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Abstract. We present a new angle on solving quantified linear integer arithmetic
based on combining the automata-based approach, where numbers are under-
stood as bitvectors, with ideas from (nowadays prevalent) algebraic approaches,
which work directly with numbers. This combination is enabled by a fine-grained
version of the duality between automata and arithmetic formulae. In particular,
we employ a construction where states of automaton are obtained as derivatives
of arithmetic formulae: then every state corresponds to a formula. Optimizations
based on techniques and ideas transferred from the world of algebraic methods
are used on thousands of automata states, which dramatically amplifies their ef-
fect. The merit of this combination of automata with algebraic methods is demon-
strated by our prototype implementation being competitive to and even superior
to state-of-the-art SMT solvers.

1 Introduction
Linear integer arithmetic (LIA), also known as Presburger arithmetic, is the first-order
theory of integers with addition. Its applications include e.g. databases [60], program
analysis [61], synthesis [59], and it is an essential component of every aspiring SMT
solver. Many other types of constraints can either be reduced to LIA, or are decided
using a tight collaboration of a solver for the theory and a LIA solver, e.g., in the theory
of bitvectors [71], strings [19], or arrays [37]. Current SMT solvers are strong enough
in solving large quantifier-free LIA formulae. Their ability to handle quantifiers is, how-
ever, problematic to the extent of being impractical. Even a tiny formula with two quan-
tifier alternations can be a show stopper for them. Handling quantifiers is an area of
lively research with numerous application possibilities waiting for a practical solution,
e.g., software model checking [46], program synthesis [67], or theorem proving [49].

Among existing techniques for handling quantifiers, the complete approaches based
on quantifier elimination [64,23] and automata [17,79,13] have been mostly deemed
not scalable and abandoned in practice. Current SMT solvers use mainly incomplete
techniques originating, e.g., from solving the theory of uninterpreted functions [66] and
algebraic techniques, such as the simplex algorithm for quantifier-free formulae [25].

This work is the first step in leveraging a recent renaissance of practically competi-
tive automata technology for solving LIA. This trend that has recently emerged in string
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constraint solving (e.g. [20,8,18,2,7]), processing regular expressions [24,21,74], rea-
soning about the SMT theory of bitvectors [54], or regex matching (e.g. [78,40,53,62]).
The new advances are rooted in paradigms such as usage of non-determinism and alter-
nation, various flavours of symbolic representations, and combination with/or integra-
tion into SAT/SMT frameworks and with algebraic techniques.

We particularly show that the automata-based procedure provides unique opportu-
nities to amplify certain algebraic optimizations that reason over the semantic of for-
mulae. These optimizations then boost the inherent strong points of the automata-based
approach to the extent that it is able to overcome modern SMT solvers. The core strong
points of automata are orthogonal to those of algebraic methods, mainly due to treat-
ing numbers as strings of bits regardless of their numerical values. Automata can thus
represent large sets of solutions succinctly and can use powerful techniques, such as
minimization, that have no counterpart in the algebraic world. This makes automata
more efficient than the algebraic approaches already in their basic form, implemented
e.g. in [79,13], on some classes of problems such as the Frobenius coin problem [41].
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Fig. 1: Comparison of the peak intermediate
automaton size and the size of the minimized
DFA for the entire formula on the SMT-LIB
benchmark (cf. Section 9).

In many practical cases, the automata
construction, however, explodes. The
explosion usually happens when con-
structing an intermediate automaton for
a sub-formula, although the minimal au-
tomaton for the entire formula is almost
always small. The plot in Fig. 1 shows
that the gap between sizes of final and
intermediate automata in our benchmark
is always several orders of magnitude
large, offering opportunities for opti-
mizations. In this paper, we present a ba-
sic approach to breaching this gap by
transferring techniques and ideas from
the algebraic world to automata and us-
ing them to prune the vast state space.

To this end, we combine the classical inductive automata construction with con-
structing formula derivatives, similar to derivatives of regular expressions [15,3,74] or
WS1S/WSkS formulae [77,32,45]. Our construction directly generates states of an au-
tomaton of a nested formula, without the need to construct intermediate automata for
sub-formulae first. Although the derivative construction is not better than the inductive
construction by itself, it gives an opportunity to optimize the state space on the fly, be-
fore it gets a chance to explode. The optimization itself is negotiated by the fine-grained
version of the well-known automaton-formula duality. In the derivative construction,
every state corresponds to a LIA formula. Applying equivalence-preserving formula
rewriting on state formulae has the effect of merging or pruning states, similar to what
DFA minimization could achieve after the entire automaton were constructed.

Our equivalence-preserving rewriting uses known algebraic techniques or ideas
originating from them. First, we use basic formula simplification techniques, such as
propagating true or false values or antiprenexing. Despite being simple, these simplifi-
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cations have a large impact on performance. Second, we use disjunction pruning, which
replaces φ1 ∨ φ2 ∨ · · · ∨ φk by φ2 ∨ · · · ∨ φk if φ1 is entailed by the rest of the formula
(this is close to the state pruning techniques used in [38,32,28]). We also adopt the prin-
ciple of quantifier instantiation [26,68,36], where we detect cases when a quantified
variable can be substituted by one or several values, or when a linear congruence can
be simplified to a linear equation. We particularly use ideas from Cooper’s quantifier
elimination [23], where a quantifier is expanded into a disjunction over a finite number
of values, and from Omega test [65], where a variable with a one-side unbounded range
is substituted by the least restrictive value.

It is noteworthy that in the purely algebraic setting, the same techniques could only
be applied once on the input formula, with a negligible effect. In the automata-based
procedure, their power is amplified since they are used on thousands of derivative states
generated deep within automata after reading several bits of the solution.

Our prototype implementation is competitive with the best SMT solvers on bench-
marks from SMT-LIB, and, importantly, it is superior on quantifier-intensive instances.
We believe that more connections along the outlined direction, based on the fine-grained
duality between automata and formulae, can be found, and that the work in this paper
is the first step in bridging the worlds of automata and algebraic approaches. Many
challenges in incorporating automata-based LIA reasoning into SMT solvers still await
but, we believe, can be tackled, as witnessed e.g. within the recent successes of the
integration of automata-based string solvers [19,7,18].

2 Preliminaries

We use Z to denote the set of integers, Z+ to denote the set of positive integers, and B to
denote the set of binary digits {0, 1}. For x, y ∈ Z and m ∈ Z+, we use x ≡m y to denote
that x is congruent with y modulo m, i.e., there exists z ∈ Z s.t. z · m + x = y; and x|y
to denote that there exists z′ ∈ Z s.t. y = z′ · x. Furthermore, we use [x]m to denote the
unique integer s.t. 0 ≤ [x]m < m and x ≡m [x]m. The following notation will be used for
intervals of integers: for a, b ∈ Z, the set {x ∈ Z | a ≤ x ≤ b} is denoted as [a, b], the set
{x ∈ Z | a ≤ x} is denoted as [a,+∞), and the set {x ∈ Z | x ≤ b} is denoted as (−∞, b].
The greatest common divisor of a, b ∈ Z, denoted as gcd(a, b), is the largest integer
such that gcd(a, b)|a and gcd(a, b)|b (note that gcd(a, 0) = |a|); if gcd(a, b) = 1, we say
that a and b are coprime. For a real number y, ⌊y⌋ denotes the floor of y, i.e., the integer
max{z ∈ Z | z ≤ y}, and ⌈y⌉ denotes the ceiling of y, i.e., the integer min{z ∈ Z | z ≥ y}.

An alphabet Σ is a finite non-empty set of symbols and a word w = a1 . . . an of
length n over Σ is a finite sequence of symbols from Σ. If n = 0, we call w the empty
word and denote it ϵ. Σ+ is the set of all non-empty words over Σ and Σ∗ = Σ+ ∪ {ϵ}.

Finite automata. In order to simplify constructions in the paper, we use a variation of fi-
nite automata with accepting transitions instead of states. A (final transition acceptance-
based) nondeterministic finite automaton (FA) is a five-tupleA = (Q, Σ, δ, I,Acc) where
Q is a finite set of states, Σ is an alphabet, δ ⊆ Q×Σ ×Q is a transition relation, I ⊆ Q
is a set of initial states, and Acc : δ → {true, false} is a transition-based acceptance
condition. We often use q

a
−→ p to denote that (q, a, p) ∈ δ. A run of A over a word

w = a1 . . . an is a sequence of states ρ = q0q1 . . . qn ∈ Qn+1 such that for all 1 ≤ i ≤ n
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it holds that qi−1
ai
−→ qi and q0 ∈ I. The run ρ is accepting if n ≥ 1 and Acc(qn−1

an
−→ qn)

(i.e., if the last transition in the run is accepting)3. The language ofA, denoted asL(A),
is defined as L(A) = {w ∈ Σ∗ | there is an accepting run ofA on w}. We further use
LA(q) to denote the language of the FA obtained from A by setting its set of initial
states to {q} (if the context is clear, we use just L(q)).
A is deterministic (a DFA) if |I| ≤ 1 and for all states q ∈ Q and symbols a ∈ Σ, it

holds that if q
a
−→ p and q

a
−→ r, then p = r. On the other hand, A is complete if |I| ≥ 1

and for all states q ∈ Q and symbols a ∈ Σ, there is at least one state p ∈ Q such that
q

a
−→ p. For a deterministic and completeA, we abuse notation and treat δ as a function

δ : Q × Σ → Q. A DFAA is minimal if ∀q ∈ Q : L(q) , ∅ ∧ ∀p ∈ Q : p , q⇒ L(q) ,
L(p). Hopcroft’s [51] and Brzozowski’s [14] algorithms for obtaining a minimal DFA
can be modified for our definition of FAs .

Linear integer arithmetic. Let X = {x1, . . . , xn} be a (finite) set of integer variables. We
will use x⃗ to denote the vector (x1, . . . , xn). Sometimes, we will treat x⃗ as a set, e.g.,
y ∈ x⃗ denotes y ∈ {x1, . . . , xn}. A linear integer arithmetic (LIA) formula φ over X is
obtained using the following grammar:

φatom ::= a⃗ · x⃗ = c | a⃗ · x⃗ ≤ c | a⃗ · x⃗ ≡m c | ⊥

φ ::= φatom | ¬φ | φ ∧ φ | φ ∨ φ | ∃y(φ)

where a⃗ is a vector of n integer coefficients (a1, . . . , an) ∈ Zn, c ∈ Z is a constant,
m ∈ Z+ is a modulus, and y ∈ X (one can derive the other connectives ⊤,→,↔, ∀, . . . in
the standard way)4. Free variables of φ are denoted as fv(φ ). Given a formula φ , we
say that an assignment ν : X→ Z is a model of φ , denoted as ν |= φ , if ν satisfies φ in
the standard way. Note that we use the same symbols =,≤,≡m,¬,∧,∨,∃, . . . in the syn-
tactical language (where they are not to be interpreted, with the exception of evaluation
of constant expressions) of the logic as well as in the meta-language. In order to avoid
ambiguity, we use the style φ for a syntactic formula. W.l.o.g. we assume that variables
in φ are unique, i.e., there is no overlap between quantified variables and also between
free and quantified variables.

In our decision procedure we represent integers as non-empty sequences of binary
digits a0 . . . an ∈ B

+ using the two’s complement with the least-significant bit first
(LSBF) encoding (i.e., the right-most bit denotes the sign). Formally, the decoding of
a binary word represents the integer

⟨a0 . . . an⟩ =

n−1∑
i=0

ai · 2i − an · 2n. (1)

For instance, dec(0101) = −6 and dec(010) = 2. Note that any integer has infinitely
many representations in this encoding: the shortest one and others obtained by repeating

3 Note that our FAs cannot accept the empty word ϵ, which corresponds in our use to the fact
that in the two’s complement encoding of integers, one needs at least one bit (the sign bit) to
represent a number, see further.

4 Although the modulo constraint a⃗ · x⃗ ≡m c could be safely removed without affecting the ex-
pressivity of the input language, keeping it allows a more efficient automata construction and
application of certain heuristics (cf. Section 7.1).
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Post( a⃗ · x⃗ ≤ c , σ) def
= a⃗ · x⃗ ≤ ⌊ 1

2 κ⌋ for κ def
= c − a⃗ · σ

Post( a⃗ · x⃗ = c , σ) def
=

 a⃗ · x⃗ = 1
2 κ if 2|κ

⊥ otherwise

Post( a⃗ · x⃗ ≡2m c , σ) def
=

 a⃗ · x⃗ ≡m

[
1
2 κ
]

m
if 2|κ

⊥ otherwise

Post( a⃗ · x⃗ ≡2m+1 c , σ) def
=

 a⃗ · x⃗ ≡2m+1

[
1
2 κ
]

2m+1
if 2|κ

a⃗ · x⃗ ≡2m+1

[
1
2 (κ + 2m + 1)

]
2m+1

otherwise

Post(⊥ , σ) def
= ⊥

Fig. 2: Definition of the transition function Post for atomic formulae. Note that the right-
hand sides contain constant expressions, so they will be evaluated.

the sign bit any number of times. In this paper, we work with the so-called binary
assignments. A binary assignment is an assignment ν : X → B+ s.t. for each x1, x2 ∈ X
the lengths of the words assigned to x1 and x2 match, i.e., |ν(x1)| = |ν(x2)|. We overload
the decoding operator ⟨·⟩ to binary assignments such that ⟨ν⟩ : X → Z is defined as
⟨ν⟩ = {x 7→ ⟨y⟩ | ν(x) = y}. A binary model of a formula φ is a binary assignment ν
such that ⟨ν⟩ |= φ. We denote the set of all binary models of a LIA formula φ as ⟦φ⟧
and we write φ1 ⇒ φ2 to denote ⟦φ1 ⟧ ⊆ ⟦φ2 ⟧ and φ1 ⇔ φ2 to denote ⟦φ1 ⟧ = ⟦φ2 ⟧.

3 Classical Automata-Based Decision Procedure for LIA

The following classical decision procedure is due to Boudet and Comon [13] (based
on the ideas of [16]) with an extension to modulo constraints by Durand-Gasselin and
Habermehl [29]. Given a set of variables X, a symbol σ is a mapping σ : X→ B and
ΣX denotes the set of all symbols over X. For a symbol σ ∈ ΣX and a variable x ∈ X we
define the projection πx(σ) = {σ′ ∈ ΣX | σ′|X\{x} = σ|X\{x} }where σ|X\{x} is the restriction
of the function σ to the domain X \ {x}.

For a LIA formula φ, the classical automata-based decision procedure builds an
FA Aφ encoding all binary models of φ. We use a modification which uses automata
with accepting edges instead of states. It allows to construct deterministic automata
for atomic formulae, later in Section 4 also for complex formulae, and to eliminate an
artificial final state present in the original construction that does not correspond to any
arithmetic formula. The construction proceeds inductively as follows:

Base case. First, an FA Aφatom is constructed for each atomic formula φatom in φ. The
states ofAφatom are LIA formulae with φatom being the (only) initial state.Aφatom ’s struc-
ture is given by the transition function Post, implemented via a derivative Post(φatom , σ)
of φatom w.r.t. symbols σ ∈ ΣX as given in Fig. 2 (an example will follow).

Intuitively, for Post( a⃗ · x⃗ = c , σ), the next state after readingσ is given by taking the
least significant bits (LSBs) of all variables (x⃗) after being multiplied with the respective
coefficients (a⃗) and subtracting this value from c. If the parity of the result is odd, we
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can reject the input word (a⃗ · x⃗ and c have a different LSB, so they cannot match),
otherwise we can remove the LSB of the result, set it as a new c, and continue. One can
imagine this process as performing a long addition of several binary numbers at once
with c being the result (the subtraction from c can be seen as working with carry). The
intuition for a formula a⃗ · x⃗ ≤ c is similar. On the other hand, for a formula a⃗ · x⃗ ≡2m c ,
i.e., a congruence with an even modulus, if the parity of the left-hand side (a⃗ · x⃗) and the
right-hand side (c) does not match (in other words, c − a⃗ · x⃗ is odd), we can reject the
input word (this is because the modulus is even, so the parities of the two sides of the
congruence need to be the same). Otherwise, we remove the LSB of the modulus (i.e.,
divide it by two). Lastly, let us mention the second case for the rule for a formula of the
form a⃗ · x⃗ ≡2m+1 c . Here, since κ is odd, we cannot divide it by two; however, adding
the modulus (2m + 1) to κ yields an even value equivalent to κ.

The states of Aφatom are then all reachable formulae obtained from the application
of Post from the initial state. The reachability from a set of formulae S using symbols
from Γ is given using the least fixpoint operator µ as follows:

Reach(S , Γ) = µZ : S ∪ {Post(ψ , a) | ψ ∈ Z, a ∈ Γ} (2)

Lemma 1. Reach({φatom }, ΣX) is finite for an atomic formula φatom .

Proof. The cases for linear equations and inequations follow from [13, Proposition 1]
and [13, Proposition 3] respectively. For moduli, the lemma follows from the fact that in
the definition of Post, the right-hand side of a modulo is an integer from [0,m − 1]. ⊓⊔

Fin( a⃗ · x⃗ ≤ c , σ)
def
⇔ c + a⃗ · σ ≥ 0

Fin( a⃗ · x⃗ = c , σ)
def
⇔ c + a⃗ · σ = 0

Fin( a⃗ · x⃗ ≡m c , σ)
def
⇔ c + a⃗ · σ ≡m 0

Fin(⊥ , σ)
def
⇔ false

Fig. 3: Acceptance for atomic formulae.

Post is deterministic, so it suffices to de-
fine the acceptance condition for the deriva-
tives only for each state and symbol, as
given in Fig. 3. E.g., a transition from
2x1 − 7x2 = 5 over σ =

[ 1
1
]

is accepting;
the intuition is similar as for Post with the
difference that the last bit is the sign bit
(cf. Eq. (1)), so it is treated in the opposite
way to other bits (therefore, there is the “+” sign on the right-hand sides of the defini-
tions rather than the “−” sign as in Fig. 2). If we substitute into the example, we obtain
2 · (−1) − 7 · (−1) = −2 + 7 = 5. The acceptance condition Acc is then defined as
Acc(φ1

σ
−→ Post(φ1 , σ)) def

= Fin(φ1 , σ) andAφatom is defined as the FA

Aφatom = (Reach({φatom }, ΣX), ΣX,Post, {φatom },Acc). (3)

Note that if an FA accepts a word w, it also accepts all words obtained by appending
any number of copies of the most significant bit (the sign) to w.

Example 1. Fig. 4 gives examples of FAs for x + 2y ≤ 1 and x + 2y ≡6 2 . For the case
of the FA for x + 2y ≤ 1 , consider for instance the state x + 2y ≤ −1 (denoted by the
state “−1” in Fig. 4a). We show computation of the Post of this state over the symbol
σ =

[ 1
0
]
. From the definition in Fig. 2, we have Post( x + 2y ≤ −1 ,

[ 1
0
]
) = x + 2y ≤ k

where k = ⌊ 1
2 (−1−(1, 2)·

[ 1
0
]
)⌋ = ⌊ 1

2 (−2)⌋ = −1. Moreover, since Fin( x + 2y ≤ −1 ,
[ 1

0
]
)⇔

−1 + (1, 2) ·
[ 1

0
]
= 0 ≥ 0, this transition is marked as accepting (cf. Fig. 3).
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(a) The FA for x + 2y ≤ 1 . A state
x + 2y ≤ c is represented by “c”.

2≡6 1≡3

0≡3 2≡3

[ 0
0
]

[ 0
1
]

[ 0
1
]

[ 1
0
] [ 0

0
][ 1

1
]

[ 0
0
][ 1

1
]

[ 1
0
]
[ 0

1
] [ 1

0
]

[ 0
0
][ 1

1
]

[ 0
1
]

(b) The FA for x + 2y ≡6 2 . A state
x + 2y ≡m c is represented by “c≡m ”.

Fig. 4: Examples of FAs for atomic formulae. The notation for symbols is
[ x
y
]
; red

background denotes accepting transitions.

For the case of the second FA, consider for instance the state x + 2y ≡3 0 (denoted
by the state “0≡3 ” in Fig. 4b). Similarly to the previous example, we show computa-
tion of Post of this state over the symbol σ =

[ 1
0
]
. From the definition in Fig. 2, we

have Post( x + 2y ≡3 0 ,
[ 1

0
]
) = x + 2y ≡3 ℓ where ℓ =

[
1
2 (0 − (1, 2) ·

[ 1
0
]
+ 3)
]
3
= 1.

Fin( x⃗ + 2y ≡3 0 ,
[ 1

0
]
)⇔ 0 + (1, 2) ·

[ 1
0
]
≡3 1, so this transition is not accepting. ⊓⊔

Inductive case. The inductive cases for Boolean connectives are defined in the stan-
dard way: conjunction of two formulae is implemented by taking the intersection of the
two corresponding FAs, disjunction by taking their union, and negation is implemented
by taking the complement (which may involve determinization via the subset construc-
tion). Formally, let Aφi = (Qφi , ΣX, δφi , Iφi ,Accφi ) for i ∈ {1, 2} with Qφ1 ∩ Qφ2 = ∅ be
complete FAs. Then,

– Aφ1∧φ2 = (Qφ1 × Qφ2 , ΣX, δφ1∧φ2 , Iφ1 × Iφ2 ,Accφ1∧φ2 ) where
• δφ1∧φ2 = {(q1, q2)

σ
−→ (p1, p2) | q1

σ
−→ p1 ∈ δφ1 , q2

σ
−→ p2 ∈ δφ2 } and

• Accφ1∧φ2 ((q1, q2)
σ
−→ (p1, p2))

def
⇔ Accφ1 (q1

σ
−→ p1) ∧ Accφ2 (q2

σ
−→ p2).

– Aφ1∨φ2 = (Qφ1 × Qφ2 , ΣX, δφ1∨φ2 , Iφ1 × Iφ2 ,Accφ1∨φ2 ) where
• δφ1∨φ2 = {(q1, q2)

σ
−→ (p1, p2) | q1

σ
−→ p1 ∈ δφ1 , q2

σ
−→ p2 ∈ δφ2 } and

• Accφ1∨φ2 ((q1, q2)
σ
−→ (p1, p2))

def
⇔ Accφ1 (q1

σ
−→ p1) ∨ Accφ2 (q2

σ
−→ p2).

– A¬φ1 = (2Qφ1 , ΣX, δ¬φ1 , {Iφ1 },Acc¬φ1 ) where
• δ¬φ1 = {S

σ
−→ T | T = {p ∈ Qφ1 | ∃q ∈ S : q

σ
−→ p ∈ δφ1 } and

• Acc¬φ1 (S
σ
−→ T )

def
⇔ ∀q ∈ S ∀p ∈ T : ¬Accφ1 (q

σ
−→ p).

Existential quantification is more complicated. Given a formula ∃x(φ) and the FA
Aφ = (Qφ, ΣX, δφ, Iφ,Accφ), a word w should be accepted byA∃x(φ) iff there is a word w′

accepted by Aφ s.t. w and w′ are the same on all tracks except the track for x. One can
perform projection of x out of Aφ, i.e., remove the x track from all its transitions. This
is, however, insufficient. For instance, consider the model {x 7→ 7, y 7→ −4}, encoded
into the (shortest) word

[ 1
0
][ 1

0
][ 1

1
][ 0

1
]

(we use the notation
[ x
y
]
). When we remove the x-

track from the word, we obtain [0][0][1][1] , which encodes the assignment {y 7→ −4}. It is,
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however, not the shortest encoding of the assignment; the shortest encoding is [0][0][1] .
Therefore, we further need to modify the FA obtained after projection to also accept
words that would be accepted if their sign bit were arbitrarily extended, which we do by
reachability analysis on the FA. Formally,A∃x(φ) = (Qφ, ΣX, δ∃x(φ), Iφ,Acc∃x(φ)) where

– δ∃x(φ) = {q
σ′

−−→ p | ∃q
σ
−→ p ∈ δφ : σ′ ∈ πx(σ)} and

– Acc∃x(φ)(q
σ
−→ p)

def
⇔
∨

σ′∈πx(σ)

Accφ(q
σ′

−−→ p)∨∃r, s ∈ Reach({p}, πx(σ)) :
∨

σ′∈πx(σ)

Accφ(r
σ′

−−→ s).

After defining the base and inductive cases for constructing the FA Aφ, we can
establish the connection between its language and the models of φ. For a word w =
a1 . . . an ∈ ΣX and a variable x ∈ X, we define wx = a1(x) . . . an(x), i.e., wx extracts
the binary number assigned to variable x in w. For a binary assignment ν of a LIA
formula φ, we define its language as L(ν) = {w ∈ Σ∗X | ∀x ∈ X : wx = ν(x)}. We lift the
language to sets of binary assignments as usual.

Theorem 1. Let φ be a LIA formula. Then L(Aφ) = L(⟦φ⟧).

Proof. Follows from [13, Lemma 5].

4 Derivative-based Construction for Nested Formulae

Post(φ1 ∧ φ2 , σ) def
= Post(φ1, σ) ∧ Post(φ2, σ)

Post(φ1 ∨ φ2 , σ) def
= Post(φ1, σ) ∨ Post(φ2, σ)

Post(¬φ , σ) def
= ¬Post(φ, σ)

Post(∃x(φ) , σ) def
= ∃x

(∨
σ′∈πx(σ) Post(φ, σ′)

)
Fin(¬φ , σ)

def
⇔ ¬Fin(φ , σ)

Fin(φ1 ∧ φ2 , σ)
def
⇔ Fin(φ1 , σ) ∧ Fin(φ2 , σ)

Fin(φ1 ∨ φ2 , σ)
def
⇔ Fin(φ1 , σ) ∨ Fin(φ2 , σ)

Fin(∃x(φ) , σ)
def
⇔ ∃ψ ∈ Reach({φ }, πx(σ)) :∨

σ′∈πx(σ) Fin(ψ , σ′)
Fig. 5: Post and Fin for non-atomic formulae.

This section lays down the basics of
our approach to interconnecting au-
tomata with the algebraic approach
for quantified LIA. We aim at us-
ing methods and ideas from the al-
gebraic approach to circumvent the
large intermediate automata con-
structed along the way before ob-
taining the small DFAs (cf. Fig. 1).
To do that, we need a variation of
the automata-based decision proce-
dure that exposes the states of the
target automata without the need of
generating the complete state space
of the intermediate automata first.
To achieve this, we generalize the post-image function Post (and the acceptance condi-
tion Fin) from Section 3 to general non-atomic formulae using an approach similar to
that of [32,45,76], which introduced derivatives of WS1S/WSkS formulae. Computing
formula derivatives produces automata states that are at the same time LIA formulae,
and can be manipulated as such using algebraic methods and reasoning about their in-
teger semantics. We will then use basic Boolean simplification, antiprenexing, and also
ideas from Cooper’s quantifier elimination algorithm and Omega test [23,65] to prune
and simplify the state-formulae. The techniques will be discussed in Sections 5 to 7.



Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 9

x ≤ 1000
∧ −x ≤ 0 ∧
x ≡257 255

x ≤ 500
∧ −x ≤ 0 ∧
x ≡257 256

x ≤ 499
∧ −x ≤ 0 ∧
x ≡257 127

x ≤ 249
∧ −x ≤ 0 ∧
x ≡257 192

x ≤ 249
∧ −x ≤ 0 ∧
x ≡257 63

x = 256 x = 192

x = 63

[0]

[1]

[0]

[1]

⇔ ⇔

⇔

Fig. 6: Example of rewriting formulae in the FA for x ≤ 1000 ∧ −x ≤ 0 ∧ x ≡257 255 .

Example 2. In Fig. 6, we show an intuitive example of rewriting state formulae when
constructing the FA for 0 ≤ x ≤ 1000 ∧ x ≡257 255 (which is written in the basic syntax
as x ≤ 1000 ∧ −x ≤ 0 ∧ x ≡257 255 ). After reading the first symbol [0], the obtained
formula is a conjunction of the three following Posts:

– Post( x ≤ 1000 , [0]) = x ≤ ⌊ 1
2 (1000 − 1 · 0)⌋ = x ≤ 500 ,

– Post(−x ≤ 0 , [0]) = −x ≤ ⌊ 1
2 (0 + 1 · 0)⌋ = −x ≤ 0 , and

– Post( x ≡257 255 , [0]) = x ≡257

[
1
2 (255 − 1 · 0 + 257)

]
257
= x ≡257 256 .

We can write the resulting formula as 0 ≤ x ≤ 500 ∧ x ≡257 256 , which is satisfied only
by x = 256. We can therefore rewrite the formula into an equivalent formula x = 256 .
Similar rewriting can be applied to the state obtained after reading [1][0] and [1][1] .
The rest of the automaton constructed from the rewritten states x = 256 , x = 192 , and
x = 63 is then of a logarithmic size (each state in the rest will have only one successor
based on the binary encoding of 256, 192, or 63 respectively, while if we did not perform
the rewriting, the states would have two successors and the size would be linear). ⊓⊔

In Fig. 5, we extend the derivative post-image function Post and the acceptance
condition Fin (cf. Figs. 2 and 3) to non-atomic formulae. The derivatives mimic the
automata constructions in Section 3, with the exception that at every step, the derivative
(and therefore also the state in the constructed FA) is a LIA formula and can be treated
as such. One notable exception is Post(∃x(φ) , σ), which, since the Post function is
deterministic, in addition to the projection, also mimics determinisation. One can see
the obtained disjunction-structure as a set of states from the standard subset construction
in automata. Correctness of the construction is stated in the following.

Lemma 2. Let φ be a LIA formula and letAφ be the FA constructed by the procedure
in this section or any combination of it and the classical one. Then L(Aφ) = L(⟦φ⟧).

Proof. Follows from preservation of languages of the states/formulae. ⊓⊔

Without optimizations, the derivative-based construction would generate a larger FA
than the one obtained from the classical construction, which can perform minimization
of the intermediate automata. The derivative-based construction cannot minimize the
intermediate automata since they are not available; they are in a sense constructed on
the fly within the construction of the automaton for the entire formula. Our algebraic
optimizations mimic some effect of the minimization on the fly, while constructing the
automaton, by simplifying the state formulae and detecting entailment between them.
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In principle, when we construct a state q of Aψ as a result of Post, we could test
whether some state p was already constructed such that φq ⇔ φp and, if so, we could
merge p and q (drop q and redirect the edges to p). This would guarantee us to directly
obtain the minimal DFA for ψ (no two states would be language-equivalent).

Solving the LIA equivalence queries precisely is, however, as hard as solving the
original problem. Even when we restrict ourselves to quantifier-free formulae, the equiv-
alence problem is co-NP-complete. Our algebraic optimizations are thus a cheaper and
more practical alternative capable of merging at least some equivalent states. We discuss
the optimizations in detail in Sections 5 to 7 and also give a comprehensive example of
their effect in Section 8.

5 Simple Rewriting Rules

The simplest rewriting rules are just common simplifications generally applicable in
predicate logic. Despite their simplicity, they are quite powerful, since their use enables
to apply the other optimizations (Sections 6 and 7) more often.

1. We apply the propositional laws of identity (φ ∨ ⊥ = φ and φ ∧ ⊤ = φ ) and
annihilation (φ ∧ ⊥ = ⊥ and φ ∨ ⊤ = ⊤ ) to simplify the formulae.

2. We use antiprenexing [44,30] (i.e., pushing quantifiers as deep as possible using in-
verses of prenexing rules [69, Chapter 5]). This is helpful, e.g., after a range-based
quantifier instantiation (cf. Section 7.2), which yields a disjunction. Since our for-
mula analysis framework (Section 7) only works over conjunctions below existen-
tial quantifiers, we need to first push existential quantifiers inside the disjunctions
to allow further applications of the heuristics.

3. Since negation is implemented as automaton complementation, we apply De Mor-
gan’s laws (¬(φ1 ∧ φ2) ⇔ (¬φ1) ∨ (¬φ2) and ¬(φ1 ∨ φ2) ⇔ (¬φ1) ∧ (¬φ2) ) to
push negation as deep as possible. The motivation is that small subformulae are
likely to have small corresponding automata. As complementation requires the un-
derlying automaton to be deterministic, complementing smaller automata helps to
mitigate the exponential blow-up of determinization.

Moreover, we also employ the following simplifications valid for LIA:

4. We apply simple reasoning based on variable bounds to simplify the formula,
e.g., x ≥ 0 ∧ x ≤ 10 ∧ x , 0 ⇔ x ≥ 1 ∧ x ≤ 10 , and to prune away some parts
of the formula, e.g., x ≥ 3 ∧ (φ ∨ (x = 0 ∧ ψ)) ⇔ x ≥ 3 ∧ φ .

5. We employ rewriting rules aimed at accelerating the automata construction by
minimizing the number of variables used in a formula, and, thus, avoiding con-
structing complicated transition relations, e.g., ∃x1, x2(ay + b1x1 + b2x2 ≡K 0) ⇔
∃x(ay + bx ≡K 0) where b = gcd(b1, b2), or ∃x(ay + bx = 0) ⇔ ay ≡|b| 0 .

6. We detect conflicts by identifying small isomorphic subformulae, i.e., subformulae
that have the same abstract syntax tree, except for renaming of quantified variables,
for example, ∃x(x > 3 ∧ x + z ≤ 10) ∧ ¬(∃y(y > 3 ∧ y + z ≤ 10) ⇔ ⊥ . One can
see this as a variant of DAGification used in Mona [57].
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∃x(7x ≤ 1000) ∃x(7x ≤ 500 ∨ 7x ≤ 496)
∃x(7x ≤ 250 ∨ 7x ≤ 246
∨ 7x ≤ 248 ∨ 7x ≤ 244)

∃x(7x ≤ 500) ∃x(7x ≤ 250)

[] []

[]

⇕ ⇕

Fig. 8: Example of disjunction pruning in the FA for ∃x(7x ≤ 1000) .

6 Disjunction Pruning

a⃗1 · x⃗1 ≤ c1 ⪯s a⃗2 · x⃗2 ≤ c2
def
⇔ a⃗1 = a⃗2 ∧ x⃗1 = x⃗2 ∧ c1 ≤ c2∧n

i=1 φi ⪯s
∧m

j=1 ψ j
def
⇔ ∀1 ≤ j ≤ m ∃1 ≤ i ≤ n : φi ⪯s ψ j∨n

i=1 φi ⪯s
∨m

j=1 ψ j
def
⇔ ∀1 ≤ i ≤ n ∃1 ≤ j ≤ m : φi ⪯s ψ j

¬φ ⪯s ¬ψ
def
⇔ ψ ⪯s φ

∃x(φ) ⪯s ∃x(ψ)
def
⇔ φ ⪯s ψ

Fig. 7: Definition of the subsumption preorder ⪯s (we omit
cases implied by reflexivity).

We prune disjunctions
by removing disjunct im-
plied by other disjuncts.
That is, if it holds that
φ2 ∨ · · · ∨ φk ⇒ φ1 ,
then φ1 ∨ φ2 ∨ · · · ∨ φk

can be replaced by just
φ2 ∨ · · · ∨ φk . Testing the
entailment precisely is
hard, so we use a stronger
but cheaper relation of subsumpion. Our subsumption is a preorder (a reflexive and tran-
sitive relation) ⪯s between LIA formulae in Fig. 75. When we encounter the said macro-
state and establish φ1 ⪯s φ2 ∨ · · · ∨ φk , we perform the rewriting. This optimization
has effect mainly in formulae of the form ∃x(ψ) : their Post contains a disjunction of
formulae of a similar structure.

Lemma 3. For LIA formulae φ1 and φ2 , if φ1 ⪯s φ2 , then φ1 ⇒ φ2 .

Example 3. In Fig. 8, we show an example of pruning disjunctions in the FA for the
formula ∃x(7x ≤ 1000) . ⊓⊔

7 Quantifier Instantiation
The next optimization is an instance of quantifier instantiation, a well known class of
algebraic techniques. We gather information about the formulae with a focus on the way
a particular variable, usually a quantified one, affects the models of the whole formula.
If one can find “the best” value for such a variable (e.g., a value such that using it pre-
serves all models of the formula), then the (quantified) variable can be substituted with
a concrete value. For instance, let φ = ∃y(x − y ≤ 33 ∧ y ≤ 12 ∧ y ≡7 2) . The vari-
able y is quantified so we can think about instantiating it (it will not occur in a model).
The first atom x − y ≤ 33 says that we want to pick y as large as possible (larger y’s
have higher chance to satisfy the inequation), but, on the other hand, the second atom
y ≤ 12 says that y can be at most 12. The last atom y ≡7 2 adds an additional constraint

5 The subsumption is similar to the one used in efficient decision procedures for
WS1S/WSkS [32,45] with two important differences: (i) it can look inside atomic formulae
and use semantics of states and (ii) it does not depend on the initial structure of the initial
formula. Both of these make the subsumption relation larger.
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on y. Intuitively, we can see that the best value of y—i.e., the value that preserves all
models of φ—would be 9, allowing to rewrite φ to x ≤ 42 .

To define the particular ways of gathering such kind of information in a uniform
way, we introduce the following formula analysis framework that uses the function FA
to extract information from formulae. Consider a meet-semilattice (D,⊓) where undef ∈
D is the bottom element. Let atom be a function that, given an atomic formula φatom

and a variable y ∈ X, outputs an element of D that represents the behavior of y in φatom

(e.g., bounds on y). The function FA then aggregates the information from atoms into
an information about the behavior of y in the whole formula using the meet operator ⊓
recursively as follows:

FA(φatom , y, atom,⊓) = atom(φatom , y) (4)

FA(φ1 ∧ φ2 , y, atom,⊓) = FA(φ1 , y, atom,⊓) ⊓ FA(φ2 , y, atom,⊓) (5)

(By default, a missing case in the pattern matching evaluates to undef .) We note that
the framework is defined only for conjunctions of formulae, which is the structure of
subformulae that was usually causing troubles in our experiments (cf. Section 9).

The optimizations defined later are based on substituting certain variables in a for-
mula with concrete values to obtain an equivalent (simpler) formula. For this, we ex-
tend standard substitution as follows. Let φ(x⃗, y) be a formula with free variables x⃗ =
(x1, . . . , xn) and y < x⃗. For k ∈ Z, substituting k for y in φ yields the formula φ[y/k]
obtained in the usual way (with all constant expressions being evaluated). For k = ±∞,
the resulting formula is obtained for inequalities containing y as

( a⃗ · x⃗ + ay · y ≤ c )[y/k] = ⊤ if ay · k = −∞ (6)

and is undefined for all other atomic formulae.

7.1 Quantifier Instantiation based on Formula Monotonicity

The first optimization based on quantifier instantiation uses the so-called monotonicity
of formulae w.r.t. some variables (a similar technique is used in the Omega test [65]).
Consider the following two formulae:

φ1 = ∃y(ψ ∧ 3y − x ≥ z) and φ2 = ∃y(ψ ∧ 3y − x ≥ z ∧ 5y ≤ 42) (7)

where ψ does not contain occurrences of y, and x, z are free variables in φ1 , φ2 .
For φ1 , since y is existentially quantified, the inequation 3y − x ≥ z can be always
satisfied by picking an arbitrarily large value for y, so φ1 can be simplified to just ψ .
On the other hand, for φ2 , we cannot pick an arbitrarily large y because of the other
inequation 5y ≤ 42 . We can, however, observe, that ⌊ 42

5 ⌋ = 8 is the largest value that
we can substitute for y to satisfy 5y ≤ 42 . As a consequence, since the possible value
of y in 3y − x ≥ z is not bounded from above, we can substitute y by the value 8, i.e.,
φ2 can be simplified to ψ ∧ 24 − x ≥ z .

Formally, let c ∈ Z ∪ {+∞} and y ∈ X. We say that a formula φ(x⃗, y) is c-best from
below w.r.t. y if (i) ⟦φ[y/y1]⟧ ⊆ ⟦φ[y/y2]⟧ for all y1 ≤ y2 ≤ c (for c ∈ Z) or for all
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y1 ≤ y2 (for c = +∞) and (ii) ⟦φ[y/y′]⟧ = ∅ for all y′ > c. Intuitively, substituting
bigger values for y (up to c) in φ preserves all models obtained by substituting smaller
values, so c can be seen as the most conservative limit of y (and for c = +∞, this means
that y does not have an upper bound, so it can be chosen arbitrarily large for concrete
values of other variables). Similarly, φ(x⃗, y) is called c-best from above (w.r.t. y) for
c ∈ Z ∪ {−∞} if (i) ⟦φ[y/y1]⟧ ⊆ ⟦φ[y/y2]⟧ for all y1 ≥ y2 ≥ c (for c ∈ Z) or for all
y1 ≥ y2 (for c = −∞) and (ii) ⟦φ[y/y′]⟧ = ∅ for all y′ < c. If a formula is c-best from
below or above, we call it c-monotone (w.r.t. y).

Lemma 4. Let c ∈ Z ∪ {±∞} and φ(x⃗, y) be a formula c-monotone w.r.t. y such that
φ[y/c] is defined. Then the formula ∃y(φ(x⃗, y)) is equivalent to the formula φ[y/c] .

Moreover, the following lemma utilizes formula monotonicity to provide a tool for
simplification of formulae containing a modulo atom.

Lemma 5. Let c ∈ Z and φ(x⃗, y) be a formula c-monotone w.r.t. y for c ∈ Z. Then,
the formula ∃y(φ(x⃗, y) ∧ y ≡m k) is equivalent to the formula φ[y/c′] where (i) c′ =
max{ℓ ∈ Z | ℓ ≡m k, ℓ ≤ c} if φ is c-best from below, and (ii) c′ = min{ℓ ∈ Z | ℓ ≡m

k, ℓ ≥ c} if φ is c-best from above.

In general, it is, however, expensive to decide whether a formula is c-monotone and
find the tight c. Therefore, we propose a cheap approximation working on the structure
of LIA formulae, which uses the formula analysis function FA introduced above. First,
we propose the partial function blwatom(φ , y) (whose result is in Z ∪ {+∞}) estimating
the c for atomic formulae c-best from above w.r.t. y:

blwatom( a · y ≤ c , y) =
⌊

c
a

⌋
if a > 0 (8)

blwatom( a⃗ · x⃗ ≤ c , xi) = +∞ if ai = 0 ∨ ∃ j : i , j ∧ a j , 0 ∧ ai < 0 (9)

Intuitively, if y is in an inequation a · y ≤ c without any other variable and a > 0, then
y’s value is bounded from above by

⌊
c
a

⌋
. On the other hand, if y = xi is in an inequation

a⃗ · x⃗ ≤ c where a⃗ has at least two nonzero coefficients and y’s coefficient is negative,
or y does not appear in the inequation at all, then y’s value is not bounded (larger values
of y make it easier to satisfy the inequation). The value for other cases is undefined.

Similarly, abvatom(φ , y) (with the result in Z ∪ {−∞}) estimates the c for atomic
formulae c-best from above:

abvatom( a · y ≤ c , y) =
⌊

c
a

⌋
if a < 0 (10)

abvatom( a⃗ · x⃗ ≤ c , xi) = −∞ if ai = 0 ∨ ∃ j : i , j ∧ a j , 0 ∧ ai > 0 (11)

Based on blwatom and abvatom and using the FA framework, we define the functions
blw and abv estimating the c for general formulae c-best from below and above as

blw(φ , y) = FA(φ , y, blwatom,min), abv(φ , y) = FA(φ , y, abvatom,max). (12)

For a formula ψ = ∃y(φ(x⃗, y) ∧ y ≡m k) , the simplification algorithm then deter-
mines whether φ is c-monotone for some c, which is done using the abv and blw func-
tions. In particular, if blw(φ , y) = c for some c ∈ Z ∪ {±∞}, we have that φ is c-best
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from below w.r.t. y (analogously for abv). Then, in the positive case and if c ∈ Z, we
apply Lemma 5 to simplify the formula ψ . If ψ is of the simple form ∃y(φ(x⃗, y)) where
φ is c-monotone w.r.t. y, we can directly use Lemma 4 to simplify ψ to φ[y/c] .

Example 4. Consider the formula ψ = ∃y(x − y ≤ 1 ∧ y ≤ −1 ∧ y ≡5 0) . In order to
simplify ψ, we first need to check if the formula φ(x, y) = x − y ≤ 1 ∧ y ≤ −1 is c-
monotone. Using blw, we can deduce that blw( x − y ≤ 1 , y) = ∞, blw(y ≤ −1 , y) = −1,
and hence blw(φ , y) = −1 meaning that φ is (−1)-best from below w.r.t. y (abv(φ , y) is
undefined). Lemma 5 yields that ψ is equivalent to x ≤ −4 (using c′ = −5). ⊓⊔

7.2 Range-Based Quantifier Instantiation

Similarly as in Cooper’s elimination algoroithm [23], we can compute the range of
possible values for a given variable y and instantiating y with all values in the range.
For instance, ∃y(y ≤ 2 ∧ 2y ≥ 3 ∧ x + 3y = 42) can be simplified into x = 36 .

To obtain the range of possible values of y in the formula φ , we use the formula
analysis framework with the following function rangeatom (whose result is an interval
of integers) defined for atomic formulae as follows:

rangeatom( a · y ≤ c , y) =
(
−∞,
⌊

c
a

⌋ ]
if a > 0 (13)

rangeatom( a · y ≤ c , y) =
[ ⌈

c
a

⌉
,+∞
)

if a < 0 (14)

rangeatom( a⃗ · x⃗ ≤ c , xi) =
(
−∞,+∞

)
if ∃ j, k : j , k ∧ a j , 0 ∧ ak , 0 (15)

We then employ our formula analysis framework to get the range of y in φ using the
function range(φ , y) = FA(φ , y, rangeatom,∩).

Lemma 6. Let ψ = ∃y(φ(x⃗, y)) be a formula such that range(φ , y) = [a, b] with
a, b ∈ Z. Then ψ is equivalent to the formula

∨
a≤c≤b φ[y/c] .

Proof. It suffices to notice that for all c < [a, b] we have ⟦φ(x⃗, c)⟧ = ∅. ⊓⊔

In our decision procedure, given a formula ψ = ∃y(φ(x⃗, y)) , if range(φ , y) = [a, b]
for a, b ∈ Z and b − a ≤ N for a parameter N (set by the user), we simplify ψ to∨

a≤c≤b φ[y/c] . In our experiments, we set N = 0.

7.3 Modulo Linearization

The next optimization is more complex and helps mainly in practical cases in the bench-
marks containing congruences with large moduli. It does not substitute the value of
a variable by a constant, but, instead, substitutes a congruence with an equation.

Let φ = ∃y∃m(ψ ∧ y + m ≡37 12) such that ψ is 17-best from below w.r.t. y
and range(ψ ,m) = [1, 50]. Since the modulo constraint y + m ≡37 12 contains two
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Fig. 9: Modulo linearization.

variables (y and m), we cannot use the optimization
from Section 7.1. From the modulo constraint and the
fact that ψ is 17-best from below w.r.t. y, we can in-
fer that it is sufficient to consider y only in the interval
[−19, 17] (we obtained −19 as 17 − 37 + 1). The rea-
son is that any other y can be mapped to a y′ from the
same congruence class (modulo 37) that is in the in-
terval and, therefore, gives the same result in the mod-
ulo constraint. This, together with the other fact (i.e.,
range(ψ ,m) = [1, 50]) tells us that it is sufficient to
only consider the (possibly multiple) linear relations
between y and m in the rectangle [−19, 17] × [1, 50]
(cf. Fig. 9). The modulo constraint can, therefore, be
substituted by the linear relations to obtain the formula

∃y∃m(ψ ∧ ((y ≥ −19 ∧ y ≤ 11 ∧ y + m = 12) ∨ (y ≥ −1 ∧ y ≤ 17 ∧ y + m = 49))) . (16)

Although the formula seems more complex than the original one, it avoids the large
FA to be generated for the modulo constraint (a modulo constraint with ≡k needs an FA
with k states) and, instead, generates the usually much smaller FAs for the (in)equalities.

The general rewriting rule can be given by the following lemma:

Lemma 7. Let ψ(x⃗, y,m) be a formula s.t. range(ψ ,m) = [r, s] for r, s ∈ Z, let φ =
∃y∃m(ψ ∧ ay · y + am · m ≡M k) , with ay , 0 , am, and α = M

gcd(ay,M) . If ψ is c-best
from below w.r.t. y, then φ is equivalent to the formula

∃y∃m
(
ψ ∧
(∨N−1

i=0 ay · y + am · m = k + (ℓ1 + i) · α
))

(17)

where

ℓ1=


⌈ ay·(c−α+1)+am·r−k

α

⌉
for am

ay
>0⌈ ay·(c−α+1)+am·s−k

α

⌉
for am

ay
<0

, y1=


k+ℓ1·α−am·r

ay
for am

ay
>0

k+ℓ1·α−am·s
ay

for am
ay
<0

, (18)

and

N =
⌈
ay(c − y1) + am(s − r) + 1

α

⌉
. (19)

Due to space constraints, we omit a similar lemma for the case when ψ is c-best
from above. In our implementation, we use the linearization if the N from Lemma 7
is 1, which is sufficient with many practical cases with large moduli.

8 A Comprehensive Example of Our Optimizations

Consider the formula

∃y,m(x + 3m − y ≤ 9 ∧ y ≤ −1 ∧ m ≤ 6 ∧ −m ≤ 0 ∧ y − m ≡7 0) (20)

and see Fig. 10 for a part of the generated FA (for simplicity, we only consider a frag-
ment of the constructed automaton to demonstrate our technique).
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∃y,m
∧x + 3m − y ≤ 9

y ≤ −1

m ≤ 6

−m ≤ 0

y − m ≡7 0

∃y,m
∧x + 3m − y ≤ 3

y ≤ −1

m ≤ 2

−m ≤ 0

y − m ≡7 0
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Fig. 10: Fragment of the generated space for the formula in the example.

Let us focus on the configuration after reading the word x : [0][0]: φ1 ∨ φ2 ∨ φ3 .
First, we examine the relation between φ2 and φ3 . We notice that the two formu-
lae look similar with the only difference being in two pairs of atoms: x + 3m − y ≤ 1
and x + 3m − y ≤ 0 , and m ≤ 1 and m ≤ 0 respectively. Since 0 ≤ 1 there are struc-
tural subsumptions x + 3m − y ≤ 0 ⪯s x + 3m − y ≤ 1 and m ≤ 0 ⪯s m ≤ 1 , which
yields φ3 ⪯s φ2 , and we can therefore use disjunction pruning (Section 6) to simplify
φ1 ∨ φ2 ∨ φ3 to φ1 ∨ φ2 .

Next, we analyze φ1 = ∃y,m(ψ1) . First, we compute range(ψ1 ,m) = [0, 0]
(cf. Section 7.2) and, based on that, perform the substitution ψ1[m/0] , obtaining (after
simplifications) the formula ψ′1 = x − y ≤ 0 ∧ y ≤ −1 ∧ y ≡7 6 . Then, we analyze the
behaviour of y in ψ′1 by computing blw( x − y ≤ 0 ∧ y ≤ −1 , y) = −1. Based on this,
we know that x − y ≤ 0 ∧ y ≤ −1 is (−1)-best from below (cf. Section 7.1), so we can
use Lemma 5 to instantiate y in ψ′1 with −5 (the largest number less than −1 satisfying
the modulo constraint), obtaining the (quantifier-free) formula x ≤ −1 .

Finally, we focus on φ2 = ∃y,m(ψ2) again. First, we compute range(ψ2 ,m) =
[0, 1] and rewrite φ2 to ∃y(ψ2[m/0] ∨ ψ2[m/1]) . After antiprenexing, this will be changed
to ∃y(ψ2[m/0]) ∨ ∃y(ψ2[m/1]) . Using similar reasoning as in the previous paragraph,
we can analyze the two disjuncts in the formula to obtain the formula x ≤ −6 ∨ x ≤ −8 .
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With disjunction pruning, we obtain the final result of simplification of φ2 as the for-
mula x ≤ −6 . In the end, again using disjunction pruning (Section 6), the whole formula
φ1 ∨ φ2 ∨ φ3 can be simplified to x ≤ −1 .

9 Experimental Evaluation
We implemented the proposed procedure in a prototype tool called Amaya [48]. Amaya
is written in Python and contains a basic automata library with alphabets encoded us-
ing multi-terminal binary decision diagrams (MTBDDs), for which it uses the C-based
Sylvan library [27] (implementation details can be found in [42]). We ran all our exper-
iments on Debian GNU/Linux 12 system with Intel(R) Xeon(R) CPU E5-2620 v3 @
2.40 GHz and 32 GiB of RAM with the timeout of 60 s.

Tools. We selected the following tools for comparison: Z3 [63] (version 4.12.2), cvc5 [4]
(version 1.0.5), Princess [70] (version 2023-06-19), and Lash [80] (version 0.92). Out
of these, only Lash is an automata-based LIA solver; the other tools are general purpose
SMT solvers with the LIA theory.

Benchmarks. Our main benchmark comes from SMT-LIB [5], in particular, the cate-
gories LIA [72] and NIA (nonlinear integer arithmetic) [73]. We concentrate on formu-
lae in directories UltimateAutomizer and (20190429-)UltimateAutomizer
Svcomp2019 of these categories (the main difference between LIA and NIA is that LIA
formulae are not allowed to use the modulo operator) and remove formulae from NIA
that contain multiplication between variables, giving us 372 formulae. We denote this
benchmark as SMT-LIB. The formulae come from verification of real-world C programs
using Ultimate Automizer [46]. Other benchmarks in the categories, tptp and psyco,
were omitted. Namely, tptp is easy for all tools (every tool finished within 1.3 s on
each formula). The psyco benchmark resembles Boolean reasoning more than integer
reasoning. In particular, its formulae contain simple integer constraints (e.g., x = y+1 or
just x = y) and complex Boolean structure with ite operators and quantified Boolean
variables. Our prototype is not optimized for these features, but with a naive imple-
mentation of unwinding of ite and with encoding of Boolean variables in a special
automaton track, Amaya could solve 46 out of the 196 formulae in psyco.

Our second benchmark consists of the Frobenius coin problem [41] asking the fol-
lowing question: Given a pair of coins of certain coprime denominations a and b, what
is the largest number not obtainable as a sum of values of these coins? Or, as a formula,

φ(p)
def
⇔ (∀x, y : p , ax + by) ∧ (∀r(¬∃u, v : r = au + bv)⇒ r ≤ p). (21)

Each formula is specified by a pair of denominations (a, b), e.g, (3, 7) for which the
model is 11. Apart from theoretical interest, the Frobenius coin problem can be used,
e.g., for liveness checking of markings of conservative weighted circuits (a variant of
Petri nets) [22] or reasoning about automata with counters [78,50,52]. We created a fam-
ily of 55 formulae encoding the problem with various increasing coin denominations.
We denote this benchmark as Frobenius. The input format of the benchmarks is SMT-
LIB [5], which all tools can handle except Lash—for this, we implemented a simple
translator in Amaya for translating LIA problems in SMT-LIB into Lash’s input format
(the time of translation is not included in the runtime of Lash).
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Table 1: Comparison of solvers on formulae from the SMT-LIB and the Frobenius benchmark.
Times are given in seconds. The columns wins and losses show numbers of formulae where
Amaya performed better and worse (wins/losses caused by timeouts are in parentheses).

SMT-LIB (372) Frobenius (55)

solver timeouts mean median std. dev. wins losses timeouts mean median std. dev. wins losses

Amaya 17 1.12 0.26 3.58 5 11.79 3.54 16.03
Amayanoopt 73 2.32 0.27 8.16 232 (56) 113 (0) 5 11.54 4.06 14.65 27 (0) 21 (0)
Lash 114 3.04 0.01 9.94 178 (98) 178 (1) 9 15.72 5.74 20.32 37 (5) 14 (0)

Z3 31 0.11 0.01 1.35 31 (28) 338 (14) 51 1.66 0.49 2.69 48 (46) 2 (0)
cvc5 28 0.20 0.02 2.42 32 (28) 340 (17) 54 0.05 0.05 — 49 (49) 1 (0)
Princess 50 4.14 1.14 9.31 354 (40) 8 (7) 13 46.32 45.92 29.03 50 (8) 0 (0)

Results. We show the results in Table 1. For each benchmark we show the run time
statistics together with the number of timeouts and the number of wins/losses for each
competitor of Amaya (e.g., the value “354 (40)” in the row for Princess in SMT-LIB
means that Amaya was faster than Princess on 354 SMT-LIB formulae and in 40 cases
out of these, this was because Princess timed out). Note that statistics about times tend
to be biased in favour of tools that timed out more since the timeouts are not counted.

The first part of the table contains automata-based solvers and the second part con-
tains general SMT solvers. We also measure the effect of our optimizations against
Amayanoopt, a version of the tool that only performs the classical automata-based proce-
dure from Section 3 without our optimizations.

Discussion. In the comparison with other SMT solvers, from Table 1, automata-based
approaches are clearly superior to current SMT solvers on Frobenius (confirming the
conjecture made in [41]). cvc5 fails already for denominations (3, 5) (where the result
is 7) and Z3 follows suite soon; Princess can solve significantly more formulae than Z3
and cvc5, but is still clearly dominated by Amaya. Details can be found in [42].

On the SMT-LIB benchmark, Amaya can solve the most formulae among all tools. It
has 17 timeouts, followed by cvc5 with 28 timeouts (out of 372 formulae). On individual
examples, the comparison of Amaya against Z3 and cvc5 almost always falls under one
of the two cases: (i) the solver is one or two orders of magnitude faster than Amaya or
(ii) the solver times out. This probably corresponds to specific heuristics of Z3 and cvc5
taking effect or not, while Amaya has a more robust performance, but is still a prototype
and nowhere near as optimized. The performance of Princess is, however, usually much
worse. Amaya is often complementary to the SMT solvers and was able to solve 6
formulae that no SMT solver did.

Comparison with Amayanoopt (cf. Fig. 11) shows that the optimizations introduced
in this paper have a profound effect on the number of solved cases (which is a proper
superset of the cases solved without them). This is most visible on the SMT-LIB bench-
mark, where Amaya has 56 TOs less than Amayanoopt. On the Frobenius benchmark,
the results of Amayanoopt and Amaya are comparable. Our optimizations had limited
impact here since the formulae are built only from a small number of simple atoms
(cf. Eq. (21)). In some cases, Amaya takes even longer than Amayanoopt; this is because
the lazy construction explores parts of the state space that would be pruned by the clas-
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Fig. 11: Comparison of automata-based LIA solvers on formulae from SMT-
LIB: • UltimateAutomizer (153), • UltimateAutomizerSvcomp2019 (219) and
• Frobenius Coin Problem (55). Times are in seconds, axes are logarithmic. Dashed
lines represent timeouts (60 s).

sical construction (e.g., when doing an intersection with a minimized FA with an empty
language). This could be possibly solved by algebraic rules tailored for lightweight
unsatisfiability checking.

We also tried to evaluate the effect of individual optimizations by selectively turning
them off. It turns out that the most critical optimizations are the simple rewriting rules
(Section 5; when turned off, Amaya gave additional 33 timeouts) and quantifier instan-
tiation (Section 7; when turned off, Amaya gave additional 28 timeouts). On the other
hand, surprisingly, turning off disjunction pruning (Section 6) did not have a significant
effect on the result. By itself (without other optimizations), it can help the basic proce-
dure solve some hard formulae, but its effect is diluted when used with the rest of the
optimizations. Still, even though it comes with an additional cost, it still has a sufficient
effect to compensate for this overhead.

Comparing with the older automata-based solver Lash, Amaya solves more exam-
ples in both benchmarks; Lash has 123 TOs in total compared to 22 TOs of Amaya.
The lower median of Lash on SMT-LIB is partially caused by the facts that (i) Lash is
a compiled C code while Amaya uses a Python frontend, which has a non-negligible
overhead and (ii) Lash times out on harder formulae.

10 Related Work
The decidability of Presburger arithmetic was established already at the beginning of
the 20th century by Presburger [64] via quantifier elimination. Over time, more ef-
ficient quantifier-elimination-based decision procedures occurred, such as the one of
Cooper [23] or the one used within the Omega test [65] (which can be seen as a varia-
tion of Fourier-Motzkin variable elimination for linear real arithmetic [58, Section 5.4]).
The complexity bounds of 2-NEXP-hardness and 2-EXPSPACE membership for satis-
fiability checking were obtained by Fischer and Rabin [35] and Berman [6] respectively.
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Quantifier elimination is often considered impractical due to the blow up in the size of
the resulting formula. Counterexample-guided quantifier instantiation [66] is a proof-
theoretical approach to establish (one-shot) satisfiability of LIA formulae, which can be
seen as a lazy version of Cooper’s algorithm [23]. It is based on approximating a quan-
tified formula by a set of formulae with the approximation being refined in case it is
found too coarse. The approach focuses on formulae with one alternation, but is also
extended to any number of alternations (according to the authors, the procedure was
implemented in CVC4).

The first automata-based decision procedure for Presburger arithmetic can be ob-
tained from Büchi’s decision procedure for the second-order logic WS1S [17] by notic-
ing that addition is WS1S-definable. A similar construction for LIA is used by Wolper
and Boigelot in [79], except that they avoid performing explicit automata product con-
structions by using the notion of concurrent number automata, which are essentially
tuples of synchronized FAs.

Boudet and Comon [13] propose a more direct construction of automata for atomic
constraints of the form a1x1 + . . . + anxn ∼ c (for ∼ ∈ {=,≤}) over natural numbers; we
use a construction similar to theirs extended to integers (as used, e.g., in [29]). More-
over, they give a direct construction for a conjunction of equations, which can be seen
as a special case of our construction from Section 4. Wolper and Boigelot in [80] dis-
cuss optimizations of the procedure from [13] (they use the most-significant bit first
encoding though), in particular how to remove some states in the construction for au-
tomata for inequations based on subsumption obtained syntactically from the formula
representing the state (a restricted version of disjunction pruning, cf. Section 6). The
works [11,9,12,10] extend the techniques from [80] to solve the mixed linear integer
real arithmetic (LIRA) using weak Büchi automata, implemented in Lash [1].

WS1S [17] is a closely related logic with an automata-based procedure similar to
the one discussed in this paper (as mentioned above, Presburger arithmetic can be en-
coded into WS1S). The automata-based decision procedure for WS1S is, however, of
nonelementary complexity (which is also a lower bound for the logic), it was, how-
ever, postulated that the sizes of the obtained automata (when reduced or minimized)
describing Presburger-definable sets of integers are bounded by a tower of exponen-
tials of a fixed height. (3-EXPSPACE). This postulate was proven by Klaedtke [55]
(refined later by Durand-Gasselin and Habermehl [29] who show that all automata dur-
ing the construction do not exceed size 3-EXP). The automata-based decision proce-
dure for WS1S itself has been a subject of extensive study, making many pioneering
contributions in the area of automata engineering [39,47,31,56,57,75,33,32,45,34,44],
showcasing in the well-known tool Mona [47,31,56,57].
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Wu, Z.: Solving string constraints with regex-dependent functions through transducers with
priorities and variables. Proc. ACM Program. Lang. 6(POPL), 1–31 (2022). https://doi.
org/10.1145/3498707, https://doi.org/10.1145/3498707
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ing meets automata in solving linear integer arithmetic (technical report). CoRR
abs/2403.18995 (2024). https://doi.org/10.48550/arXiv.2403.18995, https://
doi.org/10.48550/arXiv.2403.18995

43. Habermehl, P., Havlena, V., Holı́k, L., Hečko, M., Lengál, O.: Artifact for the
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