
Fully Automated Shape Analysis
Based on Forest Automata

Lukáš Holı́k, Ondřej Lengál, Adam Rogalewicz, Jiřı́ Šimáček, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. Forest automata (FA) have recently been proposed as a tool for shape
analysis of complex heap structures. FA encode sets of tree decompositions of
heap graphs in the form of tuples of tree automata. In order to allow for represent-
ing complex heap graphs, the notion of FA allowed one to provide user-defined
FA (called boxes) that encode repetitive graph patterns of shape graphs to be used
as alphabet symbols of other, higher-level FA. In this paper, we propose a novel
technique of automatically learning the FA to be used as boxes that avoids the
need of providing them manually. Further, we propose a significant improvement
of the automata abstraction used in the analysis. The result is an efficient, fully-
automated analysis that can handle even as complex data structures as skip lists,
with the performance comparable to state-of-the-art fully-automated tools based
on separation logic, which, however, specialise in dealing with linked lists only.

1 Introduction

Dealing with programs that use complex dynamic linked data structures belongs to
the most challenging tasks in formal program analysis. The reason is a necessity of
coping with infinite sets of reachable heap configurations that have a form of complex
graphs. Representing and manipulating such sets in a sufficiently general, efficient, and
automated way is a notoriously difficult problem.

In [6], a notion of forest automata (FA) has been proposed for representing sets of
reachable configurations of programs with complex dynamic linked data structures. FA
have a form of tuples of tree automata (TA) that encode sets of heap graphs decom-
posed into tuples of tree components whose leaves may refer back to the roots of the
components. In order to allow for dealing with complex heap graphs, FA may be hierar-
chically nested by using them as alphabet symbols of other, higher-level FA. Alongside
the notion of FA, a shape analysis applying FA in the framework of abstract regular tree
model checking (ARTMC) [2] has been proposed in [6] and implemented in the Forester
tool. ARTMC accelerates the computation of sets of reachable program configurations
represented by FA by abstracting their component TA, which is done by collapsing
some of their states. The analysis was experimentally shown to be capable of proving
memory safety of quite rich classes of heap structures as well as to be quite efficient.
However, it relied on the user to provide the needed nested FA—called boxes—to be
used as alphabet symbols of the top-level FA.

In this paper, we propose a new shape analysis based on FA that avoids the need of
manually providing the appropriate boxes. For that purpose, we propose a technique of
automatically learning the FA to be used as boxes. The basic principle of the learning

next

prev

next

prev(a)

DLL DLL

next

prev(b)
Fig. 1: (a) A DLL, (b) a hierar-
chical encoding of a DLL.

stems from the reason for which boxes were originally
introduced into FA. In particular, FA must have a sepa-
rate component TA for each node (called a join) of the
represented graphs that has multiple incoming edges.
If the number of joins is unbounded (as, e.g., in doubly
linked lists, abbreviated as DLLs below), unboundedly
many component TA are needed in flat FA. However,
when some of the edges are hidden in a box (as, e.g.,
the prev and next links of DLLs in Fig. 1) and replaced
by a single box-labelled edge, a finite number of com-
ponent TA may suffice. Hence, the basic idea of our learning is to identify subgraphs of
the FA-represented graphs that contain at least one join, and when they are enclosed—
or, as we say later on, folded—into a box, the in-degree of the join decreases.

There are, of course, many ways to select the above mentioned subgraphs to be
used as boxes. To choose among them, we propose several criteria that we found useful
in a number of experiments. Most importantly, the boxes must be reusable in order to
allow eliminating as many joins as possible. The general strategy here is to choose boxes
that are simple and small since these are more likely to correspond to graph patterns that
appear repeatedly in typical data structures. For instance, in the already mentioned case
of DLLs, it is enough to use a box enclosing a single pair of next/prev links. On the
other hand, as also discussed below, too simple boxes are sometimes not useful either.

Further, we propose a way how box learning can be efficiently integrated into the
main analysis loop. In particular, we do not use the perhaps obvious approach of incre-
mentally building a database of boxes whose instances would be sought in the generated
FA. We found this approach inefficient due to the costly operation of finding instances
of different boxes in FA-represented graphs. Instead, we always try to identify which
subgraphs of the graphs represented by a given FA could be folded into a box, followed
by looking into the so-far built database of boxes whether such a box has already been
introduced or not. Moreover, this approach has the advantage that it allows one to use
simple language inclusion checks for approximate box folding, replacing a set of sub-
graphs that appear in the graphs represented by a given FA by a larger set, which some-
times greatly accelerates the computation. Finally, to further improve the efficiency, we
interleave the process of box learning with the automata abstraction into a single itera-
tive process. In addition, we propose an FA-specific improvement of the basic automata
abstraction which accelerates the abstraction of an FA using components of other FA.
Intuitively, it lets the abstraction synthesize an invariant faster by allowing it to combine
information coming from different branches of the symbolic computation.

We have prototyped the proposed techniques in Forester and evaluated it on a num-
ber of challenging case studies. The results show that the obtained approach is both
quite general as well as efficient. We were, e.g., able to fully-automatically analyse pro-
grams with 2-level and 3-level skip lists, which, according to the best of our knowledge,
no other fully-automated analyser can handle. On the other hand, our implementation
achieves performance comparable and sometimes even better than that of Predator [4]
(a winner of the heap manipulation division of SV-COMP’13) on list manipulating pro-
grams despite being able to handle much more general classes of heap graphs.

2

Related work. As discussed already above, we propose a new shape analysis based
upon the notion of forest automata introduced in [6]. The new analysis is extended
by a mechanism for automatically learning the needed nested FA, which is carefully
integrated into the main analysis loop in order to maximize its efficiency. Moreover,
we formalize the abstraction used in [6], which was not done in [6], and subsequently
significantly refine it in order to improve both its generality as well as efficiency.

From the point of view of efficiency and degree of automation, the main alterna-
tive to our approach is the fully-automated use of separation logic with inductive list
predicates as implemented in Space Invader [12] or SLAyer [1]. These approaches are,
however, much less general than our approach since they are restricted to programs over
certain classes of linked lists (and cannot handle even structures such as linked lists with
data pointers pointing either inside the list nodes or optionally outside of them, which
we can easily handle as discussed later on). A similar comparison applies to the Preda-
tor tool inspired by separation logic but using purely graph-based algorithms [4]. The
work [9] on overlaid data structures mentions an extension of Space Invader to trees,
but this extension is of a limited generality and requires some manual help.

In [5], an approach for synthesising inductive predicates in separation logic is pro-
posed. This approach is shown to handle even tree-like structures with additional point-
ers. One of these structures, namely, the so-called mcf trees implementing trees whose
nodes have an arbitrary number of successors linked in a DLL, is even more general
than what can in principle be described by hierarchically nested FA (to describe mcf
trees, recursively nested FA or FA based on hedge automata would be needed). On the
other hand, the approach of [5] seems quite dependent on exploiting the fact that the
encountered data structures are built in a “nice” way conforming to the structure of the
predicate to be learnt (meaning, e.g., that lists are built by adding elements at the end
only), which is close to providing an inductive definition of the data structure.

The work [10] proposes an approach which uses separation logic for generating
numerical abstractions of heap manipulating programs allowing for checking both their
safety as well as termination. The described experiments include even verification of
programs with 2-level skip lists. However, the work still expects the user to manually
provide an inductive definition of skip lists in advance. Likewise, the work [3] based on
the so-called separating shape graphs reports on verification of programs with 2-level
skip lists, but it also requires the user to come up with summary edges to be used for
summarizing skip list segments, hence basically with an inductive definition of skip
lists. Compared to [10,3], we did not have to provide any manual aid whatsoever to our
technique when dealing with 2-level as well as 3-level skip lists in our experiments.

A concept of inferring graph grammar rules for the heap abstraction proposed in [8]
has recently appeared in [11]. However, the proposed technique can so far only handle
much less general structures than in our case.

2 Forest Automata

Given a word α = a1 . . .an,n≥ 1, we write αi to denote its i-th symbol ai. Given a total
map f : A→ B, we use dom(f) to denote its domain A and img(f) to denote its image.

3

Graphs. A ranked alphabet is a finite set of symbols Σ associated with a mapping # :
Σ→ N0 that assigns ranks to symbols. A (directed, ordered, labelled) graph over Σ

is a total map g : V → Σ×V ∗ which assigns to every node v ∈ V (1) a label from Σ,
denoted as `g(v), and (2) a sequence of successors from V ∗, denoted as Sg(v), such
that #`g(v) = |Sg(v)|. We drop the subscript g if no confusion may arise. Nodes v with
S(v) = ε are called leaves. For any v ∈V such that g(v) = (a,v1 · · ·vn), we call the pair
v 7→ (a,v1 · · ·vn) an edge of g. The in-degree of a node in V is the overall number of its
occurrences in g(v) across all v ∈ V . The nodes of a graph g with an in-degree larger
than one are called joins of g.

A path from v to v′ in g is a sequence p = v0, i1,v1, . . . , in,vn where v0 = v, vn = v′,
and for each j : 1 ≤ j ≤ n, v j is the i j-th successor of v j−1. The length of p is defined
as length(p) = n. The cost of p is the sequence i1, . . . , in. We say that p is cheaper than
another path p′ iff the cost of p is lexicographically smaller than that of p′. A node u is
reachable from a node v iff there is a path from v to u or u = v. A graph g is accessible
from a node v iff all its nodes are reachable from v. The node v is then called the root
of g. A tree is a graph t which is either empty, or it has exactly one root and each of its
nodes is the i-th successor of at most one node v for some i ∈ N.

Forests. Let Σ∩N = /0. A Σ-labelled forest is a sequence of trees t1 · · · tn over (Σ∪
{1, . . . ,n}) where ∀1≤ i≤ n : #i= 0. Leaves labelled by i∈N are called root references.

The forest t1 · · · tn represents the graph ⊗t1 · · · tn obtained by uniting the trees of
t1 · · · tn, assuming w.l.o.g. that their sets of nodes are disjoint, and interconnecting their
roots with the corresponding root references. Formally, ⊗t1 · · · tn contains an edge v 7→
(a,v1 · · ·vm) iff there is an edge v 7→ (a,v′1 · · ·v′m) of some tree ti,1 ≤ i ≤ n, s.t. for all
1≤ j ≤ m, v j = root(tk) if v′j is a root reference with `(v′j) = k, and v j = v′j otherwise.

Tree automata. A (finite, non-deterministic, top-down) tree automaton (TA) is a quadru-
ple A = (Q,Σ,∆,R) where Q is a finite set of states, R ⊆ Q is a set of root states, Σ is
a ranked alphabet, and ∆ is a set of transition rules. Each transition rule is a triple of
the form (q,a,q1 . . .qn) where n≥ 0, q,q1, . . . ,qn ∈Q, a ∈ Σ, and #a = n. In the special
case where n = 0, we speak about the so-called leaf rules.

A run of A over a tree t over Σ is a mapping ρ : dom(t)→ Q s.t. for each node
v ∈ dom(t) where q = ρ(v), if qi = ρ(S(v)i) for 1 ≤ i ≤ |S(v)|, then ∆ has a rule q→
`(v)(q1 . . .q|S(v)|). We write t =⇒ρ q to denote that ρ is a run of A over t s.t. ρ(root(t)) =
q. We use t =⇒ q to denote that t =⇒ρ q for some run ρ. The language of a state q is
defined by L(q) = {t | t =⇒ q}, and the language of A is defined by L(A) =

⋃
q∈R L(q).

Graphs and forests with ports. We will further work with graphs with designated input
and output points. An io-graph is a pair (g,φ), abbreviated as gφ, where g is a graph
and φ ∈ dom(g)+ a sequence of ports in which φ1 is the input port and φ2 · · ·φ|φ| is
a sequence of output ports such that the occurrence of ports in φ is unique. Ports and
joins of g are called cut-points of gφ. We use cps(gφ) to denote all cut-points of gφ. We
say that gφ is accessible if it is accessible from the input port φ1.

An io-forest is a pair f = (t1 · · · tn,π) s.t. n≥ 1 and π ∈ {1, . . . ,n}+ is a sequence of
port indices, π1 is the input index, and π2 . . .π|π| is a sequence of output indices, with
no repetitions of indices in π. An io-forest encodes the io-graph ⊗ f where the ports of
⊗t1 · · · tn are roots of the trees defined by π, i.e., ⊗ f = (⊗t1 · · · tn,root(tπ1) · · ·root(tπn)).

4

Forest automata. A forest automaton (FA) over Σ is a pair F = (A1 · · ·An,π) where
n≥ 1, A1 · · ·An is a sequence of tree automata over Σ∪{1, . . . ,n}, and π ∈ {1, . . . ,n}+
is a sequence of port indices as defined for io-forests. The forest language of F is the
set of io-forests L f (F) = L(A1)×·· ·×L(An)×{π}, and the graph language of F is the
set of io-graphs L(F) = {⊗ f | f ∈ L f (F)}.
Structured labels. We will further work with alphabets where symbols, called structured
labels, have an inner structure. Let Γ be a ranked alphabet of sub-labels, ordered by a to-
tal ordering @Γ. We will work with graphs over the alphabet 2Γ where for every symbol
A⊆ Γ, #A=∑a∈A #a. Let e= v 7→ ({a1, . . . ,am},v1 · · ·vn) be an edge of a graph g where
n=∑1≤i≤m #ai and a1 @Γ a2 @Γ · · ·@Γ am. The triple e〈i〉= v→ (ai,vk · · ·vl), 1≤ i≤m,
from the sequence e〈1〉 = v→ (a1,v1 · · ·v#a1), . . . ,e〈m〉 = v→ (am,vn−#am+1 · · ·vn) is
called the i-th sub-edge of e (or the i-th sub-edge of v in g). We use SE(g) to denote
the set of all sub-edges of g. We say that a node v of a graph is isolated if it does not
appear within any sub-edge, neither as an origin (i.e., `(v) = /0) nor as a target. A graph
g without isolated nodes is unambiguously determined by SE(g) and vice versa (due to
the total ordering @Γ and since g has no isolated nodes). We further restrict ourselves
to graphs with structured labels and without isolated nodes.

A counterpart of the notion of sub-edges in the context of rules of TA is the notion of
rule-terms, defined as follows: Given a rule δ = (q,{a1, . . . ,am},q1 · · ·qn) of a TA over
structured labels of 2Γ, rule-terms of δ are the terms δ〈1〉= a1(q1 · · ·q#a1), . . . ,δ〈m〉=
am(qn−#am+1 · · ·qn) where δ〈i〉,1≤ i≤ m, is called the i-th rule-term of δ.

Forest automata of a higher level. We let Γ1 be the set of all forest automata over 2Γ and
call its elements forest automata over Γ of level 1. For i > 1, we define Γi as the set of
all forest automata over ranked alphabets 2Γ∪∆ where ∆ ⊆ Γi−1 is any nonempty finite
set of FA of level i− 1. We denote elements of Γi as forest automata over Γ of level
i. The rank #F of an FA F in these alphabets is the number of its output port indices.
When used in an FA F over 2Γ∪∆, the forest automata from ∆ are called boxes of F . We
write Γ∗ to denote ∪i≥0Γi and assume that Γ∗ is ordered by some total ordering @Γ∗ .

An FA F of a higher level over Γ accepts graphs where forest automata of lower lev-
els appear as sub-labels. To define the semantics of F as a set of graphs over Γ, we need
the following operation of sub-edge replacement where a sub-edge of a graph is substi-
tuted by another graph. Intuitively, the sub-edge is removed, and its origin and targets
are identified with the input and output ports of the substituted graph, respectively.

Formally, let g be a graph with an edge e ∈ g and its i-th sub-edge e〈i〉 = v1 →
(a,v2 · · ·vn),1 ≤ i ≤ |Sg(v1)|. Let g′

φ
be an io-graph with |φ| = n. Assume w.l.o.g. that

dom(g)∩dom(g′) = /0. The sub-edge e〈i〉 can be replaced by g′ provided that ∀1≤ j ≤
n : `g(v j)∩ `g′(φ j) = /0, which means that the node v j ∈ dom(g) and the corresponding
port φ j ∈ dom(g′) do not have successors reachable over the same symbol. If the re-
placement can be done, the result, denoted g[g′

φ
/e〈i〉], is the graph gn in the sequence

g0, . . . ,gn of graphs defined as follows: SE(g0) = SE(g)∪SE(g′)\{e〈i〉}, and for each
j : 1 ≤ j ≤ n, the graph g j arises from g j−1 by (1) deriving a graph h by replacing the
origin of the sub-edges of the j-th port φ j of g′ by v j, (2) redirecting edges leading to
φ j to v j, i.e., replacing all occurrences of φ j in img(h) by v j, and (3) removing φ j.

If the symbol a above is an FA and g′
φ
∈ L(a), we say that h = g[g′

φ
/e〈i〉] is an

unfolding of g, written g≺ h. Conversely, we say that g arises from h by folding g′
φ

into

5

e〈i〉. Let≺∗ be the reflexive transitive closure of≺. The Γ-semantics of g is then the set
of graphs g′ over Γ s.t. g≺∗ g′, denoted JgKΓ, or just JgK if no confusion may arise. For
an FA F of a higher level over Γ, we let JFK =

⋃
gφ∈L(F)(JgK×{φ}).

Canonicity. We call an io-forest f = (t1 · · · tn,π) minimal iff the roots of the trees t1 · · · tn
are the cut-points of ⊗ f . A minimal forest representation of a graph is unique up to
reordering of t1 · · · tn. Let the canonical ordering of cut-points of ⊗ f be defined by the
cost of the cheapest paths leading from the input port to them. We say that f is canon-
ical iff it is minimal, ⊗ f is accessible, and the trees within t1 · · · tn are ordered by the
canonical ordering of their roots (which are cut-points of⊗ f). A canonical forest is thus
a unique representation of an accessible io-graph. We say that an FA respects canon-
icity iff all forests from its forest language are canonical. Respecting canonicity makes
it possible to efficiently test FA language inclusion by testing TA language inclusion
of the respective components of two FA. This method is precise for FA of level 1 and
sound (not always complete) for FA of a higher level [6].

In practice, we keep automata in the so called state uniform form, which simplifies
maintaining of the canonicity respecting form [6] (and it is also useful when abstracting
and “folding”, as discussed in the following). It is defined as follows. Given a node v of
a tree t in an io-forest, we define its span as the pair (α,V) where α∈N∗ is the sequence
of labels of root references reachable from the root of t ordered according to the prices
of the cheapest paths to them, and V ⊆ N is the set of labels of references which occur
more than once in t. The state uniform form then requires that all nodes of forests from
L(F) that are labelled by the same state q in some accepting run of F have the same
span, which we denote by span(q).

3 FA-based Shape Analysis

We now provide a high-level overview of the main loop of our shape analysis. The
analysis automatically discovers memory safety errors (such as invalid dereferences
of null or undefined pointers, double frees, or memory leaks) and provides an FA-
represented over-approximation of the sets of heap configurations reachable at each
program line. We consider sequential non-recursive C programs manipulating the heap.
Each heap cell may have several pointer selectors and data selectors from some finite
data domain (below, PSel denotes the set of pointer selectors, DSel denotes the set of
data selectors, and D denotes the data domain).

Heap representation. A single heap configuration is encoded as an io-graph gsf over the
ranked alphabet of structured labels 2Γ with sub-labels from the ranked alphabet Γ =
PSel∪(DSel×D) with the ranking function that assigns each pointer selector 1 and each
data selector 0. In this graph, an allocated memory cell is represented by a node v, and
its internal structure of selectors is given by a label `g(v) ∈ 2Γ. Values of data selectors
are stored directly in the structured label of a node as sub-labels from DSel×D, so,
e.g., a singly linked list cell with the data value 42 and the successor node xnext may
be represented by a node x such that `g(x) = {next(xnext),(data,42)(ε))}. Selectors
with undefined values are represented such that the corresponding sub-labels are not in
`g(x). The null value is modelled as the special node null such that `g(null) = /0. The

6

input port sf represents a special node that contains the stack frame of the analysed
function, i.e. a structure where selectors correspond to variables of the function.

In order to represent (infinite) sets of heap configurations, we use state uniform FA
of a higher level to represent sets of canonical io-forests representing the heap configu-
rations. The FA used as boxes are learnt during the analysis using the learning algorithm
presented in Sec. 4.

Symbolic Execution. The verification procedure performs standard abstract interpreta-
tion with the abstract domain consisting of sets of state uniform FA (a single FA does
not suffice as FA are not closed under union) representing sets of heap configurations
at particular program locations. The computation starts from the initial heap configura-
tion given by an FA for the io-graph gsf where g comprises two nodes: null and sf

where `g(sf) = /0. The computation then executes abstract transformers corresponding
to program statements until the sets of FA held at program locations stabilise. We note
that abstract transformers corresponding to pointer manipulating statements are exact.
Executing the abstract transformer τop over a set of FA S is performed separately for
every F ∈ S . Some of boxes are first unfolded to uncover the accessed part of the heaps,
then the update is performed. The detailed description of these steps can be found in [7].

At junctions of program paths, the analysis computes unions of sets of FA. At loop
points, the union is followed by widening. The widening is performed by applying box
folding and abstraction repeatedly in a loop on each FA from S until the result stabilises.
An elaboration of these two operations, described in detail in Sec. 4 and 5 respectively,
belongs to the main contribution of the presented paper.

4 Learning of Boxes

Sets of graphs with an unbounded number of joins can only be described by FA with the
help of boxes. In particular, boxes allow one to replace (multiple) incoming sub-edges
of a join by a single sub-edge, and hence lower the in-degree of the join. Decreasing the
in-degree to 1 turns the join into an ordinary node. When a box is then used in a cycle
of an FA, it effectively generates an unbounded number of joins.

The boxes are introduced by the operation of folding of an FA F which transforms
F into an FA F ′ and a box B used in F ′ such that JFK = JF ′K. However, the graphs
in L(F ′) may contain less joins since some of them are hidden in the box B, which
encodes a set of subgraphs containing a join and appearing repeatedly in the graphs of
L(F). Before we explain folding, we give a characterisation of subgraphs of graphs of
L(F) which we want to fold into a box B. Our choice of the subgraphs to be folded
is a compromise between two high-level requirements. On the one hand, the folded
subgraphs should contain incoming edges of joins and be as simple as possible in order
to be reusable. On the other hand, the subgraphs should not be too small in order not
to have to be subsequently folded within other boxes (in the worst case, leading to
generation of unboundedly nested boxes). Ideally, the hierarchical structuring of boxes
should respect the natural hierarchical structuring of the data structures being handled
since if this is not the case, unboundedly many boxes may again be needed.

7

4.1 Knots of Graphs

A graph h is a subgraph of a graph g iff SE(h)⊆ SE(g). The border of h in g is the subset
of the set dom(h) of nodes of h that are incident with sub-edges in SE(g)\SE(h). A trace
from a node u to a node v in a graph g is a set of sub-edges t = {e0, . . . ,en} ⊆ SE(g)
such that n ≥ 1, e0 is an outgoing sub-edge of u, en is an incoming sub-edge of v, the
origin of ei is one of the targets of ei−1 for all 1≤ i≤ n, and no two sub-edges have the
same origin. We call the origins of e1, . . . ,en the inner nodes of the trace. A trace from
u to v is straight iff none of its inner nodes is a cut-point. A cycle is a trace from a node
v to v. A confluence of gφ is either a cycle of gφ or it is the union of two disjoint traces
starting at a node u, called the base, and ending in the node v, called the tip (for a cycle,
the base and the tip coincide).

Given an io-graph gφ, the signature of a sub-graph h of g is the minimum subset
sig(h) of cps(gφ) that (1) contains cps(gφ)∩ dom(h) and (2) all nodes of h, except

h

ux

v

y
Fig. 2: Closure.

the nodes of sig(h) themselves, are reachable by straight traces
from sig(h). Intuitively, sig(h) contains all cut-points of h plus
the closest cut-points to h which lie outside of h but which are
needed so that all nodes of h are reachable from the signature.
Consider the example of the graph gu in Fig. 2 in which cut-
points are represented by •. The signature of gu is the set {u,v}.
The signature of the highlighted subgraph h is also equal to
{u,v}. Given a set U ⊆ cps(gφ), a confluence of U is a confluence of gφ with the signa-
ture within U . Intuitively, the confluence of a set of cut-points U is a confluence whose
cut-points belong to U plus in case the base is not a cut-point, then the closest cut-point
from which the base is reachable is also from U . Finally, the closure of U is the smallest
subgraph h of gφ that (1) contains all confluences of U and (2) for every inner node v of
a straight trace of h, it contains all straight traces from v to leaves of g. The closure of
the signature {u,v} of the graph gu in Fig. 2 is the highlighted subgraph h. Intuitively,
Point 1 includes into the closure all nodes and sub-edges that appear on straight traces
between nodes of U apart from those that do not lie on any confluence (such as node u
in Fig. 2). Note that nodes x and y in Fig. 2, which are leaves of gu, are not in the closure
as they are not reachable from an inner node of any straight trace of h. The closure of
a subgraph h of gφ is the closure of its signature, and h is closed iff it equals its closure.

Knots. For the rest of Sec. 4.1, let us fix an io-graph gφ ∈ L(F). We now introduce the
notion of a knot which summarises the desired properties of a subgraph k of g that is to
be folded into a box. A knot k of gφ is a subgraph of g such that: (1) k is a confluence,
(2) k is the union of two knots with intersecting sets of sub-edges, or (3) k is the closure
of a knot. A decomposition of a knot k is a set of knots such that the union of their
sub-edges equals SE(k). The complexity of a decomposition of k is the maximum of
sizes of signatures of its elements. We define the complexity of a knot as the minimum
of the complexities of its decompositions. A knot k of complexity n is an optimal knot
of complexity n if it is maximal among knots of complexity n and if it has a root. The
root must be reachable from the input port of gφ by a trace that does not intersect with
sub-edges of the optimal knot. Notice that the requirement of maximality implies that
optimal knots are closed.

8

The following lemma, proven in [7], implies that optimal knots are uniquely identi-
fied by their signatures, which is crucial for the folding algorithm presented later.

Lemma 1. The signature of an optimal knot of gφ equals the signature of its closure.

Next, we explain what is the motivation behind the notion of an optimal knot:
Confluences. As mentioned above, in order to allow one to eliminate a join, a knot

must contain some join v together with at least one incoming sub-edge in case the knot
is based on a loop and at least two sub-edges otherwise. Since gφ is accessible (meaning
that there do not exist any traces that cannot be extended to start from the same node),
the edge must belong to some confluence c of gφ. If the folding operation does not fold
the entire c, then a new join is created on the border of the introduced box: one of its
incoming sub-edges is labelled by the box that replaces the folded knot, another one is
the last edge of one of the traces of c. Confluences are therefore the smallest subgraphs
that can be folded in a meaningful way.

Fig. 3: A list with
head pointers.

Uniting knots. If two different confluences c and c′ share an
edge, then after folding c, the resulting edge shares with c′ two
nodes (at least one being a target node), and thus c′ contains a join
of gφ. To eliminate this join too, both confluences must be folded
together. A similar reasoning may be repeated with knots in gen-
eral. Usefulness of this rule may be illustrated by an example of the set of lists with
head pointers. Without uniting, every list would generate a hierarchy of knots of the
same depth as the length of the list, as illustrated in Fig. 3. This is clearly impractical
since the entire set could not be represented using finitely many boxes. Rule 2 unites
all knots into one that contains the entire list, and the set of all such knots can then be
represented by a single FA (containing a loop accepting the inner nodes of the lists).

Complexity of knots. The notion of complexity is introduced to limit the effect of
Rule 2 of the definition of a knot, which unites knots that share a sub-edge, and to hope-
fully make it follow the natural hierarchical structuring of data structures. Consider, for
instance, the case of singly-linked lists (SLLs) of cyclic doubly-linked lists (DLLs). In
this case, it is natural to first fold the particular segments of the DLLs (denoted as DLSs
below), i.e., to introduce a box for a single pair of next and prev pointers. This way, one
effectively obtains SLLs of cyclic SLLs. Subsequently, one can fold the cyclic SLLs
into a higher-level box. However, uniting all knots with a common sub-edge would cre-
ate knots that contain entire cyclic DLLs (requiring unboundedly many joins inside the
box). The reason is that in addition to the confluences corresponding to DLSs, there
are confluences which traverse the entire cyclic DLLs and that share sub-edges with all
DLSs (this is in particular the case of the two circular sequences consisting solely of
next and prev pointers respectively). To avoid the undesirable folding, we exploit the
notion of complexity and fold graphs in successive rounds. In each round we fold all
optimal knots with the smallest complexity (as described in Sec. 4.2), which should
correspond to the currently most nested, not yet folded, sub-structures. In the previous
example, the algorithm starts by folding DLSs of complexity 2, because the complexity
of the confluences in cyclic DLLs is given by the number of the DLSs they traverse.

Closure of knots. The closure is introduced for practical reasons. It allows one to
identify optimal knots by their signatures, which is then used to simplify automata
constructions that implement folding on the level of FA (cf. Sec. 4.2).

9

Root of an optimal knot. The requirement for an optimal knot k to have a root is to
guarantee that if an io-graph hψ containing a box B representing k is accessible, then the
io-graph hψ[k/B] emerging by substituting k for a sub-edge labelled with B is accessible,
and vice versa. It is also a necessary condition for the existence of a canonical forest
representation of the knot itself (since one needs to order the cut-points w.r.t. the prices
of the paths leading to them from the input port of the knot).

4.2 Folding in the Abstraction Loop

1 Unfold solitaire boxes
2 repeat
3 Normalise
4 Abstract
5 Fold
6 until fixpoint
Alg. 1: Abstraction Loop

In this section, we describe the operation of folding to-
gether with the main abstraction loop of which folding
is an integral part. The pseudo-code of the main abstrac-
tion loop is shown in Alg. 1. The algorithm modifies a
set of FA until it reaches a fixpoint. Folding on line 5 is
a sub-procedure of the algorithm which looks for sub-
structures of FA that accept optimal knots, and replaces
these substructures by boxes that represent the corre-
sponding optimal knots. The operation of folding is itself composed of four consecutive
steps: Identifying indices, Splitting, Constructing boxes, and Applying boxes. For space
reasons, we give only an overview of the steps of the main abstraction loop and folding.
Details may be found in [7].

Fig. 4: DLL.

Unfolding of solitaire boxes. Folding is in practice applied on FA
that accept partially folded graphs (only some of the optimal knots
are folded). This may lead the algorithm to hierarchically fold data
structures that are not hierarchical, causing the symbolic execution not to terminate. For
example, consider a program that creates a DLL of an arbitrary length. Whenever a new
DLS is attached, the folding algorithm would enclose it into a box together with the tail
which was folded previously. This would lead to creation of a hierarchical structure of
an unbounded depth (see Fig. 4), which would cause the symbolic execution to never
reach a fixpoint. Intuitively, this is a situation when a repetition of subgraphs may be
expressed by an automaton loop that iterates a box, but it is instead misinterpreted as
a recursive nesting of graphs. This situation may happen when a newly created box
contains another box that cannot be iterated since it does not appear on a loop (e.g, in
Fig. 4 there is always one occurrence of a box encoding a shorter DLL fragment inside
a higher-level box). This issue is addressed in the presented algorithm by first unfolding
all occurrences of boxes that are not iterated by automata loops before folding is started.

Normalising. We define the index of a cut-point u∈ cps(gφ) as its position in the canon-
ical ordering of cut-points of gφ, and the index of a closed subgraph h of gφ as the set of
indices of the cut-points in sig(h). The folding algorithm expects the input FA F to sat-
isfy the property that all io-graphs of L(F) have the same indices of closed knots. The
reason is that folding starts by identifying the index of an optimal knot of an arbitrary
io-graph from L(F), and then it creates a box which accepts all closed subgraphs of the
io-graphs from gφ with the same index. We need a guarantee that all these subgraphs
are indeed optimal knots. This guarantee can be achieved if the io-graphs from L(F)
have equivalent interconnections of cut-points, as defined below.

10

We define the relation ∼gφ
⊆ N×N between indices of closed knots of gφ such that

N ∼gφ
N′ iff there is a closed knot k of gφ with the index N and a closed knot k′ with

the index N′ such that k and k′ have intersecting sets of sub-edges. We say that two
io-graphs gφ and hψ are interconnection equivalent iff ∼gφ

=∼hψ
.

Lemma 2. Interconnection equivalent io-graphs have the same indices of optimal knots.

Interconnection equivalence of all io-graphs in the language of an FA F is achieved
by transforming F to the interconnection respecting form. This form requires that the
language of every TA of the FA consists of interconnection equivalent trees (when view-
ing root references and roots as cut-points with corresponding indices). The transfor-
mation is described in [7]. The normalisation step also includes a transformation into
the state uniform and canonicity respecting form.
Abstraction. We use abstraction described in Sec. 5 that preserves the canonicity re-
specting form of TA as well as their state uniformity. It may break interconnection
uniformity, in which case it is followed by another round of normalisation. Abstraction
is included into each round of folding for the reason that it leads to learning more gen-
eral boxes. For instance, an FA encoding a cyclic list of one particular length is first
abstracted into an FA encoding a set of cyclic lists of all lengths, and the entire set is
then folded into a single box.
Identifying indices. For every FA F entering this sub-procedure, we pick an arbitrary
io-graph gφ ∈ L(F), find all its optimal knots of the smallest possible complexity n, and
extract their indices. By Lemma 2 and since F is normalised, indices of the optimal
knots are the same for all io-graphs in L(F). For every found index, the following steps
fold all optimal knots with that index at once. Optimal knots of complexity n do not
share sub-edges, the order in which they are folded is therefore not important.
Splitting. For an FA F = (A1 · · ·An,π) and an index I of an optimal knot found in the
previous step, splitting transforms F into a (set of) new FA with the same language. The
nodes of the borders of I-indexed optimal knots of io-graphs from L(F) become roots
of trees of io-forests accepted by the new FA. Let s ∈ I be a position in F such that the
s-indexed cut-points of io-graphs from L(F) reach all the other I-indexed cut-points.
The index s exists since an optimal knot has a root. Due to the definition of the closure,
the border contains all I-indexed cut-points, with the possible exception of s. The s-th
cut-point may be replaced in the border of the I-indexed optimal knot by the base e of
the I-indexed confluence that is the first one reached from the s-th cut-point by a straight
path. We call e the entry. The entry e is a root of the optimal knot, and the s-th cut-point
is the only I-indexed cut-point that might be outside the knot. If e is indeed different
from the s-th cut-point, then the s-th tree of forests accepted by F must be split into two
trees in the new FA: The subtree rooted at the entry is replaced by a reference to a new
tree. The new tree then equals the subtree of the original s-th tree rooted at the entry.

The construction is carried out as follows. We find all states and all of their rules that
accept entry nodes. We denote such states and rules as entry states and rules. For every
entry state q, we create a new FA F0

q which is a copy of F but with the s-th TA As split
to a new s-th TA A′s and a new (n+ 1)-th TA An+1. The TA A′s is obtained from As by
changing the entry rules of q to accept just a reference to the new (n+1)-th root and by
removing entry rules of all other entry states (the entry states are processed separately in

11

i

n+1
F0

q

j

i

· · · ⇒

i

n+1
Fq

Bq

i

· · · +

2

1
Bq

3

2

· · ·

Fig. 5: Creation of Fq and Bq from F0
q . The subtrees that contain references i, j ∈ J are

taken into Bq, and replaced by the Bq-labelled sub-edge in Fq.

order to preserve possibly different contexts of entry nodes accepted at different states).
The new TA An+1 is a copy of As but with the only accepting state being q. Note that the
construction is justified since due to state uniformity, each node that is accepted by an
entry rule and that does not appear below a node that is also accepted by an entry rule
is an entry node. In the result, the set J = (I \ {s})∪{n+ 1} contains the positions of
the trees of forests of F0

q rooted at the nodes of the borders of I-indexed optimal knots.

Constructing boxes. For every F0
q and J being the result of splitting F according to

an index I, a box Bq is constructed from F0
q . We transform TA of F0

q indexed by the
elements of J. The resulting TA will accept the original trees up to that the roots are
stripped from the children that cannot reach a reference to J. To turn these TA into an
FA accepting optimal knots with the index I, it remains to order the obtained TA and
define port indices, which is described in detail in [7]. Roughly, the input index of the
box will be the position j to which we place the modified (n+1)-th TA of F0

q (the one
that accepts trees rooted at the entry). The output indices are the positions of the TA
with indices J \ { j} in F0

q which accept trees rooted at cut-points of the border of the
optimal knots.

Applying boxes. This is the last step of folding. For every F0
q , J, and Bq which are the

result of splitting F according to an index I, we construct an FA Fq that accepts graphs
of F where knots enclosed in Bq are substituted by a sub-edge with the label Bq. It
is created from F0

q by (1) leaving out the parts of root rules of its TA that were taken
into Bq, and (2) adding the rule-term Bq(r1, . . . ,rm) to the rule-terms of root rules of the
(n+1)-th component of F0

q (these are rules used to accept the roots of the optimal knots
enclosed in Bq). The states r1, . . . ,rm are fresh states that accept root references to the
appropriate elements of J (to connect the borders of knots of Bq correctly to the graphs
of Fq—the details may be found in [7]). The FA Fq now accepts graphs where optimal
knots of graphs of L(F) with the signature I are hidden inside Bq. Creation of Bq and of
its counterpart Fq from F0

q is illustrated in Fig. 5 where i, j, . . . ∈ J.
During the analysis, the discovered boxes must be stored in a database and tested for

equivalence with the newly discovered ones since the alphabets of FA would otherwise
grow with every operation of folding ad infinitum. That is, every discovered box is given
a unique name, and whenever a semantically equivalent box is folded, the newly created
edge-term is labelled by that name. This step offers an opportunity for introducing an-
other form of acceleration of the symbolic computation. Namely, when a box B is found
by the procedure described above, and another box B′ with a name N s.t. JB′K⊂ JBK is
already in the database, we associate the name N with B instead of with B′ and restart the
analysis (i.e., start the analysis from the scratch, remembering just the updated database

12

of boxes). If, on the other hand, JBK⊆ JB′K, the folding is performed using the name N
of B′, thus overapproximating the semantics of the folded FA. As presented in Sec. 6,
this variant of the procedure, called folding by inclusion, performs in some difficult
cases significantly better than the former variant, called folding by equivalence.

5 Abstraction

The abstraction we use in our analysis is based on the general techniques described in
the framework of abstract regular (tree) model checking [2]. We, in particular, build on
the finite height abstraction of TA. It is parameterised by a height k ∈N, and it collapses
TA states q,q′ iff they accept trees with the same sets of prefixes of the height at most k
(the prefix of height k of a tree is a subgraph of the tree which contains all paths from
the root of length at most k). This defines an equivalence on states denoted by ≈k. The
equivalence ≈k is further refined to deal with various features special for FA. Namely,
it has to work over tuples of TA and cope with the interconnection of the TA via root
references, with the hierarchical structuring, and with the fact that we use a set of FA
instead of a single FA to represent the abstract context at a particular program location.
Refinements of ≈k. First, in order to maintain the same basic shape of the heap after
abstraction (such that no cut-point would, e.g., suddenly appear or disappear), we re-
fine ≈k by requiring that equivalent states must have the same spans (as defined in
Sec. 2). When applied on ≈1, which corresponds to equivalence of data types, this re-
finement provided enough precision for most of the case studies presented later on, with
the exception of the most difficult ones, namely programs with skip lists [13]. To ver-
ify these programs, we needed to further refine the abstraction to distinguish automata
states whenever trees from their languages encode tree components containing a differ-
ent number of unique paths to some root reference, but some of these paths are hidden
inside boxes. In particular, two states q,q′ can be equivalent only if for every io-graph
gφ from the graph language of the FA, for every two nodes u,v ∈ dom(gφ) accepted by
q and q′, respectively, in an accepting run of the corresponding TA, the following holds:
For every w ∈ cps(gφ), both u and v have the same number of outgoing sub-edges (se-
lectors) in JgφK which start a trace in JgφK leading to w. According to our experiments,
this refinement does not cost almost any performance, and hence we use it by default.
Abstraction for Sets of FA. Our analysis works with sets of FA. We observed that ab-
stracting individual FA from a set of FA in isolation is sometimes slow since in each
of the FA, the abstraction widens some selector paths only, and it takes a while until
an FA in which all possible selector paths are widened is obtained. For instance, when
analysing a program that creates binary trees, before reaching a fixpoint, the symbolic
analysis generates many FA, each of them accepting a subset of binary trees with some
of the branches restricted to a bounded length (e.g., trees with no right branches, trees
with a single right branch of length 1, length 2, etc.). In such cases, it helps when the
abstraction has an opportunity to combine information from several FA. For instance,
consider an FA that encodes binary trees degenerated to an arbitrarily long left branch,
and another FA that encodes trees degenerated to right branches only. Abstracting these
FA in isolation has no effect. However, if the abstraction is allowed to collapse states
from both of these FA, it can generate an FA accepting all possible branches.

13

Unfortunately, the natural solution to achieve the above, which is to unite FA before
abstraction, cannot be used since FA are not closed under union (uniting TA component-
wise overapproximates the union). However, it is possible to enrich the automata struc-
ture of an FA F by TA states and rules of another one without changing the language of
F , and in this way allow the abstraction to combine the information from both FA. In
particular, before abstracting an FA F = (A1 · · ·An,π) from a set S of FA, we pre-process
it as follows. (1) We pick automata F ′ = (A′1 · · ·A′n,π) ∈ S which are compatible with
F in that they have the same number of TA, the same port references, and for each
1 ≤ i ≤ n, the root states of A′i have the same spans as the root states of Ai. (2) For all
such F ′ and each 1≤ i≤ n, we add rules and states of A′i to Ai, but we keep the original
set of root states of Ai. Since we assume that the sets of state of TAs of different FA are
disjoint, the language of Ai stays the same, but its structure is enriched, which helps the
abstraction to perform a coarser widening.

6 Experimental Results

We have implemented the above proposed techniques in the Forester tool and tested
their generality and efficiency on a number of case studies. In the experiments, we
compare two configurations of Forester, and we also compare the results of Forester
with those of Predator [4], which uses a graph-based memory representation inspired
by separation logic with higher-order list predicates. We do not provide a comparison
with Space Invader [12] and SLAyer [1], based also on separation logic with higher-
order list predicates, since in our experiments they were outperformed by Predator.

In the experiments, we considered programs with various types of lists (singly and
doubly linked, cyclic, nested, with skip pointers), trees, and their combinations. In the
case of skip lists, we had to slightly modify the algorithms since their original versions
use an ordering on the data stored in the nodes of the lists (which we currently do
not support) in order to guarantee that the search window delimited on some level of
skip pointers is not left on any lower level of the skip pointers. In our modification,
we added an additional explicit end-of-window pointer. We checked the programs for
memory safety only, i.e., we did not check data-dependent properties.

Table 1 gives running times in seconds (the average of 10 executions) of the tools on
our case studies. “Basic” stands for Forester with the abstraction applied on individual
FA only and “SFA” stands for Forester with the abstraction for sets of FA. The value T
means that the running time of the tool exceeded 30 minutes, and the value Err means
that the tool reported a spurious error. The names of the examples in the table contain the
name of the data structure manipulated in the program, which is “SLL” for singly linked
lists, “DLL” for doubly linked lists (the “C” prefix denotes cyclic lists), “tree” for binary
trees, “tree+parents” for trees with parent pointers. Nested variants of SLL (DLL) are
named as “SLL (DLL) of” and the type of the nested structure. In particular, “SLL of
0/1 SLLs” stands for SLL of a nested SLL of length 0 or 1, and “SLL of 2CDLLs”
stands for SLL whose each node is a root of two CDLLs. The “+head” flag stands
for a list where each element points to the head of the list and the subscript “Linux”
denotes the implementation of lists used in the Linux kernel, which uses type casts and
a restricted pointer arithmetic. The “DLL+subdata” stands for a kind of a DLL with data

14

Table 1: Results of the experiments
Example basic SFA boxes Predator
SLL (delete) 0.03 0.04 0.04
SLL (bubblesort) 0.04 0.04 0.03
SLL (mergesort) 0.08 0.15 0.10
SLL (insertsort) 0.05 0.05 0.04
SLL (reverse) 0.03 0.03 0.03
SLL+head 0.05 0.05 0.03
SLL of 0/1 SLLs 0.03 0.03 0.11
SLLLinux 0.03 0.03 0.03
SLL of CSLLs 2.07 0.73 3 / 4 0.12
SLL of 2CDLLsLinux 0.16 0.17 13 / 5 0.25
skip list2 0.66 0.42 - / 3 T
skip list3 T 9.14 - / 7 T

Example basic SFA boxes Predator
DLL (reverse) 0.04 0.06 1 / 1 0.03
DLL (insert) 0.06 0.07 1 / 1 0.05
DLL (insertsort1) 0.35 0.40 1 / 1 0.11
DLL (insertsort2) 0.11 0.12 1 / 1 0.05
DLL of CDLLs 5.67 1.25 8 / 7 0.22
DLL+subdata 0.06 0.09 - / 2 T
CDLL 0.03 0.03 1 / 1 0.03
tree 0.14 0.14 Err
tree+parents 0.18 0.21 2 / 2 T
tree+stack 0.09 0.08 Err
tree (DSW) 1.74 0.40 Err
tree of CSLLs 0.32 0.42 - / 4 Err

pointers pointing either inside the list nodes or optionally outside of them. For a “skip
list”, the subscript denotes the number of skip pointers. In the example “tree+stack”, a
randomly constructed tree is deleted using a stack, and “DSW” stands for the Deutsch-
Schorr-Waite tree traversal (the Lindstrom variant). All experiments start with a random
creation and end with a disposal of the specified structure while the indicated procedure
(if any) is performed in between. The experiments were run on a machine with the Intel
i7-2600 (3.40 GHz) CPU and 16 GiB of RAM.

The table further contains the column “boxes” where the value “X/Y” means that
X manually created boxes were provided to the analysis that did not use learning while
Y boxes were learnt when the box learning procedure was enabled. The value “-” of
X means that we did not run the given example with manually constructed boxes since
their construction was too tedious. If user-defined boxes are given to Forester in ad-
vance, the speedup is in most cases negligible, with the exception of “DLL of CDLLs”
and “SLL of CSLLs”, where it is up to 7 times. In a majority of cases, the learnt boxes
were the same as the ones created manually. However, in some cases, such as “SLL of
2CDLLsLinux”, the learning algorithm found a smaller set of more elaborate boxes than
those provided manually.

In the experiments, we use folding by inclusion as defined in Sec. 4.2. For simpler
cases, the performance matched the performance of folding by equivalence, but for the
more difficult examples it was considerably faster (such as for “skip list2” when the
time decreased from 3.82 s to 0.66 s), and only when it was used the analysis of “skip
list3” succeeded. Further, the implementation folds optimal knots of the complexity
≤ 2 which is enough for the considered examples. Finally, note that the performance of
Forester in the considered experiments is indeed comparable with that of Predator even
though Forester can handle much more general data structures.

7 Conclusion

We have proposed a new shape analysis using forest automata which—unlike the pre-
viously known approach based on FA—is fully automated. For that purpose, we have

15

proposed a technique of automatically learning FA called boxes to be used as alphabet
symbols in higher-level FA when describing sets of complex heap graphs. We have also
proposed a way how to efficiently integrate the learning with the main analysis algo-
rithm. Finally, we have proposed a significant improvement—both in terms of general-
ity as well as efficiency—of the abstraction used in the framework. An implementation
of the approach in the Forester tool allowed us to fully-automatically handle programs
over quite complex heap structures, including 2-level and 3-level skip lists, which—to
the best of our knowledge—no other fully-automated verification tool can handle. At
the same time, the efficiency of the analysis is comparable with other state-of-the-art
analysers even though they handle less general classes of heap structures.

For the future, there are many possible ways how the presented approach can be
further extended. First, one can think of using recursive boxes or forest automata using
hedge automata as their components in order to handle even more complex data struc-
tures (such as mcf trees). Another interesting direction is that of integrating FA-based
heap analysis with some analyses for dealing with infinite non-pointer data domains
(e.g., integers) or parallelism.
Acknowledgement. This work was supported by the Czech Science Foundation (projects
P103/10/0306, 13-37876P), the Czech Ministry of Education, Youth, and Sports (project
MSM 0021630528), the BUT FIT project FIT-S-12-1, and the EU/Czech IT4Innovations
Centre of Excellence project CZ.1.05/1.1.00/02.0070.

References
1. J. Berdine, B. Cook, and S. Ishtiaq. Memory Safety for Systems-level Code. In Proc. of

CAV’11, LNCS 6806, Springer, 2011.
2. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular (Tree) Model

Checking. STTT 14(2), Springer, 2012.
3. B.-Y.E. Chang, X. Rival, and G.C. Necula. Shape Analysis with Structural Invariant Check-

ers. In Proc. of SAS’07, LNCS 4634, Springer, 2007.
4. K. Dudka, P. Peringer, and T. Vojnar. Predator: A Practical Tool for Checking Manipulation

of Dynamic Data Structures Using Separation Logic. In Proc. of CAV’11, LNCS 6806, 2011.
5. B. Guo, N. Vachharajani, and D.I. August. Shape Analysis with Inductive Recursion Syn-

thesis. In Proc. of PLDI’07, ACM Press, 2007.
6. P. Habermehl, L. Holı́k, A. Rogalewicz, J. Šimáček, and T. Vojnar. Forest Automata for

Verification of Heap Manipulation. In Proc. of CAV’11, LNCS 6806, Springer, 2011.
7. L. Holı́k, O. Lengál, A. Rogalewicz, J. Šimáček, and T. Vojnar. Fully Automated Shape

Analysis Based on Forest Automata. Tech. rep. FIT-TR-2013-01, FIT BUT, 2013.
8. J. Heinen, T. Noll, and S. Rieger. Juggrnaut: Graph Grammar Abstraction for Unbounded

Heap Structures. ENTCS 266, Elsevier, 2010.
9. O. Lee, H. Yang, and R. Petersen. Program Analysis for Overlaid Data Structures. In Proc.

of CAV’11, LNCS 6806, Springer, 2011.
10. S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. Automatic Numeric Abstractions for Heap-

manipulating programs. In Proc. of POPL’10, ACM Press, 2010.
11. A.D. Weinert. Inferring Heap Abstraction Grammars. BSc thesis, RWTH Aachen, 2012.
12. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W. O’Hearn. Scalable

Shape Analysis for Systems Code. In Proc. of CAV’08, LNCS 5123, Springer, 2008.
13. W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Commun. ACM, 33(6):

668–676, ACM, 1990.

16

	Fully Automated Shape AnalysisBased on Forest Automata

