
Reducing (to) the Ranks:
Efficient Rank-based Büchi Automata Complementation

Vojtěch Havlena @ ORCID
Faculty of Information Technology, Brno University of Technology, Czech Republic

Ondřej Lengál @ ORCID
Faculty of Information Technology, Brno University of Technology, Czech Republic

Abstract
This paper provides several optimizations of the rank-based approach for complementing Büchi
automata. We start with Schewe’s theoretically optimal construction and develop a set of techniques
for pruning its state space that are key to obtaining small complement automata in practice. In
particular, the reductions (except one) have the property that they preserve (at least some) so-called
super-tight runs, which are runs whose ranking is as tight as possible. Our evaluation on a large
benchmark shows that the optimizations indeed significantly help the rank-based approach and
that, in a large number of cases, the obtained complement is the smallest from those produced by
state-of-the-art tools for Büchi complementation.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Büchi automata, rank-based complementation, super-tight runs

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.9

Related Version Full Version: https://arxiv.org/abs/2010.07834

1 Introduction

Büchi automata (BA) complementation remains an intensively studied problem since
1962, when Büchi introduced the automata model over infinite words as a foundation
for a decision procedure of a fragment of a second-order arithmetic [7]. Since then, efficient
BA complementation became an important task from both theoretical and practical side.
It is a crucial operation in some approaches for termination analysis of programs [12, 18, 9]
as well as in decision procedures concerning reasoning about programs and computer systems,
such as S1S [7] or the temporal logics ETL and QPTL [34].

Büchi launched a hunt for an optimal and efficient complementation technique with his
doubly exponential complementation approach [7]. A couple of years later, Safra proposed
a complementation via deterministic Rabin automata with an nO(n) upper bound of the size
of the complement. Simultaneously with finding an efficient complementation algorithm,
another search for the theoretical lower bound was under way. Michel showed in [28] that
a lower bound of the size of a complement BA is n! (approx. (0.36n)n). This result was
further refined by Yan to (0.76n)n in [40]. From the theoretical point of view, it seemed that
the problem was already solved since Safra’s construction asymptotically matched the lower
bound. From the practical point of view, however, a factor in the exponent has a great impact
on the size of the complemented automaton (and, consequently, also affects the performance
of real-world applications). This gap became a topic of many works [22, 13, 39, 19, 41]. The
efforts finally led to the construction of Schewe in [33] producing complement BAs whose
sizes match the lower bound modulo a O(n2) polynomial factor.

Schewe’s construction stores in a macrostate partial information about all runs over some
word in an input BA. In order to track the information about all runs, a macrostate contains
a set of states representing a single level in a run DAG of some word with a number assigned

© Vojtěch Havlena and Ondřej Lengál;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ihavlena@fit.vutbr.cz
https://orcid.org/0000-0003-4375-7954
mailto:lengal@fit.vutbr.cz
https://orcid.org/0000-0002-3038-5875
https://doi.org/10.4230/LIPIcs.CONCUR.2021.9
https://arxiv.org/abs/2010.07834
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Reducing (to) the Ranks

to each state representing its rank. The number of macrostates (and hence the size of the
complement) is combinatorially related to the maximum rank that occurs in macrostates.

Although the construction of Schewe is worst-case optimal, it may in practice still generate
a lot of states that are not necessary. In this work, we propose novel optimizations that
(among others) reduce this maximum considered rank. We build on the novel notion of
a super-tight run, i.e., a run in the complement that uses as small ranks as possible. The
macrostates not occurring in some super-tight run can be safely removed from the automaton.
Further, based on reasoning about super-tight runs, we are able to reduce the maximum
rank within a macrostate. In particular, we reduce the maximum considered ranking using
a reasoning about the deterministic support of an input automaton or by a relation based on
direct simulation implying rank ordering computed a priori from the input automaton. The
developed optimizations give, to the best of our knowledge, the most competitive BA
complementation procedure, as witnessed by our experimental evaluation.

These optimizations require some additional computational cost, but from the perspective
of BA complementation, their cost is still negligible and, as we show in our experimental
evaluation, their effect on the size of the output is often profound, in many cases by one
or more orders of magnitude. Rank-based complementation with our optimizations is now
competitive with other approaches, in a large number of cases (21 %) obtaining a strictly
smaller complement than any other existing tool and in the majority of cases (63 %) obtaining
an automaton at least as small as the smallest automaton provided by any other tool.

2 Preliminaries

We fix a finite nonempty alphabet Σ and the first infinite ordinal ω = {0, 1, . . .}. For n ∈ ω, by
[n] we denote the set {0, . . . , n}. An (infinite) word α is represented as a function α : ω → Σ
where the i-th symbol is denoted as αi. We abuse notation and sometimes also represent α as
an infinite sequence α = α0α1 . . . The suffix αiαi+1 . . . of α is denoted by αi:ω. We use Σω to
denote the set of all infinite words over Σ. Furthermore, for a total function f : X → Y and
a partial function h : X ⇀ Y , we use f ◁ h to denote the total function g : X → Y defined
as g(x) = h(x) when h(x) is defined and g(x) = f(x) otherwise. Moreover, we use img(f) to
denote the image of f , i.e., img(f) = {f(x) ∈ Y | x ∈ X} and for a set C ⊆ X we use f|C to
denote the restriction of f to C, i.e., f|C = f ∩ (C × Y ).

Büchi automata. A (nondeterministic) Büchi automaton (BA) over Σ is a quadruple
A = (Q, δ, I, F ) where Q is a finite set of states, δ is a transition function δ : Q× Σ→ 2Q,
and I, F ⊆ Q are the sets of initial and accepting states respectively. We sometimes treat δ

as a set of transitions p
a→ q, for instance, we use p

a→ q ∈ δ to denote that q ∈ δ(p, a).
Moreover, we extend δ to sets of states P ⊆ Q as δ(P, a) =

⋃
p∈P δ(p, a). We use δ−1(q, a)

to denote the set {s ∈ Q | s a→ q ∈ δ}. For a set of states S we define reachability from S as
reachδ(S) = µZ. S ∪

⋃
a∈Σ δ(Z, a). A run of A from q ∈ Q on an input word α is an infinite

sequence ρ : ω → Q that starts in q and respects δ, i.e., ρ0 = q and ∀i ≥ 0: ρi
αi→ ρi+1 ∈ δ.

Let inf(ρ) denote the states occurring in ρ infinitely often. We say that ρ is accepting iff
inf(ρ) ∩ F ̸= ∅. A word α is accepted by A from a state q ∈ Q if there is an accepting
run ρ of A from q, i.e., ρ0 = q. The set LA(q) = {α ∈ Σω | A accepts α from q} is called
the language of q (in A). Given a set of states R ⊆ Q, we define the language of R as
LA(R) =

⋃
q∈R LA(q) and the language of A as L(A) = LA(I). For a pair of states p and q

in A, we use p ⊆L q to denote LA(p) ⊆ LA(q). A is complete iff for every state q and
symbol a, it holds that δ(q, a) ̸= ∅. In this paper, we fix a BA A = (Q, δ, I, F ).



V. Havlena, O. Lengál 9:3

r s t

a

b

b

b

a

(a)

r, 0 s, 0

s, 1 t, 1

s, 2 t, 2
...

. . .

b

b

...

rank 2 rank 1

rank 0

(b)

(
{r:4, s:4}, ∅

)
(
{s:4, t:4}, {s, t}

)
(
{s:3, t:4}, {t}

)
(
{s:3, t:2}, ∅

)
(
{s:3, t:2}, {t}

)

b

b b

b

bb

(c)

{r, s}

{r}

{s, t}

{s}

{t}

∅

(
{s:1, t:0}, ∅, 0

)

(
{s:1, t:0}, {t}, 0

)

(
{s:1}, ∅, 0

)

a

b

b
b

b

a

a

b

a
a

a, b

b
b

b

b

b

b

b

waiting tight

(d)

Figure 1 (a) Aex . (b) The run DAG of Aex over bω. (c) A part of KV(Aex). (d) Schewe(Aex); we
highlight the waiting and the tight parts. Delay (Section 4.1) will remove the 4 wobbly transitions
and macrostate ({s:1}, ∅, 0).

Simulation. The (maximum) direct simulation on A is the relation ⪯di ⊆ Q×Q defined
as the largest relation s.t. p ⪯di q implies (i) p ∈ F ⇒ q ∈ F and (ii) p

a→ p′ ∈ δ ⇒ ∃q′ ∈
Q : q

a→ q′ ∈ δ ∧ p′ ⪯di q′ for each a ∈ Σ. Note that ⪯di is a preorder and ⪯di ⊆ ⊆L [27].

3 Complementing Büchi Automata

In this section we first describe the basic rank-based complementation algorithm proposed by
Kupferman and Vardi in [22] and then its optimization presented by Schewe in [33]. After
that, we present some results related to runs with the minimal ranking. Missing proofs for
this and the following section can be found in [16].

3.1 Run DAGs
In this section, we recall the terminology from [33] (which is a minor modification of the
terminology from [22]), which we use heavily in the paper. We fix the definition of the run
DAG of A over a word α to be a DAG (directed acyclic graph) Gα = (V, E) of vertices V

and edges E where

V ⊆ Q× ω s.t. (q, i) ∈ V iff there is a run ρ of A from I over α with ρi = q,
E ⊆ V × V s.t. ((q, i), (q′, i′)) ∈ E iff i′ = i + 1 and q′ ∈ δ(q, αi).

Given Gα as above, we will write (p, i) ∈ Gα to denote that (p, i) ∈ V . We call (p, i) accepting
if p is an accepting state. Gα is rejecting if it contains no path with infinitely many accepting
vertices. A vertex v ∈ Gα is finite if the set of vertices reachable from v is finite, infinite if it
is not finite, and endangered if v cannot reach an accepting vertex.

We assign ranks to vertices of run DAGs as follows: Let G0
α = Gα and j = 0. Repeat the

following steps until the fixpoint or for at most 2n + 1 steps, where n = |Q|.

Set rankα(v) := j for all finite vertices v of Gj
α and let Gj+1

α be Gj
α minus the vertices

with the rank j.
Set rankα(v) := j + 1 for all endangered vertices v of Gj+1

α and let Gj+2
α be Gj+1

α minus
the vertices with the rank j + 1.
Set j := j + 2.

CONCUR 2021



9:4 Reducing (to) the Ranks

For all vertices v that have not been assigned a rank yet, we assign rankα(v) := ω. See
Figure 1a for an example BA Aex and Figure 1b for the run DAG of Aex over bω.

3.2 Basic Rank-Based Complementation
The intuition in rank-based complementation algorithms is that states in the complemented
automaton C track all runs of the original automaton A on the given word and the possible
ranks of each of the runs. Loosely speaking, an accepting run of a complement automaton C
on a word α /∈ L(A) represents the run DAG of A over α (in the complement, each state in
a macrostate is assigned a rank)1.

The complementation procedure works with the notion of level rankings of states of A,
originally proposed in [22, 13]. For n = |Q|, a (level) ranking is a function f : Q → [2n]
such that {f(qf ) | qf ∈ F} ⊆ {0, 2, . . . , 2n}, i.e., f assigns even ranks to accepting states
of A. We use R to denote the set of all rankings and odd(f) to denote the set of states given
an odd ranking by f , i.e. odd(f) = {q ∈ Q | f(q) is odd}. For a ranking f , the rank of f is
defined as rank(f) = max{f(q) | q ∈ Q}. We use f ≤ f ′ iff for every state q ∈ Q we have
f(q) ≤ f ′(q) and f < f ′ iff f ≤ f ′ and there is a state p ∈ Q with f(p) < f ′(p).

The simplest rank-based procedure, called KV, constructs the BA KV(A) = (Q′, δ′, I ′, F ′)
whose components are defined as follows [22]:

Q′ = 2Q × 2Q ×R is a set of macrostates denoted as (S, O, f),
I ′ = {I} × {∅} ×R,
(S′, O′, f ′) ∈ δ′((S, O, f), a) iff

S′ = δ(S, a),
for every q ∈ S and q′ ∈ δ(q, a) it holds that f ′(q′) ≤ f(q), and

O′ =
{

δ(S, a) \ odd(f ′) if O = ∅,
δ(O, a) \ odd(f ′) otherwise, and

F ′ = 2Q × {∅} ×R.

The macrostates (S, O, f) of KV(A) are composed of three components. The S component
tracks all runs of A over the input word in the same way as determinization of an NFA. The
O component, on the other hand, tracks all runs whose rank has been even since the last
cut-point (a point where O = ∅). The last component, f , assigns every state in S a rank.
Note that the f component is responsible for the nondeterminism of the complement (and
also for the content of the O component). A run of KV(A) is accepting if it manages to empty
the O component of states occurring on the run infinitely often. We often merge S and f

components and use, e.g., ({r:4, s:4}, ∅) to denote the macrostate ({r, s}, ∅, {r 7→ 4, s 7→ 4})
(we also omit ranks of states not in S). See Figure 1c for a part of KV(Aex) that starts in
({r:4, s:4}, ∅) and keeps ranks as high as possible (the whole automaton is prohibitively large
to be shown here—the implementation of KV in GOAL [37] outputs a BA with 98 states).
Note that in order to accept the word bω, the accepting run needs to nondeterministically
decrease the rank of the successor of s (the transition ({s:4, t:4}, {s, t}) b→ ({s:3, t:4}, {t})).

In the worst case, KV constructs a BA with approximately (6n)n states [22].

1 This is not entirely true; there may be more accepting runs of C over α, with ranks assigned to states
of A that are higher than the ranks in the run DAG. There will, however, be a minimum run of C that
matches the run DAG (in the terminology of Section 3.4, such a run corresponds to a super-tight run).



V. Havlena, O. Lengál 9:5

3.3 Optimal Rank-Based Complementation
Friedgut, Kupferman, and Vardi observed in [13] that the KV construction generates
macrostates with many rankings that are not strictly necessary in the loop part of the lasso
for an accepting run on a word. Their optimization is based on composing the complement
automaton from two parts: the first part (called by us the waiting part) just tracks all runs
of A over the input word (in a similar manner as in a determinized NFA) and the second
part (the tight part) in addition tracks the rank of each run in a similar manner as the KV
construction, with the difference that the rankings are tight. For a set of states S ⊆ Q,
we call f to be S-tight if (i) it has an odd rank r, (ii) {f(s) | s ∈ S} ⊇ {1, 3, . . . , r}, and
(iii) {f(q) | q /∈ S} = {0}. A ranking is tight if it is Q-tight; we use T to denote the set of all
tight rankings.

An optimal algorithm whose space complexity matches the theoretical lower bound
O((0.76n)n) was given by Schewe in [33, Section 3.1]. We denote this algorithm as Schewe.
Apart from the optimization from [13], in Schewe, macrostates of the tight part contain one
additional component, i.e., a macrostate has the form (S, O, f, i), where the last component
i ∈ {0, 2, . . . , 2n − 2}, for n = |Q|, denotes the rank of states that are in O. Then, at
a cut-point (when O is being reset), O is not filled with all states having an even rank, but
only those whose rank is i (at every cut-point, i changes to i + 2 modulo the rank of f).

Formally, Schewe(A) = (Q′, δ′, I ′, F ′) is constructed as follows:

Q′ = Q1 ∪Q2 where
Q1 = 2Q and
Q2 = {(S, O, f, i) ∈ 2Q × 2Q × T × {0, 2, . . . , 2n− 2} | f is S-tight, O ⊆ S ∩ f−1(i)},

I ′ = {I},
δ′ = δ1 ∪ δ2 ∪ δ3 where

δ1 : Q1 × Σ→ 2Q1 such that δ1(S, a) = {δ(S, a)},
δ2 : Q1 × Σ→ 2Q2 such that δ2(S, a) = {(S′, ∅, f, 0) | S′ = δ(S, a), f is S′-tight}, and
δ3 : Q2 × Σ→ 2Q2 such that (S′, O′, f ′, i′) ∈ δ3((S, O, f, i), a) iff
∗ S′ = δ(S, a),
∗ for every q ∈ S and q′ ∈ δ(q, a) it holds that f ′(q′) ≤ f(q),
∗ rank(f) = rank(f ′),
∗ and ◦ i′ = (i + 2) mod (rank(f ′) + 1) and O′ = f ′−1(i′) if O = ∅ or

◦ i′ = i and O′ = δ(O, a) ∩ f ′−1(i) if O ̸= ∅, and
F ′ = {∅} ∪ ((2Q × {∅} × T × ω) ∩Q2).

We call the part of Schewe(A) with the states in Q1 the waiting part and the part with
the states in Q2 the tight part (an accepting run in Schewe(A) simulates the run DAG of
A over a word w by waiting in Q1 until it can generate tight rankings only; then it moves
to Q2). See Figure 1d for Schewe(Aex). Note that in order to accept the word bω, the
accepting run needs to nondeterministically move from the waiting to the tight part.

▶ Theorem 1. ([33, Corollary 3.3]) Let B = Schewe(A). Then L(B) = L(A).

In the following, we assume that Schewe(A) contains only the states and transitions
reachable from I ′. We use Schewe as the base algorithm in the rest of the paper.

3.4 Super-Tight Runs
Let B = Schewe(A). Each accepting run of B on α ∈ L(B) is tight, i.e., the rankings of
macrostates it traverses in Q2 are tight (this follows from the definition of Q2). In this

CONCUR 2021



9:6 Reducing (to) the Ranks

section, we show that there exists a super-tight run of B on α, which is, intuitively, a run
that uses as little ranks as possible. Our optimizations in Section 4 are based on preserving
super-tight runs of B.

Let ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1)(Sm+2, Om+2, fm+2, im+2) . . . be an accepting
run of B over a word α ∈ Σω. Given a macrostate (Sk, Ok, fk, ik) for k > m, we define
its rank as rank((Sk, Ok, fk, ik)) = rank(fk). Further, we define the rank of the run ρ

as rank(ρ) = min{rank((Sk, Ok, fk, ik)) | k > m}. Let Gα be the run DAG of A over α

and rankα be the ranking of vertices in Gα. We say that the run ρ is super-tight if for
all k > m and all q ∈ Sk, it holds that fk(q) = rankα(q, k). Intuitively, super-tight runs
correspond to runs whose ranking faithfully copies the ranks assigned in Gα (from some
position m corresponding to the transition from the waiting to the tight part of B).

▶ Lemma 2. Let α ∈ L(B). Then there is a super-tight accepting run ρ of B on α.

Let ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1)(Sm+2, Om+2, fm+2, im+2) . . . be a run and
consider a macrostate (Sk, Ok, fk, ik) for k > m. We call a set Ck ⊆ Sk a tight core of
a ranking fk if fk(Ck) = {1, 3, . . . , rank(fk)} and fk|Ck

is injective (i.e., every state in the
tight core has a unique odd rank). Moreover, Ck is a tight core of a macrostate (Sk, Ok, fk, ik)
if it is a tight core of fk. We say that an infinite sequence τ = Cm+1Cm+2 . . . is a trunk
of run ρ if for all k > m it holds that Ck is a tight core of ρ(k) and there is a bijection
θ : Ck → Ck+1 s.t. if θ(qk) = qk+1 then qk+1 ∈ δ(qk, αk). We will, in particular, be interested
in trunks of super-tight runs. In these runs, a trunk (there can be several) represents runs
of A that keep the super-tight ranks of ρ. The following lemma shows that every state in any
tight core in a trunk of such a run has at least one successor with the same rank.

▶ Lemma 3. Let ρ = S0 . . . Sm(Sm+1, Om+1, fm+1, im+1) . . . be an accepting super-tight run
of B on α. Then there is a trunk τ = Cm+1Cm+2 . . . of ρ and, moreover, for every k > m and
all states qk ∈ Ck, it holds that there is a state qk+1 ∈ Ck+1 such that fk(qk) = fk+1(qk+1).

4 Optimized Complement Construction

In this section, we introduce our optimizations of Schewe that are key to producing small
complement automata in practice.

4.1 Delaying the Transition from Waiting to Tight
Our first optimization of the construction of the complement automaton reduces the number
of nondeterministic transitions between the waiting and the tight part. This optimization is
inspired by the idea of partial order reduction in model checking [14, 38, 29]. In particular,
since in each state of the waiting part, it is possible to move to the tight part, we can
arbitrarily delay such a transition (but need to take it eventually) and, therefore, significantly
reduce the number of transitions (and, as our experiments later show, also significantly
reduce the number of reachable states in Q2).

Speaking in the terms of partial order reduction, when constructing the waiting part of
the complement BA, given a macrostate S ∈ Q1 and a symbol a ∈ Σ, we can set θ2 ⊆ δ2
such that θ2(S, a) := ∅ if the cycle closing condition holds and θ2(S, a) := δ2(S, a) otherwise.
Informally, the cycle closing condition (often denoted as C3) holds for S and a if the successor
of S over a in the waiting part does not close a cycle where the transition to the tight part
would be infinitely often delayed. Practically, it means that when constructing Q1, we need



V. Havlena, O. Lengál 9:7

Algorithm 1 The Delay construction

Input: A Büchi automaton A = (Q, I, δ, F )
Output: A Büchi automaton C s.t. L(C) = L(A)

1 S ← {I}, Q1 ← {I}, θ2 ← ∅, (·, δ1 ∪ δ2 ∪ δ3, I ′, F ′)← Schewe(A);
2 while S ≠ ∅ do
3 Take a waiting-part macrostate R ⊆ Q from S;
4 foreach a ∈ Σ do
5 if ∃T ∈ δ1(R, a) s.t. R

a→ T closes a cycle in Q1 then
6 θ2 ← θ2 ∪ {R

a→ U | U ∈ δ2(R, a)};
7 foreach T ∈ δ1(R, a) s.t. T /∈ Q1 do
8 S ← S ∪ {T};
9 Q1 ← Q∪ {T};

10 Q2 ← reachδ3(img(θ2));
11 return C = (Q1 ∪Q2, δ1 ∪ θ2 ∪ δ3, I ′, F ′ ∩Q2);

to check whether successors of a macrostate close a cycle in the so-far generated part of Q1.
We give the construction in Algorithm 1 and refer to it as Delay. Using this optimisation
on the example in Figure 1d, we would remove the b-transitions from {r, s} and {s} to the
macrostate ({s:1, t:0}, ∅, 0) and also the macrostate ({s:1}, ∅, 0) (including the transitions
incident with it).

▶ Lemma 4. Let A be a BA. Then L(Delay(A)) = L(Schewe(A)). Moreover, for
every accepting super-tight run of Schewe(A) on α, there is an accepting super-tight run
of Delay(A) on α.

Since Delay does not affect the rankings in the macrostates and only delays the transition
from the waiting to the tight part, we can freely use it as the base algorithm instead of
Schewe in all following optimizations.

4.2 Successor Rankings
Our next optimization is used to reduce the maximum considered ranking of a macrostate in
the tight part of B = Schewe(A). For a given macrostate, the number of tight rankings
that can occur within the macrostate rises combinatorially with the macrostate’s maximum
rank (in particular, the number of tight rankings for a given set of states corresponds to
the Stirling number of the second kind of the maximum rank [13]). It is hence desirable to
reduce the maximum considered rank as much as possible.

The idea of our optimization called SuccRank is the following. Suppose we have
a macrostate (S, O, f, i) from the tight part of B. Further, assume that the maximum
number of non-accepting states in the S-component of a macrostate that is infinitely often
reachable from (S, O, f, i) is ⌈S⌉. Then, we know that a super-tight accepting run that goes
through (S, O, f, i) will never need a rank higher than 2⌈S⌉ − 1 (any accepting state will
be assigned an even rank, so we can omit them). Therefore, if the rank of f is higher than
2⌈S⌉ − 1, we can safely discard (S, O, f, i) (since there will be a super-tight accepting run
that goes over (S, O′, f ′, i′) with f ′ < f). This part of the optimization is called coarse.

Moreover, let q ∈ S and let ⌊{q}⌋ be the smallest size of a set of states (again without
accepting states) reachable from q over some (infinite) word infinitely often. Then, we know
that those states will have a rank bounded by the rank of f(q), so there are only (at most)

CONCUR 2021



9:8 Reducing (to) the Ranks

⌈S⌉ − ⌊{q}⌋ states whose rank can be higher than f(q). Therefore, the rank of f , which is
tight, can be at most f(q) + 2(⌈S⌉ − ⌊{q}⌋). We call this part of the optimization fine.

We now formalize the intuition. Let us fix a BA A = (Q, δ, I, F ). Then, let us consider
a BA RA = (2Q, δR, ∅, ∅), with δR = {R a→ S | S = δ(R, a)}, which is tracking reachability
between set of all states of A (we only focus on its structure and not the language). Note
that RA is deterministic and complete. Further, given S ⊆ Q, let us use SCC (S) ⊆ 22Q to
denote the set of all strongly connected components reachable from S in RA. We will use
inf-reach(S) to denote the set of states

⋃
SCC (S), i.e., the set of states such that there is an

infinite path in RA starting in S that passes through a given state infinitely many times.
We define the maximum and minimum sizes of macrostates reachable infinitely often from S:

⌈S⌉ = max{|R \ F | : R ∈ inf-reach(S)} and ⌊S⌋ = min{|R \ F | : R ∈ inf-reach(S)}.

For a macrostate (S, O, f, i), we define φcoarse((S, O, f, i)) def≡ rank(f) ≤ 2⌈S⌉−1. If (S, O, f, i)
does not satisfy φcoarse, we can omit it from the output of Schewe(A) (as allowed by
Lemma 5). See Figure 2a for an example of such a macrostates. For instance, macrostate
({r:3, t:1}, ∅, 0) can be removed since its rank is 3 and ⌈{r, t}⌉ = 1, so 3 ̸≤ 2⌈{r, t}⌉ − 1.

Moreover, we also define the condition

φfine((S, O, f, i)) def≡ rank(f) ≤ min{f(q) + 2(⌈S⌉ − ⌊{q}⌋) | q ∈ S}. (1)

Again, we can omit (S, O, f, i) if it does not satisfy φfine. See Figure 2b for an example
of such a macrostate. Note that the rank of ({r:1, s:5, t:3}, ∅, 0) is 5, ⌈{r, s, t}⌉ = 3 and
⌊{r}⌋ = 2, ⌊{s}⌋ = 1, ⌊{t}⌋ = 0. Then, min{f(r)+2(3−2), f(s)+2(3−1), f(t)+2(3−0)} =
min{1 + 2, 5 + 4, 3 + 6} = 3, so the macrostate does not satisfy φfine and can be removed.

We emphasize that φcoarse and φfine are incomparable. For example, the macrostates
removed due to φcoarse in Figure 2a satisfy φfine (since, e.g., 3 ≤ min{3+2(1−1), 1+2(1−0)})
and the macrostate removed due to φfine in Figure 2b satisfies φcoarse (since 5 ≤ 2 · 3− 1).

Putting the conditions together, we define the predicate

SuccRank((S, O, f, i)) def≡ φcoarse((S, O, f, i)) ∧ φfine((S, O, f, i)). (2)

We abuse notation and use SuccRank(A) to denote the output of Schewe(A) = (Q′, δ′, I ′, F ′)
where the states from the tight part of Q′ are restricted to those that satisfy SuccRank.

▶ Lemma 5. Let A be a BA. Then L(SuccRank(A)) = L(Schewe(A)).

4.3 Rank Simulation
The next optimization RankSim is a modification of optimization Purgedi from [8].
Intuitively, Purgedi is based on the fact that if a state p is directly simulated by a state r, i.e.,
p ⪯di r, then any macrostate (S, O, f, i) where f(p) > f(r) can be safely removed (intuitively,
any run from p can be simulated by a run from r, where the run from r may contain more
accepting states and so needs to decrease its rank more times). Purgedi is compatible with
Schewe but, unfortunately, it is incompatible with the MaxRank construction (one of
our further optimizations introduced in Section 4.5) since in MaxRank, several runs are
represented by one maximal run (w.r.t. the ranks) and removing such a run would also
remove the smaller runs. We, however, change the condition and obtain a new reduction,
which is incomparable with Purgedi but compatible with MaxRank.



V. Havlena, O. Lengál 9:9

q r s t
a a a

{q, s}

{r, t}

{r}

(
{r:3, t:1}, ∅, 0

) (
{r:1, t:3}, ∅, 0

)
(
{r:1, t:1}, ∅, 0

)
(
{r:1, t:0}, ∅, 0

)
(
{r:0, t:1}, ∅, 0

)
(
{r:1}, ∅, 0

)

a

a

a

a
a

a

a

a

a

a

(a)

q

r

s

ta

a

a

a

a

a

a

a
a

{q}

{r, s}

{r, s, t}

(
{r:1, s:5, t:3}, ∅, 0

)a

a

a

a

(b)

q0 q1

q2

q3

q4a
a

a

a
a

a

r0 r1 r2 r3
aa a

a

{q0, r0}

{q1, r1}

{q2, q3, r2}

{q3, q4, r3}

(
{q1:1, r1:3}, ∅, 0

)
(
{q1:3, r1:1}, ∅, 0

)
(
{q1:1, r1:1}, ∅, 0

)a

a

a

a

a

a

a

(c)

q r

a a

{q, r}

(
{q:3, r:1}, ∅, 0

)
(
{q:1, r:1}, ∅, 0

)

a

a

a

a

(d)

Figure 2 (a) Illustration of SuccRank reduction (φcoarse), focusing on the transitions from the
waiting to the tight part. (b) Illustration of SuccRank reduction (φfine), focusing on one particular
macrostate. (c) Illustration of RankSim′. (d) Illustration of RankRestr.

Consider the following relation of odd-rank simulation on Q defined such that p ⪯ors r iff

∀α ∈ Σω,∀i ≥ 0: (rankα(p, i) is odd∧ rankα(r, i) is odd)⇒ rankα(p, i) ≤ rankα(r, i). (3)

Intuitively, if p ⪯ors r holds, then in any super-tight run and a macrostate (S, O, f, i) in such
a run, if p, r ∈ S and both f(p) and f(r) are odd, then it needs to hold that f(p) ≤ f(r).
Such a reasoning can also be applied transitively (⪯ors is by itself not transitive): if, in
addition, t ∈ S, the rank f(t) is odd, and r ⪯ors t, then it also needs to hold that f(p) ≤ f(t).

Formally, given a ranking f , let ⪯f
ors be a modification of ⪯ors defined as

p ⪯f
ors r

def≡ f(p) is odd ∧ f(r) is odd ∧ p ⪯ors r (4)

and ⪯fT
ors be its transitive closure. We use ⪯fT

ors to define the following condition:

RankSim((S, O, f, i)) def≡ ∀p, r ∈ S : p ⪯fT
ors r ⇒ f(p) ≤ f(r). (5)

Abusing the notation, let RankSim(A) denotes the output of Schewe(A) = (Q′, δ′, I ′, F ′)
where states from the tight part of Q′ are restricted to those that satisfy RankSim.

▶ Lemma 6. Let A be a BA. Then L(RankSim(A)) = L(Schewe(A)).

From the definition of ⪯ors, it is not immediate how to compute it, since it is defined over
all infinite runs of A over all infinite words. The computation of a rich under-approximation
of ⪯ors will be the topic of the rest of this section. We first note that ⪯di ⊆ ⪯ors, which is
a consequence of the following lemma.

▶ Lemma 7 (Lemma 7 in [8]). Let p, r ∈ Q be such that p ⪯di r and Gα = (V, E) be the run
DAG of A over α. For all i ≥ 0, ((p, i) ∈ V ∧ (r, i) ∈ V )⇒ rankα(p, i) ≤ rankα(r, i).

We extend ⪯di into a relation ⪯R, which is computed statically on A, and then show that
⪯R ⊆ ⪯ors. The relation ⪯R is defined recursively as the smallest binary relation over Q

s.t. (i) ⪯di ⊆ ⪯R and (ii) for p, r ∈ Q, if ∀a ∈ Σ : (δ(p, a) \F ) ⪯∀∀
R (δ(r, a) \F ), then p ⪯R r.

Here, S1 ⪯∀∀
R S2 holds iff ∀x ∈ S1,∀y ∈ S2 : x ⪯R y. The relation ⪯R can then be computed

using a standard worklist algorithm, starting from ⪯di and adding pairs of states for which
condition 2 holds until a fixpoint is reached.

▶ Lemma 8. We have ⪯R ⊆ ⪯ors.

CONCUR 2021



9:10 Reducing (to) the Ranks

Putting it all together, we modify (5) by substituting ⪯fT
ors with ⪯fT

R , which denotes the
transitive closure of ⪯f

R, where ⪯f
R is a relation defined (by modifying (4)) as

p ⪯f
R r

def≡ f(p) is odd ∧ f(r) is odd ∧ p ⪯R r. (6)

Because ⪯R ⊆ ⪯ors, Lemma 6 still holds. We denote the modification of RankSim that uses
⪯fT

R instead of ⪯fT
ors as RankSim′.

▶ Example 9. Consider the BA A (top) and the part of Schewe(A) (bottom) in Figure 2c.
Note that r2 ⪯di q2 and q2 ⪯di r2 so r2 ⪯R q2 and q2 ⪯R r2. From the definition of ⪯R, we
can deduce that r1 ⪯R q1 (since {r2} ⪯∀∀

R {q2}) and q1 ⪯R r1 (since {q2} ⪯∀∀
R {r2}). Note

that q1 ̸⪯di r1). As a consequence and due to the odd ranks of q1 and r1, we can eliminate
the macrostates ({q1:1, r1:3}, ∅, 0) and ({q1:3, r1:1}, ∅, 0).

4.4 Ranking Restriction
Another optimization, called RankRestr, restricts ranks of successors of states with an
odd rank. In particular, in a super-tight run, every odd-ranked state has a successor with
the same rank (this follows from the construction of the run DAG). Let A be a BA and
B = Schewe(A) = (Q, δ1 ∪ δ2 ∪ δ3, I, F ). We define the following restriction on transitions:

RankRestr((S, O, f, i) a→ (S′, O′, f ′, i′)) def≡
∀q ∈ S : f(q) is odd ⇒ (∃q′ ∈ δ(q, a) : f ′(q′) = f(q)). (7)

We abuse notation and use RankRestr(A) to denote B with transitions from δ3 restricted
to those that satisfy RankRestr. See Figure 2d for an example of a transition (and a newly
unreachable macrostate) removed using RankRestr.

▶ Lemma 10. Let A be a BA. Then L(RankRestr(A)) = L(Schewe(A)).

4.5 Maximum Rank Construction
Our next optimization, named MaxRank, has the biggest practical effect. We introduce it
as the last one because it depends on our previous optimizations (in particular SuccRank and
RankSim′). It is a modified version of Schewe’s “Reduced Average Outdegree” construction [33,
Section 4], named ScheweRedAvgOut, which may omit some runs, the so-called max-rank
runs, that are essential for our other optimizations (we discuss the particular issue later).2

The main idea of MaxRank is that a set of runs of B = Schewe(A) (including super-
tight runs) that assign different ranks to non-trunk states is represented by a single, “maximal,”
not necessarily super-tight (but having the same rank), run in C = MaxRank(A). We call
such runs max-rank runs. More concretely, when moving from the waiting to the tight part,
C needs to correctly guess a rank that is needed on an accepting run and the first tight core
of a trunk of the run. The ranks of the rest of states are made maximal. Then, the tight
part of C contains for each macrostate and symbol at most two successors: one via η3 and
one via η4. Loosely speaking, the η3-successor keeps all ranks as high as possible, while

2 We believe that this property was not originally intended by the author, since it is not addressed in the
proof. As far as we can tell, the construction is correct, although the original argument of the proof
in [33] needs to be corrected.



V. Havlena, O. Lengál 9:11

the η4-successor decreases the rankings of all non-accepting states in O (and can therefore
help emptying O, which is necessary for an accepting run).

Before we give the construction, let us first provide some needed notation. We now use
(S, O, f, i) ≤ (S, O, g, i) to denote that f ≤ g and similarly for < (note that non-ranking
components of the macrostates need to match).

The construction is then formally defined as MaxRank(A) = (Q1 ∪Q2, η, I ′, F ′) with
η = δ1 ∪ η2 ∪ η3 ∪ η4 such that Q1, Q2, I ′, F ′, δ1 are the same as in Schewe. Let B =
Delay(A) = (·, δ1 ∪ θ2 ∪ δ3, ·, ·) where δ1, θ2, and δ3 are defined as in Delay. We define an
auxiliary transition function that uses our previous optimizations as follows:

∆•(q, a) = {q′ | q′ ∈ θ2(q, a) ∧RankSim′(q′) ∧ SuccRank(q′))}. (8)

(We note that q is from the waiting and q′ is from the tight part of B.) Given a macrostate
(S, O, f, i) and a ∈ Σ, we define the maximal successor ranking f ′

max = max-rank((S, O, f, i), a)
as follows. Consider q′ ∈ δ(S, a) and the rank r = min{f(s) | s ∈ δ−1(q′, a) ∩ S}. Then

f ′
max(q′) := r − 1 if r is odd and q′ ∈ F and

f ′
max(q′) := r otherwise.

Let δ3 be the transition function of the tight part of Schewe(A). We can now proceed
to the definition of the missing components of MaxRank(A):

η2(S, a) := {(S′, ∅, f ′, 0) ∈ ∆•(S, a) | (S′, ∅, f ′, 0) is a maximal element of ≤ in ∆•(S, a)}.
η3((S, O, f, i), a): Let f ′

max = max-rank((S, O, f, i), a). Then, we set
η3((S, O, f, i), a) := {(S′, O′, f ′

max , i′)} when (S′, O′, f ′
max , i′) ∈ δ3((S, O, f, i), a) (i.e.,

if f ′
max is tight; note that, in general, the result of max-rank may not be tight) and

η3((S, O, f, i), a) := ∅ otherwise.
η4((S, O, f, i), a): Let η3((S, O, f, i), a) = {(S′, P ′, h′, i′)} and let

f ′ = h′ ◁ {u 7→ h′(u)− 1 | u ∈ P ′ \ F} and
O′ = P ′ ∩ f ′−1(i′).

Then, if i′ ≠ 0, we set η4((S, O, f, i), a) := {(S′, O′, f ′, i′)}, else we set η4((S, O, f, i), a) := ∅.

MaxRank differs from ScheweRedAvgOut in the definition of η2 and η4. In particular,
in the η4 of ScheweRedAvgOut (named γ4 therein), the condition that only non-accepting
states (u ∈ P ′ \F ) decrease rank is omitted. Instead, the rank of all states in P ′ is decreased
by one, which might create a “false ranking” (not an actual ranking since an accepting state
is given an odd rank), so the target macrostate is omitted from the complement. Due to this,
some max-rank runs may also be removed. Our construction preserves max-rank runs, which
makes the proof of the theorem significantly more involved.

▶ Theorem 11. Let A be a BA and C = MaxRank(A). Then L(C) = L(A).

Note that MaxRank is incompatible with RankRestr since RankRestr optimizes
the transitions in the tight part of the complement BA, which are abstracted in MaxRank.

4.6 Backing Off
Our final optimization, called BackOff, is a strategy for guessing when our optimized
rank-based construction is likely (despite the optimizations) to generate too many states
and when it might be helpful to give up and use a different complementation procedure
instead. We evaluate this after the initial phase of Schewe, which constructs δ2 (η2 in
MaxRank, θ2 in Delay; we will just use δ2 now), finishes. We provide a set of pairs

CONCUR 2021



9:12 Reducing (to) the Ranks

10 1000 100000
Ranker-MaxR

10

1000

100000
Ra

nk
er

-R
Re

st
r

(a) RankerMaxR vs RankerRRestr

10 1000 100000
Ranker-MaxR

10

1000

100000

Sc
he

we
-R

ed
Av

gO
ut

(b) RankerMaxR vs ScheweRedAvgOut

Figure 3 Evaluation of the effectiveness of our optimizations on the generated state space (axes are
logarithmic). The horizontal and vertical dashed lines represent timeouts.

{(StateSizej , RankMaxj)}j∈J for an index set J (obtained experimentally) and check (after δ2
is constructed) that for all (S, O, f, i) ∈ img(δ2) and all j ∈ J it holds that either |S| <

StateSizej or rank(f) < RankMaxj . If for some (S, O, f, i) and j the condition does not hold,
we terminate the construction and execute a different, surrogate, procedure.

5 Experimental Evaluation

Used tools and evaluation environment. We implemented the optimizations described in
the previous sections in a tool called Ranker [17] in C++ (we tested the correctness of our
implementation using Spot’s autcross on all BAs in our benchmark). We compared our
complementation approach with other state-of-the-art tools, namely, GOAL [37] (including
the Fribourg plugin [1]), Spot 2.9.3 [11], Seminator 2 [4], LTL2dstar 0.5.4 [21], and
ROLL [24]. All tools were set to the mode where they output an automaton with the
standard state-based Büchi acceptance condition. We note that some of the tools are aimed
at complementing more general flavours of ω-automata, such as Seminator 2 focusing on
generalized transition-based Büchi automata. The experimental evaluation was performed on
a 64-bit GNU/Linux Debian workstation with an Intel(R) Xeon(R) CPU E5-2620 running
at 2.40 GHz with 32 GiB of RAM. The timeout was set to 5 minutes.

Dataset. The source of our main benchmark are the 11,000 BAs used in [36], which were
randomly generated using the Tabakov-Vardi approach [35] over a two letter alphabet,
starting from 15 states and with various different parameters (see [36] for more details). In
preprocessing, the automata were reduced using a combination of Rabit [27] and Spot’s
autfilt (using the –high simplification level) and converted to the HOA format [2]. From
this set, we removed automata that are (i) semi-deterministic, (ii) inherently weak, or
(iii) unambiguous, since for these kinds of automata there exist more efficient complementation
procedures than for unrestricted BAs [3, 4, 5, 26]. Moreover, we removed BAs with an empty
language or empty language of complement. We were left with 2,393 hard automata.

Selection of Optimizations. We use two settings of Ranker with different optimizations
turned on. Since the RankRestr and MaxRank optimizations are incompatible, the
main difference between the settings is which one of those two they use. The particular
optimizations used in the settings are the following:



V. Havlena, O. Lengál 9:13

Table 1 Statistics for our experiments. The upper part compares different optimizations of the
rank-based procedure (no postprocessing). The lower part compares our approach with other methods
(with postprocessing). “BO” denotes the BackOff optimization. In the left-hand side of the table, the
column “med.” contains the median, “std. dev” contains the standard deviation, and “TO” contains the
number of timeouts (5 mins). In the right-hand side of the table, we provide the number of cases where
our tool (RankerMaxR without postprocessing in the upper part and with postprocessing in the lower
part) was strictly better (“wins”) or worse (“losses”). The “(TO)” column gives the number of times
this was because of the timeout of the loser. Approaches implemented in GOAL are labelled with .

method max mean med. std. dev TO wins (TO) losses (TO)
RankerMaxR 319 119 8 051.58 185 28 891.4 360 — — — —
RankerRRestr 330 608 9 652.67 222 32 072.6 854 1810 (495) 109 (1)
ScheweRedAvgOut  67 780 5 227.3 723 10 493.8 844 2030 (486) 3 (2)
RankerMaxR 1 239 61.83 32 103.18 360 — — — —
RankerMaxR+BO 1 706 73.65 33 126.8 17 — — — —
Piterman  1 322 88.30 40 142.19 12 1 069 (3) 469 (351)
Safra  1 648 99.22 42 170.18 158 1 171 (117) 440 (319)
Spot 2 028 91.95 38 158.13 13 907 (6) 585 (353)
Fribourg  2 779 113.03 36 221.91 78 996 (51) 472 (333)
LTL2dstar 1 850 88.76 41 144.09 128 1 156 (99) 475 (331)
Seminator 2 1 772 98.63 33 191.56 345 1 081 (226) 428 (241)
ROLL 1 313 21.50 11 57.67 1 106 1 781 (1 041) 522 (295)

RankerMaxR = Delay + SuccRank + RankSim′ + MaxRank
RankerRRestr = Delay + SuccRank + RankSim′ + RankRestr + Purgedi

(The Purgedi optimization is from [8].) Note that the two settings include all optimizations
compatible with MaxRank and RankRestr respectively. Due to space constraints, we
cannot give a detailed analysis of the effect of individual optimizations on the size of the
obtained complement automaton. Let us, at least, give a bird’s-eye view. The biggest effect
has MaxRank, followed by Delay—their use is key to obtaining a small state space. The
rest of the optimizations are less effective, but they still remove a significant number of states.

5.1 Comparison of Rank-Based Procedures

First, we evaluated how our optimizations reduce the generated state space, i.e., we compared
the sizes of complemented BAs with no postprocessing. Such a use case represents applications
like testing inclusion or equivalence of BAs, where postprocessing the output is irrelevant.

More precisely, we first compared the sizes of automata produced by our settings
RankerMaxR and RankerRRestr to see which of them behaves better (cf. Figure 3a) and
then we compared RankerMaxR, which had better results, with the ScheweRedAvgOut
procedure implemented in GOAL (parameters -m rank -tr -ro). Scatter plots of the
results are given in Figure 3b and summarizing statistics in the upper part of Table 1.

We note that although RankerMaxR produces in the vast majority of cases (1,810)
smaller automata than RankerRRestr, in a few cases (109) RankerRRestr still outputs
a smaller result (in 1 case this is due to the timeout of RankerMaxR). The comparison with
ScheweRedAvgOut shows that our optimizations indeed have a profound effect on the size of
the generated state space. Although the mean and maximum size of complements produced by
RankerMaxR and RankerRRestr are larger than those of ScheweRedAvgOut, this is because
for cases where the complement would be large, the run of ScheweRedAvgOut in GOAL
timeouted before it could produce a result. Therefore, the median is a more meaningful
indicator, and it is significantly (3–4×) lower for both RankerMaxR and RankerRRestr.

CONCUR 2021



9:14 Reducing (to) the Ranks

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

Se
m

in
at

or
 2

+P
P

(a) RankerMaxR vs Seminator 2

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

Pi
te

rm
an

+P
P

(b) RankerMaxR vs Piterman

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

Fr
ib

ou
rg

+P
P

(c) RankerMaxR vs Fribourg

1 10 100 1000 10000
Ranker-MaxR+PP

1

10

100

1000

10000

RO
LL

+P
P

(d) RankerMaxR vs ROLL

Figure 4 Comparison of the sizes of the BAs constructed using our optimized rank-based construction
and other approaches. Timeouts are on the dashed lines.

5.2 Comparison with Other Approaches
Further, we evaluated the complements produced by RankerMaxR and other approaches. In
this setting, we focused on the size of the output BA after postprocessing (we, again, used
autfilt with simplification –high; we denote this using “+PP”). We evaluated the following
algorithms: Safra [32], its optimization Piterman [30] the optimization implemented in
LTL2dstar [21], Fribourg [1], Spot (Redziejowski’s algorithm [31]), ROLL’s learning-
based algorithm [25], and a semideterminization-based algorithm [3] in Seminator 2.

In Figure 4, we give scatter plots of selected comparisons; we omitted the results for
Safra, Spot, and LTL2dstar, which on average performed slightly worse than Piterman.
We give summarizing statistics in the lower part of Table 1 and the run times in Table 2.

Let us now discuss the data in the lower part of Table 1. In the left-hand side, we can see
that the mean and median size of BAs obtained by RankerMaxR are both the lowest with
the exception of ROLL. ROLL implements a learning-based approach, which means that it
works on the level of the language of the input BA instead of the structure. Therefore, it can
often find a much smaller automaton than other approaches. Its practical time complexity,
however, seems to grow much faster with the number of states of the output BA than other
approaches (cf. Table 2). RankerMaxR by itself had more timeouts than other approaches,
but when used with the BackOff strategy, is on par with Piterman and Spot.

In the right-hand side of Table 1, we give the numbers of times where RankerMaxR gave
strictly smaller and strictly larger outputs respectively. Here, we can see that the output
of RankerMaxR is often at least as small as the output of the other method (this is not



V. Havlena, O. Lengál 9:15

Table 2 Run times of the tools [s]

method mean med. std. dev
RankerMaxR 10.21 0.84 28.43
RankerMaxR+BO 9.40 3.03 16.00
Piterman  7.47 6.03 8.46
Safra  15.49 7.03 35.59
Spot 1.07 0.02 8.94
Fribourg  19.43 10.01 32.76
LTL2dstar 4.17 0.06 22.19
Seminator 2 11.41 0.37 34.97
ROLL 42.63 14.92 67.31

Table 3 Wins and losses for RankerMaxR+BO

method wins (TO) losses (TO)
Piterman  1 160 (4) 112 (9)
Safra  1 255 (147) 222 (6)
Spot 985 (8) 328 (12)
Fribourg  1 076 (71) 287 (10)
LTL2dstar 1 208 (118) 272 (7)
Seminator 2 1 236 (333) 253 (5)
ROLL 1 923 (1 096) 360 (7)

in the table, but can be computed as 2, 393 − losses; the losses were caused mostly by
timeouts; results with the BackOff strategy would increase the number even more) and
often a strictly smaller one (the wins column). When comparing RankerMaxR with the best
result of any other tool, it obtained a strictly smaller BA in 539 cases (22.5 %) and a BA at
least as small as the best result of any other tool in 1,518 cases (63.4 %). Lastly, we note
that there were four BAs in the benchmark that no tool could complement and one BA that
only RankerMaxR was able to complement; there was no such a case for any other tool.

Let us now focus on the run times of the tools in Table 2. GOAL and ROLL are
implemented in Java, which adds a significant overhead to the run time (e.g., the fastest run
time of GOAL was 3.15 s; it is hard to predict how their performance would change if they
were reimplemented in a faster language); the other approaches are implemented in C++.

BackOff. Our BackOff setting in the experiments used the set of constraints {(StateSize1 =
9, RankMax1 = 5), (StateSize2 = 8, RankMax2 = 6)} and Piterman as the surrogate
algorithm. The BackOff strategy was executed 873 times and managed to decrease the
number of timeouts of RankerMaxR from 360 to 17 (row RankerMaxR+BO in Table 1).

Discussion. The results of our experiments show that our optimizations are key to making
rank-based complementation competitive to other approaches in practice. Furthermore, with
the optimizations, the obtained procedure in the majority of cases produces a BA at least as
small as a BA produced by any other approach, and in a large number of cases the smallest
BA produced by any existing approach. We emphasize the usefulness of the BackOff
heuristic: as there is no clear “best” complementation algorithm—different techniques having
different strengths and weaknesses—knowing which technique to use for an input automaton
is important in practice. In Table 3, we give a modification of the right-hand side of Table 1
giving wins and losses for RankerMaxR+BO. It seems that the combination of these two
completely different algorithms yields a quite strong competitor.

6 Related Work

The problem of BA complementation has attracted researchers since Büchi’s seminal work [7].
Since then, there have appeared several directions of BA complementation approaches.
Ramsey-based complementation using Büchi’s original argument, decomposing the language
accepted by an automaton into a finite number of equivalence classes, was later improved
in [6]. Determinization-based complementation was introduced by Safra in [32], later improved
by Piterman in [30]. Determinization-based approaches convert an input BA into an
equivalent intermediate deterministic automaton with different accepting condition (e.g.
Rabin automaton) that can be easily complemented. The result is then converted back into
a BA (often for the price of some blow-up). Slice-based complementation uses a reduced

CONCUR 2021



9:16 Reducing (to) the Ranks

abstraction on a run tree to track the acceptance condition [39, 19]. A learning-based
approach was presented in [25, 24]. A novel optimal complementation algorithm by Allred
and Utes-Nitsche was presented in [1]. There are also specific approaches for complementation
of special types of BAs, e.g., deterministic [23], semi-deterministic [3], or unambiguous [26].
Semi-determinization based complementation then uses a conversion of a standard BA to
a semi-deterministic version [10] followed by its complementation [4].

Rank-based complementation, studied in [22, 15, 13, 33, 20], extends the subset construction
for determinizing finite automata with additional information kept in each macrostate to
track the acceptance condition of all runs of the input automaton. We have described
the refinement of the basic procedure from [22] towards [13] and [33] in Section 3. The
work in [15] contains optimizations of an alternative (sub-optimal) rank-based construction
from [22] that goes through alternating Büchi automata. Furthermore, the work in [20]
proposes an optimization of Schewe that in some cases produces smaller automata (the
construction is not compatible with our optimizations). Rank-based construction can be
optimized using simulation relations as shown in [8]. Here the direct and delayed simulation
relations can be used to prune macrostates that are redundant for accepting a word or to
saturate macrostates with simulation-smaller states.

Acknowledgements. We thank reviewers of this and previously submitted versions of the
paper for their useful remarks that helped us improve the quality of the paper. This work
was supported by the Czech Science Foundation project 20-07487S and the FIT BUT internal
project FIT-S-20-6427.

References
1 Joël D. Allred and Ulrich Ultes-Nitsche. A simple and optimal complementation algorithm

for Büchi automata. In Proceedings of the Thirty third Annual IEEE Symposium on Logic in
Computer Science (LICS 2018), pages 46–55. IEEE Computer Society Press, July 2018.

2 Tomáš Babiak, František Blahoudek, Alexandre Duret-Lutz, Joachim Klein, Jan Křetínský,
David Müller, David Parker, and Jan Strejček. The Hanoi omega-automata format. In
Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part I, volume 9206 of Lecture Notes in Computer Science, pages 479–486. Springer, 2015.
doi:10.1007/978-3-319-21690-4\_31.

3 Frantisek Blahoudek, Matthias Heizmann, Sven Schewe, Jan Strejcek, and Ming-Hsien Tsai.
Complementing semi-deterministic Büchi automata. In Marsha Chechik and Jean-François
Raskin, editors, Tools and Algorithms for the Construction and Analysis of Systems - 22nd
International Conference, TACAS 2016, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, volume 9636 of Lecture Notes in Computer Science, pages 770–787. Springer,
2016. doi:10.1007/978-3-662-49674-9\_49.

4 František Blahoudek, Alexandre Duret-Lutz, and Jan Strejček. Seminator 2 can complement
generalized Büchi automata via improved semi-determinization. In Proceedings of the
32nd International Conference on Computer-Aided Verification (CAV’20), volume 12225
of Lecture Notes in Computer Science, pages 15–27. Springer, July 2020. doi:10.1007/
978-3-030-53291-8_2.

5 Bernard Boigelot, Sébastien Jodogne, and Pierre Wolper. On the use of weak automata for
deciding linear arithmetic with integer and real variables. In Rajeev Goré, Alexander Leitsch,
and Tobias Nipkow, editors, Automated Reasoning, First International Joint Conference,
IJCAR 2001, Siena, Italy, June 18-23, 2001, Proceedings, volume 2083 of Lecture Notes in
Computer Science, pages 611–625. Springer, 2001. doi:10.1007/3-540-45744-5\_50.

https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/978-3-030-53291-8_2
https://doi.org/10.1007/978-3-030-53291-8_2
https://doi.org/10.1007/3-540-45744-5_50


V. Havlena, O. Lengál 9:17

6 Stefan Breuers, Christof Löding, and Jörg Olschewski. Improved Ramsey-based Büchi
complementation. In Proc. of FOSSACS’12, pages 150–164. Springer, 2012.

7 J. Richard Büchi. On a decision method in restricted second order arithmetic. In Proc. of
International Congress on Logic, Method, and Philosophy of Science 1960. Stanford Univ.
Press, Stanford, 1962.

8 Yu-Fang Chen, Vojtech Havlena, and Ondrej Lengál. Simulations in rank-based Büchi automata
complementation. In Anthony Widjaja Lin, editor, Programming Languages and Systems
- 17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019,
Proceedings, volume 11893 of Lecture Notes in Computer Science, pages 447–467. Springer,
2019. doi:10.1007/978-3-030-34175-6\_23.

9 Yu-Fang Chen, Matthias Heizmann, Ondrej Lengál, Yong Li, Ming-Hsien Tsai, Andrea Turrini,
and Lijun Zhang. Advanced automata-based algorithms for program termination checking.
In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018, pages 135–150. ACM, 2018. doi:10.1145/3192366.3192405.

10 Costas Courcoubetis and Mihalis Yannakakis. Verifying temporal properties of finite-state
probabilistic programs. In 29th Annual Symposium on Foundations of Computer Science,
White Plains, New York, USA, 24-26 October 1988, pages 338–345. IEEE Computer Society,
1988. doi:10.1109/SFCS.1988.21950.

11 Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Étienne
Renault, and Laurent Xu. Spot 2.0 — a framework for LTL and ω-automata manipulation. In
Cyrille Artho, Axel Legay, and Doron Peled, editors, Automated Technology for Verification
and Analysis, pages 122–129, Cham, 2016. Springer International Publishing.

12 Seth Fogarty and Moshe Y. Vardi. Büchi complementation and size-change termination. In
Proc. of TACAS’09, pages 16–30. Springer, 2009.

13 Ehud Friedgut, Orna Kupferman, and Moshe Vardi. Büchi complementation made tighter.
International Journal of Foundations of Computer Science, 17:851–868, 2006.

14 Patrice Godefroid. Using partial orders to improve automatic verification methods. In
Edmund M. Clarke and Robert P. Kurshan, editors, Computer Aided Verification, 2nd
International Workshop, CAV ’90, New Brunswick, NJ, USA, June 18-21, 1990, Proceedings,
volume 531 of Lecture Notes in Computer Science, pages 176–185. Springer, 1990. doi:
10.1007/BFb0023731.

15 Sankar Gurumurthy, Orna Kupferman, Fabio Somenzi, and Moshe Y. Vardi. On complementing
nondeterministic Büchi automata. In Daniel Geist and Enrico Tronci, editors, Correct Hardware
Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference,
CHARME 2003, L’Aquila, Italy, October 21-24, 2003, Proceedings, volume 2860 of Lecture
Notes in Computer Science, pages 96–110. Springer, 2003. doi:10.1007/978-3-540-39724-3\
_10.

16 Vojtěch Havlena and Ondřej Lengál. Reducing (to) the ranks: Efficient rank-based Büchi
automata complementation (technical report). CoRR, abs/2010.07834, 2020. URL: https:
//arxiv.org/abs/2010.07834, arXiv:2010.07834.

17 Vojtěch Havlena and Ondřej Lengál. Ranker, 2021. https://github.com/vhavlena/
ba-inclusion.

18 Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Termination analysis by learning
terminating programs. In Proc. of CAV’14, pages 797–813. Springer, 2014.

19 Detlef Kähler and Thomas Wilke. Complementation, disambiguation, and determinization of
Büchi automata unified. In Proc. of ICALP’08, pages 724–735. Springer, 2008.

20 Hrishikesh Karmarkar and Supratik Chakraborty. On minimal odd rankings for Büchi
complementation. In Zhiming Liu and Anders P. Ravn, editors, Automated Technology for
Verification and Analysis, 7th International Symposium, ATVA 2009, Macao, China, October
14-16, 2009. Proceedings, volume 5799 of Lecture Notes in Computer Science, pages 228–243.
Springer, 2009. doi:10.1007/978-3-642-04761-9\_18.

CONCUR 2021

https://doi.org/10.1007/978-3-030-34175-6_23
https://doi.org/10.1145/3192366.3192405
https://doi.org/10.1109/SFCS.1988.21950
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/978-3-540-39724-3_10
https://doi.org/10.1007/978-3-540-39724-3_10
https://arxiv.org/abs/2010.07834
https://arxiv.org/abs/2010.07834
http://arxiv.org/abs/2010.07834
https://github.com/vhavlena/ba-inclusion
https://github.com/vhavlena/ba-inclusion
https://doi.org/10.1007/978-3-642-04761-9_18


9:18 Reducing (to) the Ranks

21 Joachim Klein and Christel Baier. On-the-fly stuttering in the construction of deterministic
omega -automata. In Jan Holub and Jan Zdárek, editors, Implementation and Application of
Automata, 12th International Conference, CIAA 2007, Prague, Czech Republic, July 16-18,
2007, Revised Selected Papers, volume 4783 of Lecture Notes in Computer Science, pages 51–61.
Springer, 2007. doi:10.1007/978-3-540-76336-9\_7.

22 Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that weak. ACM
Trans. Comput. Log., 2(3):408–429, 2001. doi:10.1145/377978.377993.

23 Robert P. Kurshan. Complementing deterministic Büchi automata in polynomial time. J.
Comput. Syst. Sci., 35(1):59–71, 1987. doi:10.1016/0022-0000(87)90036-5.

24 Yong Li, Xuechao Sun, Andrea Turrini, Yu-Fang Chen, and Junnan Xu. ROLL 1.0: ω-regular
language learning library. In Tomás Vojnar and Lijun Zhang, editors, Tools and Algorithms for
the Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part I, volume 11427 of Lecture Notes
in Computer Science, pages 365–371. Springer, 2019. doi:10.1007/978-3-030-17462-0\_23.

25 Yong Li, Andrea Turrini, Lijun Zhang, and Sven Schewe. Learning to complement Büchi
automata. In Proc. of VMCAI’18, pages 313–335. Springer, 2018.

26 Yong Li, Moshe Y. Vardi, and Lijun Zhang. On the power of unambiguity in Büchi
complementation. In Jean-Francois Raskin and Davide Bresolin, editors, Proceedings 11th
International Symposium on Games, Automata, Logics, and Formal Verification, Brussels,
Belgium, September 21-22, 2020, volume 326 of Electronic Proceedings in Theoretical Computer
Science, pages 182–198. Open Publishing Association, 2020. doi:10.4204/EPTCS.326.12.

27 Richard Mayr and Lorenzo Clemente. Advanced automata minimization. In Proc. of POPL’13,
pages 63–74, 2013.

28 Max Michel. Complementation is more difficult with automata on infinite words. CNET,
Paris, 15, 1988.

29 Doron A. Peled. All from one, one for all: on model checking using representatives. In
Costas Courcoubetis, editor, Computer Aided Verification, 5th International Conference, CAV
’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in
Computer Science, pages 409–423. Springer, 1993. doi:10.1007/3-540-56922-7\_34.

30 Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. In Proc. of LICS’06, pages 255–264. IEEE, 2006.

31 Roman R. Redziejowski. An improved construction of deterministic omega-automaton using
derivatives. Fundam. Informaticae, 119(3-4):393–406, 2012. doi:10.3233/FI-2012-744.

32 Shmuel Safra. On the complexity of ω-automata. In Proc. of FOCS’88, pages 319–327. IEEE,
1988.

33 Sven Schewe. Büchi complementation made tight. In Susanne Albers and Jean-Yves Marion,
editors, 26th International Symposium on Theoretical Aspects of Computer Science, STACS
2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of LIPIcs, pages
661–672. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009. doi:10.4230/
LIPIcs.STACS.2009.1854.

34 Prasad A. Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem for Büchi
automata with applications to temporal logic. In Automata, Languages and Programming,
pages 465–474. Springer, 1985.

35 Deian Tabakov and Moshe Y. Vardi. Experimental evaluation of classical automata
constructions. In Proc. of LPAR’05, pages 396–411. Springer, 2005.

36 Ming-Hsien Tsai, Seth Fogarty, Moshe Y. Vardi, and Yih-Kuen Tsay. State of Büchi
complementation. In Michael Domaratzki and Kai Salomaa, editors, Implementation and
Application of Automata, pages 261–271, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

37 Ming-Hsien Tsai, Yih-Kuen Tsay, and Yu-Shiang Hwang. GOAL for games, omega-automata,
and logics. In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification,
pages 883–889, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-540-76336-9_7
https://doi.org/10.1145/377978.377993
https://doi.org/10.1016/0022-0000(87)90036-5
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.4204/EPTCS.326.12
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.3233/FI-2012-744
https://doi.org/10.4230/LIPIcs.STACS.2009.1854
https://doi.org/10.4230/LIPIcs.STACS.2009.1854


V. Havlena, O. Lengál 9:19

38 Antti Valmari. Stubborn sets for reduced state space generation. In Grzegorz Rozenberg,
editor, Advances in Petri Nets 1990, pages 491–515, Berlin, Heidelberg, 1991. Springer Berlin
Heidelberg.

39 Moshe Y. Vardi and Thomas Wilke. Automata: From logics to algorithms. Logic and Automata,
2:629–736, 2008.

40 Qiqi Yan. Lower bounds for complementation of ω-automata via the full automata technique.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata,
Languages and Programming, pages 589–600, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

41 Qiqi Yan. Lower bounds for complementation of ω-automata via the full automata technique.
In Proc. of ICALP’06, pages 589–600. Springer, 2006.

CONCUR 2021


	1 Introduction
	2 Preliminaries
	3 Complementing Büchi Automata
	3.1 Run DAGs
	3.2 Basic Rank-Based Complementation
	3.3 Optimal Rank-Based Complementation
	3.4 Super-Tight Runs

	4 Optimized Complement Construction
	4.1 Delaying the Transition from Waiting to Tight
	4.2 Successor Rankings
	4.3 Rank Simulation
	4.4 Ranking Restriction
	4.5 Maximum Rank Construction
	4.6 Backing Off

	5 Experimental Evaluation
	5.1 Comparison of Rank-Based Procedures
	5.2 Comparison with Other Approaches

	6 Related Work

