Word Equations in Synergy with Regular Constraints
(Extended Version)

Frantisek Blahoudek?, Yu-Fang Chen®, David Chocholaty?, Vojtéch Havlena?, Lukas
Holik?, Ondrej Lengdl?, Juraj Sic®*

4 Faculty of Information Technology, Brno University of Technology, BoZetéchova 2/1, 612 00, Brno, The
Czech Republic
b Institute of Information Science, Academia Sinica, BI128 Academia Road, Section 2, 11529, Tai
Pei, Nankang, Taiwan

Abstract

We propose a new automata-based algorithm for solving string constraints that tightly
integrates reasoning about equations and regular constraints. Exchanging information
between the two allows an efficient pruning of generated combinatorial cases. The
algorithm is based on a novel language-based characterization of satisfiability of word
equations with regular constraints. Namely, satisfiability of an equation is implied
by its stability: the concatenation of the regular languages constraining variables on
the left-hand side equals the concatenation of the languages on the right-hand side.
It is complete for the chain-free string constraints. We experimentally show that our
prototype implementation is competitive with the best string solvers and even superior
on difficult examples.

Keywords: string solving, SMT, automata, noodlification

1. Introduction

Solving of string constraints (string solving) has gained a significant traction in the
last two decades, drawing motivation from verification of programs that manipulate
strings. String manipulation is indeed ubiquitous, tricky, and error-prone. It has been
a source of security vulnerabilities, such as cross-site scripting or SQL injection, that
have been occupying top spots in the lists of software security issues [1, 2, 3]; moreover,
widely used scripting languages like Python and PHP rely heavily on strings. Interesting
new examples of an intensive use of critical string operations can also be found, e.g., in
reasoning over configuration files of cloud services [4] or smart contracts [S]. Emergent
approaches and tools for string solving are already numerous, for instance [6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54].

*Corresponding author.
Email addresses: ihavlena@fit.vut.cz (Vojtéch Havlena), holik@fit.vut.cz (Lukas Holik),
lengal@fit.vut.cz (Ondfej Lengdl), sicjuraj@vut.cz (Juraj Sic)

A practical solver must handle a wide range of string operations, ranging from
regular constraints and word equations across string length constraints to complex
functions such as ReplaceAll or integer-string conversions. The solvers translate most
kinds of constraints to a few types of basic string constraints (which might not always be
possible [55]). The base algorithm then determines the architecture of the string solver
and is the component with the largest impact on its efficiency. The second ingredient
of the efficiency are layers of opportunistic heuristics that are effective on established
benchmarks. Outside the boundaries where the heuristics apply and the core algorithm
must do a heavy lifting, the efficiency may deteriorate.

The most essential string constraints, word equations and regular constraints, are
the primary source of difficulty. Their combination is PSPACE-complete [56, 57],
decidable by the algorithm of Makanin [58] and Jez’s recompression [57]. Since it is
not known how these general algorithms may be implemented efficiently, string solvers
use incomplete algorithms or work only with restricted fragments (e.g. straight-line
of [21] or chain-free [21, 26], which cover most of existing practical benchmarks), but
even these are still PSPACE-complete (immediately due to Boolean combinations of
regular constraints) and practically hard. Most of the string solvers use base algorithms
that resemble Makanin [58] or Nielsen’s [59] algorithm in which word equations and
regular constraints each generate one level of disjunctive branching, and the two levels
multiply. Reasoning about regular constraints particularly is considered complex and
expensive, and often turned to only as a last resort.

In this work, we propose an algorithm in which regular constraints are not avoided
but instead, they are tightly integrated with equations, enabling an exchange of infor-
mation between equations and regular constraints that leads to a mutual pruning of
generated disjunctive choices.

For instance, in cases such as zyx = xxz Ax € a* Ay € a*tb* A z € b*, attempting
to eliminate the equation results in an infinite case split (using, e.g., Nielsen’s algo-
rithm [59] or the algorithm of [31]) and it indeed leads to failure for all solvers we have
tried. The regular constraints enforce UNSAT: since the y on the left contains at least
one b, the z on the right must answer with at least one b (x has only a’s). Then, since
the first letter on the left is the b of z, the first x on the right must be €. Since x = ¢,
we are left with zy = z, but the a’s within the y cannot be matched by the z on the
right as z has only b’s.

Our algorithm systematizes this kind of inference from equations and regular con-
straints. It gradually refines the regular constraints to fit the equation, until an infeasible
constraint is generated (with an empty language) or until a solution is detected. Detect-
ing the existence of a solution is based on our novel characterization of satisfiability of
a string constraint: a constraintxy ... X, = Xm41 ... Xn A Ajeq X; € Lang(x;), where all
x; are (not necessarily pairwise distinct) variables and Lang assigns regular languages
to these variables, has a solution if the constraint is stable, that is, the languages of the
two sides are equal, Lang(x1) - - - Lang(x,,) = Lang(x;,+1) - - - Lang(x,,). A refinement
of the variable languages is derived from a special product of the automata for concate-
nations of the languages on the left-hand and right-hand sides of the equation. For the
case with zyx = xxz above, the algorithm terminates after 2-refinements (as discussed
above, inferring that (1) z € b* and x = ¢, (2) there is no a on the right to match the
a’s in y on the left). Refinements keep accumulating information in regular constraint

that in turn allows us to prune branches that would be explored if the equation was
considered alone (the algorithm handles pure equations efficiently as well, by deriving
regular constraints).

Although our algorithm is complete for SAT formulae, in UNSAT cases the refinement
steps may go on forever. We prove that it is, however, guaranteed to terminate and
hence complete for the chain-free fragment [26] which is the most general decidable
combination of equations, regular and transducer constraints, and length constraints.
For this fragment, the language equality in the definition of stability may be replaced
by a single language inclusion. Only one refinement step is then sufficient.

We have experimentally shown that on established benchmarks featuring hard com-
binations of word equations and regular constraints, our prototype implementation is
competitive with a representative selection of string solvers (cvcS, Z3, Z3sTrR3RE, Z3-
Trau, Z3-aLpHA, OSTRICH). Besides being generally quite fast, it seems to be superior
especially on difficult instances and has the smallest number of timeouts.

This paper is an extended version of [60] presented at FM’23. It contains full
proofs, examples and text revisions, new experimental evaluation with updated tools,
and it also fixes several imprecisions.

2. Preliminaries

Sets, strings, languages. We use N to denote the set of natural numbers (including 0).
We fix a finite alphabet ¥ of symbols (usually denoted a, b, c, . . .) for the rest of the
paper. A sequence of symbols w = a; - - - a, from X is a word or a string over X, with
its length n denoted by |w|. The set of all words over X is denoted as X*. The empty
word is denoted by € (e ¢ X), with |e] = 0. The concatenation of words u and v is
denoted u - v, uv for short (€ is a neutral element of concatenation). A set of words over
Y is a language, the concatenation of languagesis Ly - Lo ={u-v |u € L1 Av € Lo},
L1 L, for short. Bounded iteration x', i € N, of a word or a language x is defined by
x0 = € for a word, x¥ = {€} for a language, and x'*! = x’ - x. Then x* = [J;cy x*. We
often denote regular languages using regular expressions with the standard notation.

Graphs. A directed graph G is a pair (V, E) where V is a set of verticesand E C VXV
is a set of edges. A strongly connected component (SCC) of G is a maximal subgraph
of G where each two vertices are reachable. An SCC is trivial if it has exactly one
vertex (which does not contain a self-loop) and non-trivial otherwise. An SCC C is
terminal if the set of vertices reachable from C equals C and source if there are no
edges coming from outside in C.

Automata. A (nondeterministic) finite automaton (NFA) over X is a tuple A = (Q, A,
I, F) where Q is a finite set of states, A is a set of transitions of the form g-{a}>r with
g,r € Qanda € U {e}, I C Q is the set of initial states, and F C Q is the set of final
states. A run of A overawordw € £*isasequence po~{ai»pjHazb ... {a.>p, where
forall 1 <i < nitholds that a; € X U {€}, pj_1dabp; € A,andw = a; - az---apn.
The run is accepting if py € I and p,, € F, and the language L(A) of A is the set
of all words for which A has an accepting run. A language L is called regular if it
is accepted by some NFA. Two NFAs with the same language are called equivalent.

An automaton without e-transitions is called e-free. An automaton with each state
belonging to some accepting run is trimmed. To concatenate languages of two NFAs
A=(Q,ANI,F)and A’ = (Q',N,I',F’"), we construct their e-concatenation ‘A o,
A =(QWO,AUN W{pH{ebq | p e F,qel'}, 1, F’). To intersect their languages,
we construct their e-preserving product ANe A’ = (Q X Q', A, IXI', F X F’) where
(q,q")4ap(r,r") € A* if and only if either (1) a € £ and gH{apr € A, ¢’ {apr’ € A,
or (2) a = e and either ¢’ =1/, g{ebr e Aorqg =r, g’ {epr’ € A.

Noodles. A noodle is an automaton which delimits n subautomata using e-transitions.
More precisely, an automaton N = (Q, A, {s}, {f}) is a noodle with n segments,
if for each i, 1 < i < n, there is an automaton N(i) = (Q;, A;, s;, f;) such that
MO =UL 0i, 2 A= A UAc, where each A; does not contain e-transitions
and A¢ = {fid{eps;41 | 1 < i < n} are connecting e-transitions, (3) s = s1, and
(4) f = fu. The language L(N) can then be seen as a concatenation of languages
L(N(1))eL(N(2))e---eL(N(n)).

String constraints. We focus on the most essential string constraints, Boolean combina-
tions of atomic string constraints of two types: word equations and regular constraints.
Let X be a set of string variables (denoted u, v, ..., z), fixed for the rest of the paper.
A word equation is an equation of the form s = ¢t where s and ¢ are (different) string
terms, i.e., words from X*.! We do not distinguish between s = r and t = 5. A regular
constraint is of the form x € L, where x € X and L is a regular language. A string
assignment is a map v: X — X*. The assignment is a solution for a word equation
s = tif v(s) = v(t) where v(¢’) for aterm ¢’ = xy ...x, is defined as v(x1) - - - v(x,),
and it is a solution for a regular constraint x € L if v(x) € L. A solution for a Boolean
combination of atomic constraint is then defined as usual.

3. Stability of String Constraints

The core ingredient of our algorithm, which allows us to tightly integrate equations
with regular constraints, is the notion of stability of a string constraint. It is used by our
algorithm to indicate satisfiability.

3.1. Stability of Single-Equation Systems
We will first discuss stability of a single-equation system

D: ep A /\ x € Langg(x)

xeX

where eg is an equation s = ¢, Langg: X — P(X*) is a language assignment, an
assignment of regular languages to variables. We say that a language assignment
Lang refines Langg if Lang(x) C Langg(x) for all x € X. If Lang(x) = 0 for
some x € X, it is infeasible, otherwise it is feasible. For a term u = x1...x,, we

Note that terms with letters from =, sometimes used in our examples, can be encoded by replacing each
occurrence o of a letter a by a fresh variable x,, and a regular constraint x, € {a}.

define Lang(u) = Lang(x1) - - - Lang(x,). We say that Lang is strongly stable for ® if
Lang(s) = Lang(?).

The core result of this work is that the existence of a stable language assignment
for @ implies the existence of a solution which is formalized below.

Theorem 1 (Strong stability). A single-equation system ® has a feasible strongly stable
language assignment that refines Langg, if and only if it has a solution.

To prove Theorem 1 we notice that a weaker, even though more technical, condition
works as well. It is min-stability, defined as follows. Let L™" denote the shortest
words of language L, i.e., L™™ = {w | w € Land |w| < |w’|forallw’ € L} and let
Lang™® denote the language assignment that uses only shortest words from Lang, i.e.,
for each x € X, Lang™"(x) = (Lang(x))"™". For a term u = x; ...x,, we define
Lang™™(x) = Lang™™ (x1) - - - Lang™™(x,,). We say that Lang is strongly min-stable
for @ if Lang™" (s) = Lang™™" ().

Theorem 2 (Strong min-stability). A single-equation system ® has a feasible strongly
min-stable language assignment that refines Langg, if and only if it has a solution.

The proof of min-stability is based on the proof technique commonly used in word
equations where, given an equation s = ¢, we find its solution by “filling the positions”
of the word represented by both sides of the equation so that it stays consistent. Such a
technique was used to give a proof for the periodicity theorem of Fine and Wilf [61, 62]
or to show that certain properties of words are not expressible as components of solutions
of word equations [63], and in many other works [64, 55, 65].

To be more precise, let e: x1 - - - X, = X1 - - - X, be @ word equation where we are
trying to find its solution v knowing that each variable x;,1 < i < n has a fixed length
lx,. We then define ¢ = Y7, b, = 21,1 {x as the length of the solution for the
equation sides.

The numbers between 1 and ¢ then represent the positions in the equation. Each
such position is connected with positions in the corresponding left-hand side and right-
hand side variables which we call atoms. Formally, the set of atoms for variable x;
is Atoms(x;) = {(x;,j) | 1 < j < {4} and we collect all atoms in the set Atoms =

", Atoms(x;). Each position p in the equation is then connected with its left atom
(xi, k) € Atoms(x;), 1 <i < m,andits right atom (x;, k") € Atoms(x;),m+1< j <n,
where p = 22—211 by, +k = Z{;;H Cy, + k. We define Atoms(p) = {(x;, k), (x;, k")}
and say that atoms (x;, k) and (x;, k") are opposite at the position p, or just opposite
(at some position). Last, we define the value of an atom (x,) in a string assignment v
as the ith symbol of the word v(x) and we denote it by v(x, i).

Example 1. Letus explain the notation on an example. X : y
Figure 1 shows an equation xy = zxw where we fix [GU[@D][@d [GD]0:2]0:3)]
the lengths £ = 3, ¢, =3, {; = 2, and ¢, = 1. The 2 3

left-hand side of the equation is shown in the upper
part, while the right-hand side is shown in the lower
part. We also have £ = 3+3 = 2+ 3 + 1 = 6 positions Figure 1: Equation xy = zxw

shown in the middle, where for example Atoms(2) = {(x,2), (z,2)} are the atoms
opposite at position 2. []

1 4 5 6
[co[E]@D[ED] @3 [(w.D]
z x tw

Notice, that for the two sides of the equation to be equal, we need to have the same
value for each pair of the opposite atoms. In the example above, the opposite atoms
(x,2) and (z, 2) must have the same value, but also the opposite atoms (y, 1) and (x, 2)
must have the same value, which also means that the atoms (z, 2) and (y, 1) must have
the same value.

This leads to a definition of an equivalence ~ of atoms as a transitive and reflexive
closure of the relation of being opposite. An atom class is then an equivalence class
of ~, and we denote by [a] . the atom class containing the atom «. In the example, we
have three such equivalence classes differentiated by colors.

In any solution, atoms from each atom class must have the same value. We say that
a string assignment v is consistent at a set T C Atoms if v assigns the same value to
every two ~-equivalent atoms (x, j), (x’, j*) € T. Obviously, v is a solution if and only
if it is fully consistent, i.e. consistent for the entire set Atoms.

A central element in the proof is the notion of a half-full position in T C Atoms. It
is a position with one of its atoms in 7" and the other one outside, a missing atom. A
position can also be empty, with no atoms inside 7 (all its atoms missing), or full, with
all atoms inside T (no atom missing). Note that consistency of a string assignemnt v
for T means that for every full position, v gives the same value to all its atoms.

Lemma 3. Let T C Atoms be a proper subset of Atoms without half-full positions and
v a string assignment consistent at T. Then v is also consistent at T" = T U {(x,i)}
where (x,i) € Atoms \ T is some atom not occurring in T.

Proof. Because T is without half-full positions, (x, i) is an atom of some empty position.
Therefore, the consistency of v at 7’ cannot be broken by having different symbol for
the opposite atom. Furthermore, no atom of [(x,i)]. could be in T, otherwise, by the
definition of ~, there would have to be some half-full position in 7. This means that v
must be consistent at 7”.]

Lemma 4. Let Lang be a feasible strongly min-stable language assignment for the
equation e: X1« -+ Xy = X1 - -+ Xp Such that for each x;, Ly, is the length of the words
from Lang™™ (x;). Let T C Atoms be a proper subset of Atoms for e with some half-full
position and v a string assignment consistent at T, such that it assigns to each variable
X; a string assignment from Lang™® (x;). Let p be the left-most half-full position of T
with (x, j) the atom of p that is missing in T. Then there is a string assignment v’ which
assigns to each variable xj a string assignment from Lang™i® (x i) and is consistent at

T =T u{(x. HP\{(x.j) 1 <j <t}

Proof. We assume that the missing atom (x, ;) is the left atom of p (the case with the
right atom is analogous). We construct v’ as follows. Let w = v(xp41) -+ - v(xp)
be the word obtained using the v-values on the right-hand side of the equation.
From min-stability of Lang, there must be words u1, ..., u, from the left languages
Langmin (x1), ..., Langmi“(xm), respectively, such that w = u; - - - u,, (note that this
sequence of words does not correspond to an assignment since it may associate different
occurrences of a variable with different words). Let p appear withing the h-th word uj,

in the sequence uq, ..., Uy, i.e., x = x,. We create v’ from v by replacing v(x) with
up,ie., we let
v =\ {x—v(x)}) U{x— up}.

We need to prove that v’ is consistent for 7. We first show that

v (x',j) =v(x, ') forevery (x',j') e T' \ {(x, j)} (1

This is obvious for any x’ different from x, as nothing has changed for it: v’ (x”) = v(x”")
and Atoms(x’) N T’ = Atoms(x’) N T. If on the other hand x” = x, then we argue
as follows. Let p’ = p — j + j’ (the position within the same occurrence of x as p
with (x, j’) € Atoms(p’)). Let atom (x”, j”) be the opposite atom of p’ (the right
atom). From the way v’ is constructed, copying the right atoms to the left, we know
that v’(x, j’) is the copy of v(x”’, j”). We need to show that the copying did not change
its value, i.e., that it had the same value before, that is v(x, j*) = v(x”, j”). From the
definition of 7" we know that j* < j therefore p’ < p. Since p is the left-most half-full
position, p’ must not be half-full in 7. Hence, having an atom in 7, p’ is full in T (p’
has an atom in T because T > T’ \ {(x,j)} and (x,) € T
setminus{(x, j)}). Therefore, since v is consistent for 7', both atoms of p’ had the same
value in v, hence v(x, j') = v(x”,j"’), so Eq. (1) holds. From this and the facts that
T > T\ {(x,)} and v is consistent in 7, it holds that v is consistent for 7’ \ {(x, j)}.
Finally, we need to show v’ stays consistent for 77, even with (x, j). That is, either
p is not full in 77, or, given (y, k), the other (right) atom of p, v'(x, j) = v'(y, k). We
note that (y, k) is in 7 because we p is a half-full position of 7. Therefore, we have

Vi(x, j) = v(y, k) @)

by the construction—the right-to left copying of atoms. We will distinguish two cases,
either x = y or not.

The first case, x # y, is easy. We have v(y, k) = v/(y, k) because the value of y in
v’ is the same as in v. Then v/ (x, j) = v'(y, k) by Eq. (2).

The second case, y = x, is more complicated. We have three possibilities:

(k < j) We know that (x, k) € T. Hence from k < j and the definition of 77, we have
that (x, k) € T’. Therefore, from Eq. (1), we know that v’ (x, k) = v(x, k). From
this and Eq. (2), we get v/ (x, j) = v/(x, k).

(k = j) This case is not possible since p would only have one atom and could never be
half-full.

(k > j) Here (x, k) ¢ T’ by definition, hence p is only half-full in 7”.]
We can use Lemmas 3 and 4 to prove Theorem 2:

Proof of Theorem 2. (<): Let v be a solution of ®. Then the language assignment
Lang that assigns to each x € X the singleton language {v(x)} is feasible and strongly
min-stable for ®.

(=): Let ep be x1 -+ Xy, = Xpe1 - - - X, and let Lang be a feasible strongly stable
language assignment that refines Langg,. We will show that we can find a solution v

that uses the shortest words, i.e., words from La ng‘“in. This fixes the length of the word
v(x;) for each variable x;, 1 <i < n, as the length ¢, of the shortest word in Lang(x;).

We will now, using Lemmas 3 and 4, construct a sequence (71,v1),..., (T, vk)
where foreachi : 1 <i < k, v; is astring assignment that (1) is consistent at 7; C Atoms
and (2) assigns to each variable x; a string from La ng™ (x 7). The sequence terminates
with T, = Atoms, a fully consistent v that is a solution of ®.

First, we start with (77, v1) where 77 = @ and v, randomly assigns to each variable
xi, 1 <i < n, some string from Lang™™(x;). Obviously, v; is consistent for 0.

Then, given (T}, v;) where v; is a string assignment consistent at 7; ¢ Atoms
assigning to each variable x; a string from Langmin (x;), we construct (T;41, vis1) in
the following way.

If T; does not contain a half-full position we set 7;.1 = T; U {(x,7)} where (x,7) €
Atoms \ T; is some atom not occurring in 7; and v;41 = v;. By Lemma 3, v;4; is
consistent at 7;,1 and it still assigns each variable x; a string from Lang™i® (x 7).

For the case that 7; contains a half-full position, we set

Tivn = (LU, DD\) 1) <) <t}

where (x, j) is the missing atom of the left-most half-full position of 7;. Then by
Lemma 4, there is a string assignment v;,1 that is consistent at 7;;1 and it assigns to
each variable x; a string from La ng™" (x 7).

It remains to show that the sequence eventually terminates with (T, vyx) where
Ty = Atoms. The sequence can terminate only when it reaches Atoms, so we only need
to show that the sequence grows under some (partial) order <. We define, for T}, T, C
Atoms, the relation < as 77 < 75 if and only if 7} = T or, if they are not equal, given
left-most position p at which 77 and 75 differ, we have Atoms(p) N7y € Atoms(p)NTs.
Itis easy to see that < is reflexive, antisymmetric and transitive, therefore it is a (partial)
order and foreach T;, 1 <i < k, we have T; < T;,1. Therefore, v, is a solution of ®. 0O

We can now return to the proof of strong stability:

Proof of Theorem 1. (<): Let v be a solution of ®. Then the language assignment
Lang that assigns to each x € X the singleton language {v(x)} is feasible and strongly
stable for ®.

(=): Let ep be x1 -+ Xy, = Xpe1 - - X, and let Lang be a feasible strongly stable
language assignment that refines Langg. Because Lang is strongly stable for @, then
we can easily show that is also strongly min-stable for @, i.e. if Lang(xy---x,) =
Lang(Xma1 - - - xn), then Lang™™ (x1 - - - x,) = Lang™™ (Xpma1 - - - Xn).

Indeed, from the equality of the languages, every concatenation wy - - - w,,, of mini-
mum length words on the left must have an equivalent counterpart w1 - - - w, on the
right, and vice versa. The words on the right must be minimal too since otherwise one
could compose a shorter word on the right, and its counterpart on the left would be
shorter than wy - - - w,,,, which contradicts that w1, . .., w,, are minimal.

Then from Theorem 2, @ must have a solution. m]

Weak stability. In special cases (that are practically relevant), we can use a sufficient
condition for satisfiability that is weaker than strong stability. Namely, we say that
t is loose in the equation eq : s = ¢ if all variables of ¢ appear in e only once.
In this case, the language equality in strong stability can be weakened to one-sided
language inclusion. We say that Lang is weakly stable for ® if ¢ is loose in eq and
Lang(s) C Lang(r), and we show a version of theorem Theorem 1 with weak stability:

Theorem 5 (Weak stability). A single-equation system ®: s =t A N\ ex X € Langg(x),
where t is loose, has a feasible weakly stable language assignment that refines Langg
if and only if it has a solution.

Proof. (<): Let v be a solution of ®. Then the language assignment Lang that assigns
to each x € X the singleton language {v(x)} is feasible and weakly stable for ®.

(=): Let Lang be a feasible weakly stable language assignment that refines Langg,
andleteq bexy - - X, = y1 -+ yp Where yy - -y, is loose, i.e. variables y;, 1 < j <n,
occur in the equations exactly once. We construct a solution v of ® by assigning strings
to variables on the left-hand side so that for each x;, 1 < i < m, v(x;) € Lang(x;).
From the weak stability of Lang, we know that v(x1)...v(x;) € Lang(xy...x,) C
Lang(y1...yn). We can therefore find words w; € Lang(y;), 1 < j < n such that
Ww1...w, = w. By the looseness of y; - - - y,, each y; occurs in the equation exactly

once, and so we can simply let v(y;) = w; to obtain a solution of ®. O

Note that weak stability allows multiple occurrences of a variable on the left-hand
side of s = ¢. Intuitively, the multiple occurrences must have the same value, and
having them on the left-hand side of the inclusion forces their synchronization. For
instance, for ®: xx = y Ax € {a,b} Ay € {ab}, the inclusion Lang(xx) C Lang(y)
is satisfied by no feasible refinement Lang of Langg, revealing that ® has no solution,
while Lang(xx) 2 Lang(y) is satisfied already by Langg, itself.

3.2. Stability of Multi-Equation Systems

Next, we extend the definition of stability to multi-equation systems, conjunctions
of the form @: E A A\ cx x € Langg(x) where &: AL, s; = t; for m € N. We assume
that the equations are pairwise different, i.e., {s;, t;} # {s;,¢;} if i # j.

We generalize stability in a way that combines both strong and weak stability of
single equation systems (Theorems 1 and 5) in a way that favors weak stability over
strong stability. Every equation s = ¢ is interpreted as the pair of language inclusions
Lange(s) C Langg(?), Lange(f) € Langg(s). The inclusions are represented as
inclusion terms sCt and tCs, respectively, that are satisfied under Langg when the
corresponding language inclusion hold. Generalizing the notion of looseness from
Section 3.1, we say that a term ¢ is loose in a set of inclusion terms I if each of
its variable has only a single occurrence in the right-hand sides of inclusions of 1.
The sufficient condition on the set of inclusions is then defined through the notion of an
inclusion graph for @. It is a directed graph G = (V, E) where vertices V are inclusion
constraints of the forms; Ct; ort; Cs;, for1 <i <m,and E C V XV, and which satisfies
the following conditions:

(IG1) For each s =t in &, at least one of the nodes sCt,tCsisin V.

(IG2) If sCt € V and ¢ is not loose in V, then also tCs € V.
(IG3) (siCti,sjCtj) € E ifand only if 5;Ct;,5;Ctj € V and s; and ¢; share a variable.
(IG4) If s;Ct; € V lies on a cycle, then also t;Cs; € V.

Note that by Condition (IG3), E is uniquely determined by V. A language assignment
Lang is stable for an inclusion graph G = (V, E) if it satisfies every inclusion in V.

Conditions (IG2)—(I1G4) specify where weak stability is not enough. Namely, Con-
dition (IG2) enforces that to use weak stability, multiple occurrences of a variable can
only occur on the left-hand side of an inclusion (as in the definition of weak stability),
otherwise strong stability must be used. The edges defined by Condition (IG3) are used
in Condition (IG4). An edge means that a refinement of the language assignment made
to satisfy the inclusion in the source node may invalidate the inclusion in the target
node. Condition (IG4) covers the case of a cyclic dependency of a variable on itself.
A self-loop indicates that a variable occurs on both sides of an equation (breaking the
definition of weak stability). A longer cycle indicates a cyclic dependency caused by
transitively propagating the inclusion relation.

We will now work towards showing that satisfiability of ® is equivalent to existence
of an inclusion graph that is stable for a feasible refinement of Langg, (Theorem 7). In
the proofs, we use Vars(C) to denote the set of all variables that occur in the vertices
of C C V. Recall that SCC stands for strongly connected component. We start by
proving some technical properties of inclusion graphs:

Lemma 6. Let G = (V, E) be an inclusion graph of ®. Then the following holds:
1. Every non-trivial SCC of G is terminal.
2. Forany two different non-trivial SCCs C1 and C of G, Vars(Cy)N Vars(Cs) = 0.

3. Ifx is a variable on the right-hand side of some vertex sCt that is a trivial SCC,
then x occurs in sCt exactly once.

4. Let Cy and Co be two different SCCs of G where C1 is terminal. For every
variable x € Vars(Cy), x does not occur on the right-hand side of any vertex of
Co.

Proof.

(1) For the sake of contradiction, assume that there is a non-trivial SCC C of G, a vertex
sCt € V that is not in C, and a vertex sc Ctc € C such that (sc Ctc,sCt) € E. From
Condition (IG3), it follows that s¢ and share a variable, for example x. As vertexsc Ctc
belongs to a non-trivial SCC, it must lie on a cycle, so from Condition (IG4) we have
a vertex tc Csc € V. The variable x then occurs on the right-hand side of at least two
vertices (tc Csc and s Ct), so by Condition (IG2), there needs to be the vertex tCs € V.
From Condition (IG3), we obviously have edges (sCt,tCs) and (tc Csc,scCtc) in E,
and also, since s¢ and ¢ share x, we have the edge (tCs,tcCsc) € E. But then C is
reachable from sCt, which is a contradiction.

10

(2) For the sake of contradiction, assume there are two different non-trivial SCCs Cy
and Co of G and a variable x € Vars(Cy) N Vars(Cs). Then there will be vertices
s1Cty,t1Cs; € C1 and s, Cty, th Csp € Cy with occurrences of x in s; and so. From
Condition (IG3), there are edges (s; Ct1,t2Csy) € E and (s, Ctp,t1 Cs1) € E, which
is a contradiction with the assumption that C; and Cs are different.

(3) We have to show that x cannot occur in s, nor can there be two occurrences of
x in t. If x occurred in s, then there would be a self-loop and by Condition (IG4),
tCs € V. Similarly, if x occurred twice in ¢, by Condition (IG2), tCs € V. However,
by Condition (IG3), there will be edges (sCt,tCs) € E and (tCs,sCt) € E, therefore
sCtis not a trivial SCC, which is a contradiction.

(4) For the sake of contradiction, assume that x occurs in some vertex s; Ct; of C; while
it also occurs on the right-hand side of some s, Cty of Cs.

If Cy is non-trivial, then, from Condition (IG4), both s; Ct; and t; Cs; must belong
to C1, therefore x occurs on the left-hand side of one of these vertices of C;. We then
have either edge (s; Ct1,s2 Cty) or (s3Cs,52 Ctp) from SCC Cy to SCC Co, which is
a contradiction with C; being terminal.

If C; is trivial, then it contains only the vertex s; Ct;. If x occurs in s1, then there
is an edge (s; Cty,sp Ctp) € E, which is again a contradiction with C; being terminal.
Therefore, x must occur in 1, i.e., it occurs on two right-hand sides in G. However,
from Condition (IG2), there will also be a vertex t; Cs; € V and by Condition (IG3),
there will be edges (s; Cti,t1Cs1) € E and (t; Csy,s1Cty) € E, therefore sy Cty is
not a trivial SCC, which is a contradiction. m]

The following theorem then puts a relation between the satisfiability of a string
constraint and the stability of the corresponding inclusion graph. Intuitively, the set of
inclusions needed to guarantee a solution is specified by the vertices of an inclusion
graph. All equations must contribute with at least one inclusion, by Condition (IG1).
Including only one inclusion corresponds to using weak stability. Including both
inclusions corresponds to using strong stability.

Theorem 7 (Inclusion graph stability). Let G be an inclusion graph for ®. There is
a feasible language assignment that refines Langg, and is stable for G if and only if ®
has a solution.

Proof. (<): Let v be a solution of ®. Then the language assignment Lang that assigns
to each x € X the singleton language {v(x)} is feasible and stable for G.

(=): We will show how to construct a solution of ® given a feasible language
assignment Lang that refines Langg and is stable for G. Intuitively, the construction
proceeds by refining Lang with the solutions of equations from ®, starting with those
whose inclusions occur in non-trivial SCCs (using Theorem 1) and then proceeding
upward on the structure of G, with equations with only one inclusion in G (using
Theorem 5),

Formally, let us consider a non-trivial SCC C of G, which, by Lemma 6(1), must
be terminal. Since each vertex sCt of C lies on cycle, from Condition (IG4), the vertex
tCs must be also in C. Therefore, since Lang is feasible and stable for G (and so also
for C), it is also a feasible strongly stable language assignment for s = . We would

11

now want to apply Theorem 1 to find a solution v for s = ¢, which we would then use
to refine Lang to create new language assignment Lang’, in which each variable x from
s = t is mapped to the singleton language {v(x)}.

However, it is possible that Lang” would then not be stable for other vertices of C (it
would be still stable for vertices outside C, as according to Lemma 6(4), variables from
C can only occur on the left-hand sides of vertices of other SCCs, and refining languages
on the left-hand side has no impact on the stability). Therefore, we need to find the
solution of the system ®@c: Ec A A e vars(c) X € Lang(x) where Ec: /\f-‘=1 si =1
contains only equations of @ whose inclusions appear in C. This is still multi-equation
system, but we can transform it into single-equation system using the following trick.
Let # be a fresh symbol. We create a single-equation system

sifisoff .. Hsk = tifitall. . Mt A /\ x € Lang(x)

xe Vars(C)

whose solutions are exactly the solutions of ®¢ and Lang is stable for it. According to
Theorem 1, this system has a solution v¢, which is also a solution of ®¢.

We can now take such a solution v¢ for each non-trivial SCC C (note again, that by
Lemma 6(2), they do not share variables) and use them to refine Lang in the following
way:

, {w} if (x = w) € v¢ for some non-trivial SCC C,
Lang’'(x) =

Lang(x) otherwise.

Because we changed assignment only of the variables occurring in non-trivial SCCs,
the language assignment Lang’ is still stable for G.

We now proceed by creating a graph G’ by removing all non-trivial SCCs from G
(they are not needed any more since we have their solutions in Lang”) and iteratively
applying following step until G’ is empty. Take and remove any terminal vertex u = sCt
from G’ (G’ contains only trivial SCCs, so it must be acyclic, i.e., it contains a terminal
vertex). As {u} is a trivial SCC of G, by Lemma 6(3), every variable on the right-
hand side 7 occurs in the corresponding equation s = ¢ exactly once. Therefore, ¢
is loose in s = ¢ and we can use Theorem 5 with the single-equation system @, :=
5 =1 A Axevars({u}) X € Lang’(x) to get a string assignment v,,, which assigns strings
to the variables in Vars({u}) and is a solution of ®,. We now refine Lang’ by
assigning to each variable x € Vars({u}) the singleton {v, (x)} its solution. Note that
by Lemma 6(4), Lang’ stays stable for G’, as u does not share any variable with the
right-hand side of any remaining vertex (and again, refining languages for variables on
the left-hand side only has no impact on the stability of inclusions).

At the end, we are left with a language assignment Lang’, which assigns to each
variable a string. We can therefore take the corresponding string assignment v, where
for each variable x, we have v(x) = w if and only if Lang’(x) = {w}. This assignment
is a solution for ® as we have shown that it is a solution for every equation of ® and
Lang’ is a refinement of Lang. m|

Min-stability. In our algorithm, we will use inclusions in the graph as a test for ter-
mination. However, inclusion testing is generally an expensive operation. To make it

12

simpler, we can, analogously as for single-equation system, define the notion of min-
stability for inclusion graphs. We say that the language assignment Lang is min-stable
for an inclusion graph G = (V, E) if for every inclusion v = sCt € V, it holds that

1. if v forms a trivial SCC, then normal (not minimal) stability holds for it, i.e.,
Lang(s) C Lang(z),

2. if v is in non-trivial SCC, then Lang™"(s) C Lang(z).
We can prove that min-stability is guarantees a solution:

Theorem 8 (Inclusion graph min-stability). Let G be an inclusion graph for ®. There
is a feasible language assignment that refines Langq, and is min-stable for G if and only
if © has a solution.

Proof. The proof is nearly identical to the proof of Theorem 7 but, to construct the
solution for non-trivial SCCs C, we need to use Theorem 2 instead of Theorem 1.
However, to be able to use Theorem 2, we have to prove that if Lang™" (s) C Lang(7)
and Lang™™(7) C Lang(s) both hold, then Lang™"(s) = Lang™™"(¢).

Indeed, every concatenation wg of minimum length words of s must have an equiv-
alent counterpart w, for r. But, w, must also be a concatenation of minimum length
words, otherwise one could compose a shorter concatenation, and its counterpart in s
would be shorter than w, which contradicts that w consists of minimum length words.

Furthermore, from Lemma 6(2) and 6(4), we have that variables of C can occur
outside C only on the left-hand side of trivial SCCs, where we use normal stability.
Hence, we cannot break their stability by using the solution of C for refining the language
assignment. O

It would seem that min-stability for inclusion graphs could be defined with the
condition Lang™" (s) C Lang(r) holding for all inclusions of the graph, even those that
form trivial SCCs. We can easily prove that Theorem 5 holds even in the case where we
use weak min-stability, i.e., when for an equation s = ¢ with loose ¢, we have language
assignment Lang with Lang™®(s) C Lang(r). We would then replace Theorem 5 in
the proof of Theorem 7, with the one using weak min-stability to construct the solution
of such equation. However, this is not correct, as this solution does not necessarily use
the shortest words in the right-hand side. For example, given a multi-equation system
x=yAy=zAx€{a} Ay € {a,aa} Az € {aa} and an inclusion graphyCz — xCy,
we can see that for both inclusions, the shortest word on the left-hand side is included
in the language of the right-hand side, but the system does not have a solution.

3.3. Constructing Inclusion Graphs and Chain-Freeness

We now discuss an algorithm for constructing a suitable inclusion graph, i.e. one
that contains as few inclusions as possible and is acyclic whenever possible.

The graph is obtained from a simplified version of the splitting graph of [26],
which is the basis of the definition of the chain-free fragment, for which our algorithm
is complete. More formally, a simplified splitting graph SG¢ for a multi-equation
system @: /\ﬁ1 s; = t; is a directed graph whose nodes are all inclusions s; Ct;, t; Cs;,

13

have a different occurrence of the same variable (the “different” here meaning not the
same position in the same term in the same equation, e.g., for inclusions induced by the
equation x =y, for x, y € X, there will be no edge between x Cy and y C x, while for the
equation xx = y, there will be an edge from xxCy to y Cxx, as there are two different
occurrences of x in xx = y).

The algorithm will be designed based on the following observations, that follow
from Lemma 6(1) and are reflected in the lemmas below.

for 1 < i < m, and it has an edge from sCt to s'Ct’ if and only if s and ¢’ each

1. Nodes on cycles in a minimal inclusion graph are exactly nodes on cycles in the
simplified splitting graph.

2. Only a terminal SCC of an inclusion graph can be non-trivial (Lemma 6(1)).

This means that a minimal inclusion graph consists of non-trivial SCCs that correspond
to non-trivial SCCs in the splitting graph, and from acyclic paths leading to them. The
acyclic paths are constituted by nodes that do not have their duals in the inclusion graph,
since otherwise they would form a cycle. The algorithm therefore constructs the graph
by first unfolding the acyclic paths, after which it adds the terminal SCCs.

The algorithm for constructing an
inclusion graph from SG4 starts by it-
eratively removing nodes that are triv-
ial source strongly-connected compo- .
nents (SCCs) from SGo. With eyery 2 while G has a trivial source SCC ({v}, 0) do
removed node v = sCt, the algorithm 5 G := G\ {v,dual(v)}
removes from SG¢ also the dual node V= VU (v}
5
6
7

Algorithm 1: inc1(®)
Input: A multi-equation system ®.

Output: An inclusion graph for ®.
G:=5Gg;V =0

dual(v) = tCs, and it adds v to the in-
clusion graph. When no trivial source
SCCs are left, the algorithm adds to the
inclusion graph all the remaining nodes.

The pseudocode of the algorithm is shown in Algorithm 1. It uses SCC(G) to denote
the set of SCCs of G and G \ V to denote the graph obtained from G by removing the
vertices in V together with the adjacent edges.

V := V’U the remaining nodes of G
E := edges induced by (IG3) for V
return (V, E)

Example 2. In the picture on the right, we show an example of
the construction of the inclusion graph G from SGg for &: z = = s
uAu=vAuvx = x. Edges of SG¢ are solid lines, the inclusion l PO [
graph has both solid and dashed edges. The inner red boxes are i s
the non-trivial SCCs of SGg. They are enclosed in the box of J [
nodes that are added on Line 5 of Algorithm 1. The outermost box Ty
encloses the inclusion graph, including one node added on Line 4.]

Lemma 9. Let SGg = (V, E) be the simplified splitting graph for a multi-equation
system ® and V. C V the nodes that are on some cycle of SGg. Let v € V be a node
with a path from V.. to dual(v). Then every inclusion graph for ® contains node v.

Proof. Let m = uy,uo,...,u,, where u, = dual(v), be the path from V, to dual(v).
We show by induction that dual(u;), 1 <i < n, must be in every inclusion graph for ®
which immediately proves the lemma, as dual(u,) = v.

14

Base case (i = 1): We have u; € V., i.e., there is a cycle n, = uy,vi,va, ...,V U1
in SGg. By contradiction, assume that there exists an inclusion graph G =
(Vg, Eg) that does not contain dual(uy). By Condition (IG1), u; € V. Fur-
thermore, there must be a vy = sk Cty € 7, s.t. vg € Vi, otherwise the cycle
7. would be fully in G (as the condition for edges of SG¢ is a stricter version
of (IG3)) and by (IG4), dual(u1) would have to be a node of G. By Condi-
tion (IG1), we again have dual(vg) € V. Let k be the largest possible, i.e.
Vi+1l = Sk+1 Ctre1 € Vg (for k = m we have vi,1 = uy). Furthermore, from the
fact that (v, vis+1) € E, there must be different occurrences of some variable x in
sk and t.41. But sy is on the right-hand side of dual(vy), tx+1 is on the right-hand
side of vi,1, and both these nodes are in G, therefore, from Condition (IG2),
vk € Vg, which is a contradiction.

Induction step (i > 1): We know that dual(u;_1) is in every inclusion graph for ®. By
contradiction, assume that there exists an inclusion graph G = (Vg, Eg), where
dual(u;) ¢ Vg, so by Condition (IG1), u; € V. From (u;-1,u;) € E, we know
that there are different occurrences of some variable x on the left-hand side of
u;—1 and the right-hand side of u;. But then x occurs both on the right-hand side
of u; and right-hand side of dual(u;-1), both these nodes are in G, therefore,
from Condition (IG2), dual(u1) € Vi, which is a contradiction. |

Theorem 10. For a multi-equation system ®, incl(®) is an inclusion graph for ®
with the smallest possible number of vertices. Moreover, if the simplified splitting graph
SGg is acyclic, then incl(®D) is also acyclic.

Proof. Let Gg = (V, E) be a graph obtained by inc1(®) and V' a set of vertices at the
end of the algorithm, i.e., on Line 5. We prove that G4 meets Conditions (IG1)—(IG4).

Condition (IG1) Follows trivially from Algorithm 1.

Condition (IG2) Consider some u = sCt € V for which Condition (IG2) does not
hold, i.e., dual(u) ¢ V (which also means that u € V') and the term ¢ contains
a variable x, which either occurs twice in ¢ or there is some other vertex u’ =
s’ Cwixwy € V. If x occurs twice in ¢, then there is an edge from dual(u) to u in
SGg. Since u € V’, we have that u had to be a source at the time of his adding
to V’, but that is not possible, as dual(u) can be only removed while we add u to
V’. We can therefore assume we have some other vertex u’ = s’ Cwixw, € V.
Because of the variable x, there is an edge in SG¢ from dual(u’) = wixw, Cs’
to u and from dual(u) to u’. Again, u had to be a source at the time of his adding
to V', so either u’ or dual(u’) had to be added to V’ first. As there is an edge
from dual(u) to u’, u’ cannot be added before u. However, adding dual(u”) to V*
would mean that ¥’ ¢ V, which is a contradiction.

Condition (IG3) Given directly from Line 6 of Algorithm 1.

Condition (IG4) Let 7 = vy,va,..., Vg, v1 be acycle in Gg. We need to show that
no node of 7 could have been added to V’. If that holds, all duals of nodes of x
must be in Gg. We can show this by showing a cyclical dependency between the

15

nodes, i.e., to add v; to V’, we had to add v;_; to V’ before (fori = 1, by i — 1
we mean k). If there is an edge (v;_1, v;) in SG 4, then obviously, v; can become
source (and therefore be able to be added to V') only after v;_; had been added
to V’. We can therefore focus only on the case where (v;_1,v;) is in G¢ but not
in SG . This can only happen when the left-hand side of v;_; and the right-hand
side of v; share variables, but only the same occurrences, i.e., v;—1 = dual(v;).
However, this means that by adding v;_; or v; to V’, we would remove the other
one from G ¢, which is a contradiction with 7 being a cycle of G .

To show that G is the inclusion graph with the smallest possible number of vertices,
we need to realize that for each node v of SG¢, each inclusion graph must contain at
least one of v and dual(v). We can now divide nodes of SG¢ according to Lemma 9:
those whose dual is reachable from some cycle and those whose dual is not. For the
first group, all these nodes will be in every inclusion graph. For the second group,
either v is added to V’ during the run of the algorithm (which removes dual(v) from
the graph) or dual(v) will eventually become trivial source SCC (and will be added to
V’, removing v). Either way, G ¢ contains only one of v and dual(v), which means it
has the smallest possible number of vertices.

We now prove the second part of the theorem. Assume that SG ¢ is acyclic. During
the computation, we only remove vertices from SG g, which means that it always stays
acyclic. Furthermore, acyclicity implies that we can always find some trivial source
SCC on Line 2. Therefore, no inclusion of the resulting inclusion graph Gg has its
dual in G, and hence, from Condition (IG4), we know that it must be acyclic. m]

In Section 4, we will show a satisfiability checking algorithm that guarantees ter-
mination when given an acyclic inclusion graph. Here we prove that the existence of an
acyclic inclusion graph coincides with the chain-freeness of string constraints [26] (al-
though looking from the equation point of view, chain-free equations are incomparable
with the fragment of quadratic equations, the chain-free fragment of equations, regular,
length, and transducer constraints is the largest known decidable fragment involving all
these extended string constraints). Chain-free constraints are defined as those where the
splitting graph of [26] is acyclic. As the following lemma shows, chain-free constraints
without transducers can also be defined using simplified splitting graph SG .

Lemma 11. A multi-equation system @ is chain-free if and only if SG 4 is acyclic.

Proof. Let G = (P, E,var, con) be a splitting graph for ® as defined in [26]. For the
following proof, it is enough to know that P contains a unique node (called position)
for each occurrence of a variable in each equation (the equation x1 ...xX, = y1...Ym
adds n + m nodes to P) and that there is an edge from position p to p’ if and only if
there is an intermediate position p”’ where p” and p”’ are different positions of the same
variable and p and p’’ are positions in the same equation but on opposite sides. We
need to show that G contains cycle if and only if SG¢ contains cycle.

(=)Letm = pipo--: pn, where p1 = p,, be acycle of G. We define a mapping M
from the positions of the cycle 7 to nodes of SG ¢, where position p of equation s = ¢ is
mapped in M to either sCt (if p is a position of 7) or to t Cs (if p is a position in 5). We
now prove that for each i, 1 < i < n, there is an edge from M (p;) to M(p;+1) in SGg

16

(which means that M () = M(p1) --- M(p,) is acycle of SGg). Let M(p;) = s;Ct;
(p; is a position of #;) and M (p;+1) = Si+1 Cti+1 (pi+1 1s a position of #;41). Because
there is an edge from p; to p;+1, there must be a position g opposite of p; (g is a position
of s;) and p;4+1 and g represent different occurrences of the same variable. From the
definition of SG g, it immediately follows that there is an edge from M (p;) to M(p;+1)-

(&) Letm =s;Ct1---s,Ct, be a cycle of SGg (the first and the last vertex of 7
are the same). We take n’ = py1ps--- pn, where p1 = p,, and for each i, 2 < i < n,
p; is defined in the following way. From the definition of SG¢ and because there is a
transition from s;_; Ct;_; to s; Ct;, the same variable x must occur both in s;_; and #;
(and the occurrences are different). We take p; as the position of the occurrence of x
in ¢#; and let g be the position of the occurrence of x in s;_;. We now have that ¢ and
p; are different positions of the same variable x, p;_; is opposite of g (g is position of
t;—1), hence there is a transition from p;_; to p; in G. Therefore, 7’ isacycleof G. O

Theorem 12. A multi-equation system @ is chain-free if and only if there exists an
acyclic inclusion graph for ®.

Proof. (=): If @ is chain-free, then by Lemma 11, the corresponding simplified
splitting graph SG¢ is acyclic. From Theorem 10, inc1(&) is then acyclic inclusion
graph.

(&): If @ is not chain-free, then the corresponding simplified splitting graph SG &
contains a cycle 1 = vi,va, ..., v,, vy. Itis easy to see that if there is an edge (v, v’) in
SG g, then there is also an edge (dual(v’), dual(v)) in SG¢. This means that there is
also a cycle dual(m) = dual(vy), dual(vy),...,dual(vy) in SGg. From Lemma 11 we
have that vy, . .., v, are nodes of every inclusion graph for ® and because the condition
for edges of SG¢ is a stricter version of Condition (IG3), every inclusion graph must
contain the cycle 7. O

Corollary 13. A multi-equation system @ is chain-free if and only if inc1(®) is acyclic.

Proof. From Theorems 10 and 12 and Lemma 11. |

4. Algorithm for Satisfiability Checking

Our algorithm for testing satisfiability of a multi-equation system @ is based on
Theorem 7. The algorithm first constructs a suitable inclusion graph of & using
Algorithm 1 and then it gradually refines the original language assignment Langg
according to the dependencies in the inclusion graph until it either finds a stable feasible
language assignment or concludes that no such language assignment exists.

A language assignment Lang is in the algorithm represented by an automata assign-
ment Aut, which assigns to every variable x an e-free NFA Aut(x) with L(Aut(x)) =
Lang(x). We use Aut(¢) for a term ¢ = x7...x, to denote the NFA Aut(xy) o,
- 0¢ Aut(x,). In the following text, we identify a language assignment with the
corresponding automata assignment and vice versa.

17

Figure 2: Automata constructions within the refinement. Dashed lines represent €.

4.1. Overview

We will first give an informal overview of our algorithm on the following example
xyx=zu A ww=xa A ué€ (baba)'a AN ze€a(ba) 3)

with variables u, w, x, y, z over the alphabet £ = {a, b}.

Our algorithm works by iteratively refining/pruning the languages in the regular
membership constraints from words that cannot be present in any solution. We denote
the regular constraint for a variable x by Lang(x). In the example, we have Lang(u) =
(baba)*a, Lang(z) = a(ba)* and, implicitly, Lang(x) = Lang(y) = Lang(w) = X*.

The equation xyx = zu enforces that any solution, an assignment v of strings to
variables, satisfies that the string s = v(x) - v(y) - v(x) = v(z) - v(u) belongs to the
intersection of the concatenations of languages on the left and the right-hand side of
the equation, Lang(x) - Lang(y) - Lang(x) N Lang(z) - Lang(u), as in Eq. (4) below:

se X X X N a(ba)* (baba)*a. “)

We may thus refine the languages of x and y by removing those words that cannot
be a part of any string s in the intersection. The refinement is implemented over finite
automata representation of languages, assuming that every Lang(x;) is represented by
the automaton Aut(x;). The main steps of the refinement are shown in Fig. 2. First, we
construct automata for the two sides of the equation:

* Axyx is obtained by concatenating Aut(x), Aut(y), and Aut(x) again. It has
e-transitions that delimit the borders of occurrences of x and y.

e Aj,, is obtained by concatenating Aut(z) and Aut(u).

We then combine Ay, with Ay, through a synchronous product construction that
preserves e-transitions into an automaton Ay, Ne Az,. Seeing € as a letter that delimits
variable occurrences, Axyx Ne Ay, accepts strings ay ea”ea; such that afa’a; €
Lang(z) - Lang(u), af € Lang(x), @ € Lang(y), and o € Lang(x).

Note that for refining the languages of x and y on the left, we do not need to see the
borders between z and u on the right. The e-transitions can hence be eliminated from

18

Figure 3: Remaining noodles, leading to empty language for x. Useless states are trimmed, so noodles N2
and N3, that do not have useful states, are not shown.

A, and it can be minimized. In our particular case, this gives much smaller automaton
than the one obtained by connecting Aut(z) and Aut(u) (representing a(ba)* and
(baba)*a, respectively).

To extract the new languages for x and y from Ay Ne Az, We decompose the
automata to a disjunction of several noodles of 3 segments. Each noodle represents a
concatenation of languages LyeL”eL}, and is obtained by choosing one e-transition
separating the first occurrence of x from y (the left column of red e-transitions in Fig. 2),
one e-transition separating y from the second occurrence of x (the right column of blue
e-transitions), removing the other e-transitions, and trimming the automaton. We have
to split the product into noodles because some values of x can appear together only with
some values of y, and this relation must be preserved after extracting their languages
from the product (for instance, in Ayyx Ne A, in Fig. 2, both first occurrences of x
and y can have, among others, values aa and €, but if x = aa then y must be €).

Fig. 2 shows two noodles, N2 and N3, out of 9 noodles that would be generated
from AyyxNe Ay (the notation N, ; indicates the chosen red and blue epsilon transition,
respectively). For each of the 9 noodles, we extract the automata for languages L7,
LY, and L3 (their initial and final states are the states with incoming and outgoing
e-transitions in the noodle). The refined language for y is then Lang(y) = LY. The
refined language for x is obtained by unifying the languages of the first and the second
occurrence of x, Lang(x) = L{ N L3 (by constructing a standard product of the two
automata):

¢ For Ngo, the refinement is y € (ba)* and x € a (computed as a(ba)* N (ba)*a).

e For N3j, the refinement is y € a(ba)*a and x € € (computed as (ab)* N €).

The 7 remaining noodles generated from Ay x Ne Az, shown in Fig. 3 yield x €) and
are discarded. Noodles N2 and N3; spawn two disjunctive branches of the computation.
For the branch of Nog, we use the equation ww = xa for the next refinement. Using

19

Algorithm 2: refine(v, Aut)
Input: A vertex v=sCtwiths =x1---x,andt=y1- -y,
An automata assignment Aut
Output: A tight refinement of Aut w.r.t. v

1 Product := Aut(s) Ne minimize(Aut(t))

2 Noodles := noodlify(Product)

37 :=0

4 for N € Noodles do

5 Aut’ := Aut

6 for1 <i<ndo

7 ‘ Aut’(x;) == N{N() |1 < j <n,x; =x;}
8 if L(Aut’(s)) = 0 then continue

9 7 :=9 U {Aut'}

10 return 7

the newly derived constraint x € a, we obtain:

w w = X a
~—~ —
se X XN a a. &)

Similarly as in the previous step, the refinement deduces that w € a. At this point, the
languages on both sides of all equations match, and so no more refinement is possible:

X y X = z u w w = X a
—_— —_—— —_— —_
a (ba)* a = a(ba)* (baba)*a and a a = a a. (6)

We therefore found a stable language assignment, therefore, a solution is guaranteed
to exist (see Theorems 1 and 7). We can thus conclude with SAT.

4.2. Refining Language Assignments by Noodlification

The task of a refinement step is to create a new language assignment that refines
the old one, Lang, and satisfies one of the inclusions previously not satisfied, say sCt.
In order for the algorithm to be sound when returning UNSAT, a refinement step must
preserve all existing solutions. It will therefore return a set 7 of refinements of Lang
that is tight w.r.t. sCt, that is, every solution of s = ¢ under Lang is also a solution of
s = t under some of its refinements in 7.

Algorithm 2 computes such a tight set. Line 1 computes the automaton Product,
which accepts Lang(s) N Lang(z). In order to be able to extract new languages for
the variables of s from it, Product marks borders between the variables of s with
e-transitions. That is, when € is understood as a special letter, Product accepts the
delimited language L€ (Product) of words wie---ew, with w; € Lang(x;) for 1 <
i <nandwy---w, € Lang(f). Notice that Aut(z) is minimized on Line 1. This
means removal of e-transitions marking the borders of variables’ occurrences, and then
minimization by any automata size reduction method (we use simulation quotient [66,
67]). Since the product is then representing only the borders of the variables on the left

20

(because Aut(s) keeps the e-transitions generated from the concatenation with o), but
not the borders of variables in ¢, it does not actually generate an explicit representation
of possible alignments of borders of variables’ occurrences.

We then extract from Product a language for each occurrence of a variable in s.
Line 2 divides Product into a set of noodles of n segments that preserve the delimited
language in the sense that ne noodies L€ (N(1) 0¢ - -+ 0¢ N(n)) = L€ (Product).

Technically, assuming w.l.0.g that Product has a single initial state ry and a sin-
gle final state g,, noodlify(Product) generates one noodle N for each (n — 1)-tuple
qi14epri,...,qn-11€ebr,_1 of transitions that appear, in that order, in an accepting
run of Product (note that every accepting run has n — 1 e-transitions by construc-
tion of Product, since Aut(s) also had n — 1 e-transitions in each accepting run and
minimize(Aut(r)) is e-free): for each 1 < i < n, N(i) arises by trimming Product
after its initial states were replaced by {r;_1} and final states by {g;}.

The for loop on Line 4 then turns each noodle N into a refined automata assignment
Aut” in 7 by unifying/intersecting languages of different occurrences of the same
variable: for each x € X, Aut’(x) is the automata intersection of all automata N (i) with
x; = x. The fact that 7 is a tight set of refinements (i.e., that it preserves all solutions
of Aut) follows from that every path of Product can be found in Noodles and that the
use of e-transitions allows us to reconstruct the NFAs corresponding to the variables.

Example 3. Consider the multi-equation system ®: xyx = zu A ww =

xa Au € (baba)*a A z € a(ba)* from Section 4.1 and the vertex
xyxCzu of its inclusion graph given on the right. The construction of
the product automaton Product from Algorithm 2 and the set of noodles
noodlify(Product) = {Ni1,...,Nss} are shown in Figs. 2 and 3. On
Line 6, we need to compute intersections of N;;(1) N N;;(3) for each noodle N;;.
These parts of the noodle correspond to the two occurrences of the same variable x.
The only noodles yielding nonempty languages for x are N2 and Ns;. The noo-
dle Noo leads to a refinement Autso of Aut where L(Autos(x)) = Noo(1) N Nog(3) =
a(ba)* N (ba)*a = a. The noodle N3; leads to a refinement Auts; of Aut where
L(Autgl(x)) = Ngl(l) N N31(3) = (ab)* Ne=Ee.]

4.3. Satisfiability Checking by Refinement Propagation

We introduce two versions of an algorithm for checking satisfiability of multi-
equation system ®. The first one, propagate(®), uses normal stability of inclusion
graphs (Theorem 7) while the second one, propagate,,,,, (P), uses min-stability (The-
orem 8). The pseudocode of propagate(®) is given in Algorithm 3, while the version
propagate,, .. (®) is obtained from it by replacing Line 9 by the red comment on
Line 8. In this section we focus on propagate(®).

The algorithm starts with the inclusion graph Gg = (V, E) computed using Al-
gorithm 1 and the automaton assignment Autg corresponding to Langg,. It then uses
graph nodes s Ct not satisfied in the current Aut to refine it, that is, to replace Aut by
some automaton assignment returned by refine(sCt, Aut).

The algorithm maintains the current value of Aut and a worklist W of nodes for
which the stability condition might be invalidated, either initially or since they were
affected by some previous refinement. Nodes are picked from the worklist, and if the

21

Algorithm 3: propagate(®) / propagate,

min (

D)

Input: A multi-equation system ®
Output: SAT if @ is satisfiable
UNSAT if @ is unsatisfiable

1 Gg := incl(®) with Gg = (V,E)
2 Autg := {x — NFA accepting Langg(x) | x € X}

// V are ordered compatible with a topological order of the SCCs
3 Branches := ((Aute, toposort(V)))
4 while Branches # 0 do
5 (Aut, W) := Branches.dequeue()
6 if W = (then return SAT
7 v =sCt := W.dequeue()
8 // if L™ (Aut(s)) € L(Aut(t)) and v is in non-trivial SCC of G then
9 if L(Aut(s)) € L(Aut(z)) then

10 ‘ Branches.enqueue((Aut, W))

11 else

12 T :=refine(v, Aut)

13 W =W

14 foreach (v,u) € E s.t. u ¢ W do

15 ‘ W’ .enqueue(u)

16 foreach Aut’ € 7 do

17 ‘ Branches.enqueue((Aut’, W’))

18 return UNSAT

inclusion at a node is found not satisfied in the current automata assignment Aut, the
node is used to refine it. Stability is detected when W is empty—there in no potentially
unsatisfied inclusion.

Since refine(sCt, Aut) does not return a single language assignment that refine
Aut but a set of language assignments, the computation spawns an independent branch
for each of them. Algorithm 3 schedules the branches for processing in the queue
Branches. The branching is disjunctive, meaning SAT is returned when a single branch
detects stability. If all branches terminate with an infeasible assignment, then the
algorithm concludes that the constraint is unsatisfiable.

The worklist and the queue of branches are both first-in first-out (this is important for
showing termination of propagate,,,,, (®) in Theorem 17). To minimize the number
of refinement steps, the nodes are initially inserted in W in an order compatible with
a topological order of the SCCs (this is also important for showing the soundness of
propagate,,;, (®) in Theorem 16).

Example 4. Consider again the multi-equation system @ from Section 4.1 and the
inclusion graph in Example 3. The initial automata assignment Autg is then given as
L(Aute(a)) = {a}, L(Aute(z)) = a(ba)*, L(Aute(u)) = (baba)*a, and, for the rest,
L(Aute(x)) = L(Aute(y)) = L(Aute(w)) = Z*. The queue Branches on Line 3
of Algorithm 3 is hence initialized as Branches = ((Aute, (xyx Czu, ww Cxa))). The

22

computation of the main loop of Algorithm 3 then proceeds as follows.

1st iteration. The dequeued element is (Aute, (xyx Czu, ww Cxa)) and v (dequeued
from W) is xyx Czu. The condition on Line 9 is not satisfied (X* - X* - ¥* ¢
a(ba)* - (baba)*a), hence the algorithm calls refine(xyxCzu, Autg). The
refinement yields two new automata assignments, Autso, Auts; which are defined
in Example 3. The queue Branches is hence extended to ((Autas, (ww Cxa)),
(Autsq, (wwCxa))).

2nd iteration. The dequeued element is (Auts;, (ww Cxa)). The condition on Line 9
is not satisfied since L(Aut31(x)) = {€} and L(Autzi;(w)) = Z*. In this case,
refine(ww Cxa, Autgy) = 0 and Branches = ((Autas, (ww Cxa))).

3rd iteration. The dequeued element is (Autas, (ww Cxa)). The condition on Line 9
is not satisfied (Z* - 2* ¢ a - a) and refine(ww Cxa, Autas) = {Autao } where
Autao; is as Autao except that Autgo; (w) accepts only a. Branches is then
updated to ((Autaay, 0)).

4th iteration. The condition on Line 6 is satisfied and the algorithm returns SAT. ®

Example 5. Consider for instance the system xy = x Ax € a* Ay € a.
The inclusion graph (actually the only one possible) is shown on the right.
In the initial automata assignment Aute we have L(Aute(x)) = a* and
L(Aute(y)) = {a}. The queue Branches on Line 3 of Algorithm 3 is
initialized as Branches = ((Aute, (xCxy,xyCx))). The computation then looks as
follows:

1st iteration. The inclusion check on Line 9 is not satisfied, hence the algorithm
calls refine(xCxy, Aute). The refinement yields a new automata assignment
Aut; refining Aute with Auty(x) = a*a. The queue Branches is updated to
((Auty, (xExy, xy Ex})).

2nd iteration. The inclusion check is satisfied for xy Cx, hence the queue Branches
is updated to {(Auty, (XCxy))).

3rd iteration. The inclusion check is not satisfied, hence refine(x Cxy, Aut;) yields
anew automata assignment Auts refining Aut; with Auto(x) = a*a?. The queue
Branches is then given as ((Auta, (xCxy, xy Cx))).

4th iteration. The inclusion check is satisfied for xy Cx, hence the queue Branches is
updated to ((Auta, (xCxy))).

It is evident that Algorithm 3 does not terminate on this case (which is clearly unsat-
isfiable), since the refined automata assignments for x reach a*a” for all n € N. Note
that many similar examples could be handled by simple heuristics that take into account
lengths of strings, already used in other solvers. For example, we could easily deduce

23

from xy = x that y is an empty string and immediately return UNSAT as it clashes
with y € a.]

We now prove that the algorithm is sound in the general case (an answer is always
correct) and it is complete for the chain-free fragment.

Theorem 14 (Soundness). If propagate(®) returns SAT, then @ is satisfiable, and if
propagate(®) returns UNSAT, ® is unsatisfiable.

Proof. We prove by induction the following invariant of the algorithm that need to hold
in every iteration of the main loop: for each (Aut, W) € Branchesandv =sCt € V\W
it holds that L(Aut(s)) € L(Aut(z)).

Base case: The first element of Branches on Line 3 trivially satisfies the invariant.

Induction step: Assume that the invariant holds for all (Aut, W) in Branches. We
prove that it is still valid after an iteration of the main loop. Consider (Aut, W)
on Line 5 and v = sCt on Line 7. If the condition on Line 9 holds then
for (Aut, W \ {v}) the invariant clearly holds. We proceed with the case the
condition is not fulfilled. First, assume the case that s and ¢ do not share a
variable. Then, from the property of refine, we have that for each Aut’ € 7
L(Aut’(s)) € L(Aut’(z)), therefore, v need not be included in W’. From the
Condition (IG3) of the inclusion graph, we have that only successors of v in G g
might be affected by the refinement of s (we changed the assignment to variables
in s, so the languages on the right-hand sides of successors of v might have
changed). Hence, the invariant holds for each (Aut’, W) where Aut’ € 7. For
the case that s and ¢ share a variable, the reasoning is the same as in the previous
case except that the inclusion L(Aut’(s)) € L(Aut’(z)) might not be true in
general. However, again from Condition (IG3) we get that v has a self-loop in
(G4 and hence it is included to W’ as well.

Based on the invariant, if the algorithm returns SAT, we have that the G4 is stable w.r.t.
Aut (Line 6). From Theorem 7 we then obtain that ® is satisfiable. Further, we know
that refine preserves solutions. Therefore, for each solution v of ®, there is some
(Aut”,W”) € Branches s.t. v(x) € L(Aut”(x)) for each variable x. Hence, if the
algorithm returns UNSAT, Branches = 0, which means that ® is unsatisfiable. a

Theorem 15 (Termination). If ® is chain-free, then propagate(®) terminates.

Proof. In the following proof, by successors of (Aut, W) we mean all pairs (Aut’, W’)
that were added to Branches during processing of (Aut, W) in the main loop of
propagate(®) (Lines 10 and 17). The computation of the algorithm can then be seen
as a (possibly) infinite tree whose vertices are labelled by items from Branches. We
will show that for acyclic inclusion graph Gg = (V, E), this tree is finite, which means
that propagate(®) terminates. According to Corollary 13, this is enough to prove the
theorem.

We first define a partial order < on the (finite) set of subsets of V and we show
that for each successor (Aut’, W) of (Aut, W), W’ is strictly larger than W in it, i.e.,

24

W < W’. Because G is acyclic, the ordering toposort(V) on Line 3 is a topological
ordering of vertices and not just an ordering compatible with the ordering of SCCs.
This means that for edge (u,v) on Line 14, v is greater than u. For W1, Wy C V, we
then define Wy < W5 if and only if W; = W5 or there is vi with vy € Wy, vi € Ws and
Win{vi,...,vik1} = Won{vy,...,vk—1}. For W and W’, such vy is the vertex v
from Line 7. This is because W’ is equal to W \ {v} with some nodes possibly added
on Line 15, which are however all greater than v in the topological ordering. Hence,
W < W’ and because < is defined on a finite set, the computation tree must be finite. O

4.4. Working with the Shortest Words

By using min-stability of inclusion graphs, the algorithm propagate(®) can be
improved with a weaker termination condition that takes into account only the shortest
words in the languages assigned to variables. Such a condition is potentially cheaper
(we work with the smaller automaton containing only the shortest words instead of the
full automaton) and more importantly, it terminates sooner, giving us completeness in
the SAT case for general constraints, i.e., the algorithm is always guaranteed to return
SAT if a solution exists.

Our target is to get an automata assignment Aut that fulfills the conditions of
min-stability of inclusion graphs, i.e., forv =sCte V

« if v forms trivial SCC of G4, then L(Aut(s)) C L(Aut(?)),
« if v is in non-trivial SCC of G'g then L™ (Aut(s)) € L(Aut(z)).

This results in the algorithm propagate,,;, (®), where the condition L(Aut(s)) C
L(Aut()) on Line 9 of Algorithm 3 is changed to L™ (Aut(s)) € L(Aut(t)) (we use
L™n(A) as a shorthand for (L(A))™™). However, for vertices v that form trivial SCCs
of G ¢, this condition is not sufficient, we need the full stability L(Aut(s)) € L(Aut(z))
tohold. Therefore, the condition is checked only for vertices that are in non-trivial SCCs.
For vertices that form trivial SCCs, we continue with the refinement step, which results
in automata assignments in which the inclusion L(Aut(s)) € L(Aut(¢)) holds.

Theorem 16 (Soundness). Ifpropagate,,,,, (®) returns SAT, then ® is satisfiable, and
if propagate,,;, (®) returns UNSAT, ® is unsatisfiable.

Proof. The proof is very similar to the proof of Theorem 14, but we want to show an
invariant that for each (Aut, W) € Branches, the min-stability holds foreachv € V\W.
However, we prove a slightly weaker invariant of the main loop, which can still be used
to show that theorem holds: for each (Aut, W) € Branches andv =sCt € V\ W, it
holds that

e if v forms trivial SCC of G4, then L(Aut(s)) C L(Aut(z)),

« if v is in non-trivial SCC of G, then either L™ (Aut(s)) € L(Aut(z)), or both
dual(v) =tCs e W and L™ (Aut(¢)) ¢ L(Aut(s)).

Base case: The first element of Branches on Line 3 trivially satisfies the invariant.

25

Induction step: Assume that the invariant holds for all (Aut, W) in Branches. We
prove that it is still valid after an iteration of the main loop. Consider (Aut, W)
on Line 5 and v = sCt on Line 7. If the condition on Line 8 holds, then we know
from the invariant that L™ (Aut(¢)) € L(Aut(s)) holds for the dual of v, so the
invariant clearly holds for (Aut, W\ {v}). We proceed with the case the condition
is not fulfilled. For each Aut” € 7, we know that Aut’ and Aut differ only at the
variables from the left-hand side s (more specifically, L(Aut’(s)) ¢ L(Aut(s)))
and W’ contains all vertices whose right-hand side share some variable with s
(which also includes its dual, if it is a vertex of G). Then the only way that
the invariant does not hold for (Aut’, W’) is if there is some different vertex v/ =
s’ Ct’ ¢ W’ thatis in non-trivial SCC and shares with s only variables from s’ (for
trivial SCCs, refining left-hand side has no impact on stability), L™ (Aut’(s")) ¢
L(Aut’ (")), and L™ (Aut’(#')) € L(Aut’(s")) (dual(v’) must belong to W’, as
right-hand side of v’ shares a variable with the left-hand side of v). For the sake
of contradiction, assume that such v’ exists. We know that s and ¢’ do not share
a variable, so L(Aut’(¢')) = L(Aut(¢’)). Furthermore, because v/ ¢ W, from
the invariant, either L™ (Aut(s’)) € L(Aut(¢’)) or both dual(v') =t'Cs’ € W
and L™ (Aut(t')) ¢ L(Aut(s’)). We have L™ (Aut(¢’)) = L™ (Aut’(¢')) C
L(Aut’(s”)) € L(Aut(s")), so the second case is not possible, and it also means
for the first case that L™ (Aut(s’)) = L™ (Aut(¢')) (as shown in the proof
of Theorem 8). We have L™"(Aut(s’)) € L(Aut(¢’)) and L™ (Aut’(s")) ¢
L(Aut’(¢)) = L(Aut(?’)), and as Aut’ is refinement of Aut, this means that
the words from L™ (Aut’(s’)) must be longer than those in L™"(Aut(s’)),
so L™ (Aut(s’)) ¢ L(Aut’s’). However, L™ (Aut(s’)) = L™ (Aut(t')) =
L™ (Aut’(¢')) € L(Aut’(s”)) which is a contradiction.

Based on the invariant, if the algorithm returns SAT, i.e., W = @, we know that the G is
min-stable w.r.t. Aut (Line 6). From Theorem 8, we obtain that ® is satisfiable. Further,
because ref ine preserves solutions, we can be sure that if the algorithm returns UNSAT,
then @ is unsatisfiable. O

Intuitively, the algorithm explores the words in the languages of the variables
systematically, from the shortest to the longest. Hence, it is not hard to see that for SAT
cases, the algorithm terminates:

Theorem 17 (Termination). If @ is chain-free or satisfiable, then propagate D)

terminates.

min (

Proof. Let @ be chain-free or satisfiable. For the sake of contradiction, assume that
propagate, ;. (®) does not terminate. As Branches is FIFO, the computation tree
(in the sense used in the proof of Theorem 15) is searched breadth-first, therefore, the
non-termination means that there is no terminal node in the tree.

Let therefore 71 = (Auty, W1), (Aute, Ws) ... be one of the infinite paths in this
tree. For each i € N, W; must not be empty, otherwise the algorithm would terminate
with SAT. Therefore, there must be a vertex v = s Ct, which, for infinitely many indices
i, belongs to W;. Furthermore, because each W; is FIFO, there must be infinitely
many indices i where v is at the front of W;, i.e., v is the processed vertex on Line 7

26

during the processing of (Aut;, W;). We denote this set of indices as [/ = {i € N |
v is at the front of W;}. For each i € I, v is removed from W; during the processing of
(Aut;, W;), so there must be an index j, i < j, s.t. during the processing of (Aut;, W),
v is added to W;,q on Line 15 and for all k € I, i < k, we have j < k. This means
that there is an edge from v;, the vertex that is processed during the processing of
(Aut;, W;), to v. Let J be the set of all such indices j and V; all such vertices v;.
Obviously, J is an infinite set, so there must be at least one vertex v/ € V; s.t. the set
of indices j where v’ is at the front of W; is infinite. We can follow this reasoning and
find a vertex v"* with a similar infinite set of indices and an edge to v’. Continuing this,
we find a path of such vertices until we eventually reach v again, meaning that v is on a
cycle. From this, we know that @ cannot be chain-free, therefore, it must be satisfiable,
which means that it must have some solution v.

Because there is no terminal node in the computation tree and because refine
preserves solutions, v must be preserved in each assignment of some infinite path of
the computation tree. W.l.o.g., we can assume that 7 is this path. Now, for each j € J,
during the processing of (Aut;, W;) and v; = s; Ct;, we reached Line 15 to add v to W;,
therefore, L™ (Aut;(s;)) ¢ L(Aut(#;)) and refine(v,, Aut;) must have been called.
This means that there must be a variable x in s; whose language was refined in such a
way that either L™ (Aut 1 (x)) € L™™(Aut;(x)) or the length of the shortest words
in L™"(Aut;41(x)) is larger than in L™ (Aut;(x)). Because J is infinite, there must
be a variable for which this refinement happens infinitely many times. Assume this
variable is x. We know that 7 preserves the solution v, therefore, v(x) € L(Aut;(x))
for all i € N. However, we will eventually reach, for some index j € J, the situation
where L™ (Aut;(x)) = {v(x)}. At this point, the length of the shortest words in
L™ (Aut;j,q(x)) must be larger than the length of v(x), but that contradicts the fact
that v(x) € L(Aut;41(x)). O

5. Experimental Evaluation

We implemented our algorithm in a prototype string solver called NooDLER [68] us-
ing Python and C++ automata library MaTa [69] for manipulating NFAs. We compared
the performance of NoopLER with a comprehensive selection of other tools, namely,
cveS [13] (version 1.2.0), Z3 [15] (version 4.13.4), Z3sTtrR3RE [20], Z3-TrauU [34],
Z3-ALpHA [70] (SMT-COMP’24 version), and OSTRICH [23] (version 1.4). Com-
pared to [60], we removed from the evaluation the tools Z3sTr4 (because it is not
available to download anymore), SLoTH (as during the rerun of the experiments it gave
incorrect results for all benchmark sets), and RETro (as we were unable to run it) from
the evaluation. In order to have a meaningful comparison with compiled tools (cvcS,
73, 7Z3strR3RE, Z3-TrAu, Z3-ALPHA), the reported time for NoobLER does not contain
the startup time of the Python interpreter and the time taken by loading libraries (this
is a constant of around 1.5s). To be fair, one should take this into account when
considering the time of the other interpreted tool OSTRICH (Java). As can be seen
from the results, it would, however, not significantly impact the overall outcome. The
experiments were executed on a workstation with an AMD Ryzen 5 5600G CPU @
3.8 GHz with 100 GiB of RAM running Ubuntu 22.04.4. The timeout was set to 120,
memory limit was 8 GiB (16 GiB for OSTRICH as it otherwise fails).

27

Table 1: Results of experiments. For each benchmark and tool, we give the number of timeouts (“T/Os”),
the total run time (in seconds), and the run time without timeouts (“time—T/O”). Z3-ALPHA gives incorrect
results for some benchmarks, marked with *. Best values are in bold.

PyEx-Harp (20,023) KarLuza-Harp (897)

T/Os time time—-T/O T/Os time time—T/0O
NOODLER 40 7,154 2,354 0 43 43
cves 36 11,084 6,764 0 9 9
73 2,644 323,202 5,922 62 7,697 257
Z3strR3RE 795 95,755 355 10 1,209 9
Z3-TrRAU 10 29,860 28,660 0 120 120
Z3-aLpHA *3,058 369,702 2,742 231 28,650 930
OSTRICH 2,948 389,629 35,869 25 14,531 11,531

STR 2 (292) SLoa (1,896)

T/Os time time-T/O T/Os time time—T/O
NOODLER 2 254 14 0 88 88
cves 92 11,041 1 0 3 3
73 121 14,541 21 15 2,137 337
Z3strR3RE 167 20,055 15 49 6,503 623
7Z3-TrRAU 3 724 363 745 89,424 24
Z3-ALPHA *126 15,144 24 *79 10,771 1,291
OSTRICH 216 27,596 1,676 0 5,886 5,886

Benchmarks. We consider the following benchmarks, having removed unsupported
formulae (i.e., formulae with length constraints or transducer operations).

¢ PYEx-HArD ([48], 20,023 formulae): it comes from the PyYEx benchmark [10],
in particular, it is obtained from 967 difficult instances that neither CVC4 nor
73 could solve in 10s. PYEx-Harp then contains 20,023 conjunctions of word
equations that Z3’s DPLL(T) algorithm sent to its string theory solver when
trying to solve them.

e KaLuza-HARD (897 formulae): it is obtained from the KaLuza benchmark [46]
by taking hard formulae from its solution similarly as in PYEx-HaRrbp.

e Str 2 ([33], 292 formulae) the original benchmark from [33] contains 600 hand-
crafted formulae including word equations and length constraints; the 308 for-
mulae containing length constraints are removed.

¢ SLoc ([35], 1,896 formulae) contains 1,976 formulae obtained from real web
applications using static analysis tools JSA [71] and STRANGER [39]. 80 of these
formulae were removed as they contain transducer operations (e.g., ReplaceAll).

From the benchmarks, only Srog initially contains regular constraints. Note that an
interplay between equations and regular constraints happens in our algorithm even
with pure equations on the input. Refinement of regular constraints is indeed the only

28

T TTTTI T TTTTTI /] | TTTTTI
100 TF i 100 - —=7 100
e) ’ ’
10 : 10 10
I
n
S 1 [N T
o u -
" m
H| N .
0.1 . 0.1 0.1t ¥
0.01 .. 001 - 1 001l
0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100
Noodler Noodler Noodler
(a) NOODLER Vs cvc5 (b) NooDLER vs Z3 (c) NoopLER vs Z3sTR3RE
T TTTTITI / T TTTTITI
100 100 100 i
10 I 10 10 i
e T d
g & o i
= 1 © 1 = 1
M M %]
N N o]
0.1 0.1 - 0.1
0.01) /. X . 1 001
0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100
Noodler Noodler Noodler
(d) NoODLER vs Z3-TrRAU (e) NOODLER VS Z3-ALPHA (f) NoopLER vs OSTRICH

Figure 4: The performance of NoobLER and other tools on all benchmarks: ¢ PyEx-Harp, ¢ KaLuza-HArDp,
o STR 2, ® SLoG. Times are given in seconds, axes are logarithmic. Dashed lines represent timeouts (120 s).

means in which our algorithm accumulates information. Complex regular constraints
are generated by refinement steps from an initial assignment of £* for every variable.
We also include useful constraints in preprocessing steps, for instance, the equation
z = xay where x and y do not occur elsewhere is substituted by z € Z*aX*.

Results. The results of experiments are given in Table 1. For each benchmark, we
list the number of timeouts (i.e., unsolved formulae), the total run time (including
timeouts), and also the run time on the successfully decided formulae. The results show
that from all tools, NoopLER has the lowest number of timeouts on the aggregation of
all benchmarks (42 timeouts in total) and also on each individual benchmark except for
PyEx-HARrRD where it is the second lowest. Furthermore, it is faster than other tools in
PyEx-Harp and Str 2 and second fastest (after cvcS) in KaLuza-HARD and SLoG.

In Fig. 4, we provide
scatter plots comparing the

. . 102 4
run times of NOoDLER with —— Noodler
0n
the other tools onall bench- -~ . 1 e
mark. We can see that g —— Z3str3RE
P e — 73T
there is indeed alarge num- € 100 — 5%
=] pha
ber of benchmarks where o OSTRICH
1 1 10t T T T
NOODLER 18 faSter than 1ts 17000 18527 20054 21581 23108
competitors (and that the Instances

performance of NoODLER Figure 5: Times for solving the hardest 3,108 formulae for the tools

29

is more stable, which may be caused by the heuristics in the other tools not always
working well). Notice that NoopLER and cvc5 are complementary: they have both
some timeouts, but each formula is solved by at least one of the tools. Moreover, in
Fig. 5, we provide a cactus plot showing times needed to solve 3,108 most difficult
formulae for the tools.

Discussion. The results of the experiments show that our algorithm (even in its proto-
type implementation in Python) can beat well established solvers such as cvc5 or Z3.
In particular, it can solve more benchmarks, and also the average time for (successfully)
solving a benchmark is low (as witnessed by the “time—T/O” column in Table 1). The
scatter plots also show that it is often complementary to other solvers.

6. Related Work

Our algorithm is an improvement of the automata-based algorithm first proposed
in [30], which is, at least in part, used as the basis of several string solvers, namely,
Norn [30, 31, 26], Trau [34, 27, 28, 29], OSTRICH [21, 22, 23], and Z3sTrR3RE [20].
The original algorithm first transforms equations to the disjunction of their solved
forms [72] through generating alignments of variable boundaries on the equation sides
(essentially an incomplete version of Makanin’s algorithm). Second, it eliminates
concatenation from regular constraints by automata splitting. The algorithm replaces
x -y € L by a disjunction of cases x € Ly Ay € Ly, one case for each state of
L’s automaton. Each disjunct later entails testing emptiness of L, N Lang(x) and
Ly, nLang(y) by the automata product construction. TRAU uses this algorithm within
an unsatisfiability check. TrAu’s main solution finding algorithm also performs a step
similar to our refinement, though with languages underapproximated as arithmetic
formulae (representing their Parikh images). SLots [34] implements a compact version
of automata splitting through alternating automata. OSTRICH has a way of avoiding the
variable boundary alignment for the straight-line formulae, although still uses it outside
of it. Z3sTrR3RE optimizes the algorithm of [30] heavily by the use of length-aware
heuristics.

The two levels of disjunctive branching (transformation into solved form and au-
tomata splitting) are costly. For instance, for xyx = zu A z € a(ba)* A u € (baba)*a
(a subformula of the example in Section 4.1), there would be 14 alignments/solved
forms, e.g. those characterized using lengths as follows: (1) |zu| = 0; (2) |y| = |zul;
3) x| < lzl, Iyl = 0; 4) |xy| < z,|y] > 0; (5) x| < [z, |xy| > z; ...In the case (5)
alone—corresponding to the solved form z = z129,u4 = u121,X = 21,y = Zol1—
automata splitting would generate 15 cases from z1z5 € Lang(z) and ujus € Lang(u),
each entailing one intersection emptiness check (the NFAs for z and u have 3 and 5 states
respectively). There would be about a hundred of such cases overall. On the contrary,
our algorithm generates only 9 of equivalent cases, 7 if optimized (see Section 4.1).

Our algorithm has an advantage also over pure automata splitting, irrespective of
aligning equations. For instance, consider the constraint xyx € L A x € Lang(x) Ay €
Lang(y). Automata splitting generates a disjunction of n? constraints x € Ly Ay € Ly,
with n being the number of states of the automaton for L, each constraint with emptiness
checks for Lang(x) N L, and Lang(y) N Ly. Our algorithm avoids generating much

30

of these cases by intersecting with the languages of Lang(x) and Lang(y) early—the
construction of Lang(x)-Lang(y)-Lang(x) prunes much of L’s automaton immediately.
For instance, if L = (ab)*a™ (abcd)* (its NFA has 7 states) and Lang(x) = (a + b)*,
automata splitting explores 72 = 49 cases while our algorithm explores 9 (7 when
optimized) of these cases—it would compute the same product and noodles as in
Section 4.1, essentially ignoring the disjunct (abcd)* of L.

Approaches and tools for string solving are numerous and diverse, with various
representations of constraints, algorithms, or sorts of inputs. Many approaches use
automata, e.g., STRANGER [39, 40, 41], Norn [30, 31], OSTRICH [21, 22, 23, 24, 25],
Trau [26, 27, 28, 29], SLoTH [34], SLocG [35], Slent [36], Z3sTrR3RE [20], RETRO [48],
ABC [42, 43], Qzy [47], or BEK [51]. Around word equations are centered tools such
as CVC4/51[6,7, 8,9, 10, 11, 12], Z3 [14, 15], S3 [32], Kepler,, [33], StrSolve [37],
Woorpje [49]; bit vectors are (among other things) used in Z3Str/2/3/4 [16, 17, 18, 19],
HAMPI [45]; PASS uses arrays [50]; G-strings [38] and GECODE+S [44] are extensions
to constraint programming and use propagation. Constraint programming solvers can
also be used with the MiniZinc modelling language [73]. Most of these tools and
methods handle much wider range of string constraints than equations and regular
constraints. Our algorithm is not a complete alternative but a promising basis that
could improve some of the existing solvers and become a core of a new one. With
regard to equations and regular constraints, the fragment of chain-free constraints [26]
that we handle, handled also by Trau, is the largest for which any string solvers offers
formal completeness guarantees, with the exception of quadratic equations, handled,
e.g., by [48, 33], which are incomparable but of a smaller practical relevance (although
some tools actually implement Nielsen’s algorithm [59] to handle simple quadratic
cases). The other solvers guarantee completeness on smaller fragments, notably that of
OSTRICH (straight-line), Norn, and Z3sTr3RE; or use incomplete heuristics that work
in practice (giving up guarantees of termination, over or under-approximating by various
means). Most string solvers tend to avoid handling regular expressions, by means of
postponing them as much as possible or abstracting them into arithmetic/length and
other constraints (e.g. Trau, Z3sTR3RE, Z3str4, CVC4/5, S3). A major point of
our work is that taking the opposite approach may work even better when automata
are approached from the right angle and implemented carefully, though, heuristics that
utilize length information or Parikh images would most probably speed up our algorithm
as well. The main selling point of our approach is its efficiency compared to the others,
demonstrated on benchmark sets used in other works.

7. Conclusion

We have presented a new algorithm for solving a fragment of word equations with
regular constraints, complete in SAT cases and for the chain-free fragment. It is based
on a tight interconnection of equations with regular constraints and built around a novel
characterization of satisfiability of a string constraint through the notion of stability.
We have experimentally shown that the algorithm is very competitive with existing
solutions, better especially on difficult examples.

31

Declarations

Funding. This work was supported by the Czech Ministry of Education, Youth and
Sports project LL1908 of the ERC.CZ programme, the Czech Science Foundation
projects GA23-07565S, the FIT BUT internal project FIT-S-23-8151, and the project
of Ministry of Science and Technology, Taiwan (grant no. 109-2628-E-001-001-MY3).
2%e22 The work of David Chocholaty, Brno Ph.D. Talent Scholarship Holder, is Funded
by the Brno City Municipality.

Author contributions. All authors contributed to the formulation of the core theorec-
tical framework, including formulating and proving the core theorems and lemmas.
F. Blahoudek, D. Chochalaty, V. Havlena, and J. Si¢ contributed to the development
of the early prototype and the final implementation. All authors participated in discus-
sions, manuscript writing, and iterative revisions, ensuring the clarity and coherence of
the final publication.

Competing interests. The authors have no relevant financial or non-financial interests
to disclose.

Data and code availability. The source code of NoobpLER can be found at https:
//github.com/vhavlena/Noodler. The benchmarks, the scripts and the results of
the evaluation can be found at https://github.com/VeriFIT/smt-bench/tree/
fmjournal and https://github.com/VeriFIT/smt-string-bench-results/
tree/fmjournal.

References

[1] OWASP, Top 10, https://www.owasp.org/images/f/£8/0WASP_Top_10_
-_2013.pdf (2013).

[2] OWASP, Top 10, https://owasp.org/www-project-top-ten/2017/
(2017).

[3] OWASP, Top 10, https://owasp.org/Topl0/ (2021).

[4] Liana Hadarean, String solving at Amazon, https://moscal9.github.io/
program/index.html, presented at MOSCA’19 (2019).

[5] L. Alt, M. Blicha, A. E. J. Hyvirinen, N. Sharygina, SolCMC: Solidity compiler’s
model checker, in: S. Shoham, Y. Vizel (Eds.), Computer Aided Verification
- 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022,
Proceedings, Part I, Vol. 13371 of Lecture Notes in Computer Science, Springer,
2022, pp. 325-338. doi:10.1007/978-3-031-13185-1_16.
URL https://doi.org/10.1007/978-3-031-13185-1_16

[6] T.Liang, A. Reynolds, C. Tinelli, C. Barrett, M. Deters, A DPLL(T) theory solver
for a theory of strings and regular expressions, in: A. Biere, R. Bloem (Eds.),
Computer Aided Verification, Springer International Publishing, Cham, 2014, pp.
646—-662.

32

(7]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

T. Liang, A. Reynolds, N. Tsiskaridze, C. Tinelli, C. Barrett, M. Deters, An
efficient SMT solver for string constraints, Formal Methods in System Design
48 (3) (2016) 206-234.

C. W. Barrett, C. Tinelli, M. Deters, T. Liang, A. Reynolds, N. Tsiskaridze,
Efficient solving of string constraints for security analysis, in: HotSoS’16, ACM
Trans. Comput. Log., 2016, pp. 4-6.

T. Liang, N. Tsiskaridze, A. Reynolds, C. Tinelli, C. Barrett, A decision proce-
dure for regular membership and length constraints over unbounded strings, in:
FroCoS’15, Vol. 9322 of LNCS, Springer, 2015, pp. 135-150.

A. Reynolds, M. Woo, C. Barrett, D. Brumley, T. Liang, C. Tinelli, Scaling up
DPLL(T) string solvers using context-dependent simplification, in: R. Majumdar,
V. Kuncak (Eds.), Computer Aided Verification, Springer International Publish-
ing, Cham, 2017, pp. 453-474.

A. Notzli, A. Reynolds, H. Barbosa, C. Barrett, C. Tinelli, Even faster conflicts
and lazier reductions for string solvers, in: S. Shoham, Y. Vizel (Eds.), Computer
Aided Verification, Springer International Publishing, Cham, 2022, pp. 205-226.

A. Reynolds, A. Notzlit, C. Barrett, C. Tinelli, Reductions for strings and regu-
lar expressions revisited, in: 2020 Formal Methods in Computer Aided Design
(FMCAD), 2020, pp. 225-235. doi:10.34727/2020/isbn.978-3-85448-042-6_30.

H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed,
M. Mohamed, A. Niemetz, A. Notzli, A. Ozdemir, M. Preiner, A. Reynolds,
Y. Sheng, C. Tinelli, Y. Zohar, cvc5: A versatile and industrial-strength smt
solver, in: D. Fisman, G. Rosu (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, Springer International Publishing, Cham, 2022, pp.
415-442.

N. Bjgrner, N. Tillmann, A. Voronkov, Path feasibility analysis for string-
manipulating programs, in: TACAS’09, Vol. 5505 of LNCS, Springer, 2009,
pp- 307-321.

L. de Moura, N. Bjgrner, Z3: An efficient smt solver, in: C. R. Ramakrish-
nan, J. Rehof (Eds.), Tools and Algorithms for the Construction and Analysis of
Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 337-340.

Y. Zheng, X. Zhang, V. Ganesh, Z3-str: A Z3-based string solver for web applica-
tion analysis, in: ESEC/FSE’13, ACM Trans. Comput. Log., 2013, pp. 114-124.

M. Berzish, V. Ganesh, Y. Zheng, Z3str3: A string solver with theory-aware
heuristics, in: 2017 Formal Methods in Computer Aided Design (FMCAD),
2017, pp. 55-59. doi:10.23919/FMCAD.2017.8102241.

Berzish, Murphy, Z3str4: A solver for theories over strings, Ph.D. thesis (2021).
URL http://hdl.handle.net/10012/17102

33

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, J. Dolby, X. Zhang, Effective
search-space pruning for solvers of string equations, regular expressions and length
constraints, in: D. Kroening, C. S. Pasdreanu (Eds.), Computer Aided Verification,
Springer International Publishing, Cham, 2015, pp. 235-254.

M. Berzish, M. Kulczynski, F. Mora, F. Manea, J. D. Day, D. Nowotka, V. Ganesh,
An SMT solver for regular expressions and linear arithmetic over string length, in:
A. Silva, K. R. M. Leino (Eds.), Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II,
Vol. 12760 of Lecture Notes in Computer Science, Springer, 2021, pp. 289-312.
doi:10.1007/978-3-030-81688-9_14.

URL https://doi.org/10.1007/978-3-030-81688-9_14

A. W. Lin, P. Barceld, String solving with word equations and transducers: To-
wards a logic for analysing mutation XSS, in: POPL’16, ACM Trans. Comput.
Log., 2016, pp. 123-136.

T. Chen, Y. Chen, M. Hague, A. W. Lin, Z. Wu, What is decidable about string
constraints with the replaceall function, Proc. ACM Program. Lang. 2 (POPL)
(2018) 3:1-3:29. doi:10.1145/3158091.

URL https://doi.org/10.1145/3158091

T. Chen, M. Hague, A. W. Lin, P. Riimmer, Z. Wu, Decision procedures for path
feasibility of string-manipulating programs with complex operations, Proc. ACM
Program. Lang. 3 (POPL) (2019) 49:1-49:30. doi:10.1145/3290362.

URL https://doi.org/10.1145/3290362

T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Riim-
mer, Z. Wu, Solving string constraints with regex-dependent functions through
transducers with priorities and variables, Proc. ACM Program. Lang. 6 (POPL)
(2022) 1-31. doi:10.1145/3498707.

URL https://doi.org/10.1145/3498707

T. Chen, M. Hague, J. He, D. Hu, A. W. Lin, P. Riimmer, Z. Wu, A decision
procedure for path feasibility of string manipulating programs with integer data
type, in: D. V. Hung, O. Sokolsky (Eds.), Automated Technology for Verification
and Analysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam,
October 19-23, 2020, Proceedings, Vol. 12302 of Lecture Notes in Computer
Science, Springer, 2020, pp. 325-342. doi:10.1007/978-3-030-59152-6_18.
URL https://doi.org/10.1007/978-3-030-59152-6_18

P. A. Abdulla, M. F. Atig, B. P. Diep, L. Holik, P. Janku, Chain-free string con-
straints, in: Y. Chen, C. Cheng, J. Esparza (Eds.), Automated Technology for
Verification and Analysis - 17th International Symposium, ATVA 2019, Taipei,
Taiwan, October 28-31, 2019, Proceedings, Vol. 11781 of Lecture Notes in Com-
puter Science, Springer, 2019, pp. 277-293. doi:10.1007/978-3-030-31784-3_16.
URL https://doi.org/10.1007/978-3-030-31784-3_16

34

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holik, A. Rezine, P. Riim-
mer, Trau: SMT solver for string constraints, in: N. S. Bjgrner, A. Gurfinkel
(Eds.), 2018 Formal Methods in Computer Aided Design, FMCAD 2018,
Austin, TX, USA, October 30 - November 2, 2018, IEEE, 2018, pp. 1-5.
doi:10.23919/FMCAD.2018.8602997.

URL https://doi.org/10.23919/FMCAD.2018.8602997

P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holik, A. Rezine, P. Riim-
mer, Flatten and conquer: a framework for efficient analysis of string con-
straints, in: A. Cohen, M. T. Vechev (Eds.), Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, ACM, 2017, pp. 602-617.
doi:10.1145/3062341.3062384.

URL https://doi.org/10.1145/3062341.3062384

P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holik, D. Hu, W. Tsai, Z. Wu,
D. Yen, Solving not-substring constraint with flat abstraction, in: H. Oh (Ed.),
Programming Languages and Systems - 19th Asian Symposium, APLAS 2021,
Chicago, IL, USA, October 17-18, 2021, Proceedings, Vol. 13008 of Lecture
Notes in Computer Science, Springer, 2021, pp. 305-320. doi:10.1007/978-3-
030-89051-3_17.

URL https://doi.org/10.1007/978-3-030-89051-3_17

P. A. Abdulla, M. F. Atig, Y. Chen, L. Holik, A. Rezine, P. Riimmer, J. Stenman,
String constraints for verification, in: A. Biere, R. Bloem (Eds.), Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings,
Vol. 8559 of Lecture Notes in Computer Science, Springer, 2014, pp. 150-166.
doi:10.1007/978-3-319-08867-9_10.

URL https://doi.org/10.1007/978-3-319-08867-9_10

P. A. Abdulla, M. F. Atig, Y. Chen, L. Holik, A. Rezine, P. Riimmer, J. Stenman,
Norn: An SMT solver for string constraints, in: D. Kroening, C. S. Pasareanu
(Eds.), Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, Vol. 9206 of Lec-
ture Notes in Computer Science, Springer, 2015, pp. 462—469. doi:10.1007/978-
3-319-21690-4_29.

URL https://doi.org/10.1007/978-3-319-21690-4_29

M. Trinh, D. Chu, J. Jaffar, S3: A symbolic string solver for vulnerability detection
in web applications, in: CCS, ACM Trans. Comput. Log., 2014, pp. 1232-1243.

Q. L. Le, M. He, A decision procedure for string logic with quadratic equations,
regular expressions and length constraints, in: S. Ryu (Ed.), Programming Lan-
guages and Systems, Springer International Publishing, Cham, 2018, pp. 350-372.

P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, J. Dolby, P. Janku, H. Lin, L. Holik,
W. Wu, Efficient handling of string-number conversion, in: Proc. of PLDI 20,

35

ACM, 2020, pp. 943-957. doi:10.1145/3385412.3386034.
URL https://doi.org/10.1145/3385412.3386034

[35] H. Wang, T. Tsai, C. Lin, F. Yu, J. R. Jiang, String analysis via automata manipula-
tion with logic circuit representation, in: CAV’16, Vol. 9779 of LNCS, Springer,
2016, pp. 241-260.

[36] H.-E. Wang, S.-Y. Chen, F. Yu, J.-H. R. Jiang, A symbolic model checking
approach to the analysis of string and length constraints, in: Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Association for Computing Machinery, New York, NY, USA, 2018, p.
623-633. doi:10.1145/3238147.3238189.

URL https://doi.org/10.1145/3238147.3238189

[37] P. Hooimeijer, W. Weimer, StrSolve: Solving string constraints lazily, Autom.
Softw. Eng. 19 (4) (2012) 531-559.

[38] R. Amadini, G. Gange, P. J. Stuckey, G. Tack, A novel approach to string constraint
solving, in: J. C. Beck (Ed.), Principles and Practice of Constraint Programming,
Springer International Publishing, Cham, 2017, pp. 3-20.

[39] F. Yu, M. Alkhalaf, T. Bultan, Stranger: An automata-based string analysis tool
for PHP, in: TACAS’10, Vol. 6015 of LNCS, Springer, 2010, pp. 154-157.

[40] F. Yu, M. Alkhalaf, T. Bultan, O. H. Ibarra, Automata-based symbolic string
analysis for vulnerability detection, Formal Methods in System Design 44 (1)
(2014) 44-70.

[41] F. Yu, T. Bultan, O. H. Ibarra, Relational string verification using multi-track
automata, Int. J. Found. Comput. Sci. 22 (8) (2011) 1909-1924.

[42] A. Aydin, L. Bang, T. Bultan, Automata-based model counting for string con-
straints, in: D. Kroening, C. S. Pasédreanu (Eds.), Computer Aided Verification,
Springer International Publishing, Cham, 2015, pp. 255-272.

[43] T. Bultan, contributors, ABC string solver.
URL https://github.com/v1lab-cs-ucsb/ABC

[44] J. D. Scott, P. Flener, J. Pearson, C. Schulte, Design and implementation of
bounded-length sequence variables, in: D. Salvagnin, M. Lombardi (Eds.), Inte-
gration of Al and OR Techniques in Constraint Programming, Springer Interna-
tional Publishing, Cham, 2017, pp. 51-67.

[45] A. Kiezun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, M. D. Ernst, HAMPI:
A solver for word equations over strings, regular expressions, and context-free
grammars, ACM Trans. Comput. Log. 21 (4) (2012) 25:1-25:28.

[46] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, D. Song, A symbolic
execution framework for JavaScript, in: SP’10, IEEE Computer Society, 2010,
pp- 513-528.

36

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A. Cox, J. Leasure, Model checking regular language constraints, CoRR
abs/1708.09073 (2017).

Y. Chen, V. Havlena, O. Lengdl, A. Turrini, A symbolic algorithm for the case-
split rule in string constraint solving, in: B. C. d. S. Oliveira (Ed.), Programming
Languages and Systems - 18th Asian Symposium, APLAS 2020, Fukuoka, Japan,
November 30 - December 2, 2020, Proceedings, Vol. 12470 of Lecture Notes in
Computer Science, Springer, 2020, pp. 343-363. doi:10.1007/978-3-030-64437-
6_18.

URL https://doi.org/10.1007/978-3-030-64437-6_18

J. D. Day, T. Ehlers, M. Kulczynski, F. Manea, D. Nowotka, D. B. Poulsen,
On solving word equations using SAT, in: E. Filiot, R. M. Jungers, 1. Potapov
(Eds.), Reachability Problems - 13th International Conference, RP 2019, Brussels,
Belgium, September 11-13, 2019, Proceedings, Vol. 11674 of Lecture Notes in
Computer Science, Springer, 2019, pp. 93-106. doi:10.1007/978-3-030-30806-
3_8.

URL https://doi.org/10.1007/978-3-030-30806-3_8

G. Li, I. Ghosh, Pass: String solving with parameterized array and interval au-
tomaton, in: V. Bertacco, A. Legay (Eds.), Hardware and Software: Verification
and Testing, Springer International Publishing, Cham, 2013, pp. 15-31.

P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, M. Veanes, Fast and precise
sanitizer analysis with BEK, in: USENIX Security Symposium 2011, USENIX
Association, 2011.

M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, N. Bjgrner, Symbolic finite state
transducers: Algorithms and applications, in: POPL’12, ACM Trans. Comput.
Log., 2012, pp. 137-150.

X. Fu, C. Li, Modeling regular replacement for string constraint solving, in:
NFM’10, Vol. NASA/CP-2010-216215 of NASA, 2010, pp. 67-76.

M. Trinh, D. Chu, J. Jaffar, progressive reasoning over recursively-defined strings,
in: CAV’16, Vol. 9779 of LNCS, Springer, 2016, pp. 218-240.

J. D. Day, V. Ganesh, N. Grewal, F. Manea, On the expressive power of string con-
straints, Proc. ACM Program. Lang. 7 (POPL) (Jan. 2023). doi:10.1145/3571203.
URL https://doi.org/10.1145/3571203

W. Plandowski, Satisfiability of word equations with constants is in NEXPTIME,
in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Com-
puting, STOC ’99, Association for Computing Machinery, New York, NY, USA,
1999, p. 721-725. doi:10.1145/301250.301443.

URL https://doi.org/10.1145/301250.301443

A. Jez, Recompression: A simple and powerful technique for word equations, J.
ACM 63 (1) (feb 2016). doi:10.1145/2743014.
URL https://doi.org/10.1145/2743014

37

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

G. S. Makanin, The problem of solvability of equations in a free semigroup,
Matematicheskii Sbornik 32 (2) (1977) 147-236, (in Russian).

J. Nielsen, Die isomorphismen der allgemeinen, unendlichen gruppe mit zwei
erzeugenden, Mathematische Annalen 78 (1) (1917) 385-397.

F. Blahoudek, Y. Chen, D. Chocholaty, V. Havlena, L. Holik, O. Lengal, J. Sic,
Word equations in synergy with regular constraints, in: M. Chechik, J. Katoen,
M. Leucker (Eds.), Formal Methods - 25th International Symposium, FM 2023,
Liibeck, Germany, March 6-10, 2023, Proceedings, Vol. 14000 of Lecture Notes in
Computer Science, Springer, 2023, pp. 403-423. doi:10.1007/978-3-031-27481-
7_23.

URL https://doi.org/10.1007/978-3-031-27481-7_23

A. Lentin, équations dans les monoides libres, Mathématiques et sciences hu-
maines 31 (1970) 5-16.
URL\url{http://www.numdam.org/item/MSH_1970__31__5_0/}

C. Choffrut, J. Karhumiki, Combinatorics of Words, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1997, pp. 329-438. doi:10.1007/978-3-642-59136-5_6.
URL https://doi.org/10.1007/978-3-642-59136-5_6

J. Karhumiki, F. Mignosi, W. Plandowski, The expressibility of lan-
guages and relations by word equations, J. ACM 47 (3) (2000) 483-505.
doi:10.1145/337244.337255.

URL https://doi.org/10.1145/337244.337255

W. Plandowski, W. Rytter, Application of lempel-ziv encodings to the solution
of word equations, in: K. G. Larsen, S. Skyum, G. Winskel (Eds.), Automata,
Languages and Programming, Springer Berlin Heidelberg, Berlin, Heidelberg,
1998, pp. 731-742.

J. D. Day, F. Manea, D. Nowotka, Upper Bounds on the Length of Minimal Solu-
tions to Certain Quadratic Word Equations, in: P. Rossmanith, P. Heggernes, J.-P.
Katoen (Eds.), 44th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2019), Vol. 138 of Leibniz International Proceedings
in Informatics (LIPIcs), Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 2019, pp. 44:1-44:15. doi:10.4230/LIPIcs. MFCS.2019.44.
URL https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.MFCS.2019.44

A. Aziz, V. Singhal, G. Swamy, R. K. Brayton, Minimizing interacting finite
state machines, Tech. Rep. UCB/ERL M93/68, EECS Department, University of
California, Berkeley (Sep 1993).

URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/1993/2425.
html

M. Henzinger, T. Henzinger, P. Kopke, Computing simulations on finite and
infinite graphs, in: Proceedings of IEEE 36th Annual Foundations of Computer
Science, 1995, pp. 453—462. doi:10.1109/SFCS.1995.492576.

38

[68]

[69]

[70]

[71]

[72]

(73]

F. Blahoudek, Y.-F. Chen, D. Chocholaty, V. Havlena, L. Holik, O. Lengdl, J. Sic,
Noodler, https://github.com/vhavlena/Noodler (2022).

D. Chocholaty, T. Fiedor, V. Havlena, L. Holik, M. Hruska, O. Lengdl, J. Si¢, Mata:
A fast and simple finite automata library, in: B. Finkbeiner, L. Kovécs (Eds.), Tools
and Algorithms for the Construction and Analysis of Systems, Springer Nature
Switzerland, Cham, 2024, pp. 130-151.

Z.Lu, S. Siemer, P. Jha, J. Day, F. Manea, V. Ganesh, Layered and staged monte
carlo tree search for smt strategy synthesis, in: K. Larson (Ed.), Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence, IICAI-24,
International Joint Conferences on Artificial Intelligence Organization, 2024, pp.
1907-1915, main Track. doi:10.24963/ijcai.2024/211.

URL https://doi.org/10.24963/ijcai.2024/211

A. S. Christensen, A. Mgller, M. 1. Schwartzbach, Precise analysis of string
expressions, in: R. Cousot (Ed.), Static Analysis, 10th International Symposium,
SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings, Vol. 2694 of
Lecture Notes in Computer Science, Springer, 2003, pp. 1-18. doi:10.1007/3-
540-44898-5_1.

URL https://doi.org/10.1007/3-540-44898-5_1

V. Ganesh, M. Minnes, A. Solar-Lezama, M. C. Rinard, Word equations with
length constraints: What’s decidable?, in: A. Biere, A. Nahir, T. E. J. Vos (Eds.),
Hardware and Software: Verification and Testing - 8th International Haifa Ver-
ification Conference, HVC 2012, Haifa, Israel, November 6-8, 2012. Revised
Selected Papers, Vol. 7857 of Lecture Notes in Computer Science, Springer,
2012, pp. 209-226. doi:10.1007/978-3-642-39611-3_21.

URL https://doi.org/10.1007/978-3-642-39611-3_21

R. Amadini, P. Flener, J. Pearson, J. D. Scott, P. J. Stuckey, G. Tack, Minizinc with
strings, in: M. V. Hermenegildo, P. Lopez-Garcia (Eds.), Logic-Based Program
Synthesis and Transformation, Springer International Publishing, Cham, 2017,
pp. 59-75.

39

