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Abstract. Complementation of Büchi automata is an essential tech-
nique used in some approaches for termination analysis of programs.
The long search for an optimal complementation construction climaxed
with the work of Schewe, who proposed a worst-case optimal rank-based
procedure that generates complements of a size matching the theoretical
lower bound of (0.76n)n, modulo a polynomial factor of O(n2). Although
worst-case optimal, the procedure in many cases produces automata that
are unnecessarily large. In this paper, we propose several ways of how
to use the direct and delayed simulation relations to reduce the size of
the automaton obtained in the rank-based complementation procedure.
Our techniques are based on either (i) ignoring macrostates that can-
not be used for accepting a word in the complement or (ii) saturating
macrostates with simulation-smaller states, in order to decrease their to-
tal number. We experimentally showed that our techniques can indeed
considerably decrease the size of the output of the complementation.

1 Introduction

Büchi automata (BA) complementation is a fundamental problem in program
analysis and formal verification, from both theoretical and practical angles. It is,
for instance, a critical step in some approaches for termination analysis, which is
an essential part of establishing total correctness of programs [14,19,9]. Moreover,
BA complementation is used as a component of decision procedures of some
logics for reasoning about programs, such as S1S capturing a decidable fragment
of second-order arithmetic [6] or the temporal logics ETL and QPTL [35].

The study of the BA complementation problem can be traced back to 1962,
when Büchi introduced his automaton model in the seminal paper [6] in the con-
text of a decision procedure for the S1S fragment of second-order arithmetic. In
the paper, a doubly exponential complementation algorithm based on the infinite
Ramsey theorem is proposed. In 1988, Safra [32] introduced a complementation
procedure with an nO(n) upper bound and, in the same year, Michel [28] es-
tablished an n! lower bound. From the traditional theoretical point of view, the
problem was already solved, since exponents in the two bounds matched under
the O notation (recall that n! is approximately (n/e)n). From a more practi-
cal point of view, a linear factor in an exponent has a significant impact on
real-world applications. It was established that the upper bound of Safra’s con-
struction is 22n, so the hunt for an optimal algorithm continued [38]. A series



of research efforts participated in narrowing the gap [24,15,39,23,41]. The long
journey climaxed with the result of Schewe [33], who proposed an optimal rank-
based procedure that generates complements of a size matching the theoretical
lower bound of (0.76n)n found by Yan [41], modulo a polynomial factor of O(n2).

Although the algorithm of Schewe is worst-case optimal, it often generates un-
necessarily large complements. The standard approach to alleviate this problem
is to decrease the size of the input BA before the complementation starts. Since
minimization of (nondeterministic) BAs is a PSpace-complete problem, more
lightweight reduction methods are necessary. The most prevalent approaches
are those based on various notions of simulation-based reduction, such as re-
ductions based on direct simulation [7,36], a richer delayed simulation [12],
or their multi-pebble variants [13]. These approaches first compute a simula-
tion relation over the input BA—which can be done with the time complexity
O(mn) [20,22,30,31,8] and O(mn3) [12] for direct and delayed simulation re-
spectively, with the number of states n and transitions m—and then construct
a quotient BA by merging simulation-equivalent states, while preserving the
language of the input BA. The other approach is a reduction based on fair sim-
ulation [18]. The fair simulation cannot, however, be used for quotienting, but
still it can be used for merging certain states and removing transitions. The re-
duced BA is used as the input of the complementation, which often significantly
reduces the size of the result.

In this paper, we propose several ways of how to exploit the direct and delayed
simulations in BA complementation even further to obtain smaller complements
and shorter running times. We focus, in particular, on the optimal rank-based
complementation procedure of Schewe [33]. Essentially, the rank-based construc-
tion is an extension of traditional subset construction for determinizing finite
automata, with some additional information kept in each macrostate (a state in
the complemented BA) to track the acceptance condition of all runs of the in-
put automaton on a given word. In particular, it stores the rank of each state in
a macrostate, which, informally, measures the distance to the last accepting state
on the corresponding run in the input BA. The main contributions of this paper
are the following optimisations of rank-based complementation for BAs, for an
input BA A and the output of the rank-based complementation algorithm B.

1. Purging : We use simulation relations over A to remove some useless macro-
states during the construction of B. In particular, if a state p is simulated
by q in A, this puts a restriction on the relation between the ranks of runs
from p and from q. As a consequence, macrostates that assign ranks violating
this restriction can be purged from B.

2. Saturation: We saturate macrostates with states that are simulated by the
macrostate; this can reduce the total number of states of B because two
or more macrostates can be mapped to a single saturated macrostate. This
is inspired by the technique of Glabbeek and Ploeger that uses closures in
finite automata determinization [17].

The proposed optimizations are orthogonal to simulation-based size reduction
mentioned above. Since the quotienting methods are based on taking only the
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symmetric fragment of the simulation, i.e., they merge states that simulate each
other, after the quotienting, there might still be many pairs where the simulation
holds in only one way, and can therefore be exploited by our techniques. Since
the considered notions of simulation-based quotienting preserve the respective
simulations, our techniques can be used to optimize the complementation at no
additional cost. Our experimental evaluation of the optimizations showed that in
many cases, they indeed significantly reduce the size of the complemented BA.

2 Preliminaries

We fix a finite nonempty alphabet Σ and the first infinite ordinal ω = {0, 1, . . .}.
For n ∈ ω, by [n] we denote the set {0, . . . , n}. An (infinite) word α is represented
as a function α : ω → Σ where the i-th symbol is denoted as αi. A finite word w
of length n + 1 is represented as a function w : [n] → Σ. The finite word of
length 0 is denoted as ε. We abuse notation and sometimes also represent α as
an infinite sequence α = α0α1 . . . and w as a finite sequence w = w0 . . . wn−1.
The suffix αiαi+1 . . . of α is denoted by αi:ω. We use Σω to denote the set
of all infinite words over Σ and Σ∗ to denote the set of all finite words. For
L ⊆ Σ∗ we define L∗ = {u ∈ Σ∗ | u = w1 · · ·wn ∧ ∀1 ≤ i ≤ n : wi ∈ L} and
Lω = {α ∈ Σω | α = w1w2 · · · ∧ ∀i ≥ 1 : wi ∈ L} (note that {ε}ω = ∅). Given
L1, L2 ⊆ Σ∗, we use L1L2 to denote the set {w1w2 | w1 ∈ L1, w2 ∈ L2}.

A (nondeterministic) Büchi automaton (BA) over Σ is a quadruple A =
(Q, δ, I, F ) where Q is a finite set of states, δ is a transition function δ : Q×Σ →
2Q, and I, F ⊆ Q are the sets of initial and accepting states respectively. We
sometimes treat δ as a set of transitions p

a−→ q, for instance, we use p
a−→ q ∈ δ

to denote that q ∈ δ(p, a). Moreover, we extend δ to sets of states P ⊆ Q
as δ(P, a) =

⋃
p∈P δ(p, a). A run of A from q ∈ Q on an input word α is an

infinite sequence ρ : ω → Q that starts in q and respects δ, i.e., ρ0 = q and
∀i ≥ 0 : ρi

αi−→ ρi+1 ∈ δ. We say that ρ is accepting iff it contains infinitely many
occurrences of some accepting state, i.e., ∃qf ∈ F : |{i ∈ ω | ρi = qf}| = ω.
A word α is accepted by A from a state q ∈ Q if there is an accepting run ρ of
A from q, i.e., ρ0 = q. The set LA(q) = {α ∈ Σω | A accepts α from q} is called
the language of q (in A). Given a set of states R ⊆ Q, we define the language
of R as LA(R) =

⋃
q∈R LA(q) and the language of A as L(A) = LA(I). For

a pair of states p and q in A, we use p ⊆L q to denote LA(p) ⊆ LA(q).
Without loss of generality, in this paper, we assume A to be complete, i.e.,

for every state q and symbol a, it holds that δ(q, a) 6= ∅. A trace over a word α

is an infinite sequence π = q0
α0−→ q1

α1−→· · · such that ρ = q0q1 . . . is a run of A
over α from q0. We say π is fair if it contains infinitely many accepting states.
Moreover, we use p

w
 q for w ∈ Σ∗ to denote that q is reachable from p over

the word w; if a path from p to q over w contains an accepting state, we can
write p

w
 
F
q. In this paper, we fix a complete BA A = (Q, δ, I, F ).

2.1 Simulations

We introduce simulation relations between states of a BA A using the game se-
mantics in a similar manner as in the extensive study of Clemente and Mayr [26].
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In particular, in a simulation game between two players (called Spoiler and Du-
plicator) in A from a pair of states (p0, r0), for any (infinite) trace over a word α
that Spoiler takes starting from p0, Duplicator tries to mimic the trace starting
from r0. On the other hand, Spoiler tries to find a trace that Duplicator can-
not mimic. The game starts in the configuration (p0, r0) and every i-th round

proceeds by, first, Spoiler choosing a transition pi
αi−→ pi+1 and, second, Du-

plicator mimicking Spoiler by choosing a matching transition ri
αi−→ ri+1 over

the same symbol αi. The next game configuration is (pi+1, ri+1). Suppose that

πp = p0
α0−→ p1

α1−→· · · and πr = r0
α0−→ r1

α1−→· · · are the two (infinite) traces
constructed during the game. Duplicator wins the simulation game if Cx(πp, πr)
holds, where Cx(πp, πr) is a condition that depends on the particular simulation.
In the current paper, we consider the following simulation relations:

– direct [11]: Cdi(πp, πr)
def⇐⇒ ∀i : pi ∈ F ⇒ ri ∈ F,

– delayed [12]: Cde(πp, πr)
def⇐⇒ ∀i : pi ∈ F ⇒ ∃k ≥ i : rk ∈ F, and

– fair [21]: Cf (πp, πr)
def⇐⇒ if πp is fair, then πr is fair.

A maximal x-simulation relation �x ⊆ Q×Q, for x ∈ {di , de, f}, is defined
such that p �x r iff Duplicator has a winning strategy in the simulation game
with the winning condition Cx starting from (p, r). Formally, we define a strategy

to be a (total) mapping σ : Q×(Q×Σ×Q)→ Q such that σ(r, p
a−→ p′) ∈ δ(r, a),

i.e., if Duplicator is in state r and Spoiler selects a transition p
a−→ p′, the strategy

picks a state r′ such that r
a−→ r′ ∈ δ (and because A is complete, such a transition

always exists). Note that Duplicator cannot look ahead at Spoiler’s future moves.
We use σx to denote any winning strategy of Duplicator in the Cx simulation
game. Let σx and σ′x be a pair of winning strategies in the Cx simulation game.

We say that σx is dominated by σ′x if for all states p and all transitions q
a−→ q′ it

holds that σx(p, q
a−→ q′) �x σ′x(p, q

a−→ q′), and that σx is strictly dominated by σ′x
if σx is dominated by σ′x and σx does not dominate σ′x. A strategy is dominating
if it is not strictly dominated by any other strategy. Strategies are also lifted
to traces as follows: let πp be as above, then σ(r0, πp) = r0

α0−→ r1
α1−→· · · where

for all i ≤ 0 it holds that σ(ri, pi
αi−→ pi+1) = ri+1. The considered simulation

relations form the following hierarchy: �di ⊆ �de ⊆ �f ⊆ ⊆L . Note that
every maximal simulation relation is a preorder, i.e., reflexive and transitive.

2.2 Run DAGs

In this section, we recall the terminology from [33] (which is a minor modification
of the terminology from [24]). We fix the definition of the run DAG of A over
a word α to be a DAG (directed acyclic graph) Gα = (V,E) of vertices V and
edges E where

– V ⊆ Q× ω s.t. (q, i) ∈ V iff there is a run ρ of A over α with ρi = q,
– E ⊆ V × V s.t. ((q, i), (q′, i′)) ∈ E iff i′ = i+ 1 and q′ ∈ δ(q, αi).

Given Gα as above, we will write (p, i) ∈ Gα to denote that (p, i) ∈ V . We call
(p, i) accepting if p is an accepting state. Gα is rejecting if it contains no path
with infinitely many accepting vertices. A vertex (p, i) ∈ Gα is finite if the set of
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vertices reachable from (p, i) is finite, infinite if it is not finite, and endangered
if (p, i) cannot reach an accepting vertex.

We assign ranks to vertices of run DAGs as follows: Let G0α = Gα and j = 0.
Repeat the following steps until the fixpoint or for at most 2n+ 1 steps, where
n is the number of states of A.

– Set rankα(p, i) := j for all finite vertices (p, i) of Gjα and let Gj+1
α be Gjα

minus the vertices with the rank j.
– Set rankα(p, i) := j+1 for all endangered vertices (p, i) of Gj+1

α and let Gj+2
α

be Gj+1
α minus the vertices with the rank j + 1.

– Set j := j + 2.

For all vertices v that have not been assigned a rank yet, we assign rankα(v) := ω.
(Note that since A is complete, then G1α = G0α.)

Lemma 1. If α /∈ L(A), then 0 ≤ rankα(v) ≤ 2n for all v ∈ Gα. Moreover, if
α ∈ L(A), then there is a vertex (p, 0) ∈ Gα s.t. rankα(p, 0) = ω.

Proof. Follows from Corollary 3.3 in [24]. ut

3 Complementing Büchi Automata

We use as the starting point the complementation procedure of Schewe [33,
Section 3.1], which we denote as CompS (the ‘S’ stands for ‘Schewe’). The pro-
cedure works with the notion of level rankings. Given n = |Q|, a (level) ranking
is a function f : Q → [2n] such that {f(qf ) | qf ∈ F} ⊆ {0, 2, . . . , 2n}, i.e.,
f assigns even ranks to accepting states of A.3 For a ranking f , the rank of f
is defined as rank(f) = max{f(q) | q ∈ Q}. For a set of states S ⊆ Q, we call f
to be S-tight if (i) it has an odd rank r, (ii) {f(s) | s ∈ S} ⊇ {1, 3, . . . , r}, and
(iii) {f(q) | q /∈ S} = {0}. A ranking is tight if it is Q-tight; we use T to denote
the set of all tight rankings. For a pair of rankings f and f ′, a set S ⊆ Q, and
a symbol a ∈ Σ, we use f ′ ≤Sa f iff for every q ∈ S and q′ ∈ δ(q, a) it holds that
f ′(q′) ≤ f(q).

The CompS procedure constructs the BA BS = (Q′, δ′, I ′, F ′) whose compo-
nents are defined as follows:

– Q′ = Q1 ∪Q2 where
• Q1 = 2Q and
• Q2 ={(S,O, f, i) ∈ 2Q × 2Q × T × {0, 2, . . . , 2n− 2} |

f is S-tight, O ⊆ S ∩ f−1(i)},
– I ′ = {I},
– δ′ = δ1 ∪ δ2 ∪ δ3 where
• δ1 : Q1 ×Σ → 2Q1 such that δ1(S, a) = {δ(S, a)},

3 Note that our basic definitions slightly differs from the ones in Section 2.3 of [33].
This is because of a typo in [33]; indeed, if the procedure from [33] is implemented
as is, the output does not accept the complement (there might be a macrostate
(S,O, f) where S contains accepting states and O is empty, and, therefore, the
whole macrostate is accepting, which is wrong).
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• δ2 : Q1 × Σ → 2Q2 such that δ2(S, a) = {(S′, ∅, f, 0) | S′ = δ(S, a),
f is S′-tight}, and

• δ3 : Q2 × Σ → 2Q2 such that (S′, O′, f ′, i′) ∈ δ3((S,O, f, i), a) iff S′ =
δ(S, a), f ′ ≤Sa f , rank(f) = rank(f ′), f ′ is S′-tight, and
∗ i′ = (i+ 2) mod (rank(f ′) + 1) and O′ = f ′−1(i′) if O = ∅ or
∗ i′ = i and O′ = δ(O, a) ∩ f ′−1(i) if O 6= ∅, and

– F ′ = {∅} ∪ ((2Q × {∅} × T × ω) ∩Q2).

Intuitively, CompS is an extension of the classical subset construction for de-
terminization of finite automata. In particular, Q1, δ1, and I1 constitute the
deterministic finite automaton obtained from A using the subset construction.
The automaton can, however, nondeterministically guess a point at which it will
make a transition to a macrostate (S,O, f, i) in the Q2 part; this guess corre-
sponds to a level in the run DAG of the accepted word from which the ranks of
all levels form an S-tight ranking, where the S component of the macrostate is
again a subset from the subset construction. In the Q2 part, BS makes sure that
in order for a word to be accepted by BS , all runs of A over the word need to
touch an accepting state only finitely many times. This is ensured by the f com-
ponent, which, roughly speaking, maps states to ranks of corresponding vertices
in the run DAG over the given word. The O component is used for a standard
cut-point construction, and is used to make sure that all runs that have reached
an accepting state in A will eventually leave it (this can happen for different
runs at a different point). The S,O, and f components were already present
in [24]. The i component was introduced by Schewe to improve the complexity
of the construction; it is used to cycle over phases, where in each phase we focus
on cut-points of a different rank. See [33] for a more elaborate exposition.

Proposition 1 (Corollary 3.3 in [33]). L(BS ) = L(A).

4 Purging Macrostates with Incompatible Rankings

Our first optimisation is based on removing from BS macrostates (S,O, f, i) ∈
Q2 whose level ranking f assigns some states of S an unnecessarily high rank.
Intuitively, when S contains a state p and a state q such that p is (directly)
simulated by q, i.e. p �di q, then f(p) needs to be at most f(q). This is because
in any word α and its run DAG Gα in A, if p and q are at the same level i
of Gα, then the ranks of their vertices vp and vq at the given level are either
both ω (when α ∈ L(A)), or such that rankα(vp) ≤ rankα(vq) otherwise. This
is because, intuitively, the DAG rooted in vp in Gα is isomorphic to a subgraph
of the DAG rooted in vq.

Formally, consider the following predicate on macrostates of BS :

Pdi(S,O, f, i) iff ∃p, q ∈ S : p �di q ∧ f(p) > f(q). (1)

We modify CompS to purge macrostates that satisfy Pdi . That is, we create
a new procedure Purgedi obtained from CompS by modifying the definition
of BS such that all occurrences of Q2 are substituted by Qdi

2 and

Qdi
2 = Q2 \ {(S,O, f, i) ∈ Q2 | Pdi(S,O, f, i)}. (2)
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We denote the BA obtained from Purgedi as BdiS . The following lemma, proved
in Section 4.1 states the correctness of this construction.

Lemma 2. L(BdiS ) = L(BS )

The following natural question arises: Is it possible to extend the purging tech-
nique from direct simulation to other notions of simulation? For fair simulation,
this cannot be done. The reason is that, for a pair of states p and q s.t. p �f q,
it can happen that for a word β ∈ Σω, there can be a trace from p over β that
finitely many times touches an accepting state (i.e., a vertex of p in the corre-
sponding run DAG can have any rank between 0 and 2n), while all traces from q
over β can completely avoid touching any accepting state. From the point of
view of fair simulation, these are both unfair traces, and, therefore, disregarded.

On the other hand, delayed simulation—which is often much richer than
direct simulation—can be used, with a small change. Intuitively, the delayed
simulation can be used because p �de q guarantees that on every level of trees
in Gα rooted in vp and in vq respectively, the rank of the vertex vp is at most
by one larger than the rank of vertex vq (or by any number smaller). Formally,
let Pde be the following predicate on macrostates of BS :

Pde(S,O, f, i) iff ∃p, q ∈ S : p �de q ∧ f(p) > ddf(q)ee, (3)

where ddxee for x ∈ ω denotes the smallest even number greater or equal to x
and ddωee = ω. Similarly as above, we create a new procedure, called Purgede ,
which is obtained from CompS by modifying the definition of BS such that all
occurrences of Q2 are substituted by Qde

2 and

Qde
2 = Q2 \ {(S,O, f, i) ∈ Q2 | Pde(S,O, f, i)}. (4)

We denote the BA obtained from Purgede as BdeS .

Lemma 3. L(BdeS ) = L(BS )

The use of ddf(q)ee in Pde results in the fact that the two purging techniques are
incomparable. For instance, consider a macrostate ({p, q}, ∅, {p 7→ 2, q 7→ 1}, 0)
such that p �di q and p �de q. Then the macrostate will be purged in Purgedi ,
but not in Purgede .

The two techniques can, however, be easily combined into a third procedure
Purgedi+de , when Q2 is substituted in CompS with Qdi+de

2 defined as

Qdi+de
2 = Q2 \ {(S,O, f, i) ∈ Q2 | Pdi(S,O, f, i) ∨ Pde(S,O, f, i)}. (5)

We denote the resulting BA as Bdi+de
S .

Lemma 4. L(Bdi+de
S ) = L(BS )

4.1 Proofs of Lemmas 2, 3, and 4

We first give a lemma that an x-strategy σx preserves an x-simulation �x.

Lemma 5. Let �x be an x-simulation (for x ∈ {di , de, f }). Then, the following

holds: ∀p, q ∈ Q : p �x q ∧ p
a−→ p′ ∈ δ ⇒ ∃q′ ∈ Q : q

a−→ q′ ∈ δ ∧ p′ �x q′.
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Proof. Let p, q ∈ Q such that p �x q and p
a−→ p′ ∈ δ, and let πp be a trace starting

from p with the first transition p
a−→ p′. From the definition of x-simulation, there

is a winning Duplicator strategy σx; let πq = σx(q′, πp) and let q
a−→ q′ be the first

transition of πq. Let πp′ and πr′ be traces obtained from πp and πr by removing
their first transitions. It is easy to see that if Cx(πp, πr) then also Cx(πp′ , πr′)
for any x ∈ {di , de, f }. It follows that σx is also a winning Duplicator strategy
from (p′, r′). ut

Next, we focus on delayed simulation and the proof of Lemma 3. In the next
lemma, we show that if there is a pair of vertices on some level of the run
DAG where one vertex delay-simulates the other one, there exists a relation
between their rankings. This will be used to purge some useless rankings from
the complemented BA.

Lemma 6. Let p, q ∈ Q such that p �de q and Gα = (V,E) be the run DAG of
A over α. For all i ≥ 0, it holds that (p, i) ∈ V ∧ (q, i) ∈ V ⇒ rankα(p, i) ≤
ddrankα(q, i)ee.

Proof. Consider some (p, i) ∈ V and (q, i) ∈ V . First, suppose that rankα(q, i) =
ω. Since the rank can be at most ω, it will always hold that rankα(p, i) ≤
ddrankα(q, i)ee.

On the other hand, suppose that rankα(q, i) is finite, i.e., αi:ω is not accepted
by q. Then, due to Lemma 1, 0 ≤ rankα(q, i) ≤ 2n. Because p �de q, it holds
that αi:ω is also not accepted by p, and therefore also 0 ≤ rankα(p, i) ≤ 2n. We
now need to show that 0 ≤ rankα(p, i) ≤ ddrankα(q, i)ee ≤ 2n.

Let {Gkα}2n+1
k=0 be the sequence of run DAGs obtained from Gα in the ranking

procedure from Section 2.2. In the following text we use the abbreviation v ∈
Gmα \ Gnα for v ∈ Gmα ∧ v /∈ Gnα . Since the rank of a node (r, j) is given as the
number l s.t. (r, j) ∈ Glα \Gl+1

α , we will finish the proof of this lemma by proving
the following claim:

Claim. Let k and l be s.t. (p, i) ∈ Gkα \Gk+1
α and (q, i) ∈ Glα \Gl+1

α . Then k ≤ ddlee.
Proof: We prove the claim by induction on l.

– Base case: (l = 0) Since we assume A is complete, no vertex in G0α is finite.
(l = 1) We prove that if (q, i) is endangered in G1α, then (p, i) is endangered in
G1α as well (so both would be removed in G2α). For the sake of contradiction,
assume that (q, i) is endangered in G1α and (p, i) is not. Therefore, since
G1α contains no finite vertices, there is an infinite path π from (p, i) s.t. π
contains at least one accepting state. In the following, we abuse notation
and, given a strategy σde and a state s ∈ Q, use σde((s, i), π) to denote the
path (s0, i)(s1, i + 1)(s2, i + 2) . . . such that s0 = s and ∀j ≥ 0, it holds

that sj+1 = σde(sj , ri+j
αi+j−−−→ ri+j+1) where πx = (rx, x) for every x ≥ 0.

Since p �de q, there is a corresponding infinite path π′ = σde((q, i), π) that
also contains at least one accepting state. Therefore, (q, i) is not endangered,
a contradiction to the assumption, so we conclude that l = 1⇒ k = 1.

– Inductive step: We assume the claim holds for all l < 2j and prove the
inductive step for even and odd steps independently.
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(l = 2j) We prove that if (q, i) is finite in Glα (and therefore would be removed
in Gl+1

α ), then either (p, i) /∈ Glα, or (p, i) is also finite in Glα. For the sake of
contradiction, we assume that (q, i) is finite in Glα and that (p, i) is in Glα, but
is not finite there (and, therefore, k > l). Since (p, i) is not finite in Glα, there
is an infinite path π from (p, i) in Glα. Because p �de q, it follows that there is
an infinite path π′ = σde((q, i), π) in G0α (π′ is not in Glα because (q, i) is finite
there). Using Lemma 5 (possibly multiple times) and the fact that (q, i) is
finite, we can find vertices (p′, x) in π and (q′, x) in π′ s.t. p′ �de q

′ and (q′, x)
is not in Glα, therefore, (q′, x) ∈ Geα\Ge+1

α for some e < l. Because (p′, x) ∈ Glα
and it is not finite (π is infinite), it follows that (p′, x) ∈ Gfα \ Gf+1

α for some
f > l, and since e < l < f , we have that f 6≤ e+ 1, implying f 6≤ ddeee, which
is in contradiction to the induction hypothesis.
(l = 2j + 1) We prove that if (q, i) is endangered in Glα (and therefore
would be removed in Gl+1

α ), then either (p, i) /∈ Glα, or (p, i) is removed
at the latest in Gl+1

α . For the sake of contradiction, assume that (q, i) is
endangered in Glα while (p, i) is removed later than in Gl+1

α . Therefore, since
Glα contains no finite vertices (they were removed in the (l−1)-th step), there
is an infinite path π from (p, i) s.t. π contains at least one accepting state.
Because p �de q, there is a corresponding path π′ = σde((q, i), π) from (q, i)
in G0α that also contains at least one accepting state and moreover π′ /∈ Glα.
Since π′ has an infinite number of states (and at least one accepting), not
all states from π′ were removed in Gl−1α , i.e., there is at least one node with
rank less or equal to l− 2. Using Lemma 5 (also possibly multiple times) we
can hence find states (p′, x) in π and (q′, x) in π′ s.t. p′ �de q

′ and (q′, x) is
not in Glα and has a rank less or equal to l− 2, therefore, (q′, x) ∈ Geα \ Ge+1

α

for some e < l − 1. Because (p′, x) ∈ Glα, it follows that (p′, x) ∈ Gfα \ Gf+1
α

for some f ≥ l, and, therefore, f 6≤ e + 1, which is in contradiction to the
induction hypothesis. �

This concludes the proof. ut

Lemma 7. Let p, q ∈ Q such that p �di q and Gα = (V,E) be the run DAG of
A over α. For all i ≥ 0, it holds that (p, i) ∈ V ∧ (q, i) ∈ V ⇒ rankα(p, i) ≤
rankα(q, i).

Proof. Can be obtained as a simplified version of the proof of Lemma 6. ut

We are now ready to prove Lemma 3.

Lemma 3. L(BdeS ) = L(BS )

Proof. (⊆) Follows directly from the fact that BdeS is obtained by removing states
from BS .

(⊇) Let α ∈ L(BS ). As shown in the proof of Lemma 3.2 in [33], there are two
cases. The first case is when all vertices of Gα are finite, which we do not
need to consider, since we assume complete automata.
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The other case is when Gα contains an infinite vertex. In this case, BS con-
tains an accepting run

ρ = S0S1 . . . Sp(Sp+1, Op+1, fp+1, ip+1)(Sp+2, Op+2, fp+2, ip+2) . . .

with
• S0 = I,Op+1 = ∅, and ip+1 = 0,
• Sj+1 = δ(Sj , αj) for all j ∈ ω,

and, for all j > p,
• Oj+1 = f−1j+1(ij+1) if Oj = ∅ or

Oj+1 = δ(Oj , αj) ∩ f−1j+1(ij+1) if Oj 6= ∅, respectively,
• fj is the Sj-tight level ranking that maps each q ∈ Sj to the rank of

(q, j) ∈ Gα,
• ij+1 = ij if Oj 6= ∅ or
ij+1 = (ij + 2) mod (rank(f) + 1) if Oj = ∅, respectively.

The ranks assigned by fj to states of Sj match the ranks of the corresponding
vertices in Gα.
~ Using Lemma 6, we conclude that ρ contains no macrostate (S,O, f, j)
where f(p) > ddf(q)ee and p �de q for p, q ∈ S. Therefore, ρ is also an
accepting run in BdeS . (We use ~ to refer to this paragraph later.) ut

Lemma 2. L(BdiS ) = L(BS )

Proof. The same as for Lemma 3 with ~ substituted by the following:
~ Using Lemma 7, we conclude that ρ contains no macrostate (S,O, f, j) where
f(p) > f(q) and p �di q for p, q ∈ S. So ρ is also an accepting run in BdiS . ut

Lemma 4. L(Bdi+de
S ) = L(BS )

Proof. The same as for Lemma 3 with ~ substituted by the following:
~ Using Lemmas 7 and 6, we conclude that ρ contains no macrostate (S,O, f, j)
where either f(p) > f(q) and p �di q, or f(p) > ddf(q)ee and p �de q for p, q ∈ S.
Therefore, ρ is also an accepting run in Bdi+de

S . ut

5 Saturation of Macrostates

Our second optimisation is inspired by an optimisation of determinisation of
classical finite automata from [17, Section 5]. Their optimisation is based on
saturating every constructed macrostate in the classical subset construction with
all direct-simulation-smaller states. This can reduce the total number of states
of the determinized automaton because two or more macrostates can be mapped
to a single saturated macrostate. (In Section 5.2, we show why an analogue of
their compression cannot be used.)

We show that a similar technique can be applied to BAs. We do not restrain
ourselves to direct simulation, though, and generalize the technique to delayed
simulation. In particular, in our optimisation, we saturate the S components of
macrostates (S,O, f, i) obtained in CompS with all �de -smaller states. Formally,
we modify CompS by substituting the definition of the constructed transition
function δ′ with δ′Sat defined as follows:

10



– δ′Sat = δSat1 ∪ δSat2 ∪ δSat3 where
• δSat1 : Q1 ×Σ → 2Q1 with δSat1 (S, a) = {cl [δ(S, a)]},
• δSat2 : Q1 × Σ → 2Q2 with δSat2 (S, a) = {(S′, ∅, f, 0) | S′ = cl [δ(S, a)]},

and
• δSat3 : Q2 × Σ → 2Q2 with (S′, O′, f ′, i′) ∈ δSat3 ((S,O, f, i), a) iff S′ =

cl [δ(S, a)], f ′ ≤Sa f , rank(f) = rank(f ′), and
∗ i′ = (i+ 2) mod (rank(f ′) + 1) and O′ = f ′−1(i′) if O = ∅ or
∗ i′ = i and O′ = δ(O, a) ∩ f ′−1(i) if O 6= ∅,

where cl [S] = {q ∈ Q | ∃s ∈ S : q �de s}. We denote the obtained procedure as
Saturate and the obtained BA as BSat .

Lemma 8. L(BSat) = L(BS )

Obviously, as direct simulation is stronger than delayed simulation, the previ-
ous technique can also use direct simulation only (e.g., when computing the full
delayed simulation is computationally too demanding). Moreover, Saturate
is also compatible with all Purgex algorithms for x ∈ {di , de, di + de} (be-
cause they just remove macrostates with incompatible rankings from Q2)—we
call the combined versions Purgex+Saturate and the complement BAs they
output BxSat .

Lemma 9. L(BdiSat) = L(BdeSat) = L(Bdi+de
Sat ) = L(BS )

5.1 Proofs of Lemmas 8 and 9

We start with a lemma, used later, that talks about languages of states related
by delayed simulation when there is a path between them.

Lemma 10. For p, q ∈ Q such that p �de q, let L> = {w ∈ Σ∗ | p w
 
F
q} and

L⊥ = {w ∈ Σ∗ | p w
 q}. Then L(q) ⊇ (L∗⊥L>)ω.

Proof. First we prove the following claim:

Claim. For every word α = w0w1w2 · · · ∈ Σω where wi ∈ L> ∪ L⊥, we can
construct a trace π = p

w0 q0
w1 q1

w2 · · · over α such that p �de q0 and
qi �de qi+1 for all i ≥ 0.

Proof: We assign q0 := q and construct the rest of π by the following inductive
construction.

– Base case: (i = 0) From the assumption it holds that p
w1 q0 and p �de q0.

From Lemma 5 there is some r ∈ Q s.t. q0
w1 r and q0 �de r. We assign

q1 := r, so q0 �de q1.
– Inductive step: Let π′ = p

w0 q0
w1 · · · wi qi be a prefix of a trace such that

qj �de qj+1 for every j < i. From the transitivity of �de , it follows that

p �de qi. From Lemma 5 there is some r ∈ Q s.t. qi
wi r and q �de r. We

assign qi+1 := r, so qi �de qi+1. �
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Consider a word α ∈ (L∗⊥L>)ω such that α = w0w1w2 . . . for wi ∈ L> ∪L⊥. We
show that α ∈ L(q). According to the previous claim, we can construct a trace

π = p
w0 q = q0

w1 q1
w2 · · · over α s.t. p �de q0 and qi �de qi+1 for all

i ≥ 0. Since p �de q, from Lemma 5 it follows that we can construct a trace
π′ = q

w0 r0
w1 r1

w2 · · · s.t. qi �de ri for every i ≥ 0. Because α contains
infinitely often a subword from L>, there is some ` ∈ ω such that q`

w` q`+1 and

r`
w` r`+1 for w` ∈ L>. Note that it holds that p �de q` �de r`. We can again

use the claim above to construct a trace π? = p
w` 
F
q = s0

w`+1
 s1

w`+2
 · · · over

α` = w`w`+1w`+2 . . . such that p �de s0 and si �de si+1 for all i ≥ 0. Since

p �de r`, we can simulate π? from r` by a trace π?′, and because p
w` 
F
q, we

know that π?′ will touch an accepting state in finitely many steps (this holds
because w` is from L>, which are the words over which we can go from p to q and
touch an accepting state). Consider m ≥ ` such that sm is the first state after
the accepting state that is one of the {s0, s1, . . .} in π?′. This reasoning could be
repeated for all occurrences of a subword from L> in π?, therefore α ∈ L(q). ut

Next, we give a lemma used for establishing correctness of saturating macrostates
with �de -smaller states.

Lemma 11. Let p, q, r ∈ Q such that r
a−→ q ∈ δ and p �de q. Further, let

A′ = (Q, δ′, I, F ) where δ′ = δ ∪ {r a−→ p}. Then L(A) = L(A′).

Proof. (⊆) Clear.
(⊇) Consider some α ∈ L(A′) and an accepting trace π in A′ over α. There are

two cases:
1. (π contains only finitely many transitions r

a−→ p)

In this case, π is of the form π = πiπω where πi is a finite prefix πi = q0
w0 

r
a−→ p

w1 r
a−→ p

w2 · · · wn r
a−→ p, for q0 ∈ I, and πω is an infinite trace

from p that does not contain any occurrence of the transition r
a−→ p. We

construct in A a trace π′ = q0
w0 r

a−→ q
w1 r1

a−→ q1
w2 · · · wn rn

a−→ qn.π
′
ω

as follows. Let σde be a strategy for �de . We set r1 := σde(q, p
w1 r),

so r �de r1. Since r
a−→ q ∈ δ, it follows that there is r1

a−→ q1 ∈ δ such
that p �de q1. For i > 1, we set ri := σde(qi−1, p

wi r). By induction, it
follows that ∀1 ≤ i ≤ n : p �de qi, in particular p �de qn. We set π′ω :=
σde(qn, πω). Since πω starts in p and contains infinitely many accepting
states and π′ω starts in qn and p �de qn, then π′ω also contains infinitely
many accepting states. It follows that π′ is accepting, so α ∈ L(A).

2. (π contains infinitely many transitions r
a−→ p)

In this case, π is of the form π = q0
w0 r

a−→ p
w1 r

a−→ p
w2 · · · wn 

r
a−→ p

wω · · · , for q0 ∈ I and α = w0aw1aw2 . . . Since π is accepting, for
infinitely many i ∈ ω, we have p

wia 
F

p in A′ and hence also p
wia 
F

q in

the original BA A. Using Lemma 10 and the fact that p �de q, we have
w1aw2a · · · ∈ L(q) and hence α = w0aw1aw2a · · · ∈ L(A). ut

The following lemma guarantees that adding transitions in the way of Lemma 11
does not break the computed delayed simulation and can, therefore, be performed
repeatedly, without the need to recompute the simulation.
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Lemma 12. Let �de be the delayed simulation on A. Further, let p, q, r ∈ Q be
such that r

a−→ q ∈ δ and p �de q, and let A′ = (Q, δ′, I, F ) where δ′ = δ∪{r a−→ p}.
Then �de is included in the delayed simulation on A′.

Proof. Let σde be a dominating strategy compatible with �de and σ′de be a strat-
egy defined for all s ∈ Q such that r �de s as σ′de(s, x) = σde(s, x) when

x 6= (r
a−→ p) and σ′de(s, r

a−→ p) = σde(s, r
a−→ q). Note that σ′de is also dominating

wrt �de . This can be shown by the following proof by contradiction: Suppose σ′de
is not dominating; then there is a strategy ρ such that σ′de(s, r

a−→ p) must be

simulated by ρ(s, r
a−→ p) = t. But then σde(s, r

a−→ q) must also (transitivity of
simulation) be simulated by t, so σde is not dominating. Contradiction.

Further, let t, u ∈ Q be such that t �de u. Let πt = t
w1 tf

w2 r
a−→ p.π′t

be a trace over α = w1w2awω ∈ Σω in A′ such that tf is an accepting state

and tf
w2 r does not contain any occurrence of r

a−→ p. Further, let πu = u0
w1 

uf
w2 ui

a−→ui+1.π
′
u be a trace corresponding to a run u0u1u2 . . . over α in A,

where u0 = u, constructed as πu = σ′de(u, πt).

Claim. There is a trace πv = t
w1 vf .π

′
v over α such that π′v contains an accepting

state and πv is �de -simulated by πu at every position.

Proof: We have the following two cases:

– (t
w1 tf does not contain any occurrence of r

a−→ p)

Let πv = t
w1 tf

w2 r
a−→ q.π′v be a trace in A over α obtained from πt by

starting with its prefix up to r, taking r
a−→ q, and continuing with π′v =

σ′de(q, π′t). Since in πv, it holds that tf is at the same position as tf in πt,
the first part of the claim holds. Further, πu clearly �de -simulates πv on
t
w1 tf

w2 r, and because σ′de simulates r
a−→ p by a transition to a state ui+1

such that q �de ui+1 and π′v is constructed using σ′de , then also the second
part of the claim holds.

– (t
w1 tf contains at least one occurrence of r

a−→ p)

Suppose that πt starts with t
w11 r

a−→ p
w12 tf such that t

w11 r does not

contain any r
a−→ p. Then let us start building πv such that it starts with

t
w11 r

a−→ q. On this prefix, πv is clearly �de -simulated by the corresponding
prefix of πu. We continue from q using the strategy σ′de . In particular, the

next time we reach r
a−→ p in πt while we are at some state v1 such that

r �de v1, we simulate the transition by σ′de(v1, r
a−→ p) and so on. We can

observe that when we arrive to tf in πt, we also arrive to vf in πv such that
tf �de vf . Therefore, π′v contains an accepting state. Moreover, since σ′de is
dominating, the second part of the claim also holds. �

From the claim above, it follows that the trace uf
w2 ui

a−→ui+1.π
′
u contains an

accepting state, so Cde(πt, πu). ut

Finally, we are ready to prove Lemma 8.

Lemma 8. L(BSat) = L(BS )
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Proof. (⊆) Let α ∈ L(BSat) and ρ be an arbitrary accepting run over α in BSat
such that ρ = S0S1 . . . Sn−1(Sn, On, fn, in)(Sn+1, On+1, fn+1, in+1) . . . . For
the sake of contradiction, assume that α ∈ L(A), therefore, there is a run ρ′

on α in A having infinitely many accepting states. From the fact that tight
level rankings form a non-increasing sequence, we have that fn(ρ′(n)) ≥
fn+1(ρ′(n+1)) ≥ · · · . This sequence eventually stabilizes and from the prop-
erty of level rankings and the fact that ρ′ is accepting, it stabilizes in some `
such that f`(ρ

′(`)) is even. This, however, means that the O component of
macrostates in ρ cannot be emptied infinitely often, and, therefore, ρ is not
accepting, which is a contradiction. Hence α /∈ L(A), so (from Proposition 1)
α ∈ L(BS ).

(⊇) Consider some α ∈ L(BS ). Let A′ be a BA obtained from A by adding
transitions according to Lemma 12. Then from Lemma 11, we have that
L(A) = L(A′). Therefore, α ∈ L(B′S ) where B′S is the BA obtained from A′
using CompS. It is easy to see that we can construct a run in BSat that
mimics the levels of run DAG of α in A′ (i.e., we are able to empty the
O component infinitely often). Hence α ∈ L(BSat). ut

Lemma 9. L(BdiSat) = L(BdeSat) = L(Bdi+de
Sat ) = L(BS )

Proof. (⊆) This part is the same as in the proof of Lemma 8.
(⊇) Consider some α ∈ L(BS ). Let A′ be a BA obtained from A by adding

transitions according to Lemma 12. Then from Lemma 11, we have that
L(A) = L(A′). Therefore, α ∈ L(B′S ) where B′S is the BA obtained from A′
using CompS. It is easy to see that we can construct a run in BSat that
mimics the levels of run DAG of α in A′ (i.e., we are able to empty the
O component infinitely often). Using Lemmas 7 and 6, we can conclude that
the run contains no macrostate of the form (S,O, f, j), where f(p) > f(q)
and p �di q, or f(p) > ddf(q)ee and p �de q for p, q ∈ S. Therefore, ρ is also
an accepting run in Bdi+de

Sat . Hence α ∈ L(Bdi+de
Sat ). ut

5.2 Remarks on Compression of Macrostates

An analogy to saturation of macrostates is their compression [17, Section 6],
based on removing simulation-smaller states from a macrostate. This is, however,
not possible even for direct simulation, as we can see in the following example.

Example 1. Consider the BA over Σ = {a} given below.

pq r
a a

aa a
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For this BA we have q �di r and r �di q. If we compress the macrostates
obtained in CompS, there is the following trace in the output automaton:

{p} a−→({p, q}, ∅, {p 7→ 3, q 7→ 2, r 7→ 1}, 0)
a−→({p, r}, {r}, {p 7→ 3, q 7→ 1, r 7→ 2}, 2)

a−→({p, q}, ∅, {p 7→ 3, q 7→ 2, r 7→ 1}, 2)
a−→({p, r}, {r}, {p 7→ 3, q 7→ 1, r 7→ 2}, 0)

a−→({p, q}, ∅, {p 7→ 3, q 7→ 2, r 7→ 1}, 0)
a−→· · ·

This trace contains infinitely many final states (we flush the O-set infinitely of-
ten), hence we are able to accept the word aω, which is, however, in the language
of the input BA. ut

6 Use after Simulation Quotienting

In this short section, we establish that our optimizations introduced in Sections 4
and 5 can be applied with no additional cost in the setting when BA comple-
mentation is preceded with simulation-based reduction of the input BA (which is
usually helpful), i.e., when the simulation is already computed beforehand for an-
other purpose. In particular, we show that simulation-based reduction preserves
the simulation (when naturally extended to the quotient automaton). First, let
us formally define the operation of quotienting.

Given an x-simulation �x for x ∈ {di , de}, we use ≈x to denote the x-
similarity relation (i.e., the symmetric fragment) ≈x = �x ∩ �−1x . Note that
since �x is a preorder, it holds that ≈x is an equivalence. We use [q]x to denote
the equivalence class of q wrt ≈x. The quotient of a BA A = (Q, δ, I, F ) wrt ≈x
is the automaton

A/≈x = (Q/≈x, δ≈x
, I≈x

, F≈x
) (6)

with the transition function δ≈x([q]x, a) = {[r]x | r ∈ δ([q]x, a)} and the set of
initial and accepting states I≈x = {[q]x ∈ Q/≈x | q ∈ I} and F≈x = {[q]x ∈
Q/≈x | q ∈ F} respectively.

Proposition 2 ([7], [12]). If x ∈ {di , de}, then L(A/≈x) = L(A).

Remark 1 ([12]). L(A/≈f ) 6= L(A)

Finally, the following lemma shows that quotienting preserves direct and delayed
simulations, therefore, when complementing A, it is possible to first quotient A
wrt a direct/delayed simulation and then use the same simulation (lifted to the
states of the quotient automaton) to optimize the complementation.

Lemma 13. Let �x be the x-simulation on A for x ∈ {di , de}. Then the relation
�≈x defined as [q]x �≈x [r]x iff q �x r is the x-simulation on A/≈x.

Proof. First, we show that �≈x is well defined, i.e., if q �x r, then for all q′ ∈ [q]x
and r′ ∈ [r]x, it holds that q′ �x r′. Indeed, this holds because q′ ≈x q and
r ≈x r, and therefore q′ �x q �x r �x r′; the transitivity of simulation yields
q′ �x r′.

Next, let σx be a strategy that gives �x. Consider a trace defined as [πq]x =

[q0]x
α0−→[q1]x

α1−→· · · over a word α ∈ Σω in A/≈x. Then,
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1. for x = di there is a trace πq = q′0
α0−→ q′1

α1−→· · · in A s.t. q′0 ∈ [q0]x and
qi �x q′i for i ≥ 0. Therefore, if [qi]x is accepting then so is q′i;

2. for x = de there is a trace πq = q′0
α0−→ q′1

α1−→· · · in A s.t. q′0 ∈ [q0]x, qi �x q′i
for i ≥ 0 and, moreover, if [qi]x is accepting then there is q′k for k ≥ i s.t.
q′k ∈ F .

Further, let [q0]x �≈x [r0]x. Then there is a trace πr = σx(r, πq) = (r =

r0)
α0−→ r1

α1−→· · · simulating πq in A from r. Further, consider its projection

[πr]x = [r0]x
α0−→[r1]x

α1−→· · · into A/≈x. For all i ≥ 0, we have that qi �x ri,
and therefore also [qi]x �≈x [ri]x. Since Cx(πq, πr), then also Cx([πq]x, [πr]x).

Finally, we show that �≈x is maximal. For the sake of contradiction, suppose
that [r]x is x-simulating [q]x for some q, r ∈ Q s.t. q 6�x r. Consider a word

α ∈ Σω and a trace πq = (q = q0)
α0−→ q1

α1−→· · · over α in A. Then there is

a trace [πq]x = [q = q0]x
α0−→[q1]x

α1−→· · · over α in A/≈x. According to the

assumption, there is also a trace [πr]x = [r = r0]x
α0−→[r1]x

α1−→· · · such that
[πr]x is x-simulating [πq]x. But then there will also exist a trace πr = (r =

r0)
α0−→ r′1

α1−→ r′1
α2−→· · · such that ri �x r′i for all i ∈ ω and Cx(πq, πr) (see the

previous part of the proof). Therefore, since �x is maximal, we have that q �x r,
which is in contradiction with the assumption. ut

7 Experimental Evaluation

We implemented our optimisations in a prototype tool4 written in Haskell and
performed preliminary experimental evaluation on a set of 124 random BAs with
a non-trivial language over a two-symbol alphabet generated using Tabakov and
Vardi’s model [37]. The parameters of input automata were set to the follow-
ing bounds: number of states: 6–7, transition density: 1.2–1.3, and acceptance
density: 0.35–0.5. Before complementing, the BAs were quotiented wrt the di-
rect simulation for experiments with Purgedi and the delayed simulation for
experiments with Purgede and Purgedi+de . The timeout was set to 300 s.

We present the results for our strongest optimizations for outputs of the size
up to 500 states in Fig. 1. As can be seen in Fig. 1a, purging alone often signif-
icantly reduces the size of the output. The situation with saturation is, on the
other hand, more complicated. In Fig. 1b, we can see that in some cases, the
saturation produces even smaller BAs than only purging, on the other hand, in
some cases, larger BAs are produced. This is expected, because saturating the
S component of macrostates also means that more level rankings (the f compo-
nent) need to be considered.

For outputs of a larger size (we had 11 of them), the results follow a sim-
ilar trend, but the probability that saturation will increase the size of the re-
sult decreases. For some concrete results, for one BA, the size of the output
BA decreased from 4065 (CompS) to 985 (Purgedi+de) to 929 (Purgedi+de

4 https://github.com/vhavlena/ba-complement
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Fig. 1: Comparison of the number of states of complement BAs generated by
CompS and our optimizations (lower is better)

+Saturate), which yields a reduction to 24 %, resp. 22 %! Further, we ob-
served that all Purgex methods usually give similar results, with the difference
of only a few states (when Purgedi and Purgede differ, Purgedi usually wins
over Purgede).

8 Related Work

BA complementation has a long research track. Known approaches can be roughly
classified into Ramsey-based [34], determinization-based [32,29], rank-based [33],
slice-based [23,39], learning-based [25], and the recently proposed subset-tuple
construction [4]. Those approaches build on top of different concepts of capturing
words accepted by a complement automaton. Some concepts can be translated
into others, such as the slice-based approach, which can be translated to the rank-
based approach [40]. Such a translation can help us get a deeper understanding
of the BA complementation problem and the relationship between optimization
techniques for different complementation algorithms.

Because of the high computational complexity of complementing a BA, and,
consequently, also checking BA inclusion and universality (which use comple-
mentation as their component), there has been some effort to develop heuristics
that help to reduce the number of explored states in practical cases. The most
prominent ones are heuristics that leverage various notions of simulation rela-
tions, which often provide a good compromise between the overhead they impose
and the achieved state space reduction. Direct [7,36], delayed [12], fair [12], their
variants for alternating Büchi automata [16], and multi-pebble simulations [13]
are the best-studied relations of this kind. Some of the relations can be used
quotienting, but also for pruning transitions entering simulation-smaller states
(which may cause some parts of the BA to become inaccessible). A series of re-
sults in this direction was recently developed by Clemente and Mayr [10,26,27].
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Not only can the relations be used for reducing the size of the input BA, they
can also be used for under-approximating inclusion of languages of states. For in-

stance, during a BA inclusion test L(AS)
?
⊆ L(AB), if every initial state of AS is

simulated by an initial state of AB , the inclusion holds and no complementation
needs to be performed. But simulations can also be used to reduce the explored
state space within, e.g., the inclusion check itself, for instance in the context of
Ramsey-based algorithms [1,2]. Ramsey-based complementation algorithms [34]

in the worst case produce 2O(n2) states, which is a significant gap from the lower
bound of Michel [28] and Yan [41]. The Ramsey-based construction was, how-
ever, later improved by Breuers et al. [5] to match the upper bound 2O(n logn).
The way simulations are applied in the Ramsey-based approach is fundamentally
different from the current work, which is based on rank-based construction. Tak-
ing universality checking as an example, the algorithm checks if the language of
the complement automaton is empty. They run the complementation algorithm
and the emptiness check together, on the fly, and during the construction check
if a macrostate with a larger language has been produced before; if yes, then they
can stop the search from the language-smaller macrostate. Note that, in contrast
to our approach, their algorithm does not produce the complement automaton.

9 Conclusion and Future Work

We developed two novel optimizations of the rank-based complementation al-
gorithm for Büchi automata that are based on leveraging direct and delayed
simulation relations to reduce the number of states of the complemented au-
tomaton. The optimizations are directly usable in rank-based BA inclusion and
universality checking. We conjecture that the decision problem of checking BA
language inclusion might also bring another opportunities for exploiting sim-
ulation, such as in a similar manner as in [3]. Another, orthogonal, directions
of future work are (i) applying simulation in other than the rank-based ap-
proach (in addition to the particular use within [1,2]), e.g., complementation
based on Safra’s construction [32], which, according to our experience, often
produces smaller complements than the rank-based procedure, (ii) applying our
ideas within determinization constructions for BAs, and (iii) generalizing our
techniques for richer simulations, such as the multi-pebble simulation [13] or
various look-ahead simulations [26,27]. Since the richer simulations are usually
harder to compute, it would be interesting to find the sweet spot between the
overhead of simulation computation and the achieved state space reduction.

Acknowledgement We thank the anonymous reviewers for their helpful com-
ments on how to improve the exposition in this paper. This work was supported
by the Ministry of Science and Technology of Taiwan project 106-2221-E-001-
009-MY3 the Czech Science Foundation project 19-24397S, the FIT BUT inter-
nal project FIT-S-17-4014, and The Ministry of Education, Youth and Sports
from the National Programme of Sustainability (NPU II) project IT4Innovations
excellence in science—LQ1602.

18



References

1. Abdulla, P.A., Chen, Y., Clemente, L., Hoĺık, L., Hong, C.D., Mayr, R., Vojnar,
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29. Piterman, N.: From nondeterministic büchi and streett automata to deterministic
parity automata. In: Proc. of LICS’06. pp. 255–264. IEEE (2006)

30. Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In:
Proc. of LICS’07. pp. 171–180 (2007)

31. Ranzato, F., Tapparo, F.: An Efficient Simulation Algorithm based on Abstract
Interpretation. Information and Computation 208(1), 1–22 (2010)

32. Safra, S.: On the Complexity of ω-automata. In: Proc. of FOCS’88. pp. 319–327.
IEEE (1988)
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