
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

AutoQ: An Automata-based Quantum Circuit Verifier

Yu-Fang Chen1 B, Kai-Min Chung1 , Ondřej Lengál2 B,
Jyun-Ao Lin1 , and Wei-Lun Tsai1 B

yfc@iis.sinica.edu.tw, lengal@fit.vutbr.cz,
alan23273850@gmail.com

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
2 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Abstract. We present a specification language and a fully automated tool named
AutoQ for verifying quantum circuits symbolically. The tool implements the
automata-based algorithm from [14] and extends it with the capabilities for sym-
bolic reasoning. The extension allows to specify relational properties, i.e., rela-
tionships between states before and after executing a circuit. We present a number
of use cases where we used AutoQ to fully automatically verify crucial properties
of several quantum circuits, which have, to the best of our knowledge, so far been
proved only with human help.

1 Introduction
Recently, quantum computing has received much attention, driven by several techno-
logical breakthroughs [7] and increasing investments. Prototype quantum computers
are already available. The opportunities for the general public—particularly students,
researchers, and technology enthusiasts—to access quantum computing devices are
rapidly increasing, e.g., through cloud services such as Amazon Braket [1] or IBM
Quantum [2]. Due to the complexity and probabilistic nature of quantum computing, the
chance of errors in quantum programs is much higher than that of traditional programs,
and conventional means for correctness assurance, such as testing, are much less appli-
cable in the quantum world. Quantum programmers need better tools to help them write
correct programs. Therefore, researchers anticipate that formal verification will play a
crucial role in quantum software quality assurance and have, in recent years, invested
significant effort in this direction [21,41,42,11,5,45,46,43]. Nevertheless, practical tools
for automated quantum program/circuit verification are still missing.

This paper introduces AutoQ3, a fully automated tool for quantum circuit verifica-
tion based on the approach proposed in [14]. In particular, AutoQ checks the validity of
a Hoare-style specification {Pre} C {Post}, where C is a quantum circuit (a sequence
of quantum gates) in the OpenQASM format [17] and the precondition Pre and post-
condition Post represent sets of (pure) quantum states. The check is done by executing
the circuit with all quantum states satisfying Pre (using a symbolic representation) and
testing that all resulting quantum states are in the set denoted by Post.

AutoQ combines two main techniques to efficiently and effectively represent and
reason about (potentially infinite) sets of quantum states:

3 Available at https://github.com/alan23273850/AutoQ

https://doi.org/10.5281/zenodo.7966542
http://orcid.org/0000-0003-2872-0336
http://orcid.org/0000-0002-3356-369X
http://orcid.org/0000-0002-3038-5875
http://orcid.org/0000-0001-8560-2147
http://orcid.org/0009-0003-5832-0867
mailto:yfc@iis.sinica.edu.tw
mailto:lengal@fit.vutbr.cz
mailto:alan23273850@gmail.com
https://github.com/alan23273850/AutoQ

1. As in [14], we use tree automata (TAs), finite-state automata accepting languages of
trees, to efficiently represent sets of quantum states: Each quantum state overn qubits
can be seen as a binary decision tree over n variables such that, e.g., in a 3-qubit
circuit with qubits |x1x2x3⟩, if the computational basis state |010⟩ in a quantum state
has the probability amplitude 1

4 , then there will be a branch x1
0−→ x2

1−→ x3
0−→ 1

4
in the corresponding tree. The use of TA-based representation of a set of quantum
states has several advantages: (a) It is concise: e.g., in order to represent the set of
all 2n basis states of an n-qubit quantum circuit, we suffice with a TA with O(n)
states and transitions. (b) It allows to efficiently perform quantum gate operations
on the whole set of quantum states represented by a TA at once [14].

2. In this work, we further consider symbolic quantum states, represented by assigning
symbolic values to computational basis states (and having an additional formula
to relate these symbolic values). For instance, we can represent the set of all n-
qubit quantum states where the computational basis |0 . . . 0⟩ has a strictly larger
probability of measurement than all other basis states by a symbolic quantum state
assigning |0 . . . 0⟩ 7→ vh and |y1 . . . yn⟩ 7→ vℓ for all y1 . . . yn ̸= 0 . . . 0, together
with the formula |vh|2 > |vℓ|2 ∧ |vh|2 + (2n − 1)|vℓ|2 = 1, where vh and vℓ are
symbolic variables ranging over complex numbers

By combining these two techniques, i.e., using TAs with symbolic variables in leaves,
we can have a representation of all n-qubit quantum states where an arbitrary basis has
a strictly larger amplitude than other basis states using O(n) states and transitions.

Using such a symbolic encoding is essential to allow us to describe relational
specifications, e.g., it allows us to express properties like “the probability amplitude
of the basis state |000⟩ is increased after executing the circuit C” (for this, in the
postcondition, we use TAs accepting trees with predicates in leaves, a subclass of
symbolic tree automata of [36]). Such a property can then be verified by executing
the quantum circuit symbolically in the spirit of symbolic execution [27] (i.e., such
that the values of amplitudes are not complex numbers but, instead, symbolic terms) and
checking whether all trees in the language of the resulting TA satisfy the desired property
(using a modified antichain-based algorithm for testing TA language inclusion [10,4]).
Combining TAs and symbolic variables as the language for quantum predicates allows
full automation and can be used to express many crucial properties of quantum circuits,
as we will demonstrate later. AutoQ is the first tool implementing this approach.

Related work. Our work belongs to the line of Hoare-style verification of quantum
programs, which has been widely discussed in the past [44,35,22,40,29]. This family
of approaches follows D’Hondt and Panangaden’s suggestion of using various Hermi-
tian operators as quantum predicates, resulting in a very powerful yet complete proof
system [20]. However, specifying properties using Hermitian operators is often not intu-
itive and is inconvenient for automation due to their enormous matrix sizes. Therefore,
often these approaches are implemented on top of proof assistants such as Coq [9] and
Isabelle [37] and require significant manual work in proof search. The Qbricks [12]
approach alleviates the difficulty of the proof search by combining state-of-the-art the-
orem provers with decision procedures building on top of the Why3 platform [24]. The
approach, however, still requires a significant amount of human intervention.

2

Regarding other quantum program/circuit/protocol verification tools, circuit equiv-
alence checkers [5,15,26,39,11] are often quite efficient but less flexible in specifying
the desired property (only equivalence). They are particularly useful in compiler vali-
dation; notable tools include Qcec [11], and Feynman [5]. Quantum model checking
supports a rich specification language (flavors of temporal logic [23,30,38]) and is more
suitable for verifying high-level protocols due to the quite limited scalability [6]. One
notable tool in this category is QPMC [23]. Quantum abstract interpretation [43,32] is
particularly efficient in processing large-scale circuits, but it grossly over-approximates
the state space (it cannot verify basic properties of, e.g., Grover’s algorithm) and cannot
conclude anything when verification fails. In contrast, AutoQ can be conveniently used
for quantum program development and debugging since it automatically computes the
exact set of reachable states4. The mentioned tools are fully automated but have different
goals or address different parts of the software development cycle than AutoQ.

Contributions. AutoQ evolved from a simple prototype used for performance evaluation
in [14] into a robust tool. In addition, we added the following major extensions:

1. We combined the TA specification with symbolic variables, allowing users to specify
advanced relational properties of quantum circuits.

2. We developed a new entailment-checking algorithm for the symbolic TA specifica-
tion based on the antichain algorithm for automata language inclusion testing.

3. We introduced a high-level language to simplify writing TA specifications.

These improvements are pushing the capabilities of AutoQ, and also of practical quan-
tum circuit verification itself, much further.

Outline. In Section 2, we describe our approach to TA-based specification and ver-
ification of quantum circuits. In Section 3, we discuss the new entailment-checking
algorithm for the symbolic TA representation. We discuss the architecture of AutoQ
in Section 4 and demonstrate the use of the specification language and AutoQ for
automated verification of several case studies in Section 5.

2 Tree Automata-based Verification of Quantum Circuits
We will begin with minimal formal definitions of the TA-based specification and demon-
strate how to use them to verify quantum circuits in AutoQ with examples. We assume
a basic knowledge of quantum computation (see, e.g., the classical textbook [31]).

Let us fix a finite set of quantum variables X = {x1, . . . , xn} with a linear ordering
(we assume x1 < . . . < xn) and a disjoint non-empty leaf alphabet Σ. We will, in
particular, work with Σ = Σt ⊎ Σp where Σt is the alphabet of terms and Σp is the
alphabet of predicates in a suitable first-order theory (discussed later).

We use {0, 1}≤n to denote
⋃

0≤i≤n{0, 1}i. A (symbolic binary decision) tree over X
and Σ is a function τ : {0, 1}≤n → (X∪Σ) such that for all positions p ∈ {0, 1}i with
i < n, we have τ(p) = xi+1 and for all positions p ∈ {0, 1}n, we have τ(p) ∈ Σ.
An example of a tree τ can be found in Fig. 1b, where Σ = {vh, vℓ}, τ(ϵ) = x1,
τ(0) = τ(1) = x2, τ(00) = vh, and τ(p) = vℓ for p ∈ {0, 1}2 \ {00}.

4 A predecessor of the presented version of AutoQ has already caught a bug in Qcec, cf. [3].

3

s
x1−→ (s1, s0)

s0
x2−→ (s2, s2) s2

vℓ−→ ()

s1
x2−→ (s3, s2) s3

vh−→ ()

(a) The precondition TA P

x1

x2 x2

vh vℓ vℓ vℓ

0 1

0 1 0 1

(b) The tree accepted by P

x1

x2 x2

vh+3vℓ
2

vh−vℓ
2

vh−vℓ
2

vh−vℓ
2

0 1

0 1 0 1

(c) The tree accepted byR

s
x1−→ (s1, s0)

s0
x2−→ (s2, s2) s2

|□|<|vℓ|−−−−−→ ()

s1
x2−→ (s3, s2) s3

|□|>|vh|−−−−−→ ()

(d) The postcondition TAQ

x1

x2 x2

|□| > |vh| |□| < |vℓ| |□| < |vℓ| |□| < |vℓ|

0 1

0 1 0 1

(e) The tree accepted byQ

Fig. 1: Verification of a circuitC amplifying the amplitude of |00⟩ w.r.t. the specification
{P, φ} C {Q} with φ : |vh +3vℓ| > |2vh|. R is the TA obtained by executing P on C.

A (symbolic) tree automaton (TA) is a tuple A = (S,∆, F) where S is a finite set
of states, ∆ ⊆ (S × X × S × S) ∪ (S ×Σ) is a transition relation, and F ⊆ S is the
set of root (final) states. We denote transitions from ∆ as s xi−→ (s0, s1) and s a−→ ()
respectively. An example of a TA with the set of root states {s} can be found in Fig. 1a.

A run of A on τ is a function ρ : {0, 1}≤n → S s.t. for all positions p ∈ {0, 1}i with
i < n, it holds that ρ(p) τ(p)−−−→ (ρ(p.0), ρ(p.1)) ∈ ∆ and for all positions p ∈ {0, 1}n,
it holds that ρ(p) τ(p)−−−→ () ∈ ∆. The run ρ is accepting iff ρ(ϵ) ∈ F and the language
of A is L(A) = {τ | A has an accepting run on τ}. Observe that the tree in Fig. 1b is
in the language of the TA P in Fig. 1a with the run ρ such that ρ(ϵ) = s, ρ(0) = s1,
ρ(1) = s0, ρ(00) = s3, and ρ(p) = s2 for p ∈ {0, 1}2 \ {00}.

Now we are ready to demonstrate how to write specifications of quantum circuits
with TAs using a running example. We assume that C is a 2-qubit circuit that amplifies
the amplitude of the basis state |00⟩ (under some constraint φ over input states) and
reduces the amplitudes of other basis states. We first prepare the precondition of C,
which consists of a pair (P, φ), where P is a TA with the root state s, a set of terms Σt

as the leaf alphabet, and the set of transitions from Fig. 1a, andφ is a first-order constraint
over the variables used in Σt. In Σt, we use two variables over complex numbers, vℓ
and vh, to denote the corresponding amplitude (low and high). The constraint φ states
that |vh+3vℓ| > |2vh| (required by this circuitC, cf. Section 5.4). Recall that the TA P
from Fig. 1a accepts the tree from Fig. 1b, which in turn represents the quantum state

s = vh |00⟩+ vℓ |01⟩+ vℓ |10⟩+ vℓ |11⟩ . (1)

AutoQ will execute the gates inC to transform the TA P to another TA R capturing
the effect of executing C over all quantum states encoded in P . The algorithm for gate
operations is almost the same as the one in [14], except that now the update of leaf
symbols works symbolically (similarly to symbolic execution [27]: each leaf symbol
is a term over vh and vℓ and quantum gates change the terms by accumulating the
operations that would be performed on them, potentially simplifying them). In this
example, the TA R will accept only one tree representing the quantum state

s′ = (vh+3vℓ
2) |00⟩+ (vh−vℓ

2) |01⟩+ (vh−vℓ
2) |10⟩+ (vh−vℓ

2) |11⟩ , (2)

4

Observe that under the precondition φ = |vh + 3vℓ| > |2vh|, the probability of |00⟩
is indeed increased (|vh+3vℓ

2 |2 > |vh|2). The tree representation of s′ can be found in
Fig. 1c. The TA Q of the postcondition can be found in Fig. 1d. The leaf alphabet of Q
is the set of predicates Σp = {|□| > |vh|, |□| < |vℓ|} where □ denotes a free variable.
Observe that Q accepts the tree from Fig. 1e.

2.1 High-Level Specification Language
In AutoQ, we provide a simple specification language that can be automatically
translated to TAs. The language allows users to focus on the properties they want
to express without the need to specify details of the TA structure. Our language is
particularly suitable for describing sets of states with one high probability branch
and other branches with uniformly low or zero probability, a very common pattern
of quantum circuit’s correctness properties. For example, in the language, we can
use (|00⟩: vh, |∗⟩: vℓ), where “|∗⟩” denotes “other basis states,” to define the tree
language of the TA in Fig. 1a, which accepts a single tree representing the quan-
tum state vh |00⟩ + vℓ |01⟩ + vℓ |10⟩ + vℓ |11⟩ from Fig. 1b. Similarly, we can use
(|00⟩: |□| > |vh|, |∗⟩: |□| < |vℓ|) to represent the language of the TA in Fig. 1d. The set
of all 2-qubit basis states {|i⟩ | i ∈ {0, 1}2} is expressed as ∃i ∈ {0, 1}2 : (|i⟩: 1, |∗⟩: 0)
(we can see it as a predicate that is satisfied by the described quantum states). We also
allow the tensor product ⊗ operator, which multiplies the amplitude of the product basis
states. For example, (|00⟩: 1, |∗⟩: 0) ⊗ (|00⟩: vh, |∗⟩: vℓ) ⊗ (|00⟩: 1, |∗⟩: 0) represents
the (singleton) set of states compactly {vh |000000⟩+

∑
j∈{01,11,10} vℓ |00j00⟩}.

A more challenging example is to represent the set of states{
vh |ii000⟩+

∑
j∈{0,1}3∧j ̸=i

vℓ |ij000⟩
∣∣∣∣ i ∈ {0, 1}3

}
. (3)

Such a set can be described with the help of the ⊗ and ∃ operators as follows:

∃i ∈ {0, 1}3 : (|i⟩: 1, |∗⟩: 0)⊗ (|i⟩: vh, |∗⟩: vℓ)⊗ (|000⟩: 1, |∗⟩: 0). (4)

Below is the grammar of specification spec:

spec ::= state
∣∣ ∃i ∈ {0, 1}n : state

∣∣ spec, state
state ::= (|c1⟩: t, . . . , |ck⟩: t, |∗⟩: t)

∣∣ (|i⟩: t, |∗⟩: t) ∣∣ state⊗ state

t ∈ Σ, n ∈ N, and c1, . . . , ck ∈ {0, 1}n

A spec is ill-formed when a free variable i appears in state, if some basis is repeated in
the rule (|c1⟩: t, . . . , |ck⟩: t, |∗⟩: t), or if the previous rule contains two bases of different
lengths. If all basis states of the given length are specified in (|c1⟩: t, . . . , |ck⟩: t, |∗⟩: t),
the |∗⟩: t part is not required any more. The specification is then converted into a TA using
a straightforward algorithm; in the following we often confuse a TA and its specification.

2.2 Complex Number Representation
In a (pure) quantum state, the amplitude of a basis computational state is a complex
number, and the corresponding probability is the square of the absolute value of the

5

amplitude. For verification, we need an exact representation of complex numbers that
can be used in computers. In AutoQ, we use a subset of complex numbers that can be
expressed by the following algebraic encoding (cf. [46,34,14]):(1√

2

)
k(a+ bω + cω2 + dω3), (5)

where a, b, c, d ∈ Z, k ∈ N, and ω = e
iπ
4 = cos 45◦ + i sin 45◦ =

√
2
2 + i

√
2
2 ,

the unit vector that makes an angle of 45◦ with the positive real axis in the complex
plane. A complex number is then represented by a quadruple (a, b, c, d) of integers
and a normalization factor k. Although the considered set of complex numbers is only
a small subset of all complex numbers (it is countable, while the set of all complex
numbers is uncountable), the subset is sufficient to describe various standard quantum
gates. Currently, AutoQ supports the set of quantum gates X, H, Y, Z, S, T, Rx(π2),
Ry(π2), CNOT, CZ, Toffoli (cf. the list in [14]), which already includes a set of universal
quantum gates. From the Solovay-Kitaev theorem [18], gates performing rotations of
π
2n , used, e.g., in Shor’s algorithm [33] and quantum Fourier transform (QFT) [16], can
be approximated with an error rate ϵ by O(log3.97(1ϵ))-many H, CNOT, and T gates. The
algebraic representation is also sufficient to represent all reachable states in OpenQASM
circuits with the set of supported gates, where the initial basis state is |0 . . . 0⟩.

AutoQ operates on the introduced representation of complex numbers. More pre-
cisely, for a specification {P, φ}C {Q}, the leaf symbols of P are quadruples of integer
terms (a, b, c, d). We assume that all leaf symbols of P share a common normalization
factor k, so we do not store the value of k explicitly since it can be inferred from the fact
that the probability sum over all basis states is one. Instead, we remember a constant
natural number value kc, the difference of the k value between P and R, and use it to
normalize the amplitudes. Recall that R is the TA accepting all states after executing C
from some states accepted by P . The initial value of kc is zero, and each application of
H, Rx(π2), or Ry(π2) gates will increase it by one (cf. [14]). We normalize all quadruple
leaf symbols (a, b, c, d) of R by multiplying them with

(
1√
2

)
kc once R is computed.

Next, we show how to compose a specification of our running example from Fig. 1
using the algebraic representation. The specification can now be written as

P : (|00⟩: (vah, vbh, vch, vdh), |∗⟩: (vaℓ , vbℓ , vcℓ , vdℓ)
Q : (|00⟩: |(□1,□2,□3,□4)|2 > |(vah, vbh, vch, vdh)|2, |∗⟩: |(□1,□2,□3,□4)|2 < |(vaℓ , vbℓ , vcℓ , vdℓ)|2),

where |(a, b, c, d)|2 = |a+ bω + cω2 + dω3|2

=
∣∣a+ b(

√
2
2 +

√
2
2 i) + ci+ d(−

√
2
2 +

√
2
2 i)

∣∣2
= (a+ b

√
2
2 − d

√
2
2)2 + (b

√
2
2 − c+ d

√
2
2)2

2.3 Precise Semantics of the Specification

As mentioned above, for verifying {P, φ}C {Q}, we start with a TA P representing the
set of all quantum states satisfying the precondition and compute a TA R representing
the set of states reachable after executing the circuitC. Then, we test whetherR entailsQ
(w.r.t. φ), i.e., whether all reachable states satisfy the postcondition.

6

Algorithm 1: Checking R |=φ Q
Input: A TAR = (Sr,∆r, Fr), a TAQ = (Sq,∆q, Fq), a formula φ
Output: true ifR |=φ Q, false otherwise

1 Processed ← ∅;
2 Worklist ← Min{(sr, Uq) | sr

tr−→ () ∈ ∆r,

3 Uq = {uq ∈ Qq | uq
tr−→ () ∨ ∃uq

pq−→ () ∈ ∆q : φ⇒ pq[tr/□]}};
4 while Worklist ̸= ∅ do
5 (sr, Uq)←Worklist .pop();
6 if sr ∈ Fr ∧ Uq ∩ Fq = ∅ then return false ;
7 Processed ← Min(Processed ∪ {(sr, Uq)});
8 tmp ← ({(sr, Uq)} × Processed) ∪ (Processed × {(sr, Uq)});
9 foreach ((s1r, U

1
q), (s

2
r, U

2
q)) ∈ tmp, α ∈ X do

10 Hr ← {s′r ∈ Qr | s′r
α−→ (s1r, s

2
r) ∈ ∆r};

11 U ′
q ← {sq ∈ Qq | ∃s1q ∈ U1

q , ∃s2q ∈ U2
q : sq

α−→ (s1q, s
2
q) ∈ ∆q};

12 foreach s′r ∈ Hr s.t. (s′r, U ′
q) /∈ ⌈Processed ∪Worklist⌉ do

13 Worklist ← Min(Worklist ∪ {(s′r, U ′
q)});

14 return true;

Formally, we say that a tree τ1 is entailed by a tree τ2 w.r.t. a first-order formula φ,
denoted as τ1 |=φ τ2, if for all positions p ∈ {0, 1}n it holds that either (i) τ1(p) = τ2(p)
or (ii) τ1(p) = (t1, . . . , tk) ∈ Σt, τ2(p) = ψ ∈ Σp, and φ ⇒ ψ[t1/□1] . . . [tk/□k].
We lift the entailment to TAs: A1 |=φ A2 iff for all trees τ1 ∈ L(A1) there exists a tree
τ2 ∈ L(A2) s.t. τ1 |=φ τ2.5

3 Entailment Checking
We will now describe how we perform the entailment check R |=φ Q. Since we operate
with trees and tree automata over symbolic values, we cannot establish entailment by
running a classical TA language inclusion test based on complementing the automa-
ton Q first. Instead, our algorithm for testing the entailment R |=φ Q is based on
an on-the-fly TA inclusion checking algorithm [10,4], which avoids complementation.
The on-the-fly inclusion-checking algorithm can be seen as an optimization of the clas-
sical construction, which would establish L(R) ∩ L(Q)

?
= ∅ by first computing the

complement Q∁ of Q (using a bottom-up TA determinization), followed by computing
the intersection A∩ of Q∁ and R, and, finally, checking language emptiness of A∩.
In particular, the on-the-fly inclusion checking algorithm can be seen as doing all the
operations at once. Furthermore, the algorithms in [10,4] also make use of the so-called
antichains and TA simulation to prune the explored state space.

Our modification of the inclusion algorithm to test TA entailment, given in Algo-
rithm 1, mainly differs from [10,4] in the way initial sets of state pairs are computed on
Line 3. In particular, we match a state sr that can perform a leaf transition over tr in R
with the set Uq of all states in Q that can perform a leaf transition either over tr or over

5 We never have a predicate from Σp on the left-hand side of the entailment test, so we do not
need to test implication between predicates, which would be needed for a complete procedure.

7

a predicate pq such that φ ⇒ pq[tr/□] (we use pq[tr/□] for a tuple tr to denote the
substitution of the tuple’s components into the corresponding free variables of pq).

After that, the algorithms perform a simultaneous bottom-up traversal through R
(represented by states sr) and the determinized version of Q (represented by sets of
states Uq). For each such pair (sr, Uq), the algorithm first checks whether sr is a root
state and Uq does not contain any root state (cf. Line 6; this would mean that R accepts
some tree that is not accepted by Q). If this does not hold, then the algorithm tries to
find all already processed pairs that can make a transition with (sr, Uq) (cf. Line 8)
and continue from all such pairs. Each bottom-up successor (s′r, U

′
q) is then added

to Worklist in the case it has not been seen previously (cf. Line 13).
The algorithm uses the function Min (cf. Lines 3, 7, and 13) to minimize the sets

Worklist and Processed w.r.t. a subsumption relation, and the downward closure for
⌈Processed ∪Worklist⌉ on Line 12 to prune the explored state space. Due to lack of
space, we refer to the works [10,4] for more details about these optimizations.

4 Architecture

Preprocessor

AutoQ

Circuit Executor [?]

Entailment Checker (Algorithm 1)

Precondition:
P.aut or P.hsl
φ.smt

Circuit:
C.qasm

Postcondition:
Q.aut or Q.hsl

Z3 [19]
VATA [28]

R.aut

Verified/
Bug found

φ,Q

P, C

R

Fig. 2: The architecture of AutoQ. The input verifica-
tion problem is {P, φ} C {Q}.

We illustrate the architecture
of AutoQ in Fig. 2. The tool
is written in C++ and uses the
following external tools: the
TA library Vata [28] for ef-
ficient testing of TA inclusion
(when the postcondition uses
only the term alphabet Σt)
and the SMT solver Z3 for en-
tailment checking of leaf sym-
bols in Algorithm 1. We allow
any theory solver supported by Z3. In our experiment, we use QF_NIRA. AutoQ takes as
an input a quantum circuit in the OpenQASM format accompanied with the specification
written as tree automata (.aut files) or the high-level specification language (.hsl files)
introduced in Section 2.1.

Preprocessor reads the input files (.aut, .smt , .qasm, and .hsl files), translates
specifications in the .hsl files into tree automata, and stores them using AutoQ’s
internal data structures. Circuit Executor then reads the circuit C and the TA P and
generates another TA R obtained as the result after executing C from states in P , using
the approach of [14] with the symbolic extension discussed in Section 2. AutoQ can
also output the TA R for further analysis. Finally, Entailment Checker checks whether
R |=φ Q and reports “verified” when the entailment holds and “bug found” otherwise.

5 Use Cases
In this section, we describe several use cases of quantum algorithms and their important
properties that we were able to verify using AutoQ fully automatically. We focus on
the use of symbolic TA in this set of experiments and refer the readers to [14] for other
experimental results. A selection of the obtained results is given in Table 1. An artifact
that allows reproduction of the results is available as [13].

8

5.1 Hadamard Square is Identity
Our first use case shows that the single qubit gate C that runs two consecutive H gates
has the same effect as an identity matrix. We use the specification {P, φ} C {Q} with

P : (|0⟩: (va, vb, vc, vd), |1⟩: (v′a, v′b, v′c, v′d)), φ : true,

Q : (|0⟩: (□a,□b,□c,□d) = (va, vb, vc, vd), |1⟩: (□a,□b,□c,□d) = (v′a, v
′
b, v

′
c, v

′
d)).

In this simple example, the precondition P encodes an infinite number of quantum
states, which is not expressible using the technique in [14]. We also included a buggy
version by altering one of the H gates, and AutoQ managed to detect the injected bug.
The results can be found in rows H2 in Table 1.

5.2 Zero Imaginary Part of Amplitudes
One property, which is shared by multiple algorithms, e.g., Bernstein-Vazirani’s [8] and
Grover’s algorithm [25], is that the imaginary part of all amplitudes of the result is zero.

Let us focus on Bernstein-Vazirani’s algorithm [8], which finds a secret bit-string s
from an oracle using a single query. The algorithm begins with the quantum state |0n⟩,
where n is the length of s, and ends with the quantum state |s⟩. The amplitudes of all
basis states are either zero or one, the imaginary part of the amplitudes is, therefore,
always zero. For a three-qubit circuit C implementing the algorithm, we can therefore
use the specification: {P, φ} C {Q} with

P : (|000⟩: (1, 0, 0, 0), |∗⟩: (0, 0, 0, 0)), φ : true, Q : (|∗⟩: ψIm),

where ψIm ≡ (□b = −□d ∧□c = 0) (it will also be used later). In the definition of P ,
recall that we use the integer-quadruple representation of complex numbers (cf. Eq. (5)).
In the postcondition Q, the free variables □a,□b,□c,□d are to be substituted by the
corresponding terms in the obtained integer term quadruple (a, b, c, d) in the entailment
check. Note that (a, b, c, d) represents the complex number (a+b

√
2
2 −d

√
2
2)+ i(b

√
2
2 −

c + d
√
2
2) (obtained from Eq. (5)). Because a, b, c, d are all integers, for the imaginary

part to be zero, it must hold that c = 0 and b = −d.
When we runC fromP , we obtain a TAR encoding (|010⟩: (1, 0, 0, 0), |∗⟩: (0, 0, 0, 0))

and the entailment R |=φ Q holds. See the rows BV(n) in Table 1 for the results of
verifying the algorithm for circuits with secrets of size n. As in the previous example,
we also included a buggy version to demonstrate AutoQ’s bug-finding capability. We
can see that AutoQ could verify the algorithm for secrets of a quite large size.

5.3 Probability of Measuring the Correct Answer
Grover’s algorithm [25] assumes a Boolean function f over n bits with only one satisfy-
ing assignment s and an oracle that evaluates f for a given input. The algorithm finds s
with a high probability, say > 0.9, using only O(

√
2n) oracle queries. The algorithm

works iteratively, where each Grover iteration queries the oracle once and amplifies the
amplitude of |s⟩. First, let C be a 6-qubit circuit implementing Grover’s search with the
satisfying assignment s = 010, where the first three qubits of C are the work tape, and
the following three are the ancillae. We use the following specification:

P : (|000000⟩: 1⃗, |∗⟩: 0⃗) where 1⃗ = (1, 0, 0, 0) and 0⃗ = (0, 0, 0, 0), φ : true,

Q : (|010⟩: |□a|2 > 0.9 ∧ ψIm, |∗⟩: |□a|2 < 0.1 ∧ ψIm)⊗ (|000⟩: 1⃗, |∗⟩: 0⃗).

9

Table 1: Results of verifying our use cases with AutoQ. The maximum peak memory
consumption was 52 MiB for GroverAll(9). In most cases, the time of entailment was
negligible, with the exception of GroverAll circuits. For instance, GroverAll(8) takes
2m18s for entailment checking (70% of the total time) and GroverAll(9) takes 21m36s
for entailment checking (85% of the total time).

circuit qubits gates property result time circuit qubits gates property result time

H2 1 2 H2 = I OK 0.22s GroverSingle(3) 6 54 P(Correct) > 0.9 OK 0.34s
H2 (bug) 1 2 H2 = I Bug 0.17s GroverSingle(16) 32 28,159 P(Correct) > 0.9 OK 2m21s
BV(2) 2 6 ψIm OK 0.11s GroverSingle(18) 36 63,537 P(Correct) > 0.9 OK 6m37s
BV(2) (bug) 2 6 ψIm Bug 0.15s GroverSingle(20) 40 141,527 P(Correct) > 0.9 OK 19m57s
BV(100) 100 251 ψIm OK 10.90s GroverIter(2) 3 13 P(Correct) Increased OK 0.40s
BV(1,000) 1,000 2,500 ψIm OK 198m28s GroverIter(18) 36 157 P(Correct) Increased OK 1.95s
GroverAll(3) 9 64 P(Correct) > 0.9 OK 0.40s GroverIter(50) 100 445 P(Correct) Increased OK 47.76s
GroverAll(8) 24 939 P(Correct) > 0.9 OK 3m18s GroverIter(75) 150 671 P(Correct) Increased OK 3m29s
GroverAll(9) 27 1,492 P(Correct) > 0.9 OK 25m16s GroverIter(100) 200 895 P(Correct) Increased OK 10m53s

Note that the postconditionQ also checks that all amplitudes in the result of the algorithm
have a zero imaginary part (usingψIm). See rows GroverSingle(n) in Table 1 for the results
on circuits for n-bit functions f and a single oracle.

Next, we also show the correctness of Grover’s algorithm w.r.t. all possible 3-qubit
oracles. Let C ′ be a 9-qubit circuit implementing the algorithm, where the first three
qubits are used for oracle generation, and the following six are the work tape and ancillae,
similarly to GroverSingle. Our specification is now

P : ∃i ∈ {0, 1}3 : (|i000000⟩: 1⃗, |∗⟩: 0⃗), φ : true,

Q : ∃i ∈ {0, 1}3 : (|i⟩: 1⃗, |∗⟩: 0)⊗ (|i⟩: |□a|2 > 0.9 ∧ ψIm, |∗⟩: |□a|2 < 0.1 ∧ ψIm)

⊗ (|000⟩: 1⃗, |∗⟩: 0⃗).

Note that in the postcondition, we use i to relate the oracle value and the value on the
work tape. The results are in rows GroverAll(n) in Table 1.

5.4 Increasing Amplitude of the Correct Answer
Above, we show that we are able to automatically verify moderate-sized circuits for
Grover’s algorithm for the values of n up to 9 (for GroverAll) and 20 (for GroverSingle),
which is quite large, but have difficulties going beyond that. The size of the circuit is
O(

√
2n), which is quite large. Therefore, we also verify the algorithm w.r.t. a weaker

property, which is, that in one iteration, the amplitude of the correct answer will increase.
Consider a function f over 2 bits with 01 being the only satisfying assignment and

let C be a 4-qubit circuit encoding one Grover iteration, with two qubits as the work
tape and two ancilla qubits. From Grover’s correctness proof [25], we can derive that
when vℓ > 0 ∧ vh > 0 ∧ (2n − 1)vℓ > vh, a correct implementation will increase the
probability of |01⟩ and reduce others. We specify the verification problem as follows:

P : (|01⟩: (vh, 0, 0, 0), |∗⟩: (vℓ, 0, 0, 0))⊗ (|00⟩: 1⃗, |∗⟩: 0⃗),
φ : vℓ > 0 ∧ vh > 0 ∧ (22 − 1)vℓ > vh,

Q : (|01⟩: |□a| > |vh| ∧ ψIm, |∗⟩: |□a| < |vℓ| ∧ ψIm)⊗ (|00⟩: 1⃗, |∗⟩: 0⃗).

10

The results can be found in rows GroverIter(n) in Table 1. We can see that verification of
one Grover iteration w.r.t. the weaker (but still quite useful) property scales much better
than verification of full Grover’s circuits, scaling to sizes of n ≥ 100.

6 Conclusion

We presented a specification language for specifying useful properties of quantum
circuits and a tool AutoQ that can establish the correctness of the specification using an
approach combining the technique from [14] with symbolic execution. Using the tool,
we were able to fully automatically verify several important properties of a selection of
quantum circuits. To the best of our knowledge, for some of the properties, we are the
first ones that could verify them fully automatically.

Acknowledgements. We thank the reviewers for their useful remarks that helped us
improve the quality of the paper. This work was supported by the Czech Ministry of
Education, Youth and Sports project LL1908 of the ERC.CZ programme, the Czech
Science Foundation project GA23-07565S, the FIT BUT internal project FIT-S-23-
8151, and the NSTC QC project under Grant no. NSTC 111-2119-M-001-004- and
112-2119-M-001-006-.

References

1. Aws braket, https://aws.amazon.com/braket/
2. IBM quantum, https://quantum-computing.ibm.com
3. The Qcec repository: Issue #200 (ZX-Checker produces invalid result) (2022), https:
//github.com/cda-tum/qcec/issues/200

4. Abdulla, P.A., Chen, Y., Holı́k, L., Mayr, R., Vojnar, T.: When simulation meets antichains.
In: Esparza, J., Majumdar, R. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-
28, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6015, pp. 158–174. Springer
(2010).https://doi.org/10.1007/978-3-642-12002-2_14,https://doi.org/10.
1007/978-3-642-12002-2_14

5. Amy, M.: Towards large-scale functional verification of universal quantum circuits. In: Quan-
tum Physics and Logic (2018)

6. Anticoli, L., Piazza, C., Taglialegne, L., Zuliani, P.: Towards quantum programs verifica-
tion: From Quipper circuits to QPMC. In: Devitt, S.J., Lanese, I. (eds.) Reversible Com-
putation - 8th International Conference, RC 2016, Bologna, Italy, July 7-8, 2016, Pro-
ceedings. Lecture Notes in Computer Science, vol. 9720, pp. 213–219. Springer (2016).
https://doi.org/10.1007/978-3-319-40578-0_16, https://doi.org/10.1007/
978-3-319-40578-0_16

7. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo,
S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R.,
Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M.,
Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann,
M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K.,
Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark,

11

https://aws.amazon.com/braket/
https://quantum-computing.ibm.com
https://github.com/cda-tum/qcec/issues/200
https://github.com/cda-tum/qcec/issues/200
https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1007/978-3-319-40578-0_16
https://doi.org/10.1007/978-3-319-40578-0_16
https://doi.org/10.1007/978-3-319-40578-0_16
https://doi.org/10.1007/978-3-319-40578-0_16

M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X.,
Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y.,
Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C.,
Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A.,
Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum
supremacy using a programmable superconducting processor. Nature 574(7779), 505–510
(Oct 2019). https://doi.org/10.1038/s41586-019-1666-5, https://www.nature.
com/articles/s41586-019-1666-5, number: 7779 Publisher: Nature Publishing Group

8. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. In: Kosaraju, S.R., Johnson, D.S.,
Aggarwal, A. (eds.) Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, May 16-18, 1993, San Diego, CA, USA. pp. 11–20. ACM (1993). https:
//doi.org/10.1145/167088.167097, https://doi.org/10.1145/167088.167097

9. Bertot, Y., Castéran, P.: Interactive theorem proving and program development: Coq’Art: the
calculus of inductive constructions. Springer Science & Business Media (2013)

10. Bouajjani, A., Habermehl, P., Holı́k, L., Touili, T., Vojnar, T.: Antichain-based universality
and inclusion testing over nondeterministic finite tree automata. In: Ibarra, O.H., Ravikumar,
B. (eds.) Implementation and Applications of Automata, 13th International Conference,
CIAA 2008, San Francisco, California, USA, July 21-24, 2008. Proceedings. Lecture Notes
in Computer Science, vol. 5148, pp. 57–67. Springer (2008). https://doi.org/10.1007/
978-3-540-70844-5_7, https://doi.org/10.1007/978-3-540-70844-5_7

11. Burgholzer, L., Wille, R.: Advanced equivalence checking for quantum circuits. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 40(9), 1810–1824
(2020)

12. Chareton, C., Bardin, S., Bobot, F., Perrelle, V., Valiron, B.: An automated deductive verifica-
tion framework for circuit-building quantum programs. In: Yoshida, N. (ed.) ESOP. Lecture
Notes in Computer Science, vol. 12648, pp. 148–177. Springer International Publishing,
Cham (March 2021)

13. Chen, Y., Chung, K., Lengál, O., Lin, J., Tsai, W.: AutoQ: An automata-based quantum
circuit verifier (May 2023). https://doi.org/10.5281/zenodo.7966542, https://
doi.org/10.5281/zenodo.7966542

14. Chen, Y., Chung, K., Lengál, O., Lin, J., Tsai, W., Yen, D.: An automata-based framework
for verification and bug hunting in quantum circuits. In: 44th ACM SIGPLAN Conference
on Programming Language Design and Implementation—PLDI’23. ACM (2023)

15. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics 13(4), 043016 (apr 2011). https://doi.
org/10.1088/1367-2630/13/4/043016, https://doi.org/10.1088%2F1367-2630%
2F13%2F4%2F043016

16. Coppersmith, D.: An approximate Fourier transform useful in quantum factoring (2002).
https://doi.org/10.48550/arxiv.quant-ph/0201067, https://arxiv.org/abs/
quant-ph/0201067

17. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language.
arXiv preprint arXiv:1707.03429 (2017)

18. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. arXiv preprint quant-
ph/0505030 (2005)

19. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for the
Construction and Analysis of Systems: 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings 14. pp. 337–340. Springer (2008)

20. D’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Mathematical Structures in
Computer Science 16(3), 429–451 (2006)

12

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://doi.org/10.1145/167088.167097
https://doi.org/10.1145/167088.167097
https://doi.org/10.1145/167088.167097
https://doi.org/10.1145/167088.167097
https://doi.org/10.1145/167088.167097
https://doi.org/10.1007/978-3-540-70844-5_7
https://doi.org/10.1007/978-3-540-70844-5_7
https://doi.org/10.1007/978-3-540-70844-5_7
https://doi.org/10.1007/978-3-540-70844-5_7
https://doi.org/10.1007/978-3-540-70844-5_7
https://doi.org/10.5281/zenodo.7966542
https://doi.org/10.5281/zenodo.7966542
https://doi.org/10.5281/zenodo.7966542
https://doi.org/10.5281/zenodo.7966542
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016
https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016
https://doi.org/10.48550/arxiv.quant-ph/0201067
https://doi.org/10.48550/arxiv.quant-ph/0201067
https://arxiv.org/abs/quant-ph/0201067
https://arxiv.org/abs/quant-ph/0201067

21. Feng, Y., Hahn, E.M., Turrini, A., Zhang, L.: QPMC: A model checker for quantum programs
and protocols. In: Bjørner, N., de Boer, F. (eds.) International Symposium on Formal Methods.
pp. 265–272. Springer International Publishing (2015)

22. Feng, Y., Ying, M.: Quantum Hoare logic with classical variables. ACM Transactions on
Quantum Computing 2(4), 1–43 (2021)

23. Feng, Y., Yu, N., Ying, M.: Model checking quantum Markov chains. J. Comput. Syst. Sci.
79(7), 1181–1198 (2013). https://doi.org/10.1016/j.jcss.2013.04.002, https:
//doi.org/10.1016/j.jcss.2013.04.002

24. Filliâtre, J.C., Paskevich, A.: Why3—where programs meet provers. In: Programming Lan-
guages and Systems: 22nd European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome,
Italy, March 16-24, 2013. Proceedings 22. pp. 125–128. Springer (2013)

25. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller, G.L. (ed.)
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp. 212–219. ACM (1996). https:
//doi.org/10.1145/237814.237866, https://doi.org/10.1145/237814.237866

26. Hietala, K., Rand, R., Hung, S.H., Wu, X., Hicks, M.: Verified optimization in a quantum
intermediate representation. arXiv preprint arXiv:1904.06319 (2019)

27. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). https://doi.org/10.1145/360248.360252, https://doi.org/10.1145/
360248.360252

28. Lengál, O., Šimáček, J., Vojnar, T.: VATA: A library for efficient manipulation of non-
deterministic tree automata. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. pp. 79–94. Springer (2012)

29. Liu, J., Zhan, B., Wang, S., Ying, S., Liu, T., Li, Y., Ying, M., Zhan, N.: Formal verification
of quantum algorithms using quantum Hoare logic. In: International conference on computer
aided verification. pp. 187–207. Springer (2019)

30. Mateus, P., Ramos, J., Sernadas, A., Sernadas, C.: Temporal Logics for Reasoning about
Quantum Systems, p. 389–413. Cambridge University Press (2009). https://doi.org/
10.1017/CBO9781139193313.011

31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th An-
niversary Edition. Cambridge University Press, USA, 10th edn. (2011)

32. Perdrix, S.: Quantum entanglement analysis based on abstract interpretation. In: International
Static Analysis Symposium. pp. 270–282. Springer (2008)

33. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: 35th
Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA,
20-22 November 1994. pp. 124–134. IEEE Computer Society (1994). https://doi.org/
10.1109/SFCS.1994.365700, https://doi.org/10.1109/SFCS.1994.365700

34. Tsai, Y., Jiang, J.R., Jhang, C.: Bit-slicing the Hilbert space: Scaling up accurate
quantum circuit simulation. In: 58th ACM/IEEE Design Automation Conference, DAC
2021, San Francisco, CA, USA, December 5-9, 2021. pp. 439–444. IEEE (2021).
https://doi.org/10.1109/DAC18074.2021.9586191, https://doi.org/10.1109/
DAC18074.2021.9586191

35. Unruh, D.: Quantum Hoare logic with ghost variables. In: 2019 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). pp. 1–13. IEEE (2019)

36. Veanes, M., Bjørner, N.S.: Symbolic tree automata. Inf. Process. Lett. 115(3), 418–
424 (2015). https://doi.org/10.1016/j.ipl.2014.11.005, https://doi.org/10.
1016/j.ipl.2014.11.005

37. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Theorem Proving in
Higher Order Logics: 21st International Conference, TPHOLs 2008, Montreal, Canada,
August 18-21, 2008. Proceedings 21. pp. 33–38. Springer (2008)

13

https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1017/CBO9781139193313.011
https://doi.org/10.1017/CBO9781139193313.011
https://doi.org/10.1017/CBO9781139193313.011
https://doi.org/10.1017/CBO9781139193313.011
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/DAC18074.2021.9586191
https://doi.org/10.1109/DAC18074.2021.9586191
https://doi.org/10.1109/DAC18074.2021.9586191
https://doi.org/10.1109/DAC18074.2021.9586191
https://doi.org/10.1016/j.ipl.2014.11.005
https://doi.org/10.1016/j.ipl.2014.11.005
https://doi.org/10.1016/j.ipl.2014.11.005
https://doi.org/10.1016/j.ipl.2014.11.005

38. Xu, M., Fu, J., Mei, J., Deng, Y.: Model checking QCTL plus on quantum Markov chains.
Theor. Comput. Sci. 913, 43–72 (2022). https://doi.org/10.1016/j.tcs.2022.01.
044, https://doi.org/10.1016/j.tcs.2022.01.044

39. Xu, M., Li, Z., Padon, O., Lin, S., Pointing, J., Hirth, A., Ma, H., Palsberg, J., Aiken, A., Acar,
U.A., et al.: Quartz: superoptimization of quantum circuits. In: Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design and Implementation.
pp. 625–640 (2022)

40. Ying, M.: Floyd-Hoare logic for quantum programs. ACM Transactions on Programming
Languages and Systems (TOPLAS) 33(6), 1–49 (2012)

41. Ying, M.: Model checking for verification of quantum circuits. In: International Symposium
on Formal Methods. pp. 23–39. Springer (2021)

42. Ying, M., Feng, Y.: Model Checking Quantum Systems: Principles and Algorithms. Cam-
bridge University Press (2021)

43. Yu, N., Palsberg, J.: Quantum abstract interpretation. In: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation.
pp. 542–558 (2021)

44. Zhou, L., Yu, N., Ying, M.: An applied quantum Hoare logic. In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation. pp.
1149–1162 (2019)

45. Zulehner, A., Hillmich, S., Wille, R.: How to efficiently handle complex values? imple-
menting decision diagrams for quantum computing. In: Pan, D.Z. (ed.) Proceedings of the
International Conference on Computer-Aided Design, ICCAD 2019, Westminster, CO, USA,
November 4-7, 2019. pp. 1–7. ACM (2019). https://doi.org/10.1109/ICCAD45719.
2019.8942057, https://doi.org/10.1109/ICCAD45719.2019.8942057

46. Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 38(5), 848–859 (2019). https://doi.org/10.1109/
TCAD.2018.2834427, https://doi.org/10.1109/TCAD.2018.2834427

14

https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427

	AutoQ: An Automata-based Quantum Circuit Verifier

