
A Symbolic Algorithm for the Case-Split Rule
in String Constraint Solving

Yu-Fang Chen1, Vojtěch Havlena2,
Ondřej Lengál2 [0000−0002−3038−5875] , and Andrea Turrini3,4 [0000−0003−4343−9323]

1 Academia Sinica, Taiwan
2 FIT, IT4I Centre of Excellence, Brno University of Technology, Czech Republic

3 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, China

4 Institute of Intelligent Software, Guangzhou, China

Abstract. Case split is a core proof rule in current decision procedures for the
theory of string constraints. Its use is the primary cause of the state space explosion
in string constraint solving, since it is the only rule that creates branches in the proof
tree. Moreover, explicit handling of the case split rule may cause recomputation
of the same tasks in multiple branches of the proof tree. In this paper, we propose
a symbolic algorithm that significantly reduces such a redundancy. In particular,
we encode a string constraint as a regular language and proof rules as rational
transducers. This allows to perform similar steps in the proof tree only once,
alleviating the state space explosion. In our preliminary experimental results, we
validated that our technique (implemented in a Python prototype) works in many
practical cases where other state-of-the-art solvers, such as CVC4 or Z3, fail to
provide an answer.

1 Introduction

Constraint solving is a technique used as an enabling technology in many areas of formal
verification and analysis, such as symbolic execution [21,27], static analysis [23,48], or
synthesis [22,38]. For instance, in symbolic execution, feasibility of a path in a program
is tested by creating a constraint that encodes the evolution of values of variables
on the given path and checking if it is satisfiable. Due to the features used in the
analysed programs, checking satisfiability of the constraint can be a complex task. For
instance, the solver has to deal with different data types, such as Boolean, Integer, Real,
or String. Theories for the first three data types are well known, widely developed,
and implemented in tools, while the theory for the String data type has started to be
investigated only recently [2, 4, 5, 11, 15, 16, 24, 26, 31–33, 47, 50, 52], despite having
been considered already by A. A. Markov in the late 1960s in connection with Hilbert’s
10th problem [18,28, 36].

Most current decision procedures for string constraints involve the so-called case-
split rule. This rule performs a case split w.r.t. the possible alignment of the variables.
The case-split rule is used in most, if not all, (semi-)decision procedures for string
constraints, including Makanin’s algorithm [34], Nielsen transformation [37] (a.k.a.
Levi’s lemma [30]), and the procedures implemented in most state-of-the-art solvers

such as Z3 [11], CVC4 [31], Z3Str3 [52], Norn [4], and many more. In this paper, we
will explain the general idea of our symbolic approach using Nielsen transformation,
which is the simplest of the approaches; nonetheless, we believe that the approach is
applicable also to other procedures.

Consider the word equation GI = HF, the primary type of atomic string constraints
considered in this paper, where G, I, H, and F are string variables. When establishing
satisfiability of the word equation, Nielsen transformation [37] proceeds by first per-
forming a case split based on the possible alignments of the variables G and H, the first
symbol of the left and right-hand sides of the equation, respectively. More precisely, it
reduces the satisfiability problem for GI = HF into satisfiability of (at least) one of the
following four (non-disjoint) cases (1) H is a prefix of G, (2) G is a prefix of H, (3) G is an
empty string, and (4) H is an empty string. For these cases, the Nielsen transformation
generates new equations that we describe in the following paragraphs.

For the case (1), all occurrences of G in GI = HF are substituted to HG ′, where G ′ is
a fresh string variable (we denote this case as G ↩→ HG ′), i.e., we obtain the equation
HG ′I = HF, which can be simplified to G ′I = F. In fact, since the transformation G ↩→ HG ′

removes all occurrences of the variable G, we can just reuse the variable G and perform the
transformation G ↩→ HG instead (and take this into account when constructing a model).
The case (2) of the Nielsen transformation is just a symmetric counterpart of case (1)
discussed above. For cases (3) and (4), the variables G and H, respectively, are replaced
by empty strings. Taking into account all four possible transformations of the equation
GI = HF, we obtain the following four equations:

(1) GI = F, (2) I = HF, (3) I = HF, (4) GI = F.

If GI = HF has a solution, then at least one of the above equations has a solution,
too. Nielsen transformation keeps applying the transformation rules on the obtained
equations, building a proof tree and searching for a tautology of the form Y = Y.

Treating each of the obtained equations separately can cause some redundancy. Let
us consider the example in Fig. 1, where we apply Nielsen transformation to solve the
string constraint GI = 01∧F01HG = 0F1IE, where E, F, G, H, and I are string variables
and 0 and 1 are constant symbols. After processing the first word equation GI = 01, we
obtain a proof tree with three similar leaf nodes F01H01 = 0F1E, F01H0 = 0F11E,
and F01H = 0F101E, which share the prefixes F01H and 0F1 on the left and right-
hand side of the equations, respectively. If we continue applying Nielsen transformation
on the three leaf nodes, we will create three similar subtrees, with almost identical
operations. In particular, the nodes near the root of such subtrees, which transform
F01H . . . = 0F1 . . . , are going to be essentially the same. The resulting proof trees will
therefore start to differ only after processing such a common part. Therefore, handling
those equations separately will cause some operations to be performed multiple times.
In the case the proof tree of each word equation has = leaves and the string constraint is
a conjunction of : word equations, we might need to create =: similar subtrees.

The case split can be performed more efficiently if we process the common part of
the said leaves together using a symbolic encoding. In this paper, we use an encoding
of a set of equations as a regular language, which is represented by a finite automaton.
An example is given in Fig. 2, which shows a finite automaton over a 2-track alphabet,

GI = 01

F01HG = 0F1IE

GI = 1

F01H0G = 0F1IE

I = 01

F01H = 0F1IE

GI = Y

F01H01G = 0F1IE

I = 1

F01H0 = 0F1IE

F01H01 = 0F1E

F01H0 = 0F11E

F01H = 0F101E

G ↩→ 0G

G ↩→ Y

G ↩→ 1G

G ↩→ Y

I ↩→ 0I; I ↩→ 1I; I ↩→ Y

I ↩→ Y; G ↩→ Y

I ↩→ 1I; I ↩→ Y

Fig. 1: A partial proof tree of applying Nielsen transformation on GI = 01 ∧ F01HG =
0F1IE. The leaves are the outcome of processing the first word equation GI = 01.
Branches leading to contradictions are omitted.

(F
0

) (0
F

) (1
1

) (H
E

)(H
1

)
(H
0

)

(0
�

) (1
�

)
(0
E

)
(�
1

) (�
E

)
Fig. 2: A finite automaton encoding the three equations F01H01 = 0F1E, F01H0 =
0F11E, and F01H = 0F101E.

where each of the two tracks represents one side of the equation. For instance, the
equation F01H01 = 0F1E is represented by the word

(F
0

) (0
F

) (1
1

) (H
E

) (0
�

) (1
�

)
accepted by

the automaton, where the � symbol is a padding used to make sure that both tracks are
of the same length.

Given our regular language-based symbolic encoding, we need a mechanism to
perform the Nielsen transformation steps on a set of equations encoded as a regular
language. We show that the transformations can be encoded as rational relations, rep-
resented using finite transducers, and the whole satisfiability checking problem can be
encoded within the framework of regular model checking (RMC). In the past, RMC
has already been considered for solving string constraints (cf. [7, 49–51]). In those ap-
proaches, the languages of the automata are, however, the “models of the formula”,
so the approaches can be considered “model-theoretic”. In our approach, the automata
languages are the derived constraints. Hence the approach is closer to “proof-theoretic”.
We believe this novel aspect has a great potential for further investigation and can bring
new ideas to the field of string solving.

We will provide more details on how this is done in Sections 3 to 5 stepwise. In
Section 3, we describe the approach for a simpler case where the input is a quadratic

word equation, i.e., a word equation with at most two occurrences of every variable. In
this case, Nielsen transformation is sound and complete. In Section 4, we extend the
technique to support conjunctions of non-quadratic word equations. In Section 5, we
extend our approach to support arbitrary Boolean combinations of string constraints.

We implemented our approach in a prototype Python tool calledRetro and evaluated
its performance on two benchmark sets: Kepler22 obtained from [29] and PyEx-Hard
obtained by running the PyEx symbolic execution engine on Python programs [42] and
collecting examples on which CVC4 or Z3 fail. Retro solved most of the problems in
Kepler22 (on which CVC4 and Z3 do not perform well). Moreover, it solved over 50%
of the benchmarks in PyEx-Hard that could be solved by neither CVC4 nor Z3.

2 Preliminaries

An alphabet Σ is a finite set of symbols and a word over Σ is a sequence F = 01 . . . 0=
of symbols from Σ, with Y denoting the empty word. We use F1.F2 (and often just
F1F2) to denote the concatenation of words F1 and F2. Σ∗ is the set of all words
over Σ, Σ+ = Σ∗ \ {Y}, and ΣY = Σ ∪ {Y}. A language over Σ is a subset ! of Σ∗. Given
a word F = 01 . . . 0=, we use |F | to denote the length = of F and |F |0 to denote the
number of occurrences of the character 0 ∈ Σ in F. Further, we use F [8] to denote 08 ,
the 8-th character of F, and F [8 :] to denote the word 08 . . . 0=. When 8 > =, the value of
F [8] and F [8 :] is in both cases ⊥, a special undefined value, which is different from all
other values and also from itself (i.e., ⊥ ≠ ⊥). Given an alphabet Σ, we use Σ: to denote
the :-tape alphabet Σ × · · · × Σ︸ ︷︷ ︸

:

.

Automata and transducers. A (finite) :-tape transducer is a tupleT = (&,Δ,Σ, &8 , & 5)
where & is a finite set of states, Δ ⊆ & ×Σ:Y ×& is a set of transitions, Σ is an alphabet,
&8 ⊆ & is a set of initial states, and & 5 ⊆ & is a set of final states. A run c of T
over a :-tuple of words (F1, . . . , F:) is a sequence of transitions (@0, 011, . . . , 0:1 , @1),
(@1, 012, . . . , 0:2 , @2), . . . , (@=−1, 01=, . . . , 0:=, @=) ∈ Δ such that ∀8 : F8 = 0810

8
2 . . . 0

8
=

(note that 08< can be Y, so F8 and F 9 may be of a different length, for 8 ≠ 9). The run c is
accepting if @0 ∈ &8 and @= ∈ & 5 , and a :-tuple (F1, . . . , F:) is accepted by T if there
exists an accepting run of T over (F1, . . . , F:). The language ! (T) of T is defined as
the :-ary relation ! (T) = { (F1, . . . , F:) ∈ (Σ∗): | (F1, . . . , F:) is accepted by T }.
We call the class of relations accepted by transducers rational relations. T is length-
preserving if no transition in Δ contains Y. We call the class of relations accepted by
length-preserving transducers regular relations. A finite automaton (FA) is a 1-tape
finite transducer. We call the class of languages accepted by finite automata regular
languages. Given two :-ary relations '1, '2, we define their concatenation '1.'2 =

{ (D1E1, . . . , D:E:) | (D1, . . . , D:) ∈ '1 ∧ (E1, . . . , E:) ∈ '2 } and given two binary
relations '1, '2, we define their composition '1 ◦ '2 = { (G, I) | ∃H : (G, H) ∈ '2 ∧
(H, I) ∈ '1 }. Given a :-ary relation ' we define '0 = {Y}: , '8+1 = '.'8 for 8 ≥ 0.
Iteration of ' is then defined as '∗ =

⋃
8≥0 '

8 . Given a language ! and a binary
relation ', we define the '-image of ! as '(!) = { H | ∃G ∈ ! : (G, H) ∈ ' }.

UD = UE

D = E
(trim)

GD = E

D[G ↦→ Y] = E [G ↦→ Y] (G ↩→ Y)
GD = UE

G(D[G ↦→ UG]) = E [G ↦→ UG] (G ↩→ UG)

Fig. 3: Rules of Nielsen transformation, for G ∈ X, U ∈ ΣX, and D, E ∈ Σ∗X. Symmetric
rules are omitted.

Proposition 1 ([10]). (i) The class of binary rational relations is closed under union,
composition, concatenation, and iteration and is not closed under intersection and
complement. (ii) For a binary rational relation ' and a regular language !, the language
'(!) is also effectively regular (i.e., it can be computed). (iii) The class of regular
relations is closed under Boolean operations.

String constraints. Let Σ be an alphabet and X be a set of string variables ranging
over Σ∗ s.t.X∩Σ = ∅. We use ΣX to denote the extended alphabet Σ∪X. An assignment
of X is a mapping � : X→ Σ∗. A word term is a string over the alphabet ΣX. We lift an
assignment � to word terms by defining � (Y) = Y, � (0) = 0, and � (G.F) = � (G).� (F),
for 0 ∈ Σ, G ∈ ΣX, and F ∈ Σ∗X. A word equation i4 is of the form C1 = C2 where C1
and C2 are word terms. � is a model of i4 if � (C1) = � (C2). We call a word equation an
atomic string constraint. A string constraint is obtained from atomic string constraints
using Boolean connectives (∧,∨,¬), with the semantics defined in the standard manner.
A string constraint is satisfiable if it has a model. Given a word term C ∈ Σ∗X, a variable
G ∈ X, and a word term D ∈ Σ∗X, we use C [G ↦→ D] to denote the word term obtained
from C by replacing all occurrences of G by D, e.g. (01G2GH) [G ↦→ 2H] = 012H22HH. We
call a string constraint quadratic if each variable has at most two occurrences, and cubic
if each variable has at most three occurrences.

2.1 Nielsen Transformation

As already briefly mentioned in the introduction, Nielsen transformation can be used to
check satisfiability of a conjunction of word equations. We use the three rules shown in
Fig. 3; besides the rules G ↩→ UG and G ↩→ Y that we have seen in the introduction, there
is also the (trim) rule, used to remove a shared prefix from both sides of the equation.

Given a system of word equations, multiple Nielsen transformations might be ap-
plicable to it, resulting in different transformed equations on which other Nielsen trans-
formations can be performed, as shown in Fig. 1. Trying all possible transformations
generates a tree (or a graph in general) whose nodes contain conjunctions of word equa-
tions and whose edges are labelled with the applied transformation. The conjunction of
word equations in the root of the tree is satisfiable if and only if at least one of the leaves
in the graph is a tautology, i.e., it contains a conjunction Y = Y ∧ · · · ∧ Y = Y.

Lemma 1 (cf. [17,34]). Nielsen transformation is sound. Moreover, it is complete when
the systems of word equations is quadratic.

Lemma 1 is correct even if we construct the proof tree using the following strategy:
every application of G ↩→ UG or G ↩→ Y is followed by as many applications of the (trim)
rule as possible. We use G�UG to denote the application of one G ↩→ UG rule followed

by as many applications of (trim) as possible, and G� Y for the application of G ↩→ Y

repeatedly followed by (trim).

2.2 Regular Model Checking

Regular model checking (RMC) [1, 12, 13] is a framework for verifying infinite state
systems. In RMC, each system configuration is represented as a word over an alphabet Σ.
The set of initial configurations I and destination configurations D are captured as
regular languages over Σ. The transition relation T is captured as a binary rational
relation over Σ∗. A regular model checking reachability problem is represented by the
triple (I,T ,D) and asks whether T AC (I) ∩D ≠ ∅, where T AC represents the reflexive
and transitive closure of T . One way how to solve the problem is to start computing
the sequence T (0) (I),T (1) (I),T (2) (I), . . . where T (0) (I) = I and T (=+1) (I) =
T (T (=) (I)). During computation of the sequence, we can check if we find T (8) (I)
that overlaps with D, and if yes, we can deduce that D is reachable. On the other hand,
if we obtain a sequence such that

⋃
0≤8<= T 8 (I) ⊇ T = (I), we know that we have

explored all possible system configurations without reaching D, so D is unreachable.

3 Solving Word Equations using RMC

In this section, we describe a symbolic RMC-based framework for solving string con-
straints. The framework is based on encoding a string constraint into a regular language
and encoding steps of Nielsen transformation as a rational relation. Satisfiability of
a string constraint is then reduced to a reachability problem of RMC.

3.1 Nielsen Transformation as Word Operations

In the following, we describe how Nielsen transformation of a single word equation can
be expressed as operations on words. We view a word equation eq : tℓ = tA as a pair
of word terms 4eq = (tℓ , tA) corresponding to the two sides of the equation; therefore
4eq ∈ Σ∗X × Σ∗X. Without loss of generality we assume that tℓ [1] ≠ tA [1]; if this is not
the case, we pre-process the equation by applying the (trim) Nielsen transformation (cf.
Fig. 3) to trim the common prefix of tℓ and tA .

Example 1. The word equation eq1 : G0H = HG is represented by the pair of word terms
41 = (G0H, HG). ut

A rule of Nielsen transformation (cf. Section 2.1) is represented using a (partial)
function g : (Σ∗X × Σ∗X) → (Σ∗X × Σ∗X). Given a pair of word terms (tℓ , tA) of a word
equation eq , the function g transforms it into a pair of word terms of a word equation eq ′
that would be obtained by performing the corresponding step of Nielsen transformation
on eq . Before we express the rules of Nielsen transformation, we define functions
performing the corresponding substitution. For G ∈ X and U ∈ ΣX we define

gG ↦→UG = { (tℓ , tA) ↦→ (t′ℓ , t
′
A) | t′ℓ = tℓ [G ↦→ UG] ∧ t′A = tA [G ↦→ UG] } and

gG ↦→Y = { (tℓ , tA) ↦→ (t′ℓ , t
′
A) | t′ℓ = tℓ [G ↦→ Y] ∧ t′A = tA [G ↦→ Y] }.

(1)

The function gG ↦→UG performs a substitution G ↦→ UG while the function gG ↦→Y performs
a substitution G ↦→ Y.

Example 2. Consider the pair of word terms 41 from Example 1. The application
gG ↦→HG (41) would produce the pair 42 = (HG0H, HHG) while the application gG ↦→Y (41)
would produce the pair 43 = (0H, H). ut

The functions introduced above do not take into account the first symbols of each
side and do not remove a common prefix of the two sides of the equation, which is
a necessary operation for Nielsen transformation to terminate. Let us, therefore, define
the following function, which trims (the longest) matching prefix of word terms of the
two sides of an equation:

gtrim = { (tℓ , tA) ↦→ (t′ℓ , t
′
A) | ∃8(tℓ [8] ≠ tA [8] ∧ ∀ 9 (9 < 8 → tℓ [9] = tA [9])

∧ t′ℓ = tℓ [8 :] ∧ t′A = tA [8 :]) }.
(2)

Example 3. Continuing in our running example, the application gtrim (42) produces the
pair 4′2 = (G0H, HG) while gtrim (43) produces the pair 4′3 = (0H, H). ut

Now we are ready to define functions corresponding to the rules of Nielsen trans-
formation. In particular, the rule G�UG for G ∈ X and U ∈ ΣX (cf. Section 2.1) can be
expressed using the function

gG� UG = gtrim ◦ { (tℓ , tA) ↦→ gG ↦→UG (tℓ , tA) | (tℓ [1] = U ∧ tA [1] = G) ∨
(tA [1] = U ∧ tℓ [1] = G) }

(3)

while the rule G� Y for G ∈ X can be expressed as the function

gG� Y = gtrim ◦ { (tℓ , tA) ↦→ gG ↦→Y (tℓ , tA) | tℓ [1] = G ∨ tA [1] = G}. (4)

If we keep applying the functions defined above on individual pairs of word terms, while
searching for the pair (Y, Y)—which represented the case when a solution to the original
equation eq exists—,wewould obtain the Nielsen transformation graph (cf. Section 2.1).
In the following, we show how to perform the steps symbolically on a representation of
a whole set of word equations at once.

3.2 Symbolic Algorithm for Word Equations

In this section, we describe the main idea of our symbolic algorithm for solving word
equations.We first focus on the case of a single word equation and in subsequent sections
extend the algorithm to a richer class.

TG� UG =
⋃

G∈X,U∈ΣX
gG� UG

TG� Y =
⋃
G∈X

gG� Y

Fig. 4: Transformation relations

Our algorithm is based on applying the trans-
formation rules not on a single equation, but on
a whole set of equations at once. Given a set of
equations, the transformation rules are applied
atomically, i.e., a single transformation rule is
applied on the whole set of equations without in-
terleaving with other transformation rules. For this, we define the relations TG� UG and

TG� Y that aggregate the versions of gG� UG and gG� Y for all possible G ∈ X and
U ∈ ΣX. The signature of these relations is (Σ∗X ×Σ∗X) × (Σ∗X ×Σ∗X) and they are defined
in Fig. 4. Note the following two properties of the relations: (i) they produce outputs of
all possible Nielsen transformation steps applicable with the first symbols on the two
sides of the equations and (ii) they include the trimming operation.

We compose the introduced relations into a single one, denoted as Tstep and defined
asTstep = TG� UG∪TG� Y . The relationTstep can then be used to compute all successors
of a set of word terms of equations in one step. For a set of word terms (we can compute
the Tstep-image of (to obtain all successors of pairs of word terms in (. The initial
configuration, given a word equation eq : tℓ = tA , is the set �eq = {(tℓ , tA)}.

Example 4. Lifting our running example to the introduced notions over sets, we start
with the set �eq = {41 = (G0H, HG)}. After applying Tstep on �eq , we obtain the
set (1 = {4′2 = (G0H, HG), 4′3 = (0H, H), (0GH, HG), (0, Y)}. The pairs 4′2 and 4′3 were
described earlier, the pair (0GH, HG) is obtained by the transformation gH� GH , and
the pair (0, Y) is obtained by the transformation gH� Y . If we continue by computing
Tstep ((1), we obtain the set (2 = (1 ∪ {(0G, G)}, with the pair (0G, G) obtained from
(0GH, HG) by using the transformation gH� Y . ut

Using the symbolic representation, we can formulate the problem of checking satis-
fiability of a word equation eq as the task of

– either testing whether (Y, Y) ∈ T ACstep (�eq); this means that eq is satisfiable, or
– finding a set (called unsat-invariant) �inv such that �eq ⊆ �inv , (Y, Y) ∉ �inv , and
Tstep (�inv) ⊆ �inv , implying that eq is unsatisfiable.

In the following sections, we show how to encode the problem into the RMC framework.

Example 5. To proceed in our running example, when we apply Tstep on (2, we get
Tstep ((2) ⊆ (2. Since 41 ∈ (2 and (Y, Y) ∉ (2, the set (2 is our unsat-invariant, which
means eq1 is unsatisfiable. ut

3.3 Towards Symbolic Encoding

Let us now discuss some possible encodings of the word equations satisfiability problem
into RMC. Recall that our task is to find an encoding such that the encoded equation (cor-
responding to initial configurations in RMC) and satisfiability condition (corresponding
to destination configurations) are regular languages and transformation (transition) re-
lation is a rational relation. We start by describing two possible methods of encodings
that do not work and then describe the one that we use.

The first idea about how to encode a set of word equations as a regular language is to
encode a pair 4eq = (tℓ , tA) as a word tℓ · = · tA , where = ∉ ΣX. One immediately finds
out that although the transformations gG� UG and gG� Y are rational (i.e., expressible
using a transducer), the transformation gtrim , which removes the longest matching prefix
from both sides, is not (a transducer with an unbounded memory to remember the prefix
would be required).

Another attempt of an encoding may be encoding 4eq = (tℓ , tA) as a rational binary
relation, represented, e.g., by a (non-length-preserving) 2-tape transducer (with a tape

for tℓ and a tape for tA) and use 4-tape transducers to represent the transformations
(with two input tapes for tℓ , tA and two output tapes for t′

ℓ
, t′A). The transducers im-

plementing gG� HG and gG� Y can be constructed easily and so can be the transducer
implementing gtrim , so this solution looks appealing. One, however, quickly realizes
an issue with computing Tstep (�eq). In particular, since �eq and Tstep are both repre-
sented as rational relations, the intersection (�eq ×Σ∗X ×Σ∗X) ∩ Tstep , which needs to be
computed first, may not be rational. Why? Consider �eq = { (0<1=, 2<) | <, = ≥ 0 }
and Tstep = { (0<1=, 2=, Y, Y) | <, = ≥ 0 }. The intersection (�eq × Σ∗X × Σ∗X) ∩ Tstep =
{ (0=1=, 2=, Y, Y) | = ≥ 0 } is clearly not rational.

3.4 Symbolic Encoding of Quadratic Equations into RMC

We therefore converge on the following method of representing word equations by
a regular language. A set of pairs of word terms is represented as a regular language over
a 2-track alphabet with paddingΣ2

X,�, whereΣX,� = ΣX∪{�}, using an FA. For instance,
41 = (G0H, HG) would be represented by the regular language

(G
H

) (0
G

) (H
�

) (
�

�

)∗. Formally,
we first define the equation encoding function eqencode : (Σ∗X)2 → (Σ2

X,�)∗ such that
for tℓ = 01 . . . 0= and tA = 11 . . . 1< (without loss of generality we assume that |tℓ | ≥
|tA |), we have eqencode(tℓ , tA) =

(01
11

) (02
12

)
. . .

(0<
1<

) (0<+1
�

)
. . .

(0=
�

)
. We lift eqencode to

sets in the usual way and to relations on pairs of word terms g as eqencode(g) =
{ (eqencode(tℓ , tA), eqencode(t′ℓ , t

′
A)) | ((tℓ , tA), (t′ℓ , t

′
A)) ∈ g }.

Let f be a symbol. We define the padding of a :-tuple of words (F1, . . . , F:)
with respect to f as the set padf (F1, . . . , F:) = {(F′1, . . . , F′:) | F

′
8
∈ F8 .{f}∗}},

i.e., it is a set of :-tuples obtained from (F1, . . . , F:) by extending some of the words
by an arbitrary number of f’s. We lift padf to a :-ary relation ' as padf (') =⋃
G∈' padf (G). Finally, we define the function encode, which we use for encoding

word equations into regular languages and word operations into rational relations, as
encode = pad(

�

�

) ◦ eqencode. Properties of encode are given by the following lemmas.

Lemma 2. If) is a binary regular relation on pairs of word terms, then encode()) is
rational. If ! is a regular language, then encode(!) is regular.

Lemma 3. Given a word equation eq : tℓ = tA for tℓ , tℓ ∈ Σ∗X, the set encode(eq) is
regular.

Observe that because of the padding part, which introduces unbounded number of
padding symbols at the end of an encoded relation, even if) is finite, encode()) is
infinite. Using the presented encoding, when trying to express the gG� UG and gG� Y

transformations, we, however, encounter an issue with the need of an unbounded mem-
ory. For instance, for the language ! =

(G
H

)∗, the transducer implementing gG� HG would
need to remember how many times it has seen G on the first track of its input (indeed,
the image { encode(D, E) | ∃= : D = (HG)= ∧ E = H=�= } is no longer regular).

We address this issue in several steps: first, we give a rational relation that correctly
represents the transformation rules for cases when the equation eq is quadratic, and
extend our algorithm to equations with more occurrences of variables in Section 4. Let
us define the following, more general, restriction of gG� UG to equations with at most

Input: Encoding I of a formula i (the initial set), transformers TG� UG , TG� Y , and
the destination set D

Output: A model of i if i is satisfiable, false otherwise
1 reach0 := ∅;
2 reach1 := I;
3 processed := reach0;
4 T := TG� UG ∪ TG� Y ;
5 8 := 1;
6 while reach 8 * processed do
7 if D ∩ reach 8 ≠ ∅ then
8 return ExtractModel (reach1, . . . , reach 8);
9 processed := processed ∪ reach 8 ;
10 reach 8+1 := T (reach 8);
11 8++;
12 return false;

Algorithm 1: Solving a string constraint i using RMC

8 ∈ N occurrences of variable G as g≤8G� UG = gG� UG ∩ { ((tℓ , tA), (F, F′)) | F, F′ ∈
Σ∗X, |tℓ .tA |G ≤ 8 }.We define g≤8G� Y , g≤8G ↦→UG , and g≤8G ↦→Y similarly.

Lemma 4. Given 8 ∈ N, the relations encode(g≤8G� UG) and encode(g≤8G� Y) are rational.

Ieq = encode(tℓ , tA)
Deq =

{(
�

�

)}∗
T eq
G� UG =

⋃
G∈X,U∈ΣX

encode(g≤2G� UG)

T eq
G� Y =

⋃
G∈X

encode(g≤2G� Y)

Fig. 5: RMC instantiation for
a quadratic equation

In Algorithm 1, we give a high-level algorithm
for solving string constraints using RMC. The al-
gorithm is parameterized by the following: a reg-
ular language I encoding a formula i (the ini-
tial set), rational relations TG� UG and TG� Y , and
the destination set D (also given as a regular lan-
guage). The algorithm tries to solve the RMC prob-
lem (I,TG� UG∪TG� Y ,D) by an iterative unfolding
of the transition relation T computed in Line 4, look-
ing for an element F8 from D. If such an element is
found in reach 8 , we extract a model of the original
word equation by starting a backward run from F8 , computing pre-images F8−1, . . . , F1

over transformers TG� UG and TG� Y (restricting them to reach 9 for every F 9), while
updating values of the variables according to the transformation that was performed.

Our first instantiation of the algorithm is for checking satisfiability of a single
quadraticword equation eq : tℓ = tA .We instantiate theRMCproblemwith (Ieq ,T eq

G� UG∪
T eq
G� Y ,Deq) defined in Fig. 5.

Lemma 5. The relations T eq
G� UG and T eq

G� Y are rational.

Lemma 6. If eq : tℓ = tA is quadratic then Algorithm 1 instantiatedwith (Ieq ,T eq
G� UG∪

T eq
G� Y ,Deq) is sound and complete.

4 Solving a System of Word Equations using RMC

In the previous section we described how to solve a single quadratic word equation in
the RMC framework. In this section we focus on an extension of this approach to handle
a system of word equationsΦ : t1

ℓ
= t1A ∧ t2ℓ = t2A ∧ . . .∧ t=ℓ = t=A . In the first step we need

to encode the systemΦ as a regular language. For this we extend the encode function to
a system of word equations by defining

encode(Φ) = encode(t1ℓ , t
1
A).

{(#
#

)}
.

{(#
#

)}
.encode(t=ℓ , t

=
A), (5)

where # is a delimiter symbol, # ∉ ΣX. From Lemma 3 we know that encode(t8
ℓ
, t8A)

is regular for all 1 ≤ 8 ≤ =. Moreover, since regular languages are closed under
concatenation (Proposition 1), the set encode(Φ) is also regular. Because each equation
is now separated by a delimiter, we need to extend the destination set to

{(
�

�

)
,
(#
#

)}∗.
For the transition relation, we need to extend g≤8G� UG and g≤8G� Y from Section 3 to

support delimiters. An application of a rule G�UG on a system of equations can be
described as follows: the rule G�UG is applied on the first non-empty equation and the
rest of the equations are modified according to the substitution G ↦→ UG. The substitution
on the other equations is performed regardless of their first symbols. The procedure is
analogous for the rule G� Y. A series of applications of the rules can reduce the number
of equations, which then leads to a string in our encoding with a prefix from

{(
�

�

)
,
(#
#

)}∗.
The relation implementing G�UG or G� Y on an encoded system of equations skips
this prefix. Formally, the rule G�UG for a system of equations where every equation
has at most 8 occurrences of every variable is given by the following relation:

)
eqs ,8
G� UG =)skip .encode(g≤8G� UG).

({(#
#

)
↦→

(#
#

)}
.encode(gtrim ◦ g≤8G ↦→UG)

)∗
, (6)

where)skip =
{(

�

�

)
↦→

(
�

�

)
,
(#
#

)
↦→

(#
#

)}∗. The relation)eqs ,8
G� Y is defined similarly.

Lemma 7. The relations)eqs ,8
G� UG and)

eqs ,8
G� Y are rational.

4.1 Quadratic Case

Iq-eqs
Φ

= encode(Φ)
Dq-eqs =

{(
�

�

)
,
(#
#

)}∗
T q-eqs
G� UG =

⋃
G∈X,U∈ΣX

)
eqs ,2
G� UG

T q-eqs
G� Y =

⋃
G∈X

)
eqs ,2
G� Y

Fig. 6: RMC instantiation for
a system of quadratic equations

When Φ is quadratic, its satisfiability problem can
be reduced to an RMC problem (Iq-eqs

Φ
,T q-eqs
G� UG ∪

T q-eqs
G� Y ,Dq-eqs) where the items are defined in Fig. 6.
Rationality ofT q-eqs

G� UG andT q-eqs
G� Y follows directly

from Proposition 1. The soundness and completeness
of our procedure for a system of quadratic word equa-
tions is summarized by the following lemma.

Lemma 8. If Φ is quadratic then Algorithm 1 in-
stantiated with (Iq-eqs

Φ
,T q-eqs
G� UG ∪ T q-eqs

G� Y ,Dq-eqs) is
sound and complete.

Input: System of word equations Φ
Output: Equisatisfiable cubic system of word equations Ψ

1 Ψ := Φ;
2 while There is a word variable G that occurs more than three times in Ψ do
3 Replace two occurrences of G in Φ by a fresh string variable G′ to obtain a new

system Ψ′;
4 Ψ := Ψ′ ∧ G = G′;
5 return Ψ;

Algorithm 2: Transformation to a cubic system of equations

4.2 General Case

Let us now consider the general case when the systemΦ is not quadratic. In this section,
we show that this general case is also reducible to an extended version of RMC.

We first apply Algorithm 2 to a general system of string constraints Φ to get an
equisatisfiable cubic system of word equations Φ′. Then we can use the transition
relations)eqs ,3

G� UG and)
eqs ,3
G� Y to construct transformations of the encoded system Φ′.

Lemma 9. Any system of word equations can be transformed by Algorithm 2 to an
equisatisfiable cubic system of word equations.

One more issue we need to solve is to make sure that we work with a cubic system
of word equations in every step of our algorithm. It may happen that a transformation
of the type G� HG increases the number of occurrences of the variable H by one, so if
there had already been three occurrence of H before the transformation, the result will
not be cubic any more.

Ieqs
Φ

= encode(Φ′)
Deqs =

{(
�

�

)
,
(#
#

)}∗
T E8 ,eqsG� UG =)CE8 ◦

⋃
G∈X,U∈ΣX

)
eqs ,3
G� UG

T E8 ,eqsG� Y =)CE8 ◦
⋃
G∈X

)
eqs ,3
G� Y

Fig. 7: RMC instantiation for
a system of cubic equations

More specifically, assume a cubic system of word
equations G.tℓ = H.tA ∧ Φ, where G and H are string
variables and tℓ and tA are word terms. If we apply
the transformation G� HG, we will obtain G(tℓ [G ↦→
HG]) = tA [G ↦→ HG] ∧ Φ[G ↦→ HG]. Observe that
(1) the number of occurrences of H is first reduced
by one because the first H on the right-hand side of
G.tℓ = H.tA is removed and (2) then the number of
occurrences of H can be at most increased by two
because there exist at most two occurrences of G in
tℓ , tA , and Φ. Therefore, after the transformation G� HG, a cubic system of word
equations might become (H-)quartic system of word equations (at most four occurrences
of the variable H and at most three occurrences of any other variable).

Given a fresh variable E, we use CE to denote the transformation from a single-quartic
system of word equations to a cubic system of equations.

Lemma 10. The relation)CE performing the transformation CE on an encoded single-
quartic system of equations is rational.

To express solving a system of string constraints Φ in the terms of a (modified) RMC,
we first convert Φ (using Algorithm 2) to an equisatisfiable cubic system Φ′. The

satisfiability of a system of word equations Φ can be reduced to a modified RMC
problem (Ieqs

Φ
,T E8 ,eqsG� UG ∪ T E8 ,eqsG� Y ,Deqs) instantiating Algorithm 1 with components

given in Fig. 7.
For the modified RMC algorithm, we need to assume E8 ∉ ΣX. We also need to

update Line 4 of Algorithm 1 to T E8 := T E8G� UG ∪ T E8G� Y and Line 10 to reach 8+1 :=
T E8 (reach 8); X := X ∪ {E8}; to allow using a new variable E8 in every iteration.
Rationality of T E8 ,eqsG� UG and T E8 ,eqsG� Y follows directly from Proposition 1.

Lemma 11. The modified Algorithm 1 instantiated with (Ieqs
Φ

,T E8 ,eqsG� UG∪T E8 ,eqsG� Y ,Deqs)
is sound if Φ is cubic.

Completeness. Since Nielsen transformation does not guarantee termination for the
general case, neither does our algorithm. Investigation of possible symbolic encodings
of complete algorithms, e.g. Makanin’s algorithm [34], is our future work.

5 Handling a Boolean Combination of String Constraints

In this section, we will extend the procedure from handling a conjunction of word equa-
tions into a procedure that handles their arbitrary Boolean combination. The negation
of word equations can be handled in the standard way. For instance, we can use the
approach in [4] to convert a negated word equation tℓ ≠ tA to the string constraint∨

2∈Σ
(tℓ = tA · 2G ∨ tℓ · 2G = tA) ∨

∨
21 ,22∈Σ,21≠22

(tℓ = G321G1 ∧ tA = G322G2). (7)

The first part of the constraint says that either tℓ is a strict prefix of tA or the other way
around. The second part says that tℓ and tA have a common prefix G3 and start to differ
in the next symbols 21 and 22. For word equations connected using ∧ and ∨, we apply
distributive laws to obtain an equivalent formula in the conjunctive normal form (CNF)
whose size is at worst exponential to the size of the original formula.

Let us now focus on how to express solving a string constraint Φ composed of
arbitrary Boolean combination of word equations using a (modified) RMC. We start by
removing inequalities inΦ using Eq. (7), then we convert the systemwithout inequalities
into CNF, and, finally, apply the procedure in Lemma 9 to convert the CNF formula to an
equisatisfiable and cubic CNFΦ′. For deciding satisfiability ofΦ′ in the terms of RMC,
both the transition relations and the destination set remain the same as in Section 4.2.
The only difference is the initial configuration because the system is not a conjunction of
terms any more but rather a general formula in CNF. For this, we extend the definition of
encode to a clause 2 = (t1

ℓ
= t1A ∨ . . .∨ t=ℓ = t=A) as encode(2) =

⋃
1≤ 9≤= encode(t

9

ℓ
, t
9
A).

Then the initial configuration for Φ′ is given as

Isc
Φ′ = encode(21).

{(#
#

)}
.

{(#
#

)}
.encode(2<), (8)

where Φ′ is of the form Φ′ : 21 ∧ . . . ∧ 2< and each clause 28 is of the form 28 = (t1ℓ =
t1A ∨ . . . ∨ t

=8
ℓ
= t=8A). We obtain the following lemma directly from Proposition 1.

Lemma 12. The initial set Isc
Φ′ is regular.

0 0

Σ \ {0} Σ \ {0}

(a) An FA A0 for 0 ∈ Σ.

>, G ← ℓ G = ℓ

G ≠ ℓ G ≠ ℓ

(b) The FRT R; ℓ denotes the input symbol.

Fig. 8: Automata accepting !

The transition relation and the destination set are the same as the ones in the previous
section, i.e., T E8 ,scG� UG = T E8 ,eqsG� UG , T E8 ,scG� Y = T E8 ,eqsG� Y , and Dsc = Deqs . The soundness
of our procedure for a Boolean combination of word equations is summarized by the
following lemma.
Lemma 13. Given a Boolean combination of word equations Φ, Algorithm 1 instanti-
ated with (Isc

Φ′ ,T
E8 ,sc
G� UG ∪ T E8 ,scG� Y ,Dsc) is sound.

6 Implementation

We created a prototype Python tool called Retro, where we implemented the symbolic
procedure for solving systems of word equations. Retro implements a modification of
the RMC loop from Algorithm 1. In particular, instead of standard transducers defined
in Section 2, it uses the so-called finite-alphabet register transducers (FRTs), which
allow a more concise representation of a rational relation.

Informally, an FRT is a register automaton (in the sense of [25]) where the alphabet is
finite. The finiteness of the alphabet implies that the expressive power of FRTs coincides
with the class of regular languages, but the advantage of using FRTs is that they allow
a more concise representation than FAs.

In particular, transducers (without registers) corresponding to the transformers
TG� UG and TG� Y contain branching at the beginning for each choice of G and U.
Especially in the case of huge alphabets, this yields huge transducers (consider for
instance the Unicode alphabet with over 1 million symbols). The use of FRTs yields
much smaller automata because the choice of G and U is stored into registers and then
processed symbolically. To illustrate the effect of using registers, consider the following
example.

Example 6. Consider the language ! = { F ∈ Σ∗ | |F | ≥ 1 ∧ |F |F [1] ≤ 2 }. Fig. 8a
shows an FA A0 accepting words starting with 0 and having at most two occurrences
of 0 (it corresponds to a single choice of the first symbol in !). We obtain the FAA for
! as the union of all choices, i.e., A =

⋃
0∈ΣA0 (A has 1 + 2|Σ| states). On the other

hand, Fig. 8b shows an FRT R accepting ! with just 3 states (for any alphabet size). ut
As another feature, Retro uses deterministic FAs (i.e., FAs having for each state

and each symbol at most one successor and having a single initial state) to represent
configurations in Algorithm 1. It also uses eager automata minimization, since it has
a big impact on the performance, especially on checking the termination condition of
the RMC algorithm, which is done by testing language inclusion between the current
configuration and all so-far processed configurations.

0

5

10

15

0 100 200 300 400
Benchmarks

Ti
m
e
[s
]

CVC4

Retro

Z3

Fig. 9: A cactus plot comparing Retro, CVC4, and Z3 on the Kepler22 benchmark

7 Experimental Evaluation

Wecompared the performance of our approach (implemented inRetro)with two current
state-of-the-art SMT solvers that support the string theory: Z3 4.8.7 and CVC4 1.7.

The first set of benchmarks is Kepler22, obtained from [29]. Kepler22 contains
600 hand-crafted string constraints composed of quadratic word equations with length
constraints. In Fig. 9, we give a cactus plot of the results of the solvers on the Kepler22
benchmark set with the timeout of 20 s. The total numbers of the solved benchmarks
within the timeout were: 119 for Z3, 266 for CVC4, and 443 for Retro (out of which
179 could not be solved by CVC4). On this benchmark set,Retro can solve significantly
more benchmarks than both Z3 and CVC4.

The other set of benchmarks that we tried is PyEx-Hard. Here we want to see the
potential of integrating Retro with DPLL(T)-based string solvers, like Z3 or CVC4, as
a specific string theory solver. The input of this component is a conjunction of atomic
string formulae (e.g., GH = I1 ∧ I = 0G) that is a model of the Boolean structure of the
top-level formula. The conjunction of atomic string formulae is then, in several layers,
processed by various string theory solvers, which either add more conflict clauses or
return a model. To evaluate whether Retro is suitable to be used as “one of the layers”
of Z3 or CVC4’s string solver, we analyzed the PyEx benchmarks [42] and extracted
from it 967 difficult instances that neither CVC4 nor Z3 could solve in 10 seconds.
From those instances, we obtained 20,020 conjunctions of word equations that Z3’s
DPLL(T) algorithm sent to its string theory solver when trying to solve them. We call
those 20,020 conjunctions of word equations PyEx-Hard. We then evaluated the three
solvers on PyEx-Hard with the timeout of 20 s. Out of these, Z3 could not solve 3,232,
CVC4 could not solve 188, and Retro could not solve 3,099 instances.

Let us now closely look at the hard instances in the PyEx-Hard benchmark set, in
particular on the instances that either CVC4 or Z3 could not solve. These benchmarks
cannot be handled by the (several layers of) fast heuristics implemented in CVC4 and Z3,

0

5

10

15

20

19500 19600 19700 19800 19900 20000
Benchmarks

Ti
m
e
[s
]

VBS(Z3, CVC4, Retro)

VBS(Z3, CVC4)

Fig. 10: A cactus plot comparing the Virtual Best Solver with and without Retro on the
PyEx-Hard benchmark. We show ∼500 most difficult benchmarks (from 20,020).

which are sufficient to solve many benchmarks without the need to start applying the
case-split rule.5 The set contains the 3,232 benchmarks that Z3 could not solve within
20 seconds. Out of these, CVC4 could not solve 188 benchmarks (CVC4 could solve
every constraint that Z3 could solve), andRetro could not solve 568 benchmarks.When
we compared the solvers on the examples that Z3 and CVC4 failed to solve,Retro could
solve 2,664 examples (82.4%) out of those where Z3 failed and 111 examples (59.04%)
of those where CVC4 failed. In Fig. 10, we give a cactus plot of the Virtual Best Solver
on the benchmarks with and without Retro. Given a set of solvers (, we use +�((() to
denote the solver that would be obtained by taking, for each benchmark, the solver that is
the fastest on the given benchmark. The graph shows that our approach can significantly
help solvers deal with hard equations.

Discussion. From the obtained results, we see that our approach works well in hard
cases, where the fast heuristics implemented in state-of-the-art solvers are not sufficient
to quickly discharge a formula, in particular when the (un)satisfiability proof is complex.
Our approach can exploit the symbolic representation of the proof tree and use it to reduce
the redundancy of performing transformations. Note that we can still beat the heavily
optimized Z3 and CVC4 written in C++ by a Python tool in those cases. We believe
that implementing our symbolic algorithm as a part of a state-of-the-art SMT solver
would push the applicability of string solving even further, especially for cases of string
constraints with a complex structure, which need to solve multiple DPLL(T) queries in
order to establish the (un)satisfiability of a string formula.

5 For instance, when Z3 receives the word equation GH = H0G, it infers the length constraint
|G | + |H | = |H | + 1 + |G |, which implies unsatisfiability of the word equation without the need to
start applying the case-split rule at all.

8 Related Work

The study of solving string constraint traces back to 1946, when Quine [41] showed that
the first-order theory of word equations is undecidable. Makanin achieved a milestone
result in [34], where he showed that the class of quantifier-free word equation is decid-
able. Since then, several works, e.g., [4,6,8,15,16,19,20,32,35,39,40,43,44], consider
the decidability and complexity of different classes of string constraints. Efficient solving
of satisfiability of string constraints is a challenging problem. Moreover, decidability of
the problem of satisfiability of word equations combined with length constraints of the
form |G | = |H | has already been open for over 20 years [14].

The strong practical motivation led to the rise of several string constraint solvers that
concentrate on solving practical problem instances. The typical procedure implemented
withinDPLL(T)-based string solvers [3,5,9,16,24,45,46,52,52] is to split the constraints
into simpler sub-cases based on how the solutions are aligned, combining with powerful
techniques for Boolean reasoning to efficiently explore the resulting exponentially-sized
search space. The case-split rule is usually performed explicitly. In contrast, our approach
performs case-splits symbolically.

A related topic is about automata-based string solvers for analyzing string-manipu-
lating programs.ABC [7] and Stranger [49] soundly over-approximates string constraints
using transducers [51]. The main difference of these approaches to ours is that they use
transducers to encode possible models (solutions) to the string constraints, while we use
automata and transducers to encode the string constraint transformations.

Acknowledgment. We thank the anonymous reviewers for helpful comments on how to
improve the paper and Mohamed Faouzi Atig for discussing the topic. This work has
been partially supported by the Guangdong Science and Technology Department (grant
no. 2018B010107004), by the National Natural Science Foundation of China (grant
nos. 61761136011, 61532019, 61836005), the Czech Ministry of Education, Youth
and Sports project LL1908 of the ERC.CZ programme, the Czech Science Foundation
project 20-07487S, the FIT BUT internal project FIT-S-20-6427, and the project of
Ministry of Science and Technology, Taiwan (grant nos. 109-2628-E-001-001-MY3
and 106-2221-E-001-009-MY3).

References

1. Abdulla, P.A.: Regular model checking. STTT 14(2), 109–118 (2012)
2. Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Holík, L., Rezine, A., Rümmer, P.: Flatten

and conquer: a framework for efficient analysis of string constraints. In: PLDI. pp. 602–617
(2017)

3. Abdulla, P.A., Atig, M.F., Chen, Y.F., Diep, B.P., Holík, L., Rezine, A., Rümmer, P.: Trau:
SMT solver for string constraints. In: FMCAD. pp. 1–5 (2018)

4. Abdulla, P.A., Atig, M.F., Chen, Y.F., Holík, L., Rezine, A., Rümmer, P., Stenman, J.: String
constraints for verification. In: CAV. pp. 150–166 (2014)

5. Abdulla, P.A., Atig, M.F., Chen, Y.F., Holík, L., Rezine, A., Rümmer, P., Stenman, J.: Norn:
An SMT solver for string constraints. In: CAV. pp. 462–469 (2015)

6. Abdulla, P.A., Atig, M.F., Diep, B.P., Holík, L., Janků, P.: Chain-free string constraints. In:
ATVA. pp. 277–293 (2019)

7. Aydin, A., Eiers, W., Bang, L., Brennan, T., Gavrilov, M., Bultan, T., Yu, F.: Parameterized
model counting for string and numeric constraints. In: SIGSOFT. pp. 400–410 (2018)

8. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations. arXiv preprint
arXiv:1304.4150 (2013)

9. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,
Tinelli, C.: Cvc4. In: CAV. pp. 171–177 (2011)

10. Berstel, J.: Transductions and context-free languages. Vieweg+Teubner Verlag (1979)
11. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-manipulating

programs. In: TACAS. pp. 307–321 (2009)
12. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree) model

checking. STTT 14(2), 167–191 (2012)
13. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: CAV. pp.

403–418 (2000)
14. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and undecidable

extensions of this theory. In: The Collected Works of J. Richard Büchi, pp. 671–683 (1990)
15. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string constraints

with the ReplaceAll function. PACMPL 2(POPL), 3:1–3:29 (2018)
16. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path feasibility

of string-manipulating programs with complex operations. PACMPL 3(POPL), 49 (2019)
17. Diekert, V.: Makanin’s Algorithm, pp. 387–442 (2002)
18. Durnev, V.G., Zetkina, O.V.: On equations in free semigroups with certain constraints on

their solutions. J. Math. Sci. 158(5), 671–676 (2009)
19. Ganesh, V., Berzish, M.: Undecidability of a theory of strings, linear arithmetic over length,

and string-number conversion. arXiv preprint arXiv:1605.09442 (2016)
20. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length con-

straints: what’s decidable? In: HVC. pp. 209–226 (2012)
21. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing. In: PLDI.

pp. 213–223 (2005)
22. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. In: PLDI.

pp. 62–73 (2011)
23. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In: PLDI

(2008)
24. Holík, L., Janků, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with concatenation

and transducers solved efficiently. PACMPL 2(POPL), 4 (2018)
25. Kaminski, M., Francez, N.: Finite-memory automata. TCS 134(2), 329–363 (1994)
26. Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeĳer, P., Ernst, M.D.: HAMPI: A solver

for word equations over strings, regular expressions, and context-free grammars. TOSEM
21(4), 25:1–25:28 (2012)

27. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
28. Kosovskii, N.K.: Properties of the solutions of equations in a free semigroup. J. Math. Sci.

6(4) (1976)
29. Le, Q.L., He, M.: A decision procedure for string logic with quadratic equations, regular

expressions and length constraints. In: APLAS. pp. 350–372 (2018)
30. Levi, F.W.: On semigroups. Bulletin of the Calcutta Math. Soc. 36, 141–146 (1944)
31. Liang, T., Reynolds, A., Tinelli, C., Barrett, C.W., Deters, M.: A DPLL(T) theory solver for

a theory of strings and regular expressions. In: CAV. pp. 646–662 (2014)
32. Lin, A.W., Barceló, P.: String solving with word equations and transducers: towards a logic

for analysing mutation XSS. In: POPL. pp. 123–136 (2016)
33. Lin, A.W., Majumdar, R.: Quadratic word equations with length constraints, counter systems,

and Presburger arithmetic with divisibility. In: ATVA. pp. 352–369 (2018)

34. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matematicheskii
Sbornik 145(2), 147–236 (1977)

35. Matiyasevich, Y.: Computation paradigms in light of Hilbert’s tenth problem. In: New com-
putational paradigms, pp. 59–85 (2008)

36. Matiyasevich, Y.V.: A connection between systems of word and length equations andHilbert’s
tenth problem. Zap. Nauchnykh Semin. POMI 8, 132–144 (1968)

37. Nielsen, J.: Die isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden.
Mathematische Annalen 78(1), 385–397 (1917)

38. Osera, P.M.: Constraint-based type-directed program synthesis. In: TyDe. pp. 64–76 (2019)
39. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In: FOCS. pp.

495–500 (1999)
40. Plandowski, W.: An efficient algorithm for solving word equations. In: STOC. pp. 467–476

(2006)
41. Quine, W.V.: Concatenation as a basis for arithmetic. JSYML 11(4), 105–114 (1946)
42. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling up DPLL(T)

string solvers using context-dependent simplification. In: CAV. pp. 453–474 (2017)
43. Robson, J.M., Diekert, V.: On quadratic word equations. In: STACS. pp. 217–226 (1999)
44. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a generaliza-

tion. In: IWWERT. pp. 85–150 (1990)
45. Trinh, M.T., Chu, D.H., Jaffar, J.: S3: A symbolic string solver for vulnerability detection in

web applications. In: CCS. pp. 1232–1243 (2014)
46. Trinh, M.T., Chu, D.H., Jaffar, J.: Progressive reasoning over recursively-defined strings. In:

CAV. pp. 218–240 (2016)
47. Wang, H., Tsai, T., Lin, C., Yu, F., Jiang, J.R.: String analysis via automata manipulation with

logic circuit representation. In: CAV. pp. 241–260 (2016)
48. Wang, Y., Zhou, M., Jiang, Y., Song, X., Gu, M., Sun, J.: A static analysis tool with opti-

mizations for reachability determination. In: ASE. pp. 925–930 (2017)
49. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An automata-based string analysis tool for php. In:

TACAS. pp. 154–157 (2010)
50. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string analysis for

vulnerability detection. FMSD 44(1), 44–70 (2014)
51. Yu, F., Shueh, C.Y., Lin, C.H., Chen, Y.F., Wang, B.Y., Bultan, T.: Optimal sanitization

synthesis for web application vulnerability repair. In: ISSTA. pp. 189–200 (2016)
52. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Berzish, M., Dolby, J., Zhang, X.: Z3str2:

an efficient solver for strings, regular expressions, and length constraints. FMSD 50(2-3),
249–288 (2017)

	A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving

