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ABSTRACT

Research in measurement and monitoring of Internet traf-
fic is evolving rapidly but high-speed network tools that would
be able to follow it are still rare. New approaches and meth-
ods are often tested in offline environment or on low-speed
links using software solutions, but consecutive real-time de-
ployment on high-speed links is missing. In this context we
propose a flexible network probe which is a foundation stone
for further network measurement and monitoring. The ar-
chitecture of the probe is based on a network acceleration
card with Field-Programmable Gate Arrays (FPGA) and a
host computer. The configuration for FPGA chips is auto-
matically generated by a configuration program according to
the user’s definition of the monitored values in order to save
hardware resources and increase the throughput. The def-
inition of the monitoring process is described using XML,
transformed to VHDL and synthesized. This enables the
probe to gain any information about network traffic, assign
it to the flow and process it, all of which can be arbitrarily
defined by the user.

1. INTRODUCTION

At present, network traffic rates are continuously growing
as well as the demands for effective network monitoring.
Network administrators need tools capable of sophisticated,
higher level semantic processing and analysis to cope with
increasing network attacks and adversary activities. In re-
cent years the flow monitoring technology usage has become
widespread in the form of Cisco NetFlow and IPFIX.

NetFlow agents determine the number of bytes, pack-
ets, flag fields, duration of flow (defined as the sequence of
packets with the same IP addresses, ports numbers and pro-
tocol). NetFlow technology helps to optimize the network
infrastructure, reduce the operation costs and improve the
capacity of planning and security incident detection.

The information gathered from NetFlow data can be used
in higher-level applications, e. g. the detection of attacks us-
ing various methods [1, 2, 3] is very popular.
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Flow based statistics can also be used for application
protocol detection in the middle of the network, which is
necessary for per-application traffic engineering, capacity
planning, performance monitoring and security. Standard
traffic identification methods associate the observed traffic
with application according to the TCP or UDP port num-
bers. To avoid detection, several applications has begun to
use dynamic port numbers and well-known ports commonly
used for protocols, such as HTTP or SMTP. Using extended
flow based statistics applications usually leave distinct fin-
gerprints from which they can be identified.

Protocol identification techniques based on payload anal-
ysis [4, 5, 6] also exist, but they can be circumvented using
variable length padding and protocol encryption. A better
approach to protocol identification seems to be the behav-
ioral traffic classification method [7, 8]. This method is
able to identify applications with the accuracy of about 90—
100 % using statistical information gathered from network
flows. The method which combines both approaches uses
payload data statistics from the first kilobyte of the traffic
for very accurate protocol detection [9].

A number of methods have been implemented in the
software and tested offline on small traffic samples or online
on low speed networks. Their performance is not sufficient
for deployment on current networks and dedicated acceler-
ated implementations are required. Moreover, the lack of
large representative testing data sets indicates the need for
powerful tool to gather data from the network.

However, building new hardware for every application
or design hardware which supports all presented applica-
tions is very costly. Since all enumerated studies process
network traffic as variably defined flows, we suggest to ac-
celerate general processing of flow, which remains the same
for different applications.

In this paper, we propose a flexible hardware solution
based on flows, which is optimized for specific monitoring
requirements defined by the user. It allows to save valuable
FPGA resources and increase the throughput. In addition,
a framework for easy customization of monitored network
characteristics is shown. We believe that this will encourage



researchers to evaluate their methods directly on real traffic.
The structure of the text is as follows: in section 2, we

discuss the architecture of the probe for high-speed networks,

section 3 describes the process of the configuration of the
probe — the transformation of the user-defined XML file
into the description of the hardware and the software. In
section 4, the performance of the architecture is evaluated
and section 5 briefly summarizes the study.

2. ARCHITECTURE

The proposed network probe is based on a commodity PC
running Linux OS with a network acceleration card equiped
with FPGA and memory. The architecture utilizes an avail-
able ten-gigabit card developed in Liberouter project [10].
The card provides a unified interface using the NetCOPE
platform [11] to access its peripherals (network interfaces,
memories, PCI bus), which allows fast architecture imple-
mentation.

The monitoring process is divided between the accelera-
tion card and the host PC (see Fig. 1). This is a very different
approach in comparison to previous architecture [12] of the
flow monitoring probe on COMBO cards, where the moni-
toring process was implemented strictly on the card and the
host PC only exported the received flow records. The idea
of partitioning the process is supported by the fact that the
host PC has enough processing power, which allows to move
some tasks from the acceleration card to the PC, thus mak-
ing the FPGA design simpler and faster.
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Fig. 1. Concept of the flexible FlowMon probe.

The two-stage monitoring process works as follows:

In the card:
e packets are received at the line rate,
e information is extracted from the packet,

e the flow key is hashed, which results in the direct ad-
dress of the flow record in the records memory,

e collisions are solved by replacing the old flow record
with the new one,

e cxpired or colliding flow records are transferred to the
memory of the host PC.

In the PC:

e flow records are transferred using the busmaster DMA
engine,

e another monitoring process aggregates flow records
from the card into complete flow records,

e cxpired flow records are exported.

Such partitioning of the task allows to eliminate the num-
ber of fragmented flows, i.e. flows that were expired be-
cause of other reasons than timeouts (collisions or lack of
memory). Furthermore, the analysis of several traffic sam-
ples has shown that the aggregation performed in the card
can decelerate the incoming traffic speed to ten percent or
less of the original value (depending on the size of the card
memory). In this case, the processor is able to process up to
ten gigabits of the original traffic. Closer details are given in
section 4.

2.1. Hardware Architecture

The hardware design is based on two cores. The first one,
NetCOPE core, provides an abstract layer to access hard-
ware resources on the card, the other, FlowContext [13] core,
is a management system intended for storage and load-bal-
ancing of context information among several processing units.

The FPGA configuration is composed of several units
which are chained in the processing pipeline (see Fig. 2).
Some parts of the processing pipeline are instantiated mul-
tiple times to overcome possible bottlenecks. The hardware
design architecture can be divided into two logical parts: the
packet parsing process and the metering process.
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Fig. 2. Block diagram of the hardware design.

At first, packets with assigned timestamps are processed
by several Header Field Extractors (HFE). HFE is a process-
ing unit that extracts information from an arbitrary protocol
packet header. The extracted information is used to create
so called unified header record which contains the data for



the metering process. The HFE unit is implemented using
Handel-C [14] and can be configured to extract all neces-
sary header fields.

The fields that determine the flow (create the flow key)
are the input of the hash function performed in the Hash
Generator (HG), the result of which is the address to the
flow records memory. Collisions caused by the hash func-
tion (two flows map to the same memory location) are de-
tected by the comparison of all identifiers of the flow key
during the update of the flow record in the Flow Processing
Unit. If a collision happens, the old record is expired while
the new record replaces it. Simulations show that a good
hash function and sufficient memory capacity will keep the
collisions at reasonably low rate.

To keep the states of all flows in the memory, the Flow
State Manager (FSM) is used. The state of flow means the
information about its lifetime. It allows to identify those
flows which have already ended and can be released from
the memory. The flow is considered to be finished after a
certain time when no packet with the given flow key arrives.
Therefore, FSM keeps track of the timestamp of the last seen
packet of each flow and if the interval between the current
time and the time of the last seen packet is greater than the
inactive timeout (set by the user), then the flow is expired.

The core of the metering process is implemented in the
Flow Processing Unit (FPU), which collects information about
packets into flow records. The FPU is connected to the
FlowContext (FC) interface, which is based on random mem-
ory access to any item of the flow record and any item of the
unified header. The FC also allows to connect several FPUs
and balance the load among them. The assignment of flow
records to individual units must be atomic; this means that if
one unit is processing a flow record, no other unit may work
with the same record in parallel.

The design of the FPU is generated according to the def-
inition provided in the XML file. The FC passes the packet
data to the FPU together with the flow record and a com-
mand which instructs the FPU to perform certain operation.
The unit also checks the flow identifiers for exact match in
order to detect possible collisions of the hash function; col-
liding records are released to the host PC to be further pro-
cessed by the software. The packet header and payload and
the flow record then enter the update unit (see Fig. 4), which
is described in section 3. The update unit aggregates the data
in the flow record by the values in the header or the payload
of the packet. If the flow record is empty (i. e. the currently
processed packet is the first packet of the flow), the update
functions need to use default values, as the values in the flow
record are not valid.

When the update functions are computed, the result is
checked using the control operations (if there are any de-
fined). If the result is determined to be invalid, it is released
to software where the processing continues.

2.2. Software Architecture

The operations of the flexible FlowMon probe can be di-
vided into two logical phases - the preparation phase and the
monitoring phase. The preparation phase covers all activi-
ties before running the probe for the first time. The user can
specify their own requirements on the monitoring process
and create a customized FPGA configuration. The monitor-
ing phase includes downloading the configuration into the
FPGA on the COMBO card, its initialization, configuration
and network monitoring.

2.2.1. Network Monitoring (Monitoring Framework)

The control system of the probe is illustrated in Fig. 3. It
consists of:

e the web frontend on a remote computer running a web
server,

e configuration daemon on the probe,

o NETCONTF system for communication.

| Collector1 | | Collectorn | | Www interface |
TT NetFlow v5, v9 TT
Exporter | NETCONF system|

Secondary FlowCache Bl ¢ B |

¢ ¢

Lib
ffffffffff T e
’ Driver ‘ Kernel space
,,,,,,,,,,,,,,,,,,, (oo KeMel space
| comBOcard |

Hardware

Fig. 3. Software layers — remote configuration.

The FPGA design is downloaded into the COMBO card
remotely and the parameters of the probe (timeouts, sam-
plings etc.) are set to their default values (startup configura-
tion). The user can reconfigure any of the parameters of the
probe including the specification of the export protocol and
collectors for sending NetFlow records.

2.2.2. Secondary Flow Cache in the Software

We have developed a new method for the flow cache storage.
Our solution is based on dividing the flow cache between
the hardware and software, which enables to increase the
capacity of the cache while retaining the full speed of the
probe. Expired flow records are transferred from the flow
cache on the COMBO card to the secondary flow cache in
the software. The expiration is set by timeouts, collisions or
flow cache capacity.



The secondary flow cache works with the flow records
in the same way as the flow cache on the COMBO card with
packet headers. The secondary flow cache significantly in-
creases the limits of the probe in monitoring of high numbers
of flows on high-speed networks.

3. PROBE CONFIGURATION

As mentioned above, the user configuration of the probe is
provided in the form of XML structured data file. The XML
format has been chosen as a human-legible well standard-
ized means for data storage. The configuration file contains
definitions of the Header, Payload, Parameters, Flow and
Controls structures, which are:

Header Specifies the IPFIX names of header fields which
are to be extracted from the received packet.

Payload Defines the ranges of payload data to be extracted
from the packet.

Flow Specifies the output format of the flow record and
the update functions of the probe. C-like expressions
are used to describe the update operations of the flow
record. The operands in the expressions may be ei-
ther number literals or fields defined in the Header,
Payload, and Flow structures.

Controls The definition of the control operations resides in
this section, the purpose which is e. g. to avoid counter
overflow by releasing the Flow record before the over-
flow may appear. The conditions for record release are
described with C-like expressions similar to Flow def-
inition; the operands are either number literals, Flow
fields or user-defined thresholds. The control opera-
tions run after the flow record is updated according to
the operations defined in the Flow.

The hardware design of the probe is tailor-made from
the user-defined XML file by the core-generator program.
This approach is necessary in order to achieve the required
throughput of the probe with minimum resource consump-
tion. The core-generator parses the input XML and con-
structs the data flow graph (see Fig. 4) of the processing
chain, with the input being the Header and Payload of the
incoming packet, Parameters (set by the software) and cur-
rent Flow record (provided by the FlowContext) fields. The
fields are connected to the ports of the components that per-
form the update operations, as defined in the Flow structure.
The results of the update operations are then checked in the
control component and stored in the updated Flow record.

The functions that can be used in the definition of the
Flow and Controls are provided in a separate file with map-
ping onto hardware components. User functions may be
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Fig. 4. Example of the data flow graph.

added for specific functionality and used as ordinary oper-
ations. The core-generator transforms the data flow graph
into a set of VHDL files that specify the instantiation of the
components and interconnection among them.

4. EVALUATION

To determine the throughput of the probe, bottlenecks of
the suggested system have been analyzed. The system is
based on the NetCOPE platform and the FlowContext sys-
tem with the FPU, which collects statistical data. The Net-
COPE platform does not affect the speed of hardware pro-
cessing. The FlowContext system has a configurable data
path width and on the grounds of the analysis in [13], it can
operate at 10Gbps rates. Therefore, in order to determine
the throughput, we need to focus mainly on the FPU.

The FPU is connected to the endpoint of the FlowCon-
text system and when the packet processing is requested, it
must conduct a set of operations, as illustrated in Fig. 5. At
the beginning of processing, it is determined whether the
item in the flow cache is valid or whether a new record is
to be created. The new record creation consists of (i) the
initialization of the statistical information based on the ex-
tracted packet header fields, and (ii) setting of the validity
flag of the record. If the given flow record already resides
in the flow cache, it is necessary to verify that no collision
has appeared. In this phase, it is required that the identifi-
cation fields extracted from the packet header are compared
to the identification fields stored in the flow cache. If the
fields differ, a hash function collision had appeared when
searching the flow cache and the FPU sends a message to
the FlowContext to release the original flow, and continues
in the processing of the packet as if a new record is to be
created. If no collision occurs, the statistical information of



the flow is updated according to the data from the packet
header. Depending on the application, the update may work
only with the header fields, or also with the payload.
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Fig. 5. Algorithm used by the FPU to process every packet.

The FlowContext provides the FPU with the access to
statistical information and extracted fields through the mem-
ory interface. As the majority of fields in the packet head-
ers are 16 bit-wide and the processing is optimized for this
size, the proposed architecture uses the size of 16 bits for
the memory access. The memory interface throughput is
then the limiting factor of the FPU, because the speed of op-
erations depends on the rate of data input. Hence two inde-
pendent ports are used for the memory access, and the FPU
throughput analysis is carried out from the point of view of
the number of statistical data memory accesses.

The analysis of the FPU is based on the algorithm illus-
trated in Fig. 5 and the number of memory accesses in each
processing step. To determine the validity of the record, it is
necessary to check only one bit using a single memory ac-
cess (tyqaria = 1). The flow record initialization time, £, 8
linearly dependent on the record size, F'R;.., and the time
necessary for the collision detection is linearly dependent on
the flow key size, IDg;,.. For the chosen 16-bit data width
and two memory interfaces, it is possible to express the time
for the initialization and collision detection by (1).

1
4
The update time of the flow record depends on a par-
ticular application. Some applications work only with the
header data, while other can also use the packet payload.
The analysis must take both cases into account and consider
the maximum computation time, max(tpeqder; tpayioad ) The
computation time is constant for headers. We will consider
the worst case, when the whole record except for the identi-
fication fields is updated and the size of the updated data is

1
Linit = EFRsizez teollision = ]Dsize (1)

FRye — ID g, During the update, it is necessary to read
out and write back the flow record, which results in twice as
many memory accesses. The overall header update time for
the data width of 16 bits and two interfaces is given in (2).

FRgie — IDy;
_ IDS,L'ZE) — RSlZE 2 Size (2)

When working with the packet payload, the computation
time is a function of the packet length, Pjey,4:4, depending on
the application. The most common payload processing ope-
ration is searching with linear worst case complexity; the
processing time depends on the number of bytes, k, pro-
cessed in a single clock cycle. If we take into account this
case, the payload processing time can be expressed as

1
theader =2 Z(FRsize

1
tpayload = %Plength (3)
Proceeding from Fig. 5 and considering defined process-
ing times, we are able to compute the worst case processing
time, t.,0rst, i NUMber of memory accesses from (4).

tworst = tvalid + teollision + max(theadera tpayload) 4

Using the model, throughput analysis of a single FPU
has been carried out for (i) the case of packet header process-
ing, and (i) the case of packet payload processing algorithm.
In the former case, the analysis has taken into account vari-
ous flow key and flow record sizes. Fig. 6 displays the graph
for the record widths of 32, 64 and 128 bytes. The analy-
sis of the packet payload processing assumes that the pay-
load processing algorithm complexity linearly depends on
the packet length. The graph in Fig. 7 displays the through-
put according to the packet length with various numbers of
bytes processed in a single clock cycle.
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Fig. 6. FPU throughput for packet header processing.

As can be seen from both graphs, multiple FPU units
are needed in order to achieve ten-gigabit throughput. The
number of FPU depends primarily on the flow record size
and payload processing speed. For the most common flow
record size (64 bytes), seven FPUs and k& > 4 are enough to
process ten-gigabit line at wire speed.
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Fig. 7. FPU throughput for header and payload processing.

5. CONCLUSION

In this study we have proposed variable architecture that en-
ables monitoring of various network traffic characteristics,
which is required for full support of NetFlow v9 and IPFIX
monitoring protocols. The versatility of configurations of
the probe allows its usage even further, e. g. for application
protocol identification or in an intrusion detection system.

The framework for the probe configuration has been pro-
posed as well as the algorithm for generating the hardware
design. The XML scheme allows extensions of the monitor-
ing process, and the network administrator can easily cus-
tomize it via web-frontend.

The architecture of the probe was analysed for perfor-
mance and the FPU was identified as the bottleneck of the
design with the conclusion that the throughput depends on
the flow record size and payload processing speed. For the
most common flow record size (64 bytes) and k > 4, seven
FPUs are enough to process ten-gigabit line at wire speed.

Our future work will be focused on finishing the flexible
FlowMon probe implementation, improving its performance
by the usage of fine grain parallelism, and on extending its
capabilities by adding extra features, such as an application
decoder. After that, the probe should be deployed on real
networks, where we are planning to test its capabilities. A
challenging task would be to find or implement a collector
that can understand all data exported by the proposed probe.
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