results show that our procedure does not only have a theoretically favorable com-
plexity (for the given context), but also behaves nicely in practice (our implementa-
tion in the tool SPEN won one gold and two silver medals in the first competition
of SL solvers SL-COMP’14 [20]). At the same time, the procedure offers the addi-

Compositional Entailment Checking for a Fragment of Separation Logic 3

tional benefit of compositionality, which can be exploited within larger verification
frameworks caching the simpler entailment queries.

Related Work. Several decision procedures for fragments of SL have been introduced
in the literature [2,6,7,10,12,13,16,17,5]. Some of these works [2,6,7,16] consider
a fragment of SL that uses only a single predicate describing singly linked lists, which
is a much more restricted setting than what is considered in this work. In particular,
Cook et al. [7] prove that the satisfiability/entailment problem can be solved in poly-
nomial time. Piskac et al. [17] show that the Boolean closure of this fragment can
be translated to a decidable fragment of first-order logic, and in this way they prove
that the satisfiability/entailment problem can be decided in NP/co-NP. Furthermore,
they consider the problem of combining SL formulas with constraints on data using
the Nelson-Oppen theory combination framework. Adding constraints on data to SL
formulas is considered also in Qiu et al [18].

A fragment of SL covering overlaid nested lists was considered by Enea et al [10].
Compared with it, we currently do not consider overlaid lists, but we have enlarged
the set of inductively-defined predicates to allow nesting of cyclic lists and doubly
linked lists (DLLs). We also provide a novel and more efficient TA-based procedure
for checking simple entailments.

Brotherston et al. [5] define a generic automated theorem prover relying on the
notion of cyclic proofs and instantiate it to prove entailments in a fragment of SL
with inductive definitions and disjunctions more general than what we consider here.
They do not, however, provide a fragment for which completeness is guaranteed.
Another incomplete procedure based on proof searching is [11]. It considers induc-
tive definitions specifying nested lists and trees storing integer data, but no circular
nested lists. The proof search applies lemmas satisfied by the inductive definitions.
These lemmas can be generated automatically due to some syntactic restrictions on
inductive definitions. Our fragment allows to define more general shapes for nested
lists. Iosif et al. [12] also introduce a decidable fragment of SL that can describe
more complex data structures than the fragment presented in this work, including,
e.g., trees with parent pointers or trees with linked leaves. The mentioned work re-
duces the entailment problem to MSO on graphs with a bounded tree width, resulting
in a multiple-exponential complexity.

The work [13] considers a more restricted fragment than [12] (incomparable with
ours). The work proposes a more practical, purely TA-based decision procedure,
which reduces the entailment problem to language inclusion on TAs, establishing
EXPTIME completeness of the considered fragment. Our decision procedure deals
with the Boolean structure of SL formulas using SAT solvers, thus reducing the en-
tailment problem to the problem of entailment between a formula and an atom. Such
simpler entailments are then checked using a polynomial decision procedure based on
the membership problem for TAs. The approach of [13] can deal with various forms
of trees and with entailment of structures with skeletons based on different selectors
(e.g. DLLs viewed from the beginning and linked by the next selector as the main
field, and DLLs viewed from the end linked by the prev selector as the main field).
On the other hand, the procedure in [13] currently cannot deal with structures of zero
length and with some forms of structure concatenation (such as concatenation of two
DLL segments), which we can handle.

4 Constantin Enea et al.

The recent work [4] has proposed a reduction of SL formula satisfiability check-
ing to Boolean satisfiability. As discussed above, our procedure also uses a reduction
to Boolean satisfiability to infer (dis)equalities in the SL formulas. The inductive def-
initions we consider are, however, less general, and we use a different reduction to
check satisfiability as a part of our decision procedure for entailment checking.

This work is an extended version of [8]. We consider a slightly smaller class of in-
ductive definitions to obtain a simpler presentation. This simplification, to the best of
our knowledge, does not, however, remove any inductive definition used to model the
heap of data structures with practical interest. We also give an improved construction
for the complete decision procedure, decreasing its time complexity from exponen-
tial to polynomial. Moreover, we also optimised our implementation and provide an
updated evaluation of experiments.

Contribution. Overall, the contribution of this work is a novel decision procedure
for a rich class of verification conditions with singly (extended also to doubly) linked
lists, nested lists, and skip lists. As discussed in more detail in the previous paragraph,
existing works that can efficiently deal with fragments of SL capable of expressing
verification conditions for programs handling complex dynamic data structures are
still rare. Indeed, we are not aware of any techniques that could decide the class of
verification conditions considered in this work at the same level of efficiency as our
procedure. In particular, compared with other approaches using TAs [12,13], our pro-
cedure is compositional as it uses TAs recognising models of predicates, not models
of entire formulas. Moreover, our TAs recognise in fact formulas that entail a given
predicate, reducing SL entailment to the (PTIME) membership problem for TAs, not
the more expensive (EXPTIME complete) inclusion problem as in other works.

2 Separation Logic Fragment

Our logic is a fragment of the symbolic heaps fragment [2] of Separation Logic [19].
The fragment specifies sets of configurations of programs manipulating the heap.
A program configuration is given by the state of its stack and of its heap. We consider
a memory model where the heap is abstracted by a collection of disjoint memory
regions, called records. We denote by Locs the set of locations at which heap records
are stored. Records are sets of fields, each field storing a reference to a record location.
The record types are fixed by type definitions that also define F, the set of field names.
Wlog, we assume that different record types declare pairwise disjoint sets of field
names. A program manipulates the heap by creating records, setting and accessing
their fields, and freeing them. For this, it uses a set of of program variables Vars
stored on the program stack. We assume that Vars contains the null constant.

2.1 Syntax

The syntax of the Separation Logic fragment we consider is given in Fig. 1. Record
locations that are not stored in program variables are addressed using a set of logical
variables LVars disjoint from Vars .

An SL formula is an existentially quantified conjunction of a pure formula Π and
a spatial formula Σ. Wlog, we assume that existentially quantified logical variables

Compositional Entailment Checking for a Fragment of Separation Logic 5

x, y ∈ Vars program variables f ∈ F fields

X,Y ∈ LVars logical variables P ∈ P predicates
#‰
F ∈ (Vars ∪ LVars)∗ vectors of variables E,F ::= x | X

ρ ::= (f,E) | ρ, ρ records

Π ::= E = F | E 6= F | Π ∧Π pure formulas

Σ ::= emp | E 7→ {ρ} | P (E,
#‰
F) | Σ ∗Σ spatial formulas

ϕ ::= ∃ #‰
X : Π ∧Σ formulas

Fig. 1 The syntax of the considered separation logic fragment

have unique names. The set of program variables used in a formula ϕ is denoted by
pv(ϕ). By ϕ(

#‰

E) (resp. ρ(
#‰

E)), we denote a formula (resp. a set of field-variable pairs)
whose set of free variables is

#‰

E , and we use free(ϕ(
#‰

E)) and free(ρ(
#‰

E)) to denote
#‰

E .
Pure formulas characterise the stack of the program using (dis)equalities between

location variables. Given a formula ϕ, pure(ϕ) denotes its pure part Π . We allow
set operations to be applied on vectors, i.e., vectors can be treated as sets of their
elements. Moreover, E 6= #‰

F is a shorthand for
∧
Fi∈

#‰
F E 6= Fi.

The atomic spatial formula emp denotes an empty heap. The points-to atomE 7→
{(fi, Fi)}i∈I denotes a heap containing a record at the location labelled by E whose
field fi points to Fi, for all i. Wlog, we assume that each field fi appears at most once
in the set of pairs {(fi, Fi)}i∈I . The separating conjunction ∗ specifies the union of
two disjoint heaps. The predicate atom P (E,

#‰

F) specifies a heap fragment described
by the predicate P and delimited by its arguments, i.e., all locations it represents are
reachable from E and allocated on the heap, except the locations in

#‰

F .
The fragment is parameterised by a set P of inductively defined predicates. An

inductive definition of P ∈ P is a finite set of rules of the form P (X,
#‰

Y) ::= ∃ #‰

Z :
Π∧Σ. In this work, we consider only inductive definitions for possibly empty nested
list segments, defined formally in Section 2.3.

2.2 Semantics

Formulas of our SL fragment are interpreted over pairs (S,H) where S models the
program stack and H the program heap. The stack S : Vars ∪ LVars → Locs
maps variables to locations. The heap H : Locs × F ⇀ Locs is a partial function
that defines values of fields for some of the locations in Locs . The domain of H
is denoted by dom(H), and the set of locations in the domain of H is denoted by
ldom(H). We say that a location ` is allocated in (S,H) or that (S,H) allocates ` iff
` belongs to ldom(H), and we say that a variable E is allocated iff the location S(E)
is allocated. A location (resp. variable) which is not allocated is called dangling.
A sub-model of (S,H) is a pair (S′, H ′) such that S ⊆ S′, H ⊆ H ′, and for any
` ∈ ldom(H ′) and f ∈ F, it holds that H ′(`, f) = H(`, f), i.e., a location in the
domain of a sub-model is included with all its fields defined in the model.

The set of models satisfying a formula ϕ is given by the relation (S,H) |= ϕ de-
fined in Fig. 2. The semantic rules are standard except the predicate atom where the
model satisfying a predicate P (E,

#‰

F) cannot allocate any variable in
#‰

F as these vari-

6 Constantin Enea et al.

(S,H) |= E = F iff S(E) = S(F)

(S,H) |= E 6= F iff S(E) 6= S(F)

(S,H) |= ϕ ∧ ψ iff (S,H) |= ϕ and (S,H) |= ψ

(S,H) |= emp iff dom(H) = ∅
(S,H) |= E 7→ {ρ} iff dom(H) = {(S(E), fi) | (fi, Ei) ∈ {ρ}} and

for every pair (fi, Ei) ∈ {ρ}, it holds that
H(S(E), fi) = S(Ei)

(S,H) |= Σ1 ∗Σ2 iff there exist H1 and H2 s.t.
ldom(H) = ldom(H1)] ldom(H2),
(S,H1) |= Σ1, and (S,H2) |= Σ2

(S,H) |= P (E,
#‰
F) iff there exists a rule (P (X,

#‰
Y) ::= ∃ #‰

Z : Π ∧Σ) ∈ P s.t.
(S,H) |= ∃ #‰

Z : (Π ∧Σ)[E/X,
#‰
F/

#‰
Y] and

ldom(H) ∩ {S(F) | F ∈ #‰
F } = ∅

(S,H) |= ∃X : ϕ iff ∃` ∈ Locs s.t. (S[X ← `], H) |= ϕ

Fig. 2 The |= relation (] denotes the disjoint union of sets, P is the set of inductively defined predicates,
[X/Y] denotes a substitution of Y by X , and S[X ← `] denotes the function S′ such that S′(X) = `
and S′(Y) = S(Y) for any Y 6= X)

ables are considered not to be in its domain (which differs, e.g., from the semantics
in [2]). A model satisfying this property is called well-formed wrt the atom P (E,

#‰

F).
The set of models of a formula ϕ is denoted by [[ϕ]]. Given two formulas ϕ1 and

ϕ2, we say that ϕ1 entails ϕ2, denoted by ϕ1 ⇒ ϕ2, iff [[ϕ1]] ⊆ [[ϕ2]]. By an abuse
of notation, ϕ ⇒ E = F (resp. ϕ ⇒ E 6= F) denotes the fact that E and F are
interpreted to the same location (resp. different locations) in all models of ϕ.

2.3 Inductive Definitions for Nested Lists

We consider a class of restricted inductive definitions that are expressive enough to
deal with intricate singly linked lists (including simple lists, lists of circular lists,
skip lists of fixed depth, etc.) while also enabling efficient entailment checking (we
also extend our fragment to doubly linked lists in Section 8). We define this class by
requiring the following restrictions on the general inductive definitions. Examples of
inductive predicates conforming to our restrictions are in Fig. 3.

Constraint 1 (Linearity): Each predicate P ∈ P has at least two formal parameters
and exactly two rules: (i) an empty base rule of the form P (E,F,

#‰

B) ::= E = F ∧
emp specifying an empty list segment, and (ii) an inductive rule with the following
syntax, where Σ′ does not contain occurrences of the atom P :

P (E,F,
#‰

B) ::= ∃Xtl,
#‰

Z : E 6= {F} ∪ #‰

B ∧ E 7→ {ρ} ∗ Σ′︸ ︷︷ ︸
mat(P)

∗ P (Xtl, F,
#‰

B) (1)

The parameters are divided into three categories: the source (or root) parame-
ter E, the target parameter F , and the vector of border parameters

#‰

B. The formula
E 7→ {ρ} ∗ Σ′ is called the matrix of P and denoted by mat(P).

We use the constraint E 6= {F} ∪ #‰

B to syntactically denote the semantic con-
straint that locations for target and border parameters are not allocated in a non-empty
heap specified by the predicate (see Fig. 2). Intuitively, the inductive rule of P defines
a heap composed of a sequence of sub-heaps specified by the matrix of P between
the locations given by the actual source and target parameters.

Compositional Entailment Checking for a Fragment of Separation Logic 7

singly linked lists:

ls(E,F) ::= ∃Xtl : E 6= F ∧ E 7→ {(f,Xtl)} ∗ ls(Xtl, F)

lists of acyclic lists:

nll(E,F,B) ::= ∃Xtl, Z : E 6= {F,B} ∧ E 7→ {(s,Xtl), (h, Z)} ∗ ls(Z,B) ∗ nll(Xtl, F,B)

lists of cyclic lists:

nlcl(E,F) ::= ∃Xtl, Z : E 6= F ∧ E 7→ {(s,Xtl), (h, Z)} ∗ 	1+ ls[Z] ∗ nlcl(Xtl, F)

skip lists with three levels:

skl3(E,F) ::= ∃Xtl, Z1, Z2 : E 6= F ∧ E 7→ {(f3, Xtl), (f2, Z2), (f1, Z1)} ∗
skl1(Z1, Z2) ∗ skl2(Z2, Xtl) ∗ skl3(Xtl, F)

skl2(E,F) ::= ∃Xtl, Z1 : E 6= F ∧ E 7→ {(f3, null), (f2, Xtl), (f1, Z1)} ∗
skl1(Z1, Xtl) ∗ skl2(Xtl, F)

skl1(E,F) ::= ∃Xtl : E 6= F ∧ E 7→ {(f3, null), (f2, null), (f1, Xtl)} ∗ skl1(Xtl, F)

Fig. 3 Examples of inductive definitions used throughout this paper (we omit all base rules
P (E,F,

#‰
B) ::= E = F ∧ emp for all predicates P)

Constraint 2 (Root atom): For each predicate P ∈ P, the formula Σ′ does not con-
tain points-to atoms. The atom E 7→ {ρ} is called the root atom, and it is denoted
by root(P). Furthermore, free variables of ρ contain all existentially quantified vari-
ables of the inductive rule, and they can only also contain border parameters, i.e.,
{Xtl} ∪

#‰

Z ⊆ free(ρ) ⊆ {Xtl} ∪
#‰

Z ∪ #‰

B.

Intuitively, this constraint requires that the occurrence of mat(P) in the next un-
folding of P , which has Xtl as the root, is pointed by at least one field from E. This
condition is satisfied by all inductive definitions in Fig. 3, but it forbids the following
inductive definition defining lists segments of even length (we often omit the base
rule in what follows):

evenls(E,F) ::= ∃X1, Xtl : E 6= F ∧E 7→ {(f,X1)} ∗
X1 7→ {(f,Xtl)} ∗ evenls(Xtl, F).

Also, this restriction forbids inductive definitions that are not compositional (see
Property 4, pg. 11), such as list segments with fast-forward pointers to the end node:

lstf(E,F) ::= ∃Xtl : E 6= F ∧E 7→ {(f,Xtl), (g, F)} ∗ lstf(Xtl, F).

Note that this is not at a loss of expressiveness because such list segments may be ob-
tained using the inductive definition below that defines list segments with all elements
pointing to some border location B:

lsb(E,F,B) ::= ∃Xtl : E 6= {F,B}∧E 7→ {(f,Xtl), (g,B)} ∗ lsb(Xtl, F,B).

Then, lsb(E,F, F) specifies list segments with pointers to the end node of the list.
Moreover, the constraint forbids inductive definitions where the matrix uses an

existentially quantified variable Z not pointed by the root atom, such as, e.g.:

nfls(E,F,B) ::= ∃Xtl, Y, Z : E 6= {F,B} ∧ E 7→ {(f,Xtl), (g, Y), (h,B)}
∗ ls(Y,Z) ∗ nfls(Xtl, F,B).

8 Constantin Enea et al.

Constraint 3 (Nested list segments): For each P ∈ P, the matrix of P contains the
root atom ∗-connected with formulas of the following form (for Q 6= P):

Σ′ ::= Q(Z,U,
#‰

Y) | 	1+ Q[Z,
#‰

Y] | Σ′ ∗Σ′ | emp (2)

for Z ∈ #‰

Z , U ∈ #‰

Z ∪ #‰

B ∪ {E,Xtl},
#‰

Y ⊆ #‰

B ∪ {E,Xtl}

	1+Q[Z,
#‰

Y] ≡ ∃Z ′ : mat(Q(Z,Z ′,
#‰

Y)) ∗ Q(Z ′, Z,
#‰

Y) (3)

Notice that F does not appear in the matrix of P . The macro 	1+Q[Z,
#‰

Y] is used
to represent a non-empty cyclic (nested) list segment on Z whose shape is described
by the predicate Q. We call predicate atoms Q(Z,U,

#‰

Y) and macros 	1+Q[Z,
#‰

Y]
extended predicate atoms.

Intuitively, this constraint requires nested lists to have their sources in
#‰

Z , i.e., in
a variable referenced by a field from the location ofE (due to the previous constraint).
Except for Xtl, the target of these nested list segments is either a location pointed
by the fields of E (e.g., skl3 in Fig. 3), a border location in

#‰

B (e.g., nll), or E. The
	1+ Q[Z,

#‰

Y] macro is needed to define nested (non-empty) circular lists; defining
them as Q(Z,Z,

#‰

Y) would make them empty (the only rule allowed for instances of
predicates with matching source and target parameter is the empty base rule).

The next constraint on the matrix of P is defined using its Gaifman graph. Let
Σ be the matrix of some inductive definition P ∈ P. The Gaifman graph of Σ,
denoted Gf [Σ], is a labelled graph where:

– The set of vertices is given by the set of free and existentially quantified variables
in Σ, i.e., {E,Xtl} ∪

#‰

B ∪ #‰

Z .
– Edges represent spatial atoms as follows: let E 7→ {ρ} be the root atom of Σ,

then for every (f,X) in {ρ}, Gf [Σ] contains an edge from E to X labelled by f ;
for every Q(Z,U,

#‰

Y), Gf [Σ] contains an edge from Z to U labelled by Q; and
for every macro 	1+ Q[Z,

#‰

Y], Gf [Σ] contains a self-loop on Z labelled by Q.

Constraint 4 (Matrix connectedness): Let Σ be the matrix of P ∈ P. Then all
infinite paths of Gf [Σ] either form a cycle going through E or start in E and end in
a self-loop built from some macro 	1+ Q[Z,

#‰

Y], and all maximal finite paths start
in E and end in a node from

#‰

B ∪ {Xtl}. Moreover, we require that every vertex of
Gf [Σ] has at most one outgoing edge labelled by a predicate.

Intuitively, the constraint requires that every existential variable in an inductive
rule appears as the source parameter of exactly one extended predicate atom. This
ensures that every existential variable Z is either allocated in the matrix (when the
list segment starting from Z is non-empty or it ends in E) or it aliases the target or
a border parameter. The inductive definitions given in Fig. 3 satisfy the above con-
straint. The following inductive definition is, however, forbidden because it contains
a dangling existential variable Z:

npls(E,F,B) ::= ∃Xtl, Y, Z : E 6= {F,B} ∧ E 7→ {(f,Xtl), (g, Y), (h, Z)}
∗ ls(Y,B) ∗ npls(Xtl, F,B).

The constraint also forbids the following inductive definition:

nls2(E,F,B) ::= ∃Xtl, Y, Z : E 6= {F,B} ∧ E 7→ {(f,Xtl), (f1, Y), (f2, Z)}
∗ ls(Y, Z) ∗ ls(Z, Y) ∗ nls2(Xtl, F,B).

Compositional Entailment Checking for a Fragment of Separation Logic 9

This is because the Gaifman graph of its matrix contains a loop which is not a self-
loop—it traverses the inner vertices represented by variables Y and Z. Such loops
are forbidden because they may produce dangling variables when the list segments
composing the loop are all empty. Dangling variables are problematic because they
may be aliased with any variable occurring outside the occurrence of a predicate,
which is difficult to encode in our procedure.

The following inductive definition satisfies the matrix constraint because the list
segment from Z is a self-loop:
nlls(E,F,B) ::= ∃Xtl, Y, Z : E 6= {F,B} ∧ E 7→ {(f,Xtl), (f1, Y), (f2, Z)}

∗ ls(Y, Z) ∗ 	1+ ls[Z] ∗ nlls(Xtl, F,B).

Finally, the following restrictions limit the use of predicate atoms and fields in in-
ductive definitions of P. For this, we define the relation ≺P on P by P1 ≺P P2

iff P2 appears in the matrix of P1. For example, if P = {skl1, skl2, skl3}, then
skl3 ≺P skl2 ≺P skl1 ∧ skl3 ≺∗P skl1. Here, ≺∗P is the reflexive and transitive
closure of ≺P.

Constraint 5 (No mutual recursion): Given a set of inductive definitions P, ≺∗P is
a partial order.

Let F7→(P) denote the set of fields occurring in root(P). For example, in the
inductive definitions in Fig. 3, it holds that F7→(nll) = {s, h} and F7→(skl3) =
F7→(skl1) = {f3, f2, f1}. Also, let F∗7→(P) denote the union of F7→(P ′) for all
P ≺∗P P ′. For example, F∗7→(nll) = {s, h, f}.
Constraint 6 (No shared fields): For any two predicates P1 and P2 that are incom-
parable wrt ≺∗P, it holds that F 7→(P1) ∩ F7→(P2) = ∅.
Therefore, we forbid predicates named differently but having exactly the same set
of models. Moreover, we require the existence of a total ordering on fields, denoted
≺F, which complies with the inductive definition of predicates in P. Intuitively, ≺F
shall reflect the order in which the unfolding of the inductive definition of P is done.
Therefore, fields used in the root atomE 7→ {ρ} of the matrix of P are ordered before
fields of any other predicate called by P . Fields appearing in ρ and going “one-step
forward” (i.e. occurring in a pair (f,Xtl)) are ordered before fields leading to “inner”
locations (i.e. occurring in a pair (f, Z) with Z ∈ #‰

Z), which are ordered before fields
going to the border parameters (i.e. occurring in a pair (f,B) with B ∈ #‰

B). We note
that null is considered a constant, not a border variable.

Formally, for a predicate P defined by an inductive rule as in Equation (1) (pg. 6),
we partition F7→(P) in four sub-sets: (a) F7→Xtl

(P) is the set of fields f occurring
in a pair (f,Xtl) of ρ, (b) F7→Z(P) is the set of fields f occurring in a pair (f, Z)
with Z ∈ #‰

Z , (c) F7→B(P) is the set of fields f occurring in a pair (f,X) with X ∈
#‰

B \ {null}, and (d) F 7→null(P) is the set of fields f occurring in a pair (f, null).

Constraint 7 (Total ordered fields): There exists a total order ≺F on F such that for
all P , P1, and P2 in P:
∀f1 ∈ F7→Xtl

(P), ∀f2 ∈ F7→Z(P), ∀f3 ∈ F7→B(P) : f1 ≺F f2 ≺F f3 and (4)

(f1 ∈ F7→(P1) ∧ f2 ∈ F7→(P2) ∧ f1 6= f2 ∧ P1 ≺P P2)⇒ f1 ≺F f2. (5)

10 Constantin Enea et al.

For instance, if P = {nll, ls} or P = {nlcl, ls}, then s ≺F h ≺F f satisfies
the constrains above. Also, if P = {skl2, skl1}, then both f2 ≺F f1 ≺F f3 and
f3 ≺F f2 ≺F f1 are correct total orderings of fields. Only the last one, however, com-
plies with the constraint above for P = {skl3, skl2, skl1}. So, fields in F7→null(P)
shared with another predicate Q are ordered to agree with the ordering of fields in Q;
in absence of any ordering constraint, they may be ordered by≺F in any possible way.

2.4 Properties of Models for Predicate Atoms

The constraints on the inductive definitions, together with the basic syntax and se-
mantics of the introduced SL fragment, including the restriction to well-formed mod-
els, induce some properties of the considered models of predicate atoms that are im-
portant for the soundness of our procedure. These properties are given in this section.

Some of the properties on well-formed models (S,H) of a predicate atom
P (E,F,

#‰

B) are expressed using their representation as labelled directed graphs. The
heap graph of a model (S,H) has as vertices the locations in ldom(H) ∪ img(H);
these locations are labelled by sets of program and logic variables using S−1. The
heap graph edges are labelled by fields such that (`, f, `′) is an edge iff H(`, f) = `′.

Property 1 (Reachability from root): Any location ` in (S,H) is reachable from the
location S(E).

Proof Constraints 1 and 2 ensure there is a path from the source to the target of
a predicate edge and Constraint 4 ensures connectedness of the predicate’s matrix. ut
Property 2 (No inner dangling): Any maximal path of (S,H) starting in S(E) is
either cyclic or ends in a location labelled by a variable in {F} ∪ #‰

B. Therefore, only
locations labelled by {F} ∪ #‰

B are dangling.

Proof Follows from Property 1 and Constraint 4. ut
The next property is a consequence of the semantics of formulas—in particular,

the restriction to well-formed models of predicate atoms.

Property 3 (Precise assertions): For any model (S,H) of a formula ϕ including
some predicate atom P (E,F,

#‰

B), there exists at most one well-formed sub-model
(S′, H ′) of (S,H) such that (S′, H ′) |= P (E,F,

#‰

B).

Proof By contradiction. Suppose (S′, H ′) is the smallest well-formed sub-model
(there is at most one due to determinism of heaps) of (S,H) such that (S′, H ′) |=
P (E,F,

#‰

B) and that there exists another well-formed sub-model (S′′, H ′′) such that
(S′′, H ′′) |= P (E,F,

#‰

B) and (S′, H ′) is a proper sub-model of (S′′, H ′′). It follows
that (S′′, H ′′) contains an allocated location ` that is not in (S′, H ′). From Prop-
erty 1, it follows that ` is reachable from S(E), and from the fact that heaps are
deterministic, we know that there is an allocated location `′ in (S′′, H ′′) such that it
is a dangling node of (S′, H ′), and ` is reachable from `′. From Property 2, it follows
that `′ ∈ S−1({F} ∪ #‰

B). Therefore, (S′′, H ′′) allocates a node from {F} ∪ #‰

B, so it
is not a well-formed model of P (E,F,

#‰

B), which is a contradiction. ut
Constraints 2–4 imply that inductive definitions are compositional:

Compositional Entailment Checking for a Fragment of Separation Logic 11

Property 4 (Compositional List Segments): For any P ∈ P and any model (S,H)

such that (S,H) |= P (E,F,
#‰

B) ∗ P (F,G, #‰

B) and G is not allocated in (S,H), it
holds that (S,H) |= P (E,G,

#‰

B).

Proof By induction on the length of the left-hand side occurrence of P . For
the base rule E = F , a model (S1, H1) |= E = F ∧ emp ∗P (F,G, #‰

B) is
also a model of P (E,G,

#‰

B). For the inductive rule, assume that if (S2, H2) |=
P (Xtl, F,

#‰

B) ∗P (F,G, #‰

B) and (S2, H2) does not allocate G, then it holds that
(S2, H2) |= P (Xtl, G,

#‰

B). Let us consider P (E,F,
#‰

B) ∗P (F,G, #‰

B) such that
if we once unfold P (E,F,

#‰

B), we obtain ψ ::= ∃Xtl,
#‰

Z .E 6= {F} ∪ #‰

B ∧
mat(P) ∗P (Xtl, F,

#‰

B) ∗P (F,G, #‰

B). Suppose (S,H) is a model of ψ that does not
allocate G. Due to the induction hypothesis, we infer that (S,H) |= ∃Xtl,

#‰

Z .E 6=
{G} ∪ #‰

B ∧ mat(P) ∗P (Xtl, G,
#‰

B). From the inductive rule for P , it follows that
(S,H) |= P (E,G,

#‰

B). ut

The key for the encoding of SL formulas entailing predicate atoms P (E,F,
#‰

B)
as trees (see Section 6) is given by the following properties. We call a path simple if
it does not pass through the same node repeatedly.

Property 5 (Joining paths): Let (S,H) be a well-formed model of P (E,F,
#‰

B) and `
be an allocated location in (S,H) with multiple incoming edges such that ` 6= S(E).

Then there is a unique edge `′
f→ ` with f minimal wrt ≺F. Moreover, the other

incoming edges are last edges of simple paths starting from `′ or `.

Proof Constraints 1 and 3 imply that there are two cases: (a) ` corresponds to the first
node of a predicate atom R(. . .) (resp. a macro 	1+R(. . .)) s.t. P ≺∗P R, or (b) ` is
an internal (i.e. not the first) node of R(. . .) (resp. 	1+R(. . .)) or P (E,F,

#‰

B).
Case (a): From Constraint 1, ` corresponds to some variable Z ∈ #‰

Z from the
non-empty rule of a predicate T s.t. P ≺∗P T ≺P R. Then, from Constraint 2,
the root atom root(T) contains a pair (f, Z) s.t. f is, by Constraint 7, the least label
of edges entering ` (wrt ≺F). Moreover, also by Constraint 7, there are no more f -
edges entering `. Hence, the source of root(T) plays the role of `′.

Case (b): From Constraints 2 and 7, there is a pair (f,Xtl) in root(R) or root(P),
respectively, such that f is smaller (wrt ≺F) than any other edge entering ` (which
may be, e.g., edges in nested list segments from some

#‰

Z variables). Hence, `′ is the
predecessor of ` according to f .

The last sentence of the property follows from Constraints 3 and 4, in particular
from requirements on the use of inductive predicates and the macro 	1+Q[Z,

#‰

Y],
respectively, in the matrix of an inductive rule. ut

A corollary of the previous property is that for any allocated location ` with sev-
eral incoming edges, there exist paths σ, σ′, a location `′ that is not an internal loca-

tion of σ′, and an edge label f such that the following holds: S(E)
σ
 `′

f→ ` and

either (i) S(E)
σ
 `′

σ′

 `, or (ii) S(E)
σ
 `′

f→ `
σ′

 `. Then, given σσ′ (resp. σfσ′)
and f , we can unambiguously determine σf . In particular, for (i), we can obtain σf
by traversing (S,H) from ` backwards along σσ′ up to the first node (in fact, `′) that
defines an f edge to a non-null location. Similarly for (ii). This property is important
for the selection of aliasing relations in encoding graphs as trees in Section 6.

12 Constantin Enea et al.

Property 6 (Minimal path): For any allocated location ` in (S,H), there is a path

σmin in its heap graph from S(E) to ` such that for any edge `i
fi→ `i+1 in σmin,

the label fi is the least (wrt ≺F) label among labels of edges entering `i+1.

Proof Follows from Properties 1 and 5. ut

Due to this property, removing edges entering a node that are not labelled by the
minimal field keeps the model connected, so we can represent it using a tree.

3 Compositional Entailment Checking

We now provide our procedure for reducing the problem of checking validity of
entailment between two formulas to the problem of checking validity of entail-
ment between a formula and an atom. In particular, we consider the problem of
deciding validity of entailments ϕ1 ⇒ ϕ2 where ϕ2 is free of quantifiers and
free(ϕ2) ⊆ free(ϕ1), which usually suffices for checking verification conditions in
practice. We assume pv(ϕ2) ⊆ pv(ϕ1); otherwise, the entailment is trivially invalid.

Algorithm 1: Compositional entailment
checking of ϕ1 ⇒ ϕ2 for ≺ being any total
order compatible with ≺∗P

1 ϕn1 ← norm(ϕ1); // normalisation
2 ϕn2 ← norm(ϕ2);
3 if ϕn1 = false then return true;
4 if ϕn2 = false then return false;
// pure parts

5 if pure(ϕn1) 6⇒ pure(ϕn2) then return false;
// points-to atoms

6 foreach points-to atom a2 in ϕn2 do
7 ϕn1 [a2]← select(ϕn1 , a2);
8 if ϕn1 [a2] 6⇒ a2 then return false;
9 mark(ϕn1 [a2]);
// predicate atoms

10 for P2 ← max≺(P) downto min≺(P) do
11 foreach a2 = P2(E,F,

#‰

B) in ϕn2 s.t.
pure(ϕn1) 6⇒ E = F do

12 ϕn1 [a2]← select(ϕn1 , a2);
13 if ϕn1 [a2] 6⇒sh a2 then return false;
14 mark(ϕn1 [a2]);
15 return isMarked(ϕn1);

The main steps of the reduc-
tion are given in Algorithm 1. The
reduction starts by a normalisa-
tion step (described in Section 4),
which adds to each of the two for-
mulas all (dis-)equalities implied
by their spatial sub-formulas and
removes all atoms P (E,F,

#‰

B)
representing empty list segments,
i.e. those where E = F occurs in
the pure part. The normalisation of
a formula returns false iff the for-
mula is unsatisfiable.

In the second step, the proce-
dure tests entailment between the
pure parts of the normalised for-
mulas. This can be done using any
decision procedure for quantifier-
free formulas in the first-order the-
ory with equality.

Next, for the spatial parts,
the procedure uses the function
select, described in Sect. 5,
to build a mapping from spatial
atoms of ϕn2 to sub-formulas of ϕn1 . The sub-formula of ϕn1 to which an atom a2
of ϕn2 is mapped in this way is denoted as ϕn1 [a2]. The mapping is built by first enu-
merating the points-to atoms of ϕn2 and only then by enumerating its predicate atoms,
in a decreasing order wrt ≺∗P. The decreasing order is important for the completeness
of the procedure (see Section 9). Intuitively, the formula ϕn1 [a2] associated to an
atom a2 of ϕn2 describes the region of a heap modelled by ϕn1 that should satisfy a2.

Compositional Entailment Checking for a Fragment of Separation Logic 13

The construction of ϕn1 [a2] may fail, implying that the entailment ϕ1 ⇒ ϕ2 is not
valid. In such a case, select returns emp, causing the algorithm to return false.

For predicate atoms a2 = P2(E,F,
#‰

B), handled in the second loop of the al-
gorithm, select is called only if there exists a model of ϕn1 where the heap region
that should satisfy a2 is non-empty, i.e. E = F does not occur in ϕn1 . In this case,
select also checks that for any model of ϕn1 , the sub-heap corresponding to the
atoms in ϕn1 [a2] is well-formed wrt a2. This check is needed since all heaps described
by a2 are well-formed (see Section 2.2).

Note that in the well-formedness check above, one cannot speak about ϕn1 [a2]
alone. Indeed, without the rest of ϕn1 , the formula ϕn1 [a2] may have models that are
not well-formed wrt a2 even if the sub-heap corresponding to ϕn1 [a2] is well-formed
for any model of ϕn1 . For example, let ϕn1 = ls(x, y) ∗ ls(y, z) ∗ z 7→ {(f, t)},
a2 = ls(x, z), and ϕn1 [a2] = ls(x, y) ∗ ls(y, z). If we take models of ϕn1 only, the
sub-heaps corresponding toϕn1 [a2] are all well-formed wrt a2, i.e. they do not allocate
the location bound to z. The formula ϕn1 [a2] alone has, however, lasso-shaped models
where the location bound to z is allocated on the path between x and y.

Once ϕn1 [a2] is obtained, one needs to check that all sub-heaps modelled by
ϕn1 [a2] are also models of a2. For points-to atoms a2, this boils down to a syntac-
tic identity (modulo some renaming given by the equalities in the pure part of ϕn1).
For predicate atoms a2, a special entailment operator⇒sh is used. We cannot use the
usual entailment⇒ since ϕn1 [a2] may have models that are not sub-heaps of models
of ϕn1 (as we have seen in the example above).

Definition 1 ϕn1 [a2]⇒sh a2 iff all models of ϕn1 [a2] that are well-formed wrt a2 are
also models of a2.

Given a formula ϕ and an atom P (E,F,
#‰

B), the entailment ϕ ⇒sh P (E,F,
#‰

B)
is checked as follows: (1) G[ϕ] is transformed into a tree T [ϕ] by splitting nodes that
have multiple incoming edges, (2) the inductive definition of P (E,F,

#‰

B) is used
to construct a TA A[P] such that T [ϕ] belongs to the language of A[P] only if
ϕ ⇒sh P (E,F,

#‰

B). The transformation of graphs G[ϕ] into trees T [ϕ] is presented
in Section 6 while the construction of the TA A[P] is introduced in Section 7.

If there exists an atom a2 of ϕn2 that is not entailed by the associated sub-formula,
then ϕ1 ⇒ ϕ2 is not valid. By the semantics of the separating conjunction, the sub-
formulas of ϕn1 associated with two different atoms of ϕn2 must not share spatial
atoms. In order to avoid such a scenario, the spatial atoms obtained from each appli-
cation of select are marked by the algorithm and cannot be reused in the future. If
all entailments between formulas and atoms are valid, then ϕ1 ⇒ ϕ2 holds provided
that all spatial atoms of ϕn1 are marked (which is tested by isMarked).

Graph representations. Some of the sub-procedures mentioned above work on
a graph representation of the input formulas, called SL graphs (which are different
from the Gaifman graphs of matrices of inductive definitions).

Definition 2 (SL graph) Given a formula ϕ, its SL graph, denoted by G[ϕ], is a di-
rected labelled graph where:

– Each node n represents an equivalence class over the set of variables, i.e., it rep-
resents a maximal set of variables equal wrt the pure part of ϕ, and it is labelled

14 Constantin Enea et al.

by the set of variables Var(n) it represents. For every variable E, we then use
Node(E) to denote the node n such that E ∈ Var(n).

– The following edges can appear: (1) Undirected disequality edges from Node(E)
to Node(F) encoding disequalities E 6= F . (2) Directed points-to edges
from Node(E) to Node(Ei) labelled by fi that encode spatial atoms E 7→
{(f1, E1), . . . , (fn, En)}, for 1 ≤ i ≤ n. (3) Directed predicate edges from
Node(E) to Node(F) labelled by P (

#‰

B) encoding spatial atoms P (E,F,
#‰

B).

For simplicity, we confuse a formula ϕ with its graph representation G[ϕ].

Running example. Below, we use as a running example the entailment ψ1 ⇒ ψ2

between the following formulas:

ψ1 ≡ ∃Y1, Y2, Y3, Y4, Z1, Z2, Z3 : x 6= z ∧ Z2 6= z ∧ x 7→ {(s, Z2), (h, Z1)} ∗
Z2 7→ {(s, y), (h, Z3)} ∗ ls(Z1, z) ∗ ls(Z3, z) ∗ ls(y, Y1) ∗ (6)
skl2(y, Y3) ∗ ls(Y1, Y2) ∗Y3 7→ {(f2, t), (f1, Y4)} ∗ t 7→ {(s, Y2)} ∗
Y4 7→ {(f2, null), (f1, t)}

ψ2 ≡ y 6= t ∧ nll(x, y, z) ∗ skl2(y, t) ∗ t 7→ {(s, y)}

x

Z1

Z2

Z3

z

y Y3
t

Y4

Y1 Y2

s s

h h

ls ls

skl2 f2

f1
f1

ls

ls

s

a) Formula ψ1

x y tnll(z) skl2

s

b) Formula ψ2 = ψn2

x

z

y
Y1, Y2

Y3
t

Y4

s s

h h

ls ls

skl2 f2

f1
f1

s

select(ψn1 ,
nll(x, y, z))

select(ψn1 ,
skl2(y, t))

c) Normalised formula ψn1
Fig. 4 A running example of an entailment
test ψ1 =⇒ ψ2.

The graph representations of these formu-
las are shown in Fig. 4(a) and (b)1.

The formula ψ1 specifies a heap in-
cluding a cell whose location is refer-
enced by the (program) variable x and
whose fields s and h point to locations Z2

and Z1 (atom x 7→ {(s, Z2), (h, Z1)}).
The list cell at location Z2 contains
a field s referencing the location stored
in the program variable y, and a field h
referencing the location of Z3. The nodes
Z1 and Z3 are initial nodes of two dis-
joint singly linked list segments end-
ing in the location z (atoms ls(Z1, z)
and ls(Z3, z)). The node y is the begin-
ning of a singly linked list segment end-
ing in the location of Y1 (atom ls(y, Y1))
and a skip list segment ending in the loca-
tion of Y3 (atom skl2(y, Y3)). The heap
between Y3 and t is a fragment of a two-
level skip list with a single element on the
ground level. Moreover, the variable t ref-
erences a cell with the field s pointing to
the location of the end of the list segment starting from Y1. The only explicit non-
aliasing constraint on program variables is x 6= z.

1 Points-to edges are depicted as simple lines, predicate edges as double lines, and disequality edges
as dotted lines. For readability, we omit some of the labelling with existentially-quantified variables and
some of the disequality edges in the normalised graphs.

Compositional Entailment Checking for a Fragment of Separation Logic 15

FΠ ::=
∧

E=F∈Π
[E = F] ∧

∧
E 6=F∈Π

¬[E = F] F∗ ::=
∧

E,F variables in ϕ, a 6=a′ atoms in Σ

(
[E = F] ∧ [E, a]

)
⇒ ¬[F, a′]

FΣ ::=
∧

a=E 7→{ρ}∈Σ
[E, a] ∧

∧
a=P (E,F,

#‰
B)∈Σ

([E, a]⊕ [E = F]) ∧ ([E, a]⇒
∧
B∈ #‰

B

¬[E = B])

F= ::=
∧

E1,E2,E3 variables in ϕ

([E1 = E1] ∧
(
[E1 = E2]⇔ [E2 = E1]

)
∧
(
[E1 = E2] ∧ [E2 = E3]

)
⇒ [E1 = E3])

Fig. 5 Definition of the components of BoolAbs[ϕ] with ⊕ denoting xor

The formula ψ2 specifies a heap with a nested list segment between locations
x and y where all nested list segments end in z (atom nll(x, y, z)) and a skip list
segment between locations y and t. It also requires y and t be not aliased.

4 Normalisation

Given a formulaϕ, the normalisation procedure norm computes a new formulaϕ′ that
contains all (dis-)equalities among the variables of ϕ that are implied by the existing
ones in ϕ and the semantics of separating conjunction. This process may discover
that ϕ contains contradictory constraints, i.e., it is unsatisfiable. To infer the implicit
(dis-)equalities in a formula, we adapt the Boolean abstraction proposed in [10] for
the fragment considered in this paper.

Definition 3 (Boolean abstraction) Given a formula ϕ , ∃ #‰

X : Π ∧ Σ, we define
the Boolean formula BoolAbs[ϕ] ::= FΠ ∧ FΣ ∧ F= ∧ F∗ where the components of
BoolAbs[ϕ] are defined in Fig. 5. The set BV (ϕ) of Boolean variables occurring in
BV (ϕ) is defined as:

– [E = F] ∈ BV (ϕ) for every two variables E and F occurring in ϕ,
– [E, a] ∈ BV (ϕ) for every variable E and a spatial atom of the form a = E 7→
{ρ} or a = P (E,F,

#‰

B) in ϕ.

Intuitively, the variable [E = F] denotes the equality between E and F , while [E, a]
denotes the fact that the atom a describes a heap where E is allocated. The com-
ponents of BoolAbs[ϕ], defined in Fig. 5, have the following meaning: FΠ and FΣ
encode the atoms of ϕ, F= encodes reflexivity, symmetry, and transitivity of equality,
and F∗ encodes the semantics of the separating conjunction.

Proposition 1 Let ϕ be a formula. Then, BoolAbs[ϕ] is equi-satisfiable with ϕ, and,
for any variables E and F of ϕ, BoolAbs[ϕ] ⇒ [E = F] (resp. BoolAbs[ϕ] ⇒
¬[E = F]) iff ϕ⇒ E = F (resp. ϕ⇒ E 6= F).

For the formula ψ1 in our running example, i.e. Equation (6), BoolAbs[ψ1] is
a conjunction of several formulas including:

1. [y, skl2(y, Y3)]⊕ [y = Y3], which encodes the atom skl2(y, Y3),
2. [Y3, Y3 7→ {(f2, t), (f1, Y4)}] and [t, t 7→ {(s, Y2)}], encoding points-to atoms

of ψ1,
3.
(
[t = y]∧ [t, t 7→ {(s, Y2)}]

)
⇒ ¬[y, skl2(y, Y3)], which encodes the separating

conjunction between t 7→ {(s, Y2)} and skl2(y, Y3),

16 Constantin Enea et al.

4.
(
[t = Y3]∧[t, t 7→ {(s, Y2)}]

)
⇒ ¬[Y3, Y3 7→ {(f2, t), (f1, Y4)}], which encodes

the separating conjunction between t 7→ {(s, Y2)} and Y3 7→ {(f2, t), (f1, Y4)}.

If BoolAbs[ϕ] is unsatisfiable, norm(ϕ) returns false . Otherwise, the output of
norm(ϕ) is the formula ϕ′ obtained from ϕ by (1) adding all (dis-)equalities E = F
(resp. E 6= F) such that [E = F] (resp. ¬[E = F]) is implied by BoolAbs[ϕ] and
(2) removing all predicate atoms P (E,F,

#‰

B) s.t. E = F occurs in the pure part.
For example, the normalisations of ψ1 and ψ2 are given in Fig. 4(c) and (b). Note

that the ls atoms reachable from y are removed because BoolAbs[ψ1] implies that
Y1 and Y2 are aliasing y, and thus the list segments between y, Y1, and Y2 are empty.
Moreover, BoolAbs[ψ1] implies that y is different from t and z. BoolAbs[ψ2] does
not imply additional (dis-)equalities, so ψ2 is unchanged after normalisation.

The following result is important for the completeness of the select procedure.

Proposition 2 Let norm(ϕ) be the result of the normalisation of a formula ϕ. For
any two distinct nodes n and n′ in the SL graph of norm(ϕ), there cannot exist two
disjoint sets of atoms A and A′ in norm(ϕ) such that both A and A′ form paths
between n and n′.

Proof Suppose that norm(ϕ) contains two such sets of atoms between nodes n and n′

labelled by variables E and F respectively. By the semantics of the separating con-
junction, it holds that one of the paths is empty, so that ϕ ⇒ E = F . Therefore,
norm(ϕ) does not include all ϕ-implied equalities, contradicting its construction. ut

5 Selection of Spatial Atoms

After normalisation and testing entailment of pure parts of the checked formulas, the
algorithm starts matching every spatial atom from ϕn2 to a set of atoms of ϕn1 . For
this, it uses the select procedure described in this section.

Points-to atoms. Let ϕ1 ::= ∃ #‰

X : Π1 ∧Σ1 be a normalised formula. The procedure
select(ϕ1, E2 7→ {ρ2}) outputs either the sub-formula ∃ #‰

X : E1 = E2 ∧ E1 7→
{ρ1} if E1 = E2 occurs in Π1, or the sub-formula emp otherwise. The procedure
select is called only if ϕ1 is satisfiable. Consequently, because of the semantics of
the separating conjunction, ϕ1 cannot contain two different atoms E1 7→ {ρ1} and
E′1 7→ {ρ′1} such that E1 = E′1 = E2. Also, if there exists no such points-to atom,
then ϕ1 ⇒ ϕ2 is not valid. Indeed, since ϕ2 does not contain existentially quantified
variables, a points-to atom in ϕ2 could be entailed only by a points-to atom in ϕ1.

In the running example, select(ψn1 , t 7→ {(s, y)}) = ∃Y2 : y = Y2 ∧ . . . ∧ t 7→
{(s, Y2)}. For readability, we have omitted some existential variables and pure atoms.

Predicate atoms. Given an atom a2 = P2(E2, F2,
‰

B2), the call to select(ϕ1, a2)
first builds a sub-graph G′ of G[ϕ1], which is a candidate for representing a partial
unfolding of a2 in ϕ1, and then it checks whether the sub-heaps described by G′

are well-formed wrt a2. If this is not true or if G′ is empty, then select(ϕ1, a2)

outputs emp. Otherwise, it outputs the formula ∃ #‰

X : Π ′1 ∧ Σ′ where Σ′ consists of
all atoms represented by edges of the sub-graph G′, and Π ′1 contains all equalities
E1 = E2 of Π1 where either E1 or E2 occur in G′.

Compositional Entailment Checking for a Fragment of Separation Logic 17

We now have a look at the construction of G′ in more detail. It is based on
Constraint 4. Let Dangling[a2] = Node(F2) ∪ {Node(B) | B ∈ # ‰

B2}. Notice
that {F2} ∪

‰

B2 are also free variables of ϕ1. The sub-graph G′ is defined as the
union of all paths of G[ϕ1] that (1) start in the node labelled by E2, (2) con-
sist of edges labelled by fields in F∗7→(P2) or predicates Q with P2 ≺∗P Q, and
(3) end either in a node from Dangling[a2] or in a cycle, in both cases not travers-
ing through nodes in Dangling[a2]. Therefore, G′ does not contain edges that
start in a node from Dangling[a2], but shall contain a path from Node(E2) to
each node in Dangling[a2]. In the running example, the subgraphs returned by
select(ψn1 , nll(x, y, z)) and select(ψn1 , skl2(y, t)) are highlighted in Fig. 4(c).

If the construction of G′ succeeds, the procedure select checks that, in ev-
ery model (S1, H1) of ϕ1, the sub-heap (S1, H

′
1) described by G′ is well-formed

wrt a2, i.e., nodes of Dangling[a2] are not interpreted by S1 in ldom(H ′1), the set
of allocated locations in H ′1. For our running example, for any model of ψ1, in the
sub-heap modelled by the graph select(ψn1 , skl2(y, t)) in Fig. 4(c), the variable t
should not be (1) interpreted as an allocated location in the list segment skl2(y, Y3)
or (2) aliased to one of nodes labelled by Y3 and Y4. The well-formedness test is
performed using the below proposition.

Proposition 3 (Well-formedness test) Let a graphG′ represent a sub-formula of ϕ1

and a2 = P2(E2, F2,
‰

B2) be a predicate atom such that free(G′) ⊇ free(a2). G′ is
well-formed wrt a2 iff the following conditions hold for each variable V ∈ {F2}∪

‰

B2:

1. For every variable V ′ labelling the source of a points-to edge of G′, it holds that
ϕ1 ⇒ V 6= V ′.

2. For every predicate edge e included in G′ that does not end in Node(V), V is
allocated in all models of E 6= F ∧ (ϕ1 \ G′) where E and F are variables
labelling the source and the destination of e, respectively, and ϕ1\G′ is a formula
obtained from ϕ1 by deleting all spatial atoms represented by edges of G′.

Proof (⇒) If G′ is well-formed, then condition (1) is trivially satisfied. Notice that,
if G′ contains only one predicate edge e, it shall end in Dangling[a2] (by construc-
tion of G′), so condition (2) is trivially true. Otherwise, let V ∈ {F2} ∪

‰

B2 and e
be a predicate edge of G′ such that Node(V) 6∈ Dangling[e] as in condition (2).
Let (S1, H1) be a model of ϕ1 s.t. the sub-heap described by e is not empty. From
Constraint 1, it follows that (S1, H1) is also a model of E 6= F ∧ϕ1, where E and F
are the destination and target parameters of e respectively. The hypothesis implies
that, for the sub-heap H ′1 described by G′, S1(V) 6∈ ldom(H ′1). From the semantics
of separating conjunction, ldom(H1) = ldom(H ′1)] ldom(H ′′1), where H ′′1 is the
sub-heap described by ϕ1 \ G′. Thus, S(V) shall belong to ldom(H ′′1) because it is
the only set disjoint from ldom(H ′1) in any model of ϕ1.
(⇐) Condition (1) guarantees that V is different from all allocated locations repre-
sented by sources of points-to edges in G′. Condition (2) guarantees that V is not
interpreted as an allocated location in a list segment described by a predicate edge
of G′ (this trivially holds for predicate edges ending in Node(V)). If V were not al-
located in some model (S1, H

′′
1) of E 6= F ∧ (ϕ1 \ G′), then one could construct

a model (S1, H
′
1) of G′ where e would be interpreted to a non-empty list and S(V)

18 Constantin Enea et al.

E

Z1 Z2 Z′2

X

Z3 Z4

F

s

f1 f2

ff

ls

f

f

s

f1 f2

ff

f
f

a) An SL graph G

E

alias ↑↓[s]

alias ↑↓[f2] alias ↑[f2]

alias [F]

alias ↑↓[f2]

alias ↑[f2]

alias [F]
s

f1 f2

ff

ls

f

f

s

f1 f2

ff

f

f

b) The tree encoding T [G] of G

Fig. 6 An example of encoding an SL graph into a tree

would equal an allocated location inside this list. Therefore, there would exist a model
of ϕ1, defined as the union of (S1, H

′
1) and (S1, H

′′
1), in which the heap region de-

scribed by G′ would not be well-formed wrt a2. ut

The following proposition provides a test for checking that variables are allocated
based on checking unsatisfiability of SL formulas. Note that, by Proposition 1, unsat-
isfiability of formulas can be decided using the Boolean abstraction BoolAbs.

Proposition 4 Let ϕ ::= ∃ #‰

X : Π ∧Σ be a formula and V a program variable such
that V ∈ pv(ϕ). Let V1 and f1 be symbols not occurring in ϕ. V is allocated in every
model of ϕ iff ∃ #‰

X : Π ∧Σ ∗V 7→ {(f1, V1)} is unsatisfiable.

6 Representing SL Graphs as Trees

We define a canonical representation of SL graphs in the form of trees, which we use
for checking⇒sh . In this representation, disequality edges are ignored because they
have been dealt with previously when checking entailment of pure parts.

Example: We start by explaining the main concepts of the tree encoding using the
labelled graphG in Fig. 6(a), which is well-formed wrt some predicate atom P (E,F)
where P specifies some special kind of list segments with nested circular lists (chosen
to completely illustrate all the needed issues). We assume that all nodes in G are
reachable from the node labelled byE, which is guaranteed for the graphs constructed
by select because of Property 1.

To construct a tree representation ofG, we start with its spanning tree (highlighted
using bold edges) built using minimal paths as in Property 6. Then, any node with at
least two incoming edges, called a join node, is split into several copies, one for
each incoming edge not contained in the spanning tree. The obtained tree is given in
Fig. 6(b). In order not to lose any information, the copies of nodes are labelled with
the identity of the original node, which is kept in the spanning tree. If the original
node is labelled by a program variable, say x, the original node and its copies are
labelled by alias [x]. Otherwise, since the representation does not use node identities,
we assign to every copy of the node a “routing” label describing how the copy can
reach the original node using paths in the spanning tree.

Compositional Entailment Checking for a Fragment of Separation Logic 19

For example, if a node n has the label alias ↑[f2], this means that n is a copy
of some join node m, where m is the first ancestor of n with an incoming edge
labelled by f2. Further, n labelled by alias ↑↓[f2] means that the original node m can
be reached from n by going up in the tree until the first node with an outgoing edge
labelled by f2, and then down via the f2-labelled edge. The exact definition of these
labels can be found later in this section. Intuitively, a label of the form alias ↑[f] will
be used when breaking loops, while a label of the form alias ↑↓[f] will be used when
breaking parallel paths between nodes. Due to Property 5, this set of routing labels
is enough to convert an SL graph into a canonical tree representation that can entail
a spatial atom from the considered fragment; for arbitrary graphs, this is not the case.

Let G be an SL graph well-formed wrt the predicate atom P (E,F,
#‰

B) such that
all nodes of G are reachable from the node Root labelled by E. An f -edge of an SL
graph is a points-to edge labelled by f or a predicate edge labelled by Q(

#‰

Y) such
that the minimum field in F7→(Q) wrt ≺F is f . The tree encoding of G is computed
by the procedure toTree(G,P (E,F,

#‰

B)) that consists of four consecutive steps that
are presented below.

Node marking. First, toTree computes a mapping M, called node marking, that
maps each node n to a field in F as follows:

M(n) ::=

{
min≺F(F7→(P)) if n = Root ,
min≺F{f | f -edge enters n} otherwise. (7)

This means that M(n) is the minimum field wrt≺F∗ among the fields of (points-to or
predicate) edges entering node n. For technical reasons, we add the minimum field
(wrt ≺F) in F7→(P) as the marking of node Root .

For any join node n not labelled by a variable in {E,F} ∪ #‰

B, the spanning tree
edge is the f -edge (m,n) such that M(n) = f ; for Root , no incoming edge is in
the spanning tree. The soundness of this construction is obtained due to Property 6,
which ensures that in any model of P (E,F,

#‰

B), all allocated nodes are reachable via
paths built using only minimum fields.

Splitting join nodes. The way join nodes are split depends on whether they are la-
belled by variables in {E,F} ∪ #‰

B or not. First, a graph G′ is obtained from G by
replacing any edge (m,n) with n labelled by some V ∈ {E,F} ∪ #‰

B by an edge
(m,n′) with the same label, where n′ is a fresh copy of n labelled by alias [V]. In
our example, the node labelled with F in Fig. 6(a) is split, and we obtain three nodes
labelled by alias [F] in Fig. 6(b).

Subsequently, G′ is transformed into a tree by splitting the remaining join nodes
as follows. Let n be a join node and (m,n) an edge not in the spanning tree of G′

(and G). The edge (m,n) is replaced in the tree by an edge (m,n′) with the same
edge label, where n′ is a fresh copy of n labelled by:

– alias ↑[M(n)] if m is reachable from n in G′ and n is the first predecessor of n′

marked with M(n). In Fig. 6(a), this labelling is used on cutting the edge from
Z ′2 to Z2, and substituting it by an edge to a node labelled alias ↑[f2] in Fig. 6(b).

20 Constantin Enea et al.

– alias ↑↓[M(n)] if there is a node p that is the first predecessor of n′ with a (non-
null) successor over edge M(n), and the successor is n. In Fig. 6(a), this labelling
is illustrated on cutting the edge from Z1 to Z2, and substituting it by an edge to
a node labelled alias ↑↓[f2] in Fig. 6(b).

If the relation between n and n′ does not satisfy the constraints mentioned above,
i.e. the formula does not belong to the considered fragment, the result of this step
is an error represented by the ⊥ tree. Also note that in the example in Fig. 6, edges
over ff were split in two ways, depending on whether the target node is labelled by
a variable or not. This will later be important in the construction of the TA recog-
nising unfoldings of predicates. We denote the set of all aliasings over variables
Vars ∪ LVars and fields F with ALIAS, formally, ALIAS = {alias [X] | X ∈
Vars ∪ LVars} ∪ {alias ↑[f], alias ↑↓[f] | f ∈ F}.

At the end of these steps, we obtain a tree with labels on edges (using fields f ∈ F
or predicates Q(

#‰

B)) and labels on nodes of the form alias [. . .]; the root of the tree is
labelled by E.

Updating the labels. In the last step, two transformations are done on the tree. First,
the labels of predicate edges are changed in order to replace each argument X
from the set {F} ∪ #‰

B by alias [X], and the rest of arguments by alias ↑[M(n)] or
alias ↑↓[M(n)], depending on the position of the node n labelled by X wrt the source
node of the predicate edge. In the case this is not possible, the algorithm returns ⊥.

Second, as the generated trees will be tested for membership in the language of
a TA that accepts node-labelled trees only, the labels of edges are moved to the labels
of their source nodes and concatenated in the order given by ≺F (predicates in the
labels are ordered according to the minimum field in their matrix).

We now formally define the structure of the output of the algorithm. Let L denote
the set of possible node labels obtained in the previous transformation, i.e. elements
of F∗ (ordered wrt ≺F), elements of ALIAS, and predicates P (

#‰

B) for all P ∈ P and
#‰

B ∈ ALIAS∗. Then the output of toTree(G,P (E,F,
#‰

B)) is a tree over labels of the
tree encoding, i.e. a mapping t : N∗ → L such that dom(t) is prefix-closed with the
following conditions. Let chlds(n) be the set {i | ni ∈ dom(t)}. Then,

– if t(n) = f1 · · · fk ∈ F∗, then chlds(n) = {1, . . . , k},
– if t(n) = P (

#‰

B) for some P ∈ P and
#‰

B ∈ ALIAS∗, then chlds(n) = {1}, and
– if t(n) ∈ ALIAS, then chlds(n) = ∅.

The following property ensures the completeness of the entailment procedure:

Proposition 5 Let P (E,F,
#‰

B) be a predicate atom and G an SL graph. If the proce-
dure toTree(G,P (E,F,

#‰

B)) returns ⊥, then G 6⇒sh P (E,F,
#‰

B).

Proof It follows from Properties 5 and 6 that a model of a predicate in our fragment
can be translated into a tree using the considered aliasing relations. Therefore, if the
procedure toTree(G,P (E,F,

#‰

B)) returns⊥, thenG can only correspond to a model
of a predicate not in the considered fragment. ut

Compositional Entailment Checking for a Fragment of Separation Logic 21

7 Tree Automata Recognising Tree Encodings of SL Graphs

Next, we proceed to the construction of tree automataA[P] that recognise tree encod-
ings of SL graphs that entail atoms of the form P (E,F,

#‰

B). After defining TAs, we
continue with an intuitive description on a typical example, and give a full description
of the TA construction later.

Definition 4 (Tree automata) A (nondeterministic) tree automaton (TA) recognis-
ing tree encodings of SL graphs is a tuple A = (Q, q0, ∆) where Q is a finite set
of states, q0 ∈ Q is the initial state, and ∆ is a finite set of transitions of the form
(q, a1 · · · an, q1 · · · qn) or (q, a, ε), where n > 0, q, q1, . . . , qn ∈ Q, ai is an SL
graph edge label (we assume them to be ordered wrt the same ordering of fields ≺F
as for tree encodings), and a ∈ ALIAS. We use q ↪→ a1(q1), . . . , an(qn) to denote
(q, a1 · · · an, q1 · · · qn) and q ↪→ a to denote (q, a, ε).

A tree encoding t : N∗ → L is accepted by A if there exists a mapping ρ :
dom(t) → Q such that: (i) ρ(ε) = q0, and (ii) for all n ∈ dom(t), if chlds(n) =
{1, . . . , k}, then (ρ(n), t(n), ρ(n·1) · · · ρ(n·k)) ∈ ∆. The set of trees L(A) accepted
by A is called the language of A.

7.1 Overview of the Construction

q0 q1

q2

q3

f1

f1

P1(B)

P1(B)

alias [F]

alias ↑↓[f1]

alias [B]

f2
f3

f2

f3

(1) q0 ↪→ f1(q0), f2(q3), f3(q2)
(2) q3 ↪→ alias ↑↓[f1]
(3) q2 ↪→ alias [B]
(4) q0 ↪→ f1(q1), f2(q1), f3(q2)
(5) q1 ↪→ alias [F]
(6) q0 ↪→ P1(B)(q0)
(7) q0 ↪→ P1(B)(q1)

Fig. 7 AutomatonA[P1]

The tree automaton A[P] is constructed by a pro-
cedure starting from the inductive definition of P .
If P does not call other predicates, the TA simply
recognises the tree encodings of the SL graphs that
are obtained by “concatenating” a sequence of ei-
ther Gaifman graphs representing the matrix of P ,
Σ(E,Xtl,

#‰

B), or predicate edges P (E,Xtl,
#‰

B).
In these sequences, occurrences of both types can
be mixed in an arbitrary order and in an arbitrary
number due to Property 4 (compositional list seg-
ments) of inductive definitions in our fragment.
Intuitively, this corresponds to a partial unfolding
of the predicate P in which there appear concrete
segments described by points-to edges as well as
(possibly multiple) segments described by pred-
icate edges. Concatenating two Gaifman graphs
means that the node labelled by Xtl in the first
graph is merged with the node labelled by E in
the other graph. We first illustrate this on a simplified example.

Consider a predicate P1(E,F,B) that does not invoke any other predicates and
whose matrix is Σ1 ::= E 7→ {(f1, Xtl), (f2, Xtl), (f3, B)}. The tree automaton
A[P1] for P1(E,F,B) has transitions given in Fig. 7. Transitions 1–3 recognise the
tree encoding of the Gaifman graph of Σ1, assuming the following total order on the
fields: f1 ≺F f2 ≺F f3. Transition 4 is used to distinguish the “last” instance of this

22 Constantin Enea et al.

tree encoding, which ends in the node labelled by alias [F] accepted by Transition 5.
Finally, Transitions 6 and 7 recognise predicate edges labelled by P1(B). As in the
previous case, we distinguish the predicate edge that ends in the node labelled by
alias [F]. Note that the TA given above exhibits the simple and generic skeleton of
TAs accepting tree encodings of list segments of our SL fragment: The initial state
q0 is used in a loop to traverse over an arbitrary number of folded (Transition 6)
and unfolded (Transition 1) occurrences of list segments, and the state q1 is used to
recognise the end of the backbone (Transition 5). The other states (here, q2 and q3)
are used to accept alias labels only.

When P invokes other predicates, the automaton recognises tree encodings of
concatenations of more general SL graphs, obtained from Gf [mat(P)] by replacing
predicate edges with unfoldings of these predicates. On the level of TAs, this oper-
ation corresponds to a substitution of transitions labelled by predicates with TAs for
the nested predicates. During this substitution, alias [. . .] labels occurring in the TA
for the nested predicate need to be modified, in particular, labels of the form alias [V]
are substituted by the marking of Node(V) wrt the higher-level matrix.

7.2 Basic Algorithm for Non-Empty List Segments

We present our algorithm for translating a predicate into a TA in two steps. In this
section, we start with the basic algorithm for a predicate that for each nested predicate
allows at least one unfolding, and in the next section, we extend the construction to
allow empty nested predicates.

Consider the definition of the matrix of a predicate P (E,F,
#‰

B) as given in Equa-
tions (1) and (2) in Section 2.3. The construction of the automaton A[P] is described
in the following. To ease its presentation, let us suppose that the matrix of P is of the
form Σ(E,Xtl,

#‰

B) ::= ∃ #‰

Z : E 7→ {(f1, Z1), . . . , (fn, Zn)} ∗Σ′. Wlog, we further
assume that f1 ≺F · · · ≺F fn, i.e., f1 is the minimum field in F7→(P).

The construction uses the SL graph of the formula that represents two unfoldings
of the recursive definition of the predicate:2

∃Xtl : Σ(E,Xtl,
#‰

B) ∗Σ(Xtl, F,
#‰

B). (8)

The unfolding is done twice in order to capture all markings that may appear in
tree encodings that shall be recognised by A[P], including the ones of the nodes
allocated inside the list segment (cf. the ff edge in the example in Fig. 6). We obtain
a graph G by transforming the formula in Equation (8) to its SL graph (macros of
the form 	1+Q[Z,

#‰

Y] are first expanded according to Equation (3)). In the following,
we use variables Z1, . . . , Zn to denote existentially quantified variables from the first
unfolding Σ(E,Xtl,

#‰

B) and variables Z ′1, . . . , Z
′
n to denote existentially quantified

variables from the second unfolding Σ(Xtl, F,
#‰

B).
In the following step, we get T [G], the tree encoding ofG, and check that it is not

equal to⊥, otherwise we abort the procedure. Notice that the variable Xtl is existen-
tially quantified in the formula, so T [G] does not use the aliasing relation alias [Xtl].

2 Note that in the example in Fig. 7, we performed some manual minimization of the result.

Compositional Entailment Checking for a Fragment of Separation Logic 23

Instead, a node that is a copy of the node labelled with Xtl in G needs to use either
the relation alias ↑[f1] or the relation alias ↑↓[f1], because the marking of Node(Xtl)
is f1. Recall also that the nodes ofG labelled by parameters or existentially quantified
variables are kept in the structure of T [G] (the tree encoding only cuts some edges
and adds new nodes). Therefore, we overload the notation Node(Z) in the following
to denote the node of T [G] obtained from the node of G labelled by Z.

The construction starts with an empty automaton A[P]. It calls the procedure
buildTA(P, σ, q0, q1,m0), which adds states and transitions to A[P] to recognise
tree encodings of unfoldings of the atom P (E,F,

#‰

B). This procedure is recursive,
because it is called for all atoms Q(U, V,

‰

W) inside the formula in Equation (8). The
arguments of buildTA are the following: P is the predicate called, σ is the mapping
of the formal parameters of the predicate to an aliasing relation, q0 and q1 are the
states to be used for the source resp. the continuation of the construction, and m0 is
the marking of the state q0. The state q0 is chosen as the initial state of A[P].

Let σ = {E 7→ alias [E], F 7→ alias [F],
‰

B 7→ alias [B]} where
‰

B 7→ alias [B]

denotes the set of mappings {B 7→ alias [B] | B ∈ #‰

B}. The procedure
buildTA(P, σ, q0, q1, f1) consists of the following four steps.

I. Importing the tree encoding T [G]. In the first step, we construct the skeleton of
A[P] by taking T [G] and transforming it in the following way:

(a) For each node u of T [G], we create a unique state q(u) in A[P], except for the
nodes Node(E) and Node(F), for which we use the states q0 and q1 respectively.

(b) If the node u is labelled in T [G] with an aliasing relation r ∈ ALIAS, we add the
transition q(u) ↪→ σ(r) if r is of the form alias [B] for any B ∈ #‰

B and q(u) ↪→ r
if r is a relation aliasO[m] for O ∈ {↑, ↑↓}.

(c) If there is a predicate edge from u to v labelled with Q(
#‰

Y), we add the transition
q(u) ↪→ Q(β′(

#‰

Y , σ))(q(v)) where β′(
#‰

Y , σ) changes every Y in
#‰

Y according to
the following rules:

– If Y is an argument of buildTA, it is changed to σ(Y);
– if Y is an existentially quantified variable in the formula in Equation (8),
m is the marking of Node(Y), and the relation between u and Node(Y) is
aliasO[m] for O ∈ {↑, ↑↓}, we change Y to aliasO[m];

– otherwise, we abort the procedure.
(d) If the node u is the source of points-to edges e1, . . . , ek labelled with the fields

h1, . . . , hk respectively, assuming that h1 ≺F · · · ≺F hk, and entering nodes
v1, . . . , vk in this order, we add the transition q(u) ↪→ h1(q(v1)), . . . , hk(q(vk)).
Note that this rule also creates the backbone transitions

q0 ↪→f1(q(Node(Xtl))), f2(q(Z2)), . . . , fn(q(Zn)), (9)
q(Node(Xtl))) ↪→f1(q1, f2(q(Z ′2)), . . . , fn(q(Z ′n)). (10)

(e) If the call to buildTA is not nested, we also add the transition q1 ↪→ σ(F).

Observe that the created skeleton is able to accept precisely two unfoldings of the
predicate P between E and F such that nested predicates are not unfolded.

24 Constantin Enea et al.

II. Accepting non-empty list segments. Next, we makeA[P] accept an arbitrary num-
ber of these unfoldings along the minimum field, i.e. f1, of the predicate P . To do
this, we add in state q0 the following transitions:
(a) a transition that accepts exactly one unfolding:

q0 ↪→ f1(q1), f2(q(Z
′
2)), . . . , fn(q(Z

′
n)),

(b) a looping transition that allows to insert arbitrarily many unfoldings:
q0 ↪→ f1(q0), f2(q(Z2)), . . . , fn(q(Zn)).

III. Interleave with predicate edges. We add transitions allowing an arbitrary inter-
leaving of folded and unfolded occurrences of the predicate P :

q0 ↪→P (σ(
#‰

B))(q0) (11)

q0 ↪→P (σ(
#‰

B))(q(Node(Xtl))) (12)

q(Node(Xtl)) ↪→P (σ(
#‰

B))(q1). (13)

Moreover, if the call to buildTA is not nested, we also add the transition

q0 ↪→P (σ(
#‰

B))(q1) (14)

to accept exactly one instance of predicate P .

IV. Inserting tree automata of nested predicate edges. For each transition
inserted in A[P] of the form: q(Node(R)) ↪→ Q(

#‰

Y)(q(Node(S))), with
Q 6= P representing a nested predicate atom Q(R,S,

#‰

Y), we recursively call
buildTA(Q, σ′, q(Node(R)), q(Node(S)),mR) where σ′ = {E 7→ rR, F 7→
rS ,

‰

B 7→ rY } (note that the definition of Q uses E,F, and
#‰

B) such that for any
Z ∈ {R,S} ∪ #‰

Y :

– if Z ∈ {E,F} ∪ #‰

B then rZ is σ(Z),
– if Z ∈ #‰

Z (the set of existentially quantified variables in P) then rZ is the aliasing
relation between Node(R) and Node(Z) in T [G],
Note that the size of A[P] (number of states and transitions) is polynomial in the

size of the inductive definition (number of variables and atoms) of P and of Q with
P ≺∗P Q. The procedure itself is also polynomial, and the membership problem for
tree automata is solvable in polynomial time (wrt the size of the input). As a conse-
quence, we conclude that the entailment decision procedure described in this section
is polynomial in the size of the input.

The following result states the correctness of the tree automata construction.

Theorem 1 For any predicate atom P (E,F,
#‰

B) and any SL graphG, if the tree gen-
erated by toTree(G,P (E,F,

#‰

B)) is accepted by A[P], then G ⇒sh P (E,F,
#‰

B).

Proof (Idea) The construction first creates a TA that accepts exactly two unfoldings
of P (Step I). The construction then extends the TA with transitions used to accept
exactly one unfolding (Step II(a)) and more than two unfoldings (Step II(b)). Step
III handles acceptance of partial unfoldings of P (any interleaving of occurrences of
unfoldings of P and P itself along the backbone). Finally, Step IV inserts transitions
that accept all possible (non-empty) unfoldings for nested predicates. ut

Compositional Entailment Checking for a Fragment of Separation Logic 25

x1 x2 x3 x4 x5 x6
f1 f1

f2

f3

f2

f1 f1

f3

f2

f1

a) The SL graph of a 3-level skip list

x1 x2

alias ↑↓[f2]

x3

alias ↑↓[f3] alias ↑↓[f3]

x4

alias ↑↓[f3]

x5

alias ↑↓[f3]

x6
f1

f1

f2

f3

f1 f2

f1

f3

f2 f1

b) The tree encoding of the graph in (a)

Fig. 8 Illustration of the issue with possibly empty nested list segments on skl3. The label of the node
accessible from x5 over f1 (labelled with alias ↑↓[f3]) reflects the fact that the second-level skip list from
the node x4 to the node x6 is empty.

7.3 Extending the Basic Algorithm to Possibly Empty Nested List Segments

We now modify the above algorithm to generate TAs accepting unfoldings of P with
not only non-empty occurrences of nested predicates, but also empty ones. To show
the difficulties of this construction, we consider the SL graph in Fig. 8(a), which is an
unfolding of the predicate atom skl3(x1, x6). The skip list segment between nodes
x1 and x4 contains a non-empty level-2 skip list, while the level-2 skip list between
x4 and x6 is empty. The emptiness of the second segment requires to use the alias
relation alias ↑↓[f3] for the node reachable from x5 over f1 instead of alias ↑↓[f2]
used in the node reachable from x2 over f1. The TA built by the procedure buildTA
presented in the previous section rejects such trees.

To fix this problem, apart from allowing empty occurrences of nested predicates
in the TA returned by buildTA, we also need to extend the occurrences of aliasing re-
lations alias ↑↓[. . .] to consider all combinations of empty/non-empty occurrences of
nested predicates. Indeed, such aliasing relations are used to address the target node of
nested predicate atoms in the tree encoding of the matrix of a predicate. The aliasing
relations of the form alias ↑[. . .] are not considered because they are used to encode
the	1+Q[Z,

#‰

Y] macro, which describes a non-empty list segment. Although it looks
that we need to consider an exponential number of possibilities, we provide in the
following a polynomial-time construction for the TA. The obtained TA, however, ac-
cepts trees that have the right structure but some wrong alias labels; to fix this, an
additional polynomial-time check is done on the result of the membership test.

Intuitively, the new procedure has the following steps:

1. The tree encoding of G, T [G], is computed using toTree(G,P (E,F,
#‰

B)).
2. Then, the TA A[P] is obtained using buildTA given in the previous section.

26 Constantin Enea et al.

3. Further, A[P] is modified in such a way that for every predicate-labelled transi-
tion, a parallel ε-transition is added. Subsequently, the ε-transitions are removed
using a standard algorithm for ε-transition elimination, obtaining Ar . The au-
tomaton Ar accepts the same trees as A[P], but also trees obtained from these
trees by removing some of the predicate-labelled edges (and for every such a re-
moved edge, merging the source and target nodes together). The aliasing relations
in the leaves of these trees may, however, be wrong. For example,Ar obtained for
skl3 would miss the opportunity to accept trees having alias ↑↓[f3] in the nodes
accessible from x5 and x3 through f1 in Fig. 8(b).

4. A saturation algorithm is applied on Ar to obtain A′[P], where more aliasing
transitions are introduced. Some of these added transitions do not, however, cor-
respond to aliasings generated by the presence of empty predicate atoms.

5. For this reason, a modified membership algorithm is applied to T [G] and A′[P].
It consists of first testing T [G] ∈ A′[P] using a standard algorithm; if it an-
swers false , the procedure returns false . Otherwise, the procedure checks that the
aliasing transitions of A′[P] used in the standard membership test correspond to
empty occurrences of predicates in T [G]. If this check succeeds, the final result
is true; otherwise the procedure returns false .

The above procedure, further called isIn(G,P (E,F,
#‰

B)), runs in the time polyno-
mial to the size of G and of the inductive definitions in P. It improves the procedure
in [8], where the TA A′[P] is built by pumping all (exponentially many) legal com-
binations of empty predicate atoms, and membership is tested in the standard way.

We now formalize steps 3–5 of isIn(G,P (E,F,
#‰

B)). In step 3, we first create the
TA Aε = (Q, q0, ∆ε) from A[P] in such a way, that for every transition of A[P] of
the form q ↪→ P ′(

#‰

B)(r) representing a predicate atom P ′(. . .) in the matrix of P , we
add an ε-transition of the form q ↪→ ε(r). Then,Ar = (Q, q0, ∆r) is the TA obtained
by applying a standard algorithm for removing epsilon transitions on Aε.

In step 4, the saturation procedure first computes the mapping ω : Q→ (F∪ #‰

B)∗

such that ω(q) is the sequence of aliases that an alias accepted at q can (possibly via
other aliases) refer to. More precisely, let q ∈ Q be a state such that ∆r contains
a transition q ↪→ alias ↑↓[f] with f ∈ F; due to our construction of A[P] and Ar ,
there is at most one such transition from q. Let r ↪→ g1(s1) · · · gn(sn) be the first
transition obtained by traversing the graph of Ar backwards from q to q0 satisfying
the following constraints: (i) its right-hand side contains a term gi(si) with gi = f ,
and (ii) ∆r contains a transition starting in si and expressing an aliasing relation,
i.e., it has one of the forms si ↪→ alias ↑↓[f ′] for f ′ ∈ F or si ↪→ alias [X] for X ∈
#‰

B \ {null} (there is at most one such transition from si, by the construction of Ar).
Then, we define ω(q) = f · ω(si). If there is no transition from si satisfying the
above constraints but ∆r contains si ↪→ alias [null] (if null ∈ #‰

B), then we define
ω(q) = f ·null. (We treat null in a special way in order to to match the definition of
alias ↑↓[. . .].) For any state q ∈ Q that does not satisfy the above constraints, ω(q) =
ε. Notice that if ω(q) = f1 · · · fn, then f1 is the marking used in the alias transition
from q; if fi ∈

#‰

B, then i = n, i.e., variables can only occur at the end of the sequence.
The saturation returns the TA A′[P] = (Q, q0, ∆

′) such that ∆′ = ∆r ∪
⋃
q∈Q C(q)

whereC(q) = {q ↪→ alias ↑↓[fi] | fi ∈ ω(q)∩F}∪{q ↪→ alias [X] | X ∈ ω(q)∩ #‰

B}.

Compositional Entailment Checking for a Fragment of Separation Logic 27

In step 5, the modified tree membership checking algorithm creates a partial map-
ping µ : T [G] ⇀ (F ∪ #‰

B)∗ that is defined for some leaves of T [G]. Intuitively,
µ is used to determine which nested lists of P are assumed to have empty occur-
rences in T [G]. Formally, let u ∈ dom(T [G]) be a leaf labelled by alias ↑↓[fi] (for
fi ∈ F) or alias [fi] (for fi ∈

#‰

B). If u is labelled by q in the accepting run of A′[P]
on T [G], then µ(u) = f1 · · · fi if ω(q) = f1 · · · fn for i ≤ n. Then, for all labelled
leaves u of T [G], the modified membership test performs the following checks. Sup-
pose µ(u) = f1 · · · fi. Then, for all 1 ≤ j < i, we test that the node v accessible
via alias ↑↓[fj] references the same node as u, i.e. T [G](v) = T [G](u). Intuitively,
this validates that if an alias relation assumes that there is an empty list segment
in T [G], there really is one. Moreover, if fi ∈ F, we also test that the node accessible
via alias ↑↓[fi] is not an alias node. If any of the above checks fails, the procedure
isIn(G,P (E,F,

#‰

B)) returns false , otherwise it returns true .

Theorem 2 For any predicate atom P (E,F,
#‰

B) and any SL graph G, the result of
isIn(G,P (E,F,

#‰

B)) is true iff G⇒sh P (E,F,
#‰

B).

Proof (Idea) From the idea of the proof of Theorem 1, we know that the TA A[P]
accepts tree encodings of all models of P with no empty predicate occurrences. The
new construction of A′[P] ensures that A′[P] will also accept any tree T obtained
from a tree accepted by A[P] by allowing any predicate that occurs in it to be empty.
This shows completeness of the method. On the other hand, the construction ofA′[P]
accepts trees that do not correspond to any model of P , since some nested list may
jump out of the list in which it should be nested. The modified membership test
ensures that such trees are rejected, re-establishing soundness of the procedure. ut

8 Extension to Doubly Linked Lists

The procedure presented above can be extended to check validity of entailments be-
tween formulas using more general inductively defined predicates. In this section, we
sketch the main idea for the extension to list segments that are finite nestings of both
singly linked and doubly linked lists.

To describe doubly linked list segments, we extend the class of inductive defini-
tions allowed by Constraint 1 (page 6) by including the following rules:

Rdl(E,F, P, L,
#‰

B) ::= E = F ∧ P = L ∧ emp (15)

Rdl(E,F, P, L,
#‰

B) ::= ∃Xtl,
#‰

Z : E 6= {F} ∪ #‰

B ∧ P 6= L ∧ (16)

E 7→ {ρ({Xtl, P} ∪
#‰

V)} ∗Σ′︸ ︷︷ ︸
mat(Rdl (E,Xtl,P,

#‰
B))

∗Rdl(Xtl, F, E, L,
#‰

B)

where
#‰

V ⊆ #‰

Z ∪ #‰

B and Σ′ from Constraint 3 is changed to
Σ′ ::= Q(Z,U,

#‰

Y) | Qdl(Z,U,Zp, Zl,
#‰

Y) | 	1+ Q[Z,
#‰

Y] |

	1+ Qdl [Z,
#‰

Y] | Σ′ ∗Σ′ | emp

for Z,Zp, Zl ∈
#‰

Z ; U ∈ #‰

Z ∪ #‰

B ∪ {E,Xtl, P};
#‰

Y ⊆ #‰

B ∪ {E,Xtl, P}; and

28 Constantin Enea et al.

E

M : h

M : nM : n

M : s M : s

M : h

M : n

F
s s

h h

n
n

n

p

p

p

np pn

E

alias ↑↓last [n]

alias ↑[h]

alias ↑2[n]

alias ↑[h] alias ↑↓last [n]

alias ↑[h]
alias ↑[h]

alias [F]
s s

h h

n
nn

p

p

p

n

p

p

n

Fig. 9 Tree encodings for lists of nested cyclic doubly linked lists: (left) an SL graph that entails
nlcdl(E,F), (right) the tree encoding of the graph from the left

	1+Q[Z,
#‰

Y] ≡ ∃Z ′ : mat(Q(Z,Z ′,
#‰

Y)) ∗Q(Z ′, Z,
#‰

Y),

	1+Qdl [Z,
#‰

Y] ≡ ∃Z ′, Zp : mat(Qdl(Z,Z
′, Zp,

#‰

Y)) ∗Qdl(Z
′, Z, Z, Zp,

#‰

Y).

In Equation (16), variable P corresponds to the predecessor of E and variable L
corresponds to the predecessor of F , i.e. the last element of the list segment. Notice
that the above constraints extend the definition used for DLL segments introduced
in SL by, e.g., [1]. For instance, to describe DLL segments starting in E, ending
in L, and going to F , one can use the following inductive rule: dll(E,F, P, L) ::=
∃Xtl : E 6= F ∧ P 6= L ∧ E 7→ {(n,Xtl), (p, P)} ∗ dll(Xtl, F, E, L)

)
. To

describe a singly linked list of cyclic doubly linked lists, one may use the following
inductive rule: nlcdl(E,F) ::= ∃Xtl, Z : E 6= F ∧ E 7→ {(s,Xtl), (h, Z)} ∗
	1+ dll[Z] ∗ nlcdl(Xtl, F)

)
. (In both cases, we omitted the base rule.)

To deal with the above introduced class of inductive definitions, the main mod-
ification of our decision procedure concerns the conversion of SL graphs to trees,
i.e. the toTree procedure described in Section 6. More precisely, we have to extend
the splitting of join nodes used by this procedure as follows. Recall that, given a join
node n in an SL graph G and an edge (m,n) that is not in the spanning tree of G,
the splitting operation replace (m,n) by an edge (m,n′) with the same edge label
and n′ being a fresh copy of n. For the new class of inductive definitions, we have to
introduce two additional aliasing labels to describe the path from n′ to n:

– alias ↑2[M(n)] will be used if m is reachable from n in G′ and n is the second
predecessor of n′ marked with M(n). Intuitively, this label is needed to handle
inner nodes of doubly linked lists, which have two incoming edges: one from
their successor and one from their predecessor (see Fig. 9).

– alias ↑↓last [M(n)] will be used if there is a node p that is the first predecessor
of n′ marked with M(n), n is reachable from p by going only via M(n) edges,
and n has no non-alias successors with the marking M(n). Intuitively, the label is
needed for a doubly linked cyclic list to allow referring to the predecessor of the
head node of the list (see Fig. 9).

The construction of TAs from Section 7 has to be adapted too since it is based on the
tree encoding of SL graphs obtained by unfolding the inductive definition of predi-
cates to be represented. In order to generate all the aliasing relations, it turns out that

Compositional Entailment Checking for a Fragment of Separation Logic 29

we have to consider three unfoldings (instead of two) for these predicates. Step I (im-
porting tree encodings) of the algorithm from Section 7.2 can be extended in a trivial
way for the new aliasing relations. Step IV (inserting tree automata of nested predi-
cate edges) is adapted in a similar way to the tree encoding of SL graphs. The other
steps are not modified because they are independent of the set of aliasing relations.

9 Soundness, Completeness, and Complexity

We can now finally state that Algorithm 1 is a decision procedure for our SL fragment.

Theorem 3 Let ϕ1 and ϕ2 be a pair of formulas such that ϕ2 is quantifier-free. Then,
Algorithm 1 returns true iff ϕ1 ⇒ ϕ2.

Proof The first part of Algorithm 1 (until line 6) saturates the input formulas with
all (non-)aliasing relations between logic variables. It follows from Proposition 1 that
this transformation preserves the models of the input formulas. Thus the soundness
and completeness of the algorithm is proved for the normalised formulas ϕn1 and ϕn2 .
Soundness, i.e., the fact that if Algorithm 1 returns true, then ϕ1 ⇒ ϕ2. The proce-
dure may return true either at line 3 or line 15. At line 3, the test of unsatisfiability
for ϕn1 is sound (by Proposition 1) and by the semantics of entailment, false ⇒ ϕ2.
At line 15, the result is true if (1) the normalised formulas ϕn1 and ϕn2 are satis-
fiable, (2) their pure parts satisfy pure(ϕn1) ⇒ pure(ϕn2), (3) there is a mapping
σ that associates to each spatial atom a2 of ϕn2 a sub-formula σ(a2) of ϕn1 entail-
ing a2, and (4) all atoms of ϕn1 are used at most once in the image of σ (i.e. are
marked once). Let M = (S,H) be a model of ϕn1 . From Point (2), it follows that
M |= pure(ϕn2). Let a12, . . . , a

k
2 be the spatial atoms of ϕn2 . From the semantics of

spatial formulas and Points (3) and (4), the heap H may be partitioned in domain-
disjoint heaps H1, . . . ,Hk such that they are well-formed models of sub-formulas
of ϕn1 in the image of σ, i.e., for any 1 ≤ i ≤ k, (S,Hi) is well-formed wrt ai and
(S,Hi) |= σ(ai). From the soundness of selection and Proposition 5, we obtain that
(S,Hi) |= ai. Thus, (S,H) is a model of ϕn2 .
Completeness, meaning that if Algorithm 1 returns false, then ϕ1 6⇒ ϕ2. At line 4,
the procedure return false when ϕn1 is satisfiable and ϕn2 is not. By the soundness of
the satisfiability checking, then trivially ϕ1 6⇒ ϕ2. The next result false is obtained
at line 5 when the test of the entailment of pure parts fails. This trivially implies
ϕ1 6⇒ ϕ2. In the first for loop (line 6), the result false is returned when a points-
to atom E2 7→ ρ2 of ϕn2 cannot be mapped to an unmarked points-to atom a1 of
ϕn1 such that pure(ϕn1) ∧ a1 ⇒ pure(ϕn2) ∧ a2. Notice that, because ϕn1 is satisfi-
able, it cannot contain two different points-to atoms from the node labelled by E2 in
G(ϕn1). So if there is such an atom but it is already marked, i.e. used for another atom
of ϕn2 , the semantics of separating conjunction implies that ϕ1 6⇒ ϕ2. If E2 is not
allocated in ϕn1 , i.e. there is no spatial atom in G(ϕn1) having E2 as origin, then the
entailment is also invalid because E2 is allocated in ϕn2 . If the node labelled by E2

in G(ϕn1) is the origin of a predicate atom, the entailment is also invalid because the
logic cannot constraint the length of list segments to be one. In the second for loop
(line 10), the false result is returned when the select procedure fails to build the sub-
formula ϕn1 [a2] with unmarked atoms of ϕn1 such that it is well-formed wrt a2. From

30 Constantin Enea et al.

Proposition 2, ϕn1 cannot contain two disjoint sets of atoms that could correspond
to the sub-formula ϕn1 [a2]. If such a set of atoms exists, but includes marked atoms,
it follows that some of the atoms are shared with the selection for another atom a′2
of ϕn2 ; this is excluded by the semantics of separating conjunction, so the entailment
is invalid. If such a set does not exist, no model of ϕn1 can include a model of a2,
and Property 1 implies that it cannot be a model of the predicate atom a2. If select
returns emp because the well-formedness test failed on the selected set of atoms,
then due to the completeness of the test (Proposition 3), no well-formed model of a2
exists in ϕ1. If the selection succeeds but the algorithm proposed for ϕn1 [a2]⇒sh a2
returns false, then (Theorem 2) there are well-formed models of ϕn1 [a2] that are not
models of a2, so the initial entailment is invalid. Finally, if there are unmarked atoms
of ϕn1 , the precise semantics of our logic implies that the models of ϕn1 contain more
allocated locations than the models of ϕn2 , meaning the entailment is invalid. ut

The overall complexity of the decision procedure is dominated by the complexity
of (a) the Boolean satisfiability and unsatisfiability checking used in the normalisation
and well-formedness tests (in select), which are NP and co-NP complete respectively,
and (b) the algorithms presented in Section 7.3 to build tree automata and check tree
automaton membership, which are both polynomial-time. In conclusion, the overall
complexity of the algorithm is polynomial wrt the sizes of the formulas ϕ1 and ϕ2

modulo an oracle for deciding (un-)satisfiability of a Boolean formula.

10 Implementation and Experimental Results
Table 1 Running SPEN on entailments between well-
formed formulas and atoms. Time is given in ms. The
column for A[ϕ2] gives the numbers of states/transi-
tions and for T (ϕ1) the numbers of nodes/edges.

ϕ2 ϕ1 Time Status A[ϕ2] T (ϕ1)

nll

tc1 344 valid
6/17

7/7
tc2 335 valid 7/7
tc3 319 invalid 6/7

nlcl

tc1 318 valid
6/15

10/9
tc2 316 valid 7/7
tc3 317 invalid 6/6

skl3

tc1 334 valid
80/193

7/7
tc2 349 valid 8/8
tc3 326 invalid 6/6

dll

tc1 358 valid
9/16

7/7
tc2 324 valid 7/7
tc3 322 invalid 5/5

We implemented our decision proce-
dure in a solver called SPEN (SeP-
aration logic ENtailment). The tool
takes as the input an entailment prob-
lem ϕ1 ⇒ ϕ2 (including the def-
inition of the predicates used) en-
coded in the SMTLIB2 format. For
non-valid entailments, SPEN prints
the atom of ϕ2 which is not entailed
by a sub-formula of ϕ1. The tool is
based on the MINISAT solver for de-
ciding unsatisfiability of Boolean for-
mulas and the VATA library [15] as
the tree automata backend.

We applied SPEN to entailment problems that use various recursive predicates.
First, we considered the benchmark provided in [16], which uses only the ls pred-
icate. It consists of two classes of entailment problems: the first class contains 110
problems each (split into 11 groups) generated randomly according to the rules spec-
ified in [16], whereas the second class contains 100 problems (split into 10 groups)
obtained from the verification conditions generated by the tool SMALLFOOT [3]. In
all experiments3, SPEN finished in less than 1 second with the deviation of running

3 Our experiments were performed on a PC with an Intel Core 2 Duo @2.53 GHz processor and 4 GiB
DDR3 @1067 MHz running a virtual machine with Fedora 20 (64-bit).

Compositional Entailment Checking for a Fragment of Separation Logic 31

times ±100 ms wrt the ones reported for ASTERIX [16], the most efficient tool for
deciding entailments of SL formulas with singly linked lists we are aware of.

Table 2 Results of SL-COMP’14. The
7/3/? columns give the numbers of wrong
(7), correct (3), and unknown (?) answers.

Solver 7 3 ? Time [s]
FDB entl

SPEN 0 43 0 0.61
Cyclist-SL 0 19 24 141.78
SLIDE 0 0 43 0.00
SLEEK-06 1 31 11 43.65

sll0a entl
Asterix 0 292 0 2.98
SPEN 0 292 0 7.58
SLEEK-06 0 292 0 14.13
Cyclist-SL 0 55 237 11.78

sll0a sat
Asterix 0 110 0 1.06
SPEN 0 110 0 3.27
SLEEK-06 0 110 0 4.99
Cyclist-SL 55 55 0 0.55

The TA for the predicate ls is quite
small, and so the above experiments did
not evaluate much the performance of our
procedure for checking entailments between
formulas and atoms. For a more thorough
evaluation, we further considered the ex-
periments listed in Table 1 (among which,
skl3 required the extension discussed in
Section 7.3). The full benchmark is avail-
able with our tool [9]. The entailment prob-
lems are extracted from verification condi-
tions of operations like adding or deleting an
element at the beginning, in the middle, or
at the end of various kinds of list segments.
Table 1 gives for each example the running
time, whether the entailment is valid or in-
valid, and the size of the tree encoding and
TA for ϕ1 and ϕ2, respectively. We find the resulting times quite encouraging.

Moreover, SPEN participated in three divisions of the first competition of separa-
tion logic solvers SL-COMP’14 [20]: division FDB entl containing problems with
extended acyclic lists, such as doubly linked lists, nested lists, or skip lists, and divi-
sions sll0a entl and sll0a sat containing problems with singly linked lists.
SPEN won division FDB entl by a huge margin, solving the set containing all prob-
lems in less than a minute; further, note that SPEN is the only tool that correctly an-
swered all problems in this division. In addition to this, SPEN was also placed second
in both divisions with singly linked lists, where the first place was won by Asterix.
Detailed results of this competition are in Table 2 (c.f. [20] for complete description).

11 Conclusion

This article presents a novel decision procedure for a fragment of SL with inductive
predicates describing various forms of lists (singly or doubly linked, nested, circu-
lar, with skip links, etc.). The procedure is compositional in that it reduces the given
entailment query to a set of simpler queries between a formula and an atom. For solv-
ing them, we proposed a novel reduction to testing membership of a tree derived from
the formula in the language of a TA derived from a predicate. We implemented the
procedure, and our experiments show that it has not only a favourable theoretical
complexity, but also efficiently handles practical verification conditions. Moreover,
when compared with other tools which competed in the first competition of separa-
tion logic solvers SL-COMP’14 [20], SPEN won the first place in one division (being
by several orders of magnitude faster and even more successful in correctly deciding
some problems), and the second place in two divisions.

In the future, we plan to investigate extensions of our approach to formulas with
a more general Boolean structure or using more general inductive definitions. Con-
cerning the latter, we plan to investigate whether some ideas from [13] could be used

32 Constantin Enea et al.

to extend our decision procedure for entailments between formulas and atoms. From
a practical point of view, apart from improving the implementation of our procedure,
we plan to integrate it into a complete program analysis framework.

Acknowledgement. This work was supported by the French ANR project Vecolib, the
Czech Science Foundation (project 14-11384S), and the EU/Czech IT4Innovations
Excellence in Science project LQ1602.

References

1. Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O’Hearn, Thomas Wies,
and Hongseok Yang. Shape analysis for composite data structures. In Proc. of CAV’07, volume 4590
of LNCS, pages 178–192. Springer, 2007.

2. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable fragment of separation logic.
In Proc. of FSTTCS’04, volume 3328 of LNCS, pages 97–109. Springer, 2005.

3. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In Proc. of FMCO’05, volume 4111 of LNCS, pages 115–137.
Springer, 2006.

4. James Brotherston, Carsten Fuhs, Nikos Gorogiannis, and Juan Navarro Pérez. A decision procedure
for satisfiability in separation logic with inductive predicates. In Proc. of CSL-LICS’14, pages 25:1–
25:10. ACM, 2014.

5. James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. A generic cyclic theorem
prover. In Proc. of APLAS’12, volume 7705 of LNCS, pages 350–367. Springer, 2012.

6. Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability and complexity results
for a spatial assertion language for data structures. In Proc. of FSTTCS’01, volume 2245 of LNCS,
pages 108–119. Springer, 2001.

7. Byron Cook, Christoph Haase, Joël Ouaknine, Matthew J. Parkinson, and James Worrell. Tractable
reasoning in a fragment of separation logic. In Proc. of CONCUR’11, volume 6901 of LNCS, pages
235–249. Springer, 2011.

8. Constantin Enea, Ondřej Lengál, Mihaela Sighireanu, and Tomáš Vojnar. Compositional entailment
checking for a fragment of separation logic. In Proc. of APLAS’14, volume 8858 of LNCS, pages
314–333. Springer, 2014.

9. Constantin Enea, Ondřej Lengál, Mihaela Sighireanu, and Tomáš Vojnar. SPEN, 2014. Available from
https://www.irif.univ-paris-diderot.fr/˜sighirea/spen.

10. Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu. Compositional invariant checking for over-
laid and nested linked lists. In Proc. of ESOP’13, volume 7792 of LNCS, pages 129–148. Springer,
2013.

11. Constantin Enea, Mihaela Sighireanu, and Zhilin Wu. On automated lemma generation for separation
logic with inductive definitions. In ATVA’15, volume 9364 of LNCS, pages 80–96. Springer, 2015.

12. Radu Iosif, Adam Rogalewicz, and Jiřı́ Šimáček. The tree width of separation logic with recursive
definitions. In Proc. of CADE’13, volume 7898 of LNCS, pages 21–38. Springer, 2013.

13. Radu Iosif, Adam Rogalewicz, and Tomáš Vojnar. Deciding entailments in inductive separation logic
with tree automata. In Proc. of ATVA’14, volume 8837 of LNCS, pages 201–218. Springer, 2014.

14. Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures. In Proc.
of POPL’01, pages 14–26. ACM, 2001.

15. Ondřej Lengál, Jiřı́ Šimáček, and Tomáš Vojnar. VATA: A library for efficient manipulation of non-
deterministic tree automata. In Proc. of TACAS’12, volume 7214 of LNCS, pages 79–94. Springer,
2012.

16. Juan Navarro Pérez and Andrey Rybalchenko. Separation logic + superposition calculus = heap
theorem prover. In Proc. of PLDI’11, pages 556–566. ACM, 2011.

17. Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic using SMT. In
Proc. of CAV’13, volume 8044 of LNCS, pages 773–789. Springer, 2013.

18. Xiaokang Qiu, Pranav Garg, Andrei Stefanescu, and Parthasarathy Madhusudan. Natural proofs for
structure, data, and separation. In Proc. of PLDI’13, pages 231–242. ACM, 2013.

19. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. of LICS’02,
pages 55–74. IEEE, 2002.

20. Mihaela Sighireanu and David Cok. Report on SL-COMP’14. JSAT, Journal of Satisfiability, 1,
2014. Available from http://smtcomp.sourceforge.net/2014/results-SLCOMP2.
shtml.

https://www.irif.univ-paris-diderot.fr/~sighirea/spen
http://smtcomp.sourceforge.net/2014/results-SLCOMP2.shtml
http://smtcomp.sourceforge.net/2014/results-SLCOMP2.shtml

	Introduction
	Separation Logic Fragment
	Compositional Entailment Checking
	Normalisation
	Selection of Spatial Atoms
	Representing SL Graphs as Trees
	Tree Automata Recognising Tree Encodings of SL Graphs
	Extension to Doubly Linked Lists
	Soundness, Completeness, and Complexity
	Implementation and Experimental Results
	Conclusion

