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Abstract We consider the problem of approximate reduc-
tion of non-deterministic automata that appear in hardware-
accelerated network intrusion detection systems (NIDSes).
We define an error distance of a reduced automaton from
the original one as the probability of packets being incor-
rectly classified by the reduced automaton (wrt the prob-
abilistic distribution of packets in the network traffic). We
use this notion to design an approximate reduction proce-
dure that achieves a great size reduction (much beyond the
state-of-the-art language preserving techniques) with a con-
trolled and small error. We have implemented our approach
and evaluated it on use cases from SNORT, a popular NIDS.
Our results provide experimental evidence that the method
can be highly efficient in practice, allowing NIDSes to fol-
low the rapid growth in the speed of networks.

1 Introduction

The recent years have seen a boom in the number of
security incidents in computer networks. In order to alleviate
the impact of network attacks and intrusions, Internet
service providers want to detect malicious traffic at their
network’s entry points and on the backbones between
sub-networks. Software-based network intrusion detection
systems (NIDSes), such as the popular open-source system
SNORT [48], are capable of detecting suspicious network
traffic by testing (among others) whether a packet payload
matches a regular expression (regex) describing known
patterns of malicious traffic. NIDSes collect and maintain
vast databases of such regexes that are typically divided into
groups according to types of the attacks and target protocols.

Regex matching is the most computationally demanding
task of a NIDS as its cost grows with the speed of
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the network traffic as well as with the number and
complexity of the regexes being matched. The current
software-based NIDSes cannot perform the regex matching
on networks beyond 1 Gbps [5,26], so they cannot handle
the current speed of backbone networks ranging between
tens and hundreds of Gbps. A promising approach to speed
up NIDSes is to (partially) offload regex matching into
hardware [26,25,34]. The hardware then serves as a pre-
filter of the network traffic, discarding the majority of
the packets from further processing. Such pre-filtering can
easily reduce the traffic the NIDS needs to handle by two or
three orders of magnitude [26].

Field-programmable gate arrays (FPGAs) are the
leading technology in high-throughput regex matching. Due
to their inherent parallelism, FPGAs provide an efficient
way of implementing nondeterministic finite automata
(NFAs), which naturally arise from the input regexes.
Although the amount of available resources in FPGAs is
continually increasing, the speed of networks grows even
faster. Working with multi-gigabit networks requires the
hardware to use many parallel packet processing branches in
a single FPGA [34]; each of them implementing a separate
copy of the concerned NFA, and so reducing the size of
the NFAs is of the utmost importance. Various language-
preserving automata reduction approaches exist, mainly
based on computing (bi)simulation relations on automata
states (cf. the related work). The reductions they offer,
however, do not satisfy the needs of high-speed hardware-
accelerated NIDSes.

Our answer to the problem is approximate reduction
of NFAs, allowing for a trade-off between the achieved
reduction and the precision of the regex matching. To
formalise the intuitive notion of precision, we propose a
novel probabilistic distance of automata. It captures the
probability that a packet of the input network traffic is
incorrectly accepted or rejected by the approximated NFA.
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The distance assumes a probabilistic model of the network
traffic (we show later how such a model can be obtained).

Having formalised the notion of precision, we specify
the target of our reductions as two variants of an
optimization problem: (1) minimizing the NFA size given
the maximum allowed error (distance from the original),
or (2) minimizing the error given the maximum allowed
NFA size. Finding such optimal approximations is, however,
computationally hard (PSPACE-complete, the same as
precise NFA minimization).

Consequently, we sacrifice the optimality and, motivated
by the typical structure of NFAs that emerge from a set of
regexes used by NIDSes (a union of many long “tentacles”
with occasional small strongly-connected components),
we limit the space of possible reductions by restricting
the set of operations they can apply to the original
automaton. Namely, we consider two reduction operations:
(i) collapsing the future of a state into a self-loop (this
reduction over-approximates the language), or (ii) removing
states (such a reduction is under-approximating).

The problem of identifying the optimal sets of states on
which these operations should be applied is still PSPACE-
complete. The restricted problem is, however, more amena-
ble to an approximation by a greedy algorithm. The
algorithm applies the reductions state-by-state in an order
determined by a precomputed error labelling of the states.
The process is stopped once the given optimization goal in
terms of the size or error is reached. The labelling is based
on the probability of packets that may be accepted through a
given state and hence over-approximates the error that may
be caused by applying the reduction at a given state. As our
experiments show, this approach can give us high-quality
reductions while ensuring formal error bounds.

Finally, it turns out that even the pre-computation of the
error labelling of the states is costly (again PSPACE-com-
plete). Therefore, we propose several ways to cheaply over-
approximate it such that the strong error bound guarantees
are still preserved. In particular, we are able to exploit the
typical structure of the “union of tentacles” of the hardware
NFA in an algorithm that is exponential in the size of the
largest “tentacle” only, which gives us a method that is
indeed much faster in practice.

We have implemented our approach and evaluated
it on regexes used to classify malicious traffic in
SNORT. We obtain quite encouraging experimental results
demonstrating that our approach provides a much better
reduction than language-preserving techniques with an
almost negligible error. In particular, our experiments, going
down to the level of an actual implementation of NFAs
in FPGAs, confirm that we can squeeze into an up-to-
date FPGA chip real-life regexes encoding malicious traffic,
allowing them to be used with a negligible error for filtering
at speeds of 100 Gbps (and even 400 Gbps). This is far

beyond what one can achieve with current exact reduction
approaches.

This paper is an extended version of the paper that
appeared in the proceedings of TACAS’18 [51], containing
complete proofs of the presented lemmas and theorems.

Related Work Hardware acceleration for regex matching at
the line rate is an intensively studied technology that uses
general-purpose hardware [28,47,29,3,4,27,53,30,31] as
well as FPGAs [37,8,12,23,45,43,26,25,34]. Most of the
works focus on DFA implementation and optimization
techniques. NFAs can be exponentially smaller than DFAs
but need, in the worst case, O(n) memory accesses to
process each byte of the payload where n is the number of
states. In most cases, this incurs an unacceptable slowdown.
Several works alleviate this disadvantage of NFAs by
exploiting reconfigurability and fine-grained parallelism of
FPGAs, allowing one to process one character per clock
cycle (e.g. [37,8,45,43,26,25,34]).

In [31], which is probably the closest work to ours,
the authors consider a set of regexes describing network
attacks. They replace a potentially prohibitively large DFA
by a tree of smaller DFAs, an alternative to using NFAs
that minimizes the latency occurring in a non-FPGA-based
implementation. The language of every DFA-node in the
tree over-approximates the languages of its children. Packets
are filtered through the tree from the root downwards until
they belong to the language of the encountered nodes,
and may be finally accepted at the leaves, or are rejected
otherwise. The over-approximating DFAs are constructed
using a similar notion of probability of an occurrence of a
state as in our approach. The main differences from our work
are that (1) the approach targets approximation of DFAs (not
NFAs), (2) the over-approximation is based on a given traffic
sample only (it cannot benefit from a probabilistic model),
and (3) no probabilistic guarantees on the approximation
error are provided.

Approximation of DFAs was considered in various other
contexts. Hyper-minimization is an approach that is allowed
to alter language membership of a finite set of words [33,
19]. A DFA with a given maximum number of states is
constructed in [18], minimizing the error defined either
by (i) counting prefixes of misjudged words up to some
length, or (ii) the sum of the probabilities of the misjudged
words wrt the Poisson distribution over Σ∗. Neither of
these approaches considers reduction of NFAs nor allows
to control the expected error with respect to the real traffic.

In addition to the metrics mentioned above when
discussing the works [18,33,19], the following metrics
should also be mentioned. The Cesaro-Jaccard distance
studied in [42] is, in spirit, similar to [18] and does also
not reflect the probability of individual words. The edit
distance of weighted automata from [38] depends on the
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minimum edit distance between pairs of words from the
two compared languages, again regardless of their statistical
significance. One might also consider using the error metric
on a pair of automata introduced by Angluin in the setting of
PAC (probably approximately correct) learning of DFAs [1],
where n words are sampled from a given distribution and
their (non-)acceptance tested in the two automata. If the
outputs of both automata agree on all n words, one can
say that with confidence δ the distance between the two
automata is at most ε, where δ and ε can be determined
from n. None of these notions is suitable for our needs.

Language-preserving minimization of a given NFA
is a PSPACE-complete problem [24,32]. More feasible
(polynomial-time) is language-preserving size reduction
of NFAs based on (bi)simulations [22,40,9,11], which
does not aim for a truly minimal NFA. A number of
advanced variants exist, based on multi-pebble or look-
ahead simulations, or on combinations of forward and
backward simulations [35,16,13]. The practical efficiency
of these techniques is, however, often insufficient to allow
them to handle the large NFAs that occur in practice and/or
they do not manage to reduce the NFAs enough. Finally,
even a minimal NFA for the given set of regexes is often
too big to be implemented in the given FPGA operating on
the required speed (as shown even in our experiments). Our
approach is capable of a much better reduction for the price
of a small change of the accepted language.

2 Preliminaries

We use 〈a, b〉 to denote the set {x ∈ R | a ≤ x ≤ b} and N
to denote the set {0, 1, 2, . . . }. Given a pair of sets X1 and
X2, we use X14X2 to denote their symmetric difference,
i.e., the set {x | ∃!i ∈ {1, 2} : x ∈ Xi}. We use the notation
[v1, . . . , vn] to denote a vector of n elements, 1 to denote
the all 1’s vector [1, . . . , 1] (the dimension of 1 is always
clear from the context), A to denote a matrix, and A> for
its transpose, and I for the identity matrix.

In the following, we fix a finite non-empty alphabet Σ.
A nondeterministic finite automaton (NFA) is a quadruple
A = (Q, δ, I, F ) where Q is a finite set of states, δ :

Q × Σ → 2Q is a transition function, I ⊆ Q is a set of
initial states, and F ⊆ Q is a set of accepting states. We
use Q[A], δ[A], I[A], and F [A] to denote Q, δ, I , and F ,
respectively, and q a−→ q′ to denote that q′ ∈ δ(q, a). Often,
we abuse notation and treat δ as a subset of Q × Σ × 2Q.
A sequence of states ρ = q0 · · · qn is a run of A over
a word w = a1 · · · an ∈ Σ∗ from a state q to a state q′,
denoted as q

w,ρ
 q′, if ∀1 ≤ i ≤ n : qi−1

ai−→ qi, q0 = q,
and qn = q′. Sometimes, we use ρ in set operations where it
behaves as the set of states it contains. We also use q w

 q′

to denote that ∃ρ ∈ Q∗ : q
w,ρ
 q′ and q  q′ to denote

that ∃w : q
w
 q′. The language of a state q is defined as

LA(q) = {w | ∃qF ∈ F : q
w
 qF } and its banguage (back-

language) is defined as L[A(q) = {w | ∃qI ∈ I : qI
w
 q}.

Both notions can be naturally extended to a set S ⊆ Q:
LA(S) =

⋃
q∈S LA(q) and L[A(S) =

⋃
q∈S L

[
A(q). We

drop the subscript A when the context is obvious.A accepts
the language L(A) defined as L(A) = LA(I). A is called
deterministic (DFA) if |I| = 1 and ∀q ∈ Q and ∀a ∈ Σ :

|δ(q, a)| ≤ 1, and unambiguous (UFA) if ∀w ∈ L(A) :

∃!qI ∈ I, ρ ∈ Q∗, qF ∈ F : qI
w,ρ
 qF .

The restriction of A to S ⊆ Q is an NFA A|S given
asA|S = (S, δ∩ (S×Σ×2S), I ∩S, F ∩S). We define the
trim operation as trim(A) = A|C where C = {q | ∃qI ∈
I, qF ∈ F : qI  q  qF }. For a set of states R ⊆ Q, we
use reach(R) to denote the set of states reachable from R,
reach(R) = {r′ | ∃r ∈ R : r  r′}. We use the number of
states of A as a measure of its size, i.e., |A| = |Q|.

A (discrete probability) distribution over a countable
set X is a mapping Pr : X → 〈0, 1〉 such that∑
x∈X Pr(x) = 1. An n-state probabilistic automaton

(PA) over Σ is a triple P = (α,γ, {∆a}a∈Σ) where
α ∈ 〈0, 1〉n is a vector of initial weights, γ ∈ 〈0, 1〉n
is a vector of final weights, and for every a ∈ Σ, ∆a ∈
〈0, 1〉n×n is a transition matrix for symbol a. We abuse
notation and use Q[P] to denote the set of states Q[P] =
{1, . . . , n}. Moreover, the following two properties need to
hold: (i)

∑
{α[i] | i ∈ Q[P]} = 1 (the initial probability

is 1) and (ii) for every state i ∈ Q[P] it holds that∑
{∆a[i, j] | j ∈ Q[P], a ∈ Σ}+γ[i] = 1 (the probability

of accepting or leaving a state is 1). We define the support
of P as the NFA supp(P) = (Q[P], δ[P], I[P], F [P]) s.t.

δ[P] = {(i, a, j) |∆a[i, j] > 0},
I[P] = {i | α[i] > 0},
F [P] = {i | γ[i] > 0}.

Let us assume that every PA P is such that supp(P) =

trim(supp(P)). For a word w = a1 . . . ak ∈ Σ∗, we
use ∆w to denote the matrix ∆a1 · · ·∆ak . For the empty
word ε, we define ∆ε = I . It can be easily shown that P
represents a distribution over words w ∈ Σ∗ defined as
PrP(w) = α

> ·∆w ·γ. We call PrP(w) the probability ofw
in P . Given a language L ⊆ Σ∗, we define the probability
of L in P as PrP(L) =

∑
w∈L PrP(w).

In some of the proofs later, we use the PA PExp

defined as PExp =
(
1, [µ], {[µ]a}a∈Σ

)
where µ = 1

|Σ|+1 .
PExp models a distribution over the words from Σ∗ using
a combination of an exponential distribution (for selecting
the length l of a word) and the uniform distribution (for
selecting symbols in a word of the length l). In particular,
the purpose of PExp is to assign every word w ∈ Σ∗ the
(non-zero) probability PrPExp

(w) = µ|w|+1; any other PA
assigning non-zero probabilities to all words would work as
well.
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If Conditions (i) and (ii) from the definition of PAs are
dropped, we speak about a pseudo-probabilistic automaton
(PPA), which may assign a word from its support a quantity
that is not necessarily in the range 〈0, 1〉, denoted as
the significance of the word below. PPAs may arise during
some of our operations performed on PAs. Note that PPAs
can be seen as instantiations of multiplicity or weighted
automata [44].

3 Approximate Reduction of NFAs

In this section, we first introduce the key notion of our
approach: a probabilistic distance of a pair of finite automata
wrt a given probabilistic automaton that, intuitively,
represents the significance of particular words. We discuss
the complexity of computing the probabilistic distance.
Finally, we formulate two problems of approximate
automata reduction via probabilistic distance.

3.1 Probabilistic Distance

We start by defining our notion of a probabilistic distance
of two NFAs. Assume NFAs A1 and A2 and a probabilistic
automatonP specifying the distribution PrP : Σ∗ → 〈0, 1〉.
The probabilistic distance dP(A1,A2) between A1 and A2

wrt PrP is defined as

dP(A1,A2) = PrP(L(A1)4L(A2)).

Intuitively, the distance captures the significance of the
words accepted by one of the automata only. We use the
distance to drive the reduction process towards automata
with small errors and to assess the quality of the result. (The
distance is sometimes called the symmetric difference semi-
metric [15].)

The value of PrP(L(A1)4L(A2)) can be computed as
follows. Using the fact that (1) L14L2 = (L1 \L2)](L2 \
L1) and (2) L1 \ L2 = L1 \ (L1 ∩ L2), we get

dP(A1,A2)

= PrP(L(A1) \ L(A2)) + PrP(L(A2) \ L(A1))

= PrP(L(A1) \ (L(A1) ∩ L(A2))) +

PrP(L(A2) \ (L(A2) ∩ L(A1)))

= PrP(L(A1))+PrP(L(A2))− 2 · PrP(L(A1) ∩ L(A2)).

Hence, the key step is to compute PrP(L(A)) for an
NFA A and a PA P . Problems similar to computing such a
probability have been extensively studied in several contexts
including verification of probabilistic systems [50,2,6].

In our approach, we apply the method of [6] and
compute PrP(L(A)) in the following way. We first check
whether the NFA A is unambiguous. This can be done by

using the standard product construction (denoted as ∩) for
computing the intersection of the NFA A with itself and
trimming the result, formally B = trim(A ∩ A), followed
by a check whether there is some state (p, q) ∈ Q[B] s.t.
p 6= q [39]. If A is ambiguous, we either determinise
it or disambiguate it [39], leading to a DFA/UFA A′,
respectively.1 Then, we construct the trimmed product of
A′ and P (this can be seen as computing A′ ∩ supp(P)
while keeping the probabilities from P on the edges of
the result), yielding a PPA R = (αR,γR, {∆

R
a }a∈Σ).2

Intuitively,R represents not only the words ofL(A) but also
their probability in P (we give the formal definition of R
inside the proof of Lemma 2). Now, let ∆ =

∑
a∈Σ∆a

be the matrix that expresses, for any p, q ∈ Q[R], the
significance of getting from p to q via any a ∈ Σ. Further,
it can be shown (cf. the proof of Lemma 1) that the matrix
∆∗, representing the significance of going from p to q via
any w ∈ Σ∗, can be computed as (I − ∆)−1. Then, to
get PrP(L(A)), it suffices to take α> ·∆∗ · γ. Note that,
due to the determinisation/disambiguation step, the obtained
value indeed is PrP(L(A)) despite R being a PPA. The
two lemmas below summarise the complexity of this step
for NFAs and UFAs respectively.

Lemma 1 Let P be a PA and A an NFA. The problem of
computing PrP(L(A)) is PSPACE-complete.

Proof The membership in PSPACE can be shown as
follows. The computation described above corresponds
to solving a linear equation system. The system has
an exponential size because of the blowup caused by
the determinisation/disambiguation of A required by the
product construction. The equation system can, however,
be constructed by a PSPACE transducer Meq . Moreover,
as solving linear equation systems can be done using
a polylogarithmic-space transducer MSysLin , one can
combine these two transducers to obtain a PSPACE
algorithm. Details of the construction follow:

First, we construct a transducerMeq that, given an NFA
A = (QA, δA, IA, FA) and a PA P = (α,γ, {∆a}a∈Σ)
on its input, constructs a system of m = 2|QA| · |Q[P]|
linear equations S(A,P) of m unknowns ξ[R,p] for R ⊆
QA and p ∈ Q[P] representing the product of A′ and P ,
where A′ is a deterministic automaton obtained from A
using the standard subset construction. The system of

1 In theory, disambiguation can produce smaller automata, but, in
our experiments, determinisation proved to work better.

2 R is not necessarily a PA since there might be transitions in P that
are either removed or copied several times in the product construction.
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equations S(A,P) is defined as follows (cf. [6]):

ξ[R,p] =



0 if LA(R) ∩ LP′(p) = ∅,∑
a∈Σ

∑
p′∈Q[P]

(∆a[p, p
′] · ξ[δA(R,a),p′]) + γ[p]

if R ∩ FA 6= ∅,∑
a∈Σ

∑
p′∈Q[P]

∆a[p, p
′] · ξ[δA(R,a),p′]

otherwise,

such that P ′ = supp(P) and δA(R, a) =
⋃
r∈R δ(r, a).

The testLA(R)∩LP′(p) = ∅ can be performed by checking
∃r ∈ R : LA(r) ∩ LP′(p) = ∅, which can be done in
polynomial time.

It holds that PrP(L(A)) =
∑
p∈Q[P]α[p] · ξ[IA,p].

Although the size of S(A,P) (which is the output ofMeq )
is exponential in the size of the input of Meq , the internal
configuration ofMeq only needs to be of polynomial size,
i.e., Meq works in PSPACE. Note that the size of each
equation is at most polynomial.

Given a system S of m linear equations with
m unknowns, solving S can be done in the time O(log2m)

using O(mk) processors for a fixed k [14, Corollary 2]
(i.e., it is in the class NC).3 According to [17, Lemma 1b],
an O(log2m) time-bounded parallel machine can be
simulated by anO(log4m) space-bounded Turing machine.
Therefore, there exists an O(log4m) space-bounded Turing
machineMSysLin that solves a system ofm linear equations
with m unknowns. As a consequence, MSysLin can solve
S(A,P) using the space

O(log4(2|QA| · |Q[P]|)) = O(log4 2|QA| + log4 |Q[P]|))
= O(|QA|4 + log4 |Q[P]|)).

The missing part is how to combineMeq andMSysLin

to avoid using the exponential-size output tape ofMeq . For
this, we use the following standard technique for combining
reductions [41, Proposition 8.2].

We take turns in simulatingMSysLin andMeq . We start
with simulating MSysLin . When MSysLin moves its head
right, we pause it and simulate Meq until it outputs the
corresponding bit, which is fed into the input of MSysLin .
Then we pause Meq and resume the run of MSysLin . On
the other hand, whenMSysLin moves its head left (from the
k-th position on the tape), we pause it, restartMeq from its
initial state, and simulate it until it outputs the (k − 1)-st bit
of its output tape, and then pauseMeq and return the control
toMSysLin . In order to keep track of the position k of the
head ofMSysLin on its tape, we use a binary counter.

The internal configuration of both Meq and MSysLin

is of a polynomial size and the overhead of keeping track
of the position of the head of MSysLin also requires only

3 We use log k to denote the base-2 logarithm of k.

polynomial space. Therefore, the whole transducer runs in
a polynomially-bounded space.

The PSPACE-hardness is obtained by a reduction from
the (PSPACE-complete) universality of NFAs: using the
PA PExp defined in §2, which assigns every word a non-zero
probability. it holds that

L(A) = Σ∗ iff PrPExp
(L(A)) = 1. ut

Lemma 2 Let P be a PA and A a UFA. The problem of
computing PrP(L(A)) is in PTIME.

Proof We modify the proof from [6] into our setting. First,
we give a formal definition of the product of a PA P =

(α,γ, {∆a}a∈Σ) and an NFA A = (Q, δ, I, F ) as the
(|Q[P]| · |Q|)-state PPAR = (αR,γR, {∆

R
a }a∈Σ) where4

αR[(qP , qA)] = αR[qP ] · |{qA} ∩ I|,
γR[(qP , qA)] = γR[qP ] · |{qA} ∩ F |,

∆Ra [(qP , qA), (q
′
P , q

′
A)] =∆a[qP , q

′
P ] · |{q′A} ∩ δ(qA, a)|.

Note that R is not necessarily a PA any more because
for w ∈ Σ∗ such that PrP(w) > 0, (i) if w /∈ L(A),
then PrR(w) = 0 and (ii) if w ∈ L(A) and A can
acceptw using n different runs, then PrR(w) = n ·PrP(w).
As a consequence, the probabilities of all words fromΣ∗ are
no longer guaranteed to add up to 1. If A is unambiguous,
the second issue is avoided andR preserves the probabilities
of words from L(A), i.e., PrR(w) = PrP(w) for all w ∈
L(A), so R can be seen as the restriction of PrP to L(A).
In the following, we assumeR is trimmed.

In order to compute PrP(L(A)), we construct a ma-
trix E defined as E =

∑
a∈Σ∆

R
a . Because R is trimmed,

the spectral radius of E, denoted as ρ(E), is less than one,
i.e., ρ(E) < 1 (the proof of this fact can be found, e.g.,
in [6]). Intuitively, ρ(E) < 1 holds because we trimmed
the redundant states from the product of P and A. We fur-
ther use the following standard result in linear algebra: if
ρ(E) < 1, then (i) the matrix I−E is invertible and (ii) the
sum of powers of E, denoted as E∗, can be computed as
E∗ =

∑∞
i=0E

i = (I − E)−1 [21]. Moreover, note that
matrix inversion can be done in polynomial time [46].
E∗ represents the reachability between nodes ofR, i.e.,

E∗[r, r′] is the sum of significances of all (possibly infinitely
many) paths from r to r′ inR. When related to P andA, the
matrix E∗ represents the reachability in P wrt L(A), i.e.,

E∗[(qP , qA), (q
′
P , q

′
A)]

=
∑{

∆w[qP , q
′
P ]
∣∣∣ qA w
 q′A, w ∈ Σ∗

}
. (1)

4 We assume an implicit bijection between states of the product R
and {1, . . . , |Q[R]|}.
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We prove Equation (1) using the following reasoning. First,
we show that

En[(qP , qA), (q
′
P , q

′
A)]

=
∑{

∆w[qP , q
′
P ]
∣∣∣ qA w
 q′A, w ∈ Σn

}
, (2)

i.e.,En represents the reachability in P wrt L(A) for words
of length n. We prove Equation (2) by induction on n:
For n = 0, the equation follows from the fact that E0 = I .
For n = 1, the equation follows directly from the definition
of R and ∆. Next, suppose that Equation (2) holds for
n > 1; we show that it holds also for n + 1. We start with
the following reasoning:

En+1[(qP , qA), (q
′
P , q

′
A)]

= (EnE)[(qP , qA), (q
′
P , q

′
A)]

=
∑{

En[(qP , qA), (q
′′
P , q

′′
A)] ·E[(q′′P , q

′′
A), (q

′
P , q

′
A)]

∣∣∣
(q′′P , q

′′
A) ∈ Q[R]

}
.

The last line is obtained via the definition of matrix
multiplication. Further, using the induction hypothesis,
we get

En+1[(qP , qA), (q
′
P , q

′
A)]

=
∑{∑{

∆w[qP , q
′′
P ]
∣∣∣ qA w
 q′′A, w ∈ Σn

}
·

∑{
∆a[q

′′
P , q

′
P ]
∣∣∣ q′′A a−→ q′A, a ∈ Σ

} ∣∣∣∣∣
(q′′P , q

′′
A) ∈ Q[R]

}

=
∑{∑{

∆w[qP , q
′′
P ] ·∆a[q

′′
P , q

′
P ]
∣∣∣ qA w
 q′′A,

q′′A
a−→ q′A, a ∈ Σ,w ∈ Σn

} ∣∣∣∣∣ (q′′P , q′′A) ∈ Q[R]

}
=
∑{

∆w′ [qP , q
′
P ]
∣∣∣ qA w′

 q′A, w
′ ∈ Σn+1

}
.

Since E∗ =
∑∞
i=0E

i, Equation (1) follows. Using the
matrix E∗, it remains to compute PrP(L(A)) as

PrP(L(A)) = α>R ·E
∗ · γR. ut

3.2 Automata Reduction using Probabilistic Distance

We now exploit the probabilistic distance introduced above
to formulate the task of approximate reduction of NFAs as
two optimisation problems. Given an NFA A and a PA P
specifying the distribution PrP : Σ∗ → 〈0, 1〉, we define

– size-driven reduction: for n ∈ N, find an NFA A′ such
that |A′| ≤ n and the distance dP(A,A′) is minimal,

– error-driven reduction: for ε ∈ 〈0, 1〉, find an NFA A′
such that dP(A,A′) ≤ ε and the size |A′| is minimal.

The following lemma shows that the natural decision prob-
lem underlying both of the above optimization problems is
PSPACE-complete, which matches the complexity of com-
puting the probabilistic distance as well as that of the exact
reduction of NFAs [24].

Lemma 3 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
an NFA A′ with n states s.t. dP(A,A′) ≤ ε.

Proof Membership in PSPACE: We non-deterministically
generate an automaton A′ with n states and test (in
PSPACE, as shown in Lemma 1) that dP(A,A′) ≤ ε. This
shows the problem is in NPSPACE = PSPACE.

PSPACE-hardness: We use a reduction from the prob-
lem of checking universality of an NFA A = (Q, δ, I, F )

over Σ, i.e., from checking whether L(A) = Σ∗, which
is PSPACE-complete. First, for a reason that will become
clear later, we test if A accepts all words over Σ of length 0
and 1, which can be done in polynomial time. It holds that
L(A) = Σ∗ iff there is a 1-state NFAA′ s.t. dPExp

(A,A′) ≤
0 (PExp is defined in §2). The implication from left to right
is clear: A′ can be constructed as A′ = ({q}, {q a−→ q | a ∈
Σ}, {q}, {q})). To show the reverse implication, we note
that we have tested that {ε}∪Σ ⊆ L(A). Since the probabil-
ity of any word from {ε} ∪Σ ⊆ L(A) in PExp is non-zero,
the only 1-state NFA that processes those words with zero
error is the NFA A′ defined above. Because the language
of A′ is L(A′) = Σ∗, it holds that dPExp (A,A′) ≤ 0 iff
L(A) = Σ∗. ut

The notions defined above do not distinguish between
introducing a false positive (A′ accepts a word w /∈
L(A)) or a false negative (A′ rejects a word w ∈ L(A))
answers. To this end, we define over-approximating and un-
der-approximating reductions as reductions for which the
conditions L(A) ⊆ L(A′) and L(A) ⊇ L(A′) hold.

A naı̈ve solution to the reductions would enumerate all
NFAs A′ of sizes from 0 up to k (resp. |A|), for each
of them compute dP(A,A′), and take an automaton with
the smallest probabilistic distance (resp. a smallest one
satisfying the restriction on dP(A,A′)). Obviously, this
approach is computationally infeasible.

4 A Heuristic Approach to Approximate Reduction

In this section, we introduce two techniques for approximate
reduction of NFAs that avoid the need to iterate over all
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Algorithm 1: A greedy size-driven reduction
Input : NFA A = (Q, δ, I, F ), PA P , n ≥ 1

Output: NFA A′, ε ∈ R s.t. |A′| ≤ n and
dP(A,A′) ≤ ε

1 V ← ∅;
2 for q ∈ Q in the order �A,label(A,P) do
3 V ← V ∪ {q}; A′ ← reduce(A, V );
4 if |A′| ≤ n then break ;
5 return A′, ε = error(A, V, label(A,P));

automata of a certain size. The first approach is based on
under-approximating the automata by removing states—we
call it the pruning reduction—while the second approach
is based on over-approximating the automata by adding
self-loops to states and removing redundant states—we call
it the self-loop reduction. Finding an optimal automaton
using these reductions is also PSPACE-complete, but more
amenable to heuristics like greedy algorithms. We start with
introducing two high-level greedy algorithms, one for the
size- and one for the error-driven reduction, and follow by
showing their instantiations for the pruning and the self-
loop reduction. A crucial role in the algorithms is played by
a function that labels states of the automata by an estimate
of the error that will be caused when some of the reductions
is applied at a given state.

4.1 A General Algorithm for Size-Driven Reduction

Algorithm 1 shows a general greedy method for performing
the size-driven reduction. In order to use the same high-
level algorithm in both directions of reduction (over/under-
approximating), it is parameterized with the functions: label ,
reduce, and error . The real intricacy of the procedure is
hidden inside these three functions. Intuitively, label(A,P)
assigns every state of an NFA A an approximation of
the error that will be caused wrt the PA P when a
reduction is applied at this state, while the purpose of
reduce(A, V ) is to create a new NFA A′ obtained from A
by introducing some error at states from V .5 Further,
error(A, V, label(A,P)) estimates the error introduced by
the application of reduce(A, V ), possibly in a more precise
(and costly) way than by just summing the concerned
error labels: Such a computation is possible outside of
the main computation loop. We show instantiations of
these functions later, when discussing the reductions used.
Moreover, the algorithm is also parameterized with a total
order �A,label(A,P) that defines which states of A are

5 We emphasize that this does not mean that states from V will
be simply removed from A—the performed operation depends on the
particular reduction.

Algorithm 2: A greedy error-driven reduction.
Input : NFA A = (Q, δ, I, F ), PA P , ε ∈ 〈0, 1〉
Output: NFA A′ s.t. dP(A,A′) ≤ ε

1 `← label(A, P );
2 V ← ∅;
3 for q ∈ Q in the order �A,label(A,P) do
4 e← error(A, V ∪ {q}, `);
5 if e ≤ ε then V ← V ∪ {q} ;
6 return A′ = reduce(A, V );

processed first and which are processed later. The ordering
may take into account the precomputed labelling. The
algorithm accepts an NFAA, a PAP , and n ∈ N and outputs
a pair consisting of an NFA A′ of the size |A′| ≤ n and an
error bound ε such that dP(A,A′) ≤ ε.

The main idea of the algorithm is that it creates a set V
of states where an error is to be introduced. V is constructed
by starting from an empty set and adding states to it in the
order given by �A,label(A,P), until the size of the result
of reduce(A, V ) has reached the desired bound n (in our
setting, reduce is always antitone, i.e., for V ⊆ V ′, it holds
that |reduce(A, V )| ≥ |reduce(A, V ′)|). We now define the
necessary condition for label , reduce, and error that makes
Algorithm 1 correct.

Condition C1 holds if for every NFA A, PA P , and
a set V ⊆ Q[A], we have that

(a) error(A, V, label(A,P)) ≥ dP(A, reduce(A, V )),
(b) |reduce(A, Q[A])| ≤ 1, and
(c) reduce(A, ∅) = A.

C1(a) ensures that the error computed by the reduction
algorithm indeed over-approximates the exact probabilistic
distance, C1(b) is a boundary condition for the case when
the reduction is applied at every state of A, and C1(c)
ensures that when no error is to be introduced at any state,
we obtain the original automaton.

Lemma 4 Algorithm 1 is correct if C1 holds.

Proof Follows straightforwardly from Condition C1. ut

4.2 A General Algorithm for Error-Driven Reduction

In Algorithm 2, we provide a high-level method of
computing the error-driven reduction. The algorithm is in
many ways similar to Algorithm 1; it also computes a set of
states V where an error is to be introduced, but an important
difference is that we compute an approximation of the error
in each step and only add q to V if it does not raise the error
over the threshold ε. Note that the error does not need to be
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monotone, so it may be advantageous to traverse all states
fromQ and not terminate as soon as the threshold is reached.
The correctness of Algorithm 2 also depends on C1.

Lemma 5 Algorithm 2 is correct if C1 holds.

Proof Follows straightforwardly from Condition C1. ut

4.3 Pruning Reduction

The pruning reduction is based on identifying a set of states
to be removed from an NFA A, under-approximating the
language of A. In particular, for A = (Q, δ, I, F ), the
pruning reduction finds a set R ⊆ Q and restricts A
to Q \ R, followed by removing useless states, to construct
a reduced automaton A′ = trim(A|Q\R). Note that the
natural decision problem corresponding to this reduction is
also PSPACE-complete.

Lemma 6 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
a subset of states R ⊆ Q[A] of size |R| = n such that
dP(A,A|R) ≤ ε.

Proof Membership in PSPACE: We non-deterministically
generate a subset R of Q[A] having n states and test (in
PSPACE, as shown in Lemma 1) that dP(A,A|R) ≤ ε. This
shows the problem is in NPSPACE = PSPACE.

PSPACE-hardness: We use a reduction from the
PSPACE-complete problem of checking universality of an
NFA A = (Q, δ, I, F ) over Σ. Consider a symbol x /∈ Σ.
Let us construct an NFA A′ over Σ ∪ {x} s.t. L(A′) =

x∗.L(A). A′ is constructed by adding a fresh state qnew
toA that can loop over x and make a transition to any initial
state of A over x: A′ = (Q]{qnew}, δ ∪ {qnew

x−→ q |
q ∈ I ∪ {qnew}}, I ∪ {qnew}, F ). We set n = |A′| + 1.
Further, we also construct an (n+1)-state NFA B accepting
the language xn.Σ∗ defined as B = (QB, δB, {q1}, {qn+1})
where QB = {q1, . . . , qn+1} and δB = {qi

x−→ qi+1 | 1 ≤
i ≤ n} ∪ {qn+1

a−→ qn+1 | a ∈ Σ}. Moreover, let P be
a PA representing a distribution PrP that is defined for each
w ∈ (Σ ∪ {x})∗ as

PrP(w) =


µ|w

′|+1 for w = xn.w′, w′ ∈ Σ∗,
and µ = 1

|Σ|+1 ,

0 otherwise.

(3)

Note that PrP(x
n.w) = PrPExp (w) for w ∈ Σ∗, and

PrP(u) = 0 for u /∈ xn.Σ∗ (P can be easily constructed
from PExp). Also note that B accepts exactly those
words w such that PrP(w) 6= 0 and that PrP(L(B)) =

1. Using the automata defined above, we construct an
NFA C = A′ ∪ B where the union of two NFAs is

defined as A1 ∪ A2 = (Q[A1]]Q[A2], δ[A1]] δ[A2],

I[A1]] I[A2], F [A1]]F [A2]). NFA C has 2n states, the
language of C is L(C) = x∗.L(A) ∪ xn.Σ∗ and its
probability is PrP(L(C)) = 1.

The important property of C is that if there exists a set
R ⊆ Q[C] of the size |R| = n s.t. dP(C, C|R) ≤
0, then L(A) = Σ∗. The property holds because since
|Q[A′]| = n − 1, when we remove n states from C,
at least one state from Q[B] is removed, making the
whole subautomaton of C corresponding to B useless, and,
therefore, L(C|R) ⊆ x∗.L(A). Because dP(C, C|R) ≤ 0,
we know that PrP(L(C|R)) = 1, so xn.Σ∗ ⊆ x∗.L(A) =

L(C|R) and, therefore, L(A) = Σ∗. For the other direction,
if L(A) = Σ∗, then there exists a set R ⊆ Q[A′] ∪Q[B] of
the size |R| = n s.t. dP(C, C|R) ≤ 0 (in particular, R can be
such that R ⊆ Q[B]). ut

Although Lemma 6 shows that the pruning reduction
is as hard as a general reduction (cf. Lemma 3), the
pruning reduction is more amenable to using heuristics like
the greedy algorithms from §4.1 and §4.2. We instantiate
reduce, error , and label in these high-level algorithms in
the following way (the subscript p stands for pruning):

reducep(A, V ) = trim(A|Q\V ),

errorp(A, V, `) = min
V ′∈bV cp

∑
{`(q) | q ∈ V ′} ,

where bV cp is defined in the rest of this paragraph: Because
of the use of trim in reducep, for a pair of sets V, V ′

s.t. V ⊂ V ′, it holds that reducep(A, V ) may, in general,
yield the same automaton as reducep(A, V ′). Therefore, in
order to obtain a tight approximation, we wish to compute
the least error that is obtained when removing the states
in V . We define a partial order vp on 2Q as V1 vp V2 iff
reducep(A, V1) = reducep(A, V2) and V1 ⊆ V2, and use
bV cp to denote the set of minimal elements of the set of
elements that are smaller than V (wrt vp). The value of the
approximation errorp(A, V, `) is therefore the minimum of
the sum of errors over all sets from bV cp.

Note that the size of bV cp can again be exponential,
and thus we employ a greedy approach for guessing an
optimal V ′. Clearly, this cannot affect the soundness of the
algorithm, but only decreases the precision of the bound
on the distance. Our experiments indicate that for automata
appearing in NIDSes, this simplification has typically only
a negligible impact on the precision of the bounds.

For computing the state labelling, we provide the
following three functions, which differ in the precision
they provide and the difficulty of their computation
(naturally, more precise labellings are harder to compute):
label1p, label

2
p, and label3p. Given an NFAA and a PAP , they
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generate the labellings `1p, `
2
p, and `3p, respectively, defined as

`1p(q) =
∑{

PrP(L
[
A(q
′))
∣∣∣ q′ ∈ reach({q}) ∩ F

}
,

`2p(q) = PrP

(
L[A(F ∩ reach(q))

)
,

`3p(q) = PrP

(
L[A(q).LA(q)

)
.

A state label `(q) approximates the error of the words
removed from L(A) when q is removed. More concretely,
`1p(q) is a rough estimate saying that the error can be
bounded by the sum of probabilities of the banguages of all
final states reachable from q (in the worst case, all those
final states might become unreachable). Note that `1p(q)
(1) counts the error of a word accepted in two different final
states of reach(q) twice and (2) it also considers words that
are accepted in some final state in reach(q) without going
through q. The labelling `2p deals with (1) by computing
the total probability of the banguage of the set of all final
states reachable from q, and the labelling `3p in addition
also deals with (2) by only considering words that traverse
through q (they can, however, be accepted in some final state
not in reach(q) by a run completely disjoint from q and
reach(q)∩F , so even `3p can still be imprecise). Note that if
A is unambiguous, then `1p = `2p.

Each state labelling is given as the probability (or the
sum of probabilities in the case of `1p) of the language related
to q. Therefore, when computing the particular label of q, we
first modify A to obtain A′ accepting the language related
to the labelling. Then, we compute the value of PrP(L(A′))
using the algorithm from §3.1. Recall that this step is in
general costly, due to the determinisation/disambiguation
ofA′. The key property of the labelling computation resides
in the fact that if A is composed of several disjoint sub-
automata, the automaton A′ is typically much smaller than
A and thus the computation of the label is considerably less
demanding. Since the automata appearing in regex matching
for NIDS are composed of the union of “tentacles”, the
particular A′s are very small, which enables an efficient
component-wise computation of the labels.

The following lemma states the correctness of using the
pruning reduction as an instantiation of Algorithms 1 and 2
and also the relation among `1p, `2p, and `3p.

Lemma 7 For every x ∈ {1, 2, 3}, the functions reducep,
errorp, and labelxp satisfy C1. Moreover, consider an
NFAA, a PAP , and let `xp = labelxp(A,P) for x ∈ {1, 2, 3}.
Then, for each q ∈ Q[A], we have `1p(q) ≥ `2p(q) ≥ `3p(q).

Proof We start by proving the inequalities `1p(q) ≥ `2p(q) ≥
`3p(q) for each q ∈ Q[A], which will then help us prove the
first part of the lemma. The first inequality follows from the
fact that if the banguages of reachable final states are not
disjoint, in the case of `1p, we may sum probabilities of the

same words multiple times. The second inequality follows
from the inclusion L[A(q).LA(q) ⊆ L[A(F ∩ reach(q)).

Second, we prove that the functions reducep, errorp,
and labelxp satisfy the properties of C1:

– C1(a): In order to show the inequality

errorp(A, V, labelxp(A,P)) ≥ dP(A, reducep(A, V )),

we prove it for `3p = label3p(A,P); the rest follows from
`1p(q) ≥ `2p(q) ≥ `3p(q), which is proved above.
Consider some set of states V ⊆ Q[A] and a set V ′ ∈
bV cp s.t. for any V ′′ ∈ bV cp, it holds that

∑
{`3p(q) |

q ∈ V ′} ≤
∑
{`3p(q) | q ∈ V ′′}. We have

L(A)4L(reducep(A, V ))

= L(A)4L(reducep(A, V ′)) Hdef. of vpI
= L(A) \ L(reducep(A, V ′))

HL(A) ⊇ L(reducep(A, V ′))I

⊆
⋃
q∈V ′

L[A(q).LA(q). Hdef. of reducepI

(4)

Finally, using (4), we obtain

dP(A,reducep(A, V ))

= PrP(L(A)4L(reducep(A, V ′)))
Hdef. of dPI

≤
∑
q∈V ′

PrP(L
[
A(q).LA(q)) H(4)I

=
∑
{`3p(q) | q ∈ V ′} Hdef. of `3pI

= min
V ′′∈bV cp

∑
{`3p(q) | q ∈ V ′′} Hdef. of V ′I

= errorp(A, V, `3p). Hdef. of errorpI

– C1(b): |reducep(A, Q[A])| ≤ 1 because

|reducep(A, Q[A])| = |trim(A|∅)| = 0.

– C1(c): reducep(A, ∅) = A since

reducep(A, ∅) = trim(A|Q[A]) = A

(we assume thatA is trimmed at the input). ut

4.4 Self-loop Reduction

The main idea of the self-loop reduction is to over-
approximate the language of A by adding self-loops over
every symbol at selected states. This makes some states
of A redundant, allowing them to be removed without
introducing any more error. Given an NFAA = (Q, δ, I, F ),
the self-loop reduction searches for a set of states R ⊆ Q,
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which will have self-loops added, and removes other
transitions leading out of these states, making some states
unreachable. The unreachable states are then removed.

Formally, let sl(A, R) be the NFA (Q ∪ {s}, δ′, I, F ∪
{s}) where s /∈ Q and the transition function δ′ is defined
such that δ′(s, a) = {s} and, for all states p ∈ Q

and symbols a ∈ Σ, δ′(p, a) = (δ(p, a) \ R) ∪ {s}
if δ(p, a) ∩ R 6= ∅ and δ′(p, a) = δ(p, a) otherwise.
Similarly to the pruning reduction, the natural decision
problem corresponding to the self-loop reduction is also
PSPACE-complete.

Lemma 8 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
a subset of states R ⊆ Q[A] of size |R| = n such that
dP(A, sl(A, R)) ≤ ε.

Proof Membership in PSPACE can be proved in the same
way as in the proof of Lemma 6.

PSPACE-hardness: We reduce from the PSPACE-
complete problem of checking universality of an NFA A =

(Q, δ, I, F ). First, we check whether I[A] 6= ∅. We have that
L(A) = Σ∗ iff there exists a set of states R ⊆ Q of the size
|R| = |Q| such that dPExp

(A, sl(A, R)) ≤ 0 (note that this
means that a self-loop is added to every state of A). ut

The required functions in the error- and size-driven
reduction algorithms are instantiated in the following way
(the subcript sl stands for self-loop):

reducesl(A, V ) = trim(sl(A, V )),

error sl(A, V, `) =
∑
{`(q) | q ∈ min (bV csl)} ,

where bV csl is defined in a similar manner as bV cp in the
previous section (using a partial order vsl defined similarly
to vp; the difference is that in this case, the order vsl has
a single minimal element, though).

The functions label1sl , label
2
sl , and label3sl compute the

state labellings `1sl , `
2
sl , and `3sl for an NFA A and a PA P ,

which are defined as follows:

`1sl(q) = weightP(L
[
A(q)),

`2sl(q) = PrP

(
L[A(q).Σ

∗
)
,

`3sl(q) = `2sl(q)− PrP

(
L[A(q).LA(q)

)
.

In the definitions above, the function weightP(w) for
a PA P = (α,γ, {∆a}a∈Σ) and a word w ∈ Σ∗ is defined
as weightP(w) = α> ·∆w · 1 (i.e., similarly as PrP(w)

but with the final weights γ discarded), and weightP(L) for
L ⊆ Σ∗ is defined as weightP(L) =

∑
w∈L weightP(w).

Intuitively, the state labelling `1sl(q) computes the
probability that q is reached from an initial state, so if q
is pumped up with all possible word endings, this is the

maximum possible error introduced by the added word
endings. This has the following sources of imprecision:
(1) the probability of some words may be included twice,
e.g., when L[A(q) = {a, ab}, the probabilities of all
words from {ab}.Σ∗ are included twice in `1sl(q) because
{ab}.Σ∗ ⊆ {a}.Σ∗, and (2) `1sl(q) can also contain prob-
abilities of words already accepted on a run traversing q.
The state labelling `2sl deals with (1) by considering the
probability of the language L[A(q).Σ

∗, and `3sl deals also
with (2) by subtracting from the result of `2sl the probabilities
of the words that pass through q and are accepted.

The computation of the state labellings for the self-loop
reduction is done in a similar way as the computation of the
state labellings for the pruning reduction (cf. §4.3). For a
computation of weightP(L) one can use the same algorithm
as for PrP(L), only the final vector for PA P is set to 1. The
correctness of Algorithms 1 and 2 when instantiated using
the self-loop reduction is stated in the following lemma.

Lemma 9 For every x ∈ {1, 2, 3}, the functions reducesl ,
error sl , and labelxsl satisfy C1. Moreover, consider an
NFA A, a PA P , and let `xsl = labelxsl(A,P) for x ∈
{1, 2, 3}. Then, for each q ∈ Q[A], we have `1sl(q) ≥
`2sl(q) ≥ `3sl(q).

Proof First, we prove the inequalities `1sl(q) ≥ `2sl(q) ≥
`3sl(q) for each q ∈ Q[A], which we then use to prove
the first part of the lemma. We start with the equality
weightP(w) = PrP(w.Σ

∗), which follows from the fact
that for each state p of P the sum of probabilities of all
words, when considering p as the only initial state of P , is 1.
Then, we obtain the equality∑

w∈L[
A(q)

weightP(w) =
∑

w∈L[
A(q)

PrP(w.Σ
∗),

which, in turn, implies

`1sl(q) = weightP(L
[
A(q)) =

∑
w∈L[

A(q)

PrP (w.Σ∗)

≥ PrP

(
L[A(q).Σ

∗
)
= `2sl(q).

(5)

For example, for L[A(q) = {w,wa} where w ∈ Σ∗ and
a ∈ Σ, we have

weightP(L
[
A(q)) = weightP({w,wa})

= weightP(w) + weightP(wa)

= PrP(w.Σ
∗) + PrP(wa.Σ

∗),

(6)

while

PrP

(
L[A(q).Σ

∗
)
= PrP ({w,wa}.Σ∗) = PrP (w.Σ∗) .

The inequality `2sl ≥ `3sl holds trivially.
Second, we prove that the functions reducesl , error sl ,

and labelxsl satisfy the properties of C1:
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– C1(a): To show that error sl(A, V, labelxsl(A,P)) ≥
dP(A, reducesl(A, V )), we prove that the inequality
holds for `3sl = label3sl(A,P); the rest follows from
`1sl(q) ≥ `2sl(q) ≥ `3sl(q) proved above.
Consider some set of states V ⊆ Q[A] and the set
V ′ = min(bV csl). We can estimate the symmetric
difference of the languages of the original and the
reduced automaton as

L(A)4L(reducesl(A, V ))

= L(A)4L(reducesl(A, V ′)) Hdef. of vslI
= L(reducesl(A, V ′)) \ L(A)

HL(A) ⊆ L(reducesl(A, V ′))I

⊆
⋃
q∈V ′

L[A(q).Σ
∗ \

⋃
q∈V ′

L[A(q).LA(q).

Hdef. of reduceslI
(7)

The last inclusion holds because sl(A, V ) adds self-
loops to the states in V , so the newly accepted words are
for sure those that traverse through V , and they are for
sure not those that could be accepted by going through V
before the reduction (but they could be accepted without
touching V , hence the inclusion). We can estimate the
probabilistic distance of A and reducesl(A, V ) as

dP(A,reducesl(A, V ))

≤ PrP

( ⋃
q∈V ′

L[A(q).Σ
∗ \

⋃
q∈V ′

L[A(q).LA(q)

)
H(7)I

≤ PrP

( ⋃
q∈V ′

(
L[A(q).Σ

∗ \ L[A(q).LA(q)
))

Hproperties of union and set differenceI

≤
∑
q∈V ′

PrP

(
L[A(q).Σ

∗ \ L[A(q).LA(q)
)

Hunion boundI

=
∑
q∈V ′

(
PrP

(
L[A(q).Σ

∗
)
− PrP

(
L[A(q).LA(q)

))
Hprop. of Pr and the fact that L[A(q).LA(q) ⊆ L[A(q).Σ∗I

=
∑
{`3sl(q) | q ∈ min(bV csl)}

Hdef. of `3sl and V ′I
= error sl(A, V, `3sl). (8)

– C1(b): |reducesl(A, Q[A])| ≤ 1 because, from the def-
inition, |reducesl(A, Q[A])| = |trim(sl(A, Q[A]))| ≤
1.

– C1(c): reducesl(A, ∅) = A since

reducesl(A, ∅) = trim(sl(A, ∅)) = A

(we assume that A is trimmed at the input). ut

5 Reduction of NFAs in Network Intrusion Detection
Systems

We have implemented our approach in a Python prototype
named APPREAL (APProximate REduction of Automata
and Languages)6 and evaluated it on the use case of network
intrusion detection using SNORT [48], a popular open source
NIDS. The version of APPREAL used for the evaluation
in the current paper is available as an artifact [52] for the
TACAS’18 artifact virtual machine [20].

5.1 Network Traffic Model

The reduction we describe in this paper is driven by
a probabilistic model representing a distribution over the
words from Σ∗, and the formal guarantees are also
wrt this model. We use learning to obtain a model of
network traffic over the 8-bit ASCII alphabet at a given
network point. Our model is created from several gigabytes
of network traffic from a measuring point of the CESNET
Internet provider connected to a 100 Gbps backbone link
(unfortunately, we cannot provide the traffic dump since it
may contain sensitive data).

Learning a PA representing the network traffic faithfully
is hard. The PA cannot be too specific—although the
number of different packets that can occur is finite, it
is still extremely large (a conservative estimate assuming
the most common scenario Ethernet/IPv4/TCP would still
yield a number over 210,000). If we assigned non-zero
probabilities only to the packets from the dump (which are
less than 220), the obtained model would completely ignore
virtually all packets that might appear on the network, and,
moreover, the model would also be very large (millions
of states), making it difficult to use in our algorithms.
A generalization of the obtained traffic is therefore needed.

A natural solution is to exploit results from the area
of PA learning, such as [10,49]. Indeed, we experimented
with the use of ALERGIA [10], a learning algorithm that
constructs a PA from a prefix tree (where edges are
labelled with multiplicities) by merging nodes that are
“similar.” The automata that we obtained were, however, too
general. In particular, the constructed automata destroyed
the structure of network protocols—the merging was too
permissive and the generalization merged distant states,
which introduced loops over a very large substructure in
the automaton (such a case usually does not correspond to
the design of network protocols). As a result, the obtained
PA more or less represented the Poisson distribution, having
essentially no value for us.

6 https://github.com/vhavlena/appreal/tree/
tacas18

https://github.com/vhavlena/appreal/tree/tacas18
https://github.com/vhavlena/appreal/tree/tacas18
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In §5.2, we focus on the detection of malicious traffic
transmitted over HTTP. We take advantage of this fact and
create a PA representing the traffic while taking into account
the structure of HTTP. We start by manually creating a DFA
that represents the high-level structure of HTTP. Then, we
proceed by feeding 34,191 HTTP packets from our sample
into the DFA, at the same time taking notes about how
many times every state is reached and how many times
every transition is taken. The resulting PA PHTTP (of 52
states) is then constructed from the DFA and the labels in
the obvious way.

The described method yields automata that are much
better than those obtained using ALERGIA in our experi-
ments. A disadvantage of the method is that it is only semi-
automatic—the basic DFA needed to be provided by an ex-
pert. We have yet to find an algorithm that would suit our
needs for learning more general network traffic.

5.2 Evaluation

We start this section by introducing the experimental
setting, namely, the integration of our reduction techniques
into the tool chain implementing efficient regex matching,
the concrete settings of APPREAL, and the evaluation
environment. Afterwards, we discuss the results evaluating
the quality of the obtained approximate reductions as well
as of the provided error bounds. Finally, we present the
performance of our approach and discuss its key aspects.
We selected the most interesting results demonstrating the
potential as well as the limitations of our approach.

General setting. SNORT detects malicious network traffic
based on rules that contain conditions. The conditions take
into consideration, among others, network addresses, ports,
or Perl compatible regular expressions (PCREs) that the
packet payload should match. In our evaluation, we select
a subset of SNORT rules, extract the PCREs from them, and
use NETBENCH [43] to transform them into a single NFAA.
Before applying APPREAL, we use the state-of-the-art NFA
reduction tool REDUCE [36] to reduceA. REDUCE performs
a language-preserving reduction of A using advanced
variants of simulation [35] (in the experiment reported in
Table 3, we skip the use of REDUCE at this step as discussed
later in the performance evaluation). The automaton ARED

obtained as the result of REDUCE is the input of APPREAL,
which performs one of the approximate reductions from §4
wrt the traffic model PHTTP , yielding AAPP. After the
approximate reduction, we, one more time, use REDUCE and
obtain the result A′.
Settings of APPREAL. In the use case of NIDS pre-
filtering, it may be important to never introduce a false
negative, i.e., to never drop a malicious packet. Therefore,
we focus our evaluation on the self-loop reduction (§4.4).

In particular, we use the state labelling function label2sl ,
since it provides a good trade-off between the precision
and the computational demands (recall that the computation
of label2sl can exploit the “tentacle” structure of the NFAs
we work with). We give more attention to the size-driven
reduction (§4.1) since, in our setting, a bound on the
available FPGA resources is typically given and the task is
to create an NFA with the smallest error that fits inside. The
order �A,`2sl over states used in §4.1 and §4.2 is defined as
s �A,`2sl s

′ ⇔ `2sl(s) ≤ `2sl(s′).
Evaluation environment. All experiments ran on a 64-bit
LINUX DEBIAN workstation with the Intel Core(TM) i5-
661 CPU running at 3.33 GHz with 16 GiB of RAM.

Description of tables. In the caption of every table,
we provide the name of the input file (in the directory
regexps/tacas18/ of the repository of APPREAL) with
the selection of SNORT regexes used in the particular
experiment, together with the type of the reduction (size-
or error-driven). All reductions are over-approximating
(self-loop reduction). We further provide the size of the
input automaton |A|, the size after the initial processing
by REDUCE (|ARED|), and the time of this reduction
(time(REDUCE)). Finally, we list the times of computing
the state labelling label2sl onARED (time(label2sl)), the exact
probabilistic distance (time(Exact)), and also the number
of look-up tables (LUTs(ARED)) consumed on the targeted
FPGA (Xilinx Virtex 7 H580T) whenARED was synthesized
(more on this in §5.3). The meaning of the columns in the
tables is the following:

k/ε is the parameter of the reduction. In particular, k
is used for the size-driven reduction and denotes the
desired reduction ratio k = n

|ARED| for an input
NFA ARED and the desired size of the output n. On the
other hand, ε is the desired maximum error on the output
for the error-driven reduction.

|AAPP| shows the number of states of the automaton AAPP

after the reduction by APPREAL and the time the
reduction took (we omit it when it is not interesting).

|A′| contains the number of states of the NFA A′ obtained
after applying REDUCE on AAPP and the time used by
REDUCE at this step (omitted when not interesting).

Error bound shows the estimation of the error of A′
as determined by the reduction itself, i.e., it is the
probabilistic distance computed by the corresponding
function error from §4.

Exact error contains the values of dPHTTP
(A,A′) that we

computed after the reduction in order to evaluate the pre-
cision of the result given in Error bound. The computa-
tion of this value is very expensive (time(Exact)) since
it inherently requires determinisation of the whole au-
tomaton A. We do not provide it in Table 3 (presenting
the results for the automaton Abd with 1,352 states) be-
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Table 1: Results for the http-malicious regex, |Amal| = 249, |ARED
mal | = 98, time(REDUCE) = 3.5 s, time(label2sl) =

38.7 s, time(Exact) = 3.8–6.5 s, and LUTs(ARED
mal) = 382.

(a) size-driven reduction

Error Exact Traffic
k |AAPP

mal| |A′
mal| bound error error LUTs

0.1 9 (0.65 s) 9 (0.4 s) 0.0704 0.0704 0.0685 —
0.2 19 (0.66 s) 19 (0.5 s) 0.0677 0.0677 0.0648 —
0.3 29 (0.69 s) 26 (0.9 s) 0.0279 0.0278 0.0598 154
0.4 39 (0.68 s) 36 (1.1 s) 0.0032 0.0032 0.0008 —
0.5 49 (0.68 s) 44 (1.4 s) 2.8e-05 2.8e-05 4.1e-06 —
0.6 58 (0.69 s) 49 (1.7 s) 8.7e-08 8.7e-08 0.0 224
0.8 78 (0.69 s) 75 (2.7 s) 2.4e-17 2.4e-17 0.0 297

(b) error-driven reduction

Error Exact Traffic
ε |AAPP

mal| |A′
mal| bound error error

0.08 3 3 0.0724 0.0724 0.0720
0.07 4 4 0.0700 0.0700 0.0683
0.04 35 32 0.0267 0.0212 0.0036
0.02 36 33 0.0105 0.0096 0.0032
0.001 41 38 0.0005 0.0005 0.0003
1e-04 47 41 7.7e-05 7.7e-05 1.2e-05
1e-05 51 47 6.6e-06 6.6e-06 0.0

cause the determinisation ran out of memory (the step is
not required in the reduction process).

Traffic error shows the error that we obtained when
compared A′ with A on an HTTP traffic sample, in
particular the ratio of packets misclassified by A′ to
the total number of packets in the sample (242,468).
Comparing Exact error with Traffic error gives us
a feedback about the fidelity of the traffic modelPHTTP .
We note that there are no guarantees on the relationship
between Exact error and Traffic error.

LUTs is the number of LUTs consumed by A′ when
synthesized into the target FPGA. Hardware synthesis
is a costly step, therefore we provide this value only for
selected interesting NFAs.

5.2.1 Approximation errors

Table 1 presents the results of the self-loop reduction for the
NFA Amal describing regexes from http-malicious.
We can observe that the differences between the upper
bounds on the probabilistic distance and its real value are
negligible (typically in the order of 10−4 or less). We can
also see that the probabilistic distance agrees with the traffic
error. This indicates a good quality of the traffic model
employed in the reduction process. Further, we can see
that our approach can provide useful trade-offs between the
reduction error and the reduction factor. Finally, Table 1b
shows that a significant reduction is obtained when the error
threshold ε is increased from 0.04 to 0.07.

Table 2 presents the results of the size-driven self-
loop reduction for NFA Aatt describing http-attacks
regexes. We can observe that the error bounds provide again
a very good approximation of the real probabilistic distance.
On the other hand, the difference between the probabilistic
distance and the traffic error is larger than that for Amal.
Since all experiments use the same probabilistic automaton
and the same traffic, this discrepancy is accounted to
the different set of packets that are incorrectly accepted
by ARED

att . If the probability of these packets is adequately
captured in the traffic model, the difference between the

Table 2: Results for the http-attacks regex, size-driven
reduction, |Aatt| = 142, |ARED

att | = 112, time(REDUCE) =

7.9 s, time(label2sl) = 28.3min, time(Exact) = 14.0–
16.4 min.

Error Exact Traffic
k |AAPP

att| |A′
att| bound error error

0.1 11 (1.1s) 5 (0.4s) 1.0 0.9972 0.9957
0.2 22 (1.1s) 14 (0.6s) 1.0 0.8341 0.2313
0.3 33 (1.1s) 24 (0.7s) 0.081 0.0770 0.0067
0.4 44 (1.1s) 37 (1.6s) 0.0005 0.0005 0.0010
0.5 56 (1.1s) 49 (1.2s) 3.3e-06 3.3e-06 0.0010
0.6 67 (1.1s) 61 (1.9s) 1.2e-09 1.2e-09 8.7e-05
0.7 78 (1.1s) 72 (2.4s) 4.8e-12 4.8e-12 1.2e-05
0.9 100 (1.1s) 93 (4.7s) 3.7e-16 1.1e-15 0.0

distance and the traffic error is small and vice versa. This
also explains an even larger difference in Table 3 (presenting
the results for Abd constructed from http-backdoor
regexes) for k ∈ 〈0.2, 0.4〉. Here, the traffic error is very
small and caused by a small set of packets (approx. 70),
whose probability is not correctly captured in the traffic
model. Despite this problem, the results clearly show that
our approach still provides significant reductions while
keeping the traffic error small: about a 5-fold reduction is
obtained for the traffic error 0.03 % and a 10-fold reduction
is obtained for the traffic error 6.3 %. We discuss the
practical impact of such a reduction in §5.3.

5.2.2 Performance of the approximate reduction

In all our experiments (Tables 1–3), we can observe
that the most time-consuming step of the reduction
process is the computation of state labellings (it takes
at least 90 % of the total time). The crucial observation
is that the structure of the NFAs fundamentally affects
the performance of this step. Although after REDUCE,
the size of Amal is very similar to the size of Aatt,
computing label2sl takes more time (28.3 min vs. 38.7 s).
The key reason behind this slowdown is the determinisation
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(or alternatively disambiguation) process required by
the product construction underlying the state labelling
computation (cf. §4.4). For Aatt, the process results in
a significantly larger product when compared to the product
for Amal. The size of the product directly determines the
time and space complexity of solving the linear equation
system required for computing the state labelling.

As explained in §4, the computation of the state
labelling label2sl can exploit the “tentacle” structure of
the NFAs appearing in NIDSes and thus can be done
component-wise. On the other hand, our experiments
reveal that the use of REDUCE typically breaks this
structure and thus the component-wise computation cannot
be effectively used. For the NFA Amal, this behaviour
does not have any major performance impact as the
determinisation leads to a moderate-sized automaton and
the state labelling computation takes less than 40 s. On
the other hand, this behaviour has a dramatic effect for
the NFA Aatt. By disabling the initial application of
REDUCE and thus preserving the original structure ofAatt,
we were able to speed up the state label computation
from 28.3 min to 1.5 min. Note that other steps of the
approximate reduction took a similar time as before
disabling REDUCE and also that the trade-offs between the
error and the reduction factor were similar. Surprisingly,
disabling REDUCE caused that the computation of the exact
probabilistic distance became computationally infeasible
because the determinisation ran out of memory.

Due to the size of the NFA Abd, the impact of
disabling the initial application of REDUCE is even more
fundamental. In particular, computing the state labelling
took only 19.9 min, in contrast to running out of memory
when the REDUCE is applied in the first step (therefore, the
input automaton is not processed by REDUCE in Table 3;
we still give the number of LUTs of its reduced version
for comparison, though). Note that the size of Abd also
slows down other reduction steps (the greedy algorithm and
the final REDUCE reduction). We can, however, clearly see
that computing the state labelling is still the most time-
consuming step of the process.

5.3 The Real Impact in an FPGA-Accelerated NIDS

To demonstrate the practical usefulness and impact of the
proposed approximation techniques, we employ the reduced
automata in a real use case from the area of HW-accelerated
deep packet inspection. We consider the framework of [34]
implementing a high-speed NIDS pre-filter in an FPGA. The
crucial challenge is to obtain a pre-filter with a sufficiently
small false positive rate (and no false negatives), while
being able to handle the traffic of current networks operating
on 100 Gbps and beyond. The implementation of NFAs
performing regex matching in FPGAs uses two types of HW

Table 3: Results for http-backdoor, size-driven re-
duction, |Abd| = 1, 352, time(label2sl) = 19.9min,
LUTs(ARED

bd ) = 2, 266.

Error Traffic
k |AAPP

bd | |A′
bd| bound error LUTs

0.1 135 (1.2 m) 8 (2.6 s) 1.0 0.997 202
0.2 270 (1.2 m) 111 (5.2 s) 0.0012 0.0631 579
0.3 405 (1.2 m) 233 (9.8 s) 3.4e-08 0.0003 894
0.4 540 (1.3 m) 351 (21.7 s) 1.0e-12 0.0003 1,063
0.5 676 (1.3 m) 473 (41.8 s) 1.2e-17 0.0 1,249
0.7 946 (1.4 m) 739 (2.1 m) 8.3e-30 0.0 1,735
0.9 1216 (1.5 m) 983 (5.6 m) 1.3e-52 0.0 2,033

resources: LUTs, which are used to build the combinational
circuit representing the NFA transition function, and flip-
flops, representing NFA states. In our use case, we omit
the analysis of flip-flop consumption because it is always
dominated by the LUT consumption.

In our setting, the amount of resources available for the
FPGA-based regex matching engine is 15,000 LUTs and
the frequency of the engine is 200 MHz using a 32-bit-
wide data path. As explained in [34], the engine containing
a single unit (i.e. the single NFA implementation) can
achieve the throughput of 6.4 Gbps (200 MHz × 32 b).
Therefore, 16 units are required for the desired link speed
of 100 Gbps and 63 units are needed to handle 400 Gbps.
With the given amount of LUTs, the size of a single NFA
is thus bounded by 937 LUTs (15,000/16) for 100 Gbps and
238 LUTs for 400 Gbps, respectively. These bounds directly
limit the complexity of regexes the engine can handle.

We now analyse the resource consumption of the match-
ing engine for two automata, http-backdoor (ARED

bd ) and
http-malicious (ARED

mal ), and evaluate the impact of the
reduction techniques. Recall that the automata represent two
important sets of know network attacks from SNORT [48].

– 100 Gbps: For this speed, ARED
mal can be used without

any approximate reduction as it is small enough (it has
382 LUTs) to fit in the available space. On the other
hand, ARED

bd without the approximate reduction is way
too large to fit (it has 2,266 LUTs and thus at most 6 units
fit inside the available space, yielding the throughput
of only 38.4 Gbps, which is unacceptable). The column
LUTs in Table 3 shows that using our framework, we
are able to reduce ARED

bd such that it uses 894 LUTs (for
k = 0.3), and so all of the 16 needed units fit into the
FPGA, yielding the throughput over 100 Gbps and the
theoretical error bound of a false positive ≤ 3.4× 10−8

wrt the network traffic model PHTTP .
– 400 Gbps: Regex matching at this speed is extremely

challenging. In the case of ARED
bd , the reduction k = 0.1

is required to fit 63 units in the available space. As such
a reduction has error bound almost 1, this solution is
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not useful due to a prohibitively high false positive rate.
The situation is better for ARED

mal . In the exact version, at
most 39 units can fit inside the FPGA with the maximum
throughput of 249.6 Gbps. On the other hand, when
using our reduced automata, we are able to place 63 units
into the FPGA, each of the size 224 LUTs (k = 0.6),
and achieve a throughput of over 400 Gbps with the
theoretical error bound of a false positive ≤ 8.7× 10−8

wrt the model PHTTP .

6 Conclusion

We have proposed a novel approach for approximate
reduction of NFAs used in network traffic filtering. Our
approach is based on a proposal of a probabilistic distance
of the original and reduced automaton using a probabilistic
model of the input network traffic, which characterizes
the significance of particular packets. We characterized
the computational complexity of approximate reductions
based on the described distance and proposed a sequence
of heuristics allowing one to perform the approximate
reduction in an efficient way. Our experimental results are
quite encouraging and show that we can often achieve a very
significant reduction for a negligible loss of precision. We
showed that using our approach, FPGA-accelerated network
filtering on large traffic speeds can be applied on regexes of
malicious traffic where it could not be applied before.

In the future, we plan to investigate other approximate
reductions of the NFAs, maybe using some variant of
abstraction from abstract regular model checking [7],
adapted for the given probabilistic setting. Another
important issue for the future is to develop better ways of
learning a suitable probabilistic model of the input traffic.
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34. Matoušek, D., Kořenek, J., Puš, V.: High-speed regular expression
matching with pipelined automata. In: 2016 International
Conference on Field-Programmable Technology (FPT), pp. 93–
100 (2016)

35. Mayr, R., Clemente, L.: Advanced automata minimization. In:
POPL’13, pp. 63–74. ACM Trans. Comput. Log. (2013)

36. Mayr, R., et al.: Reduce: A tool for minimizing non-
deterministic finite-word and Büchi automata. http://
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