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Abstract We present a general framework for verifying programs with complex
dynamic linked data structures whose correctness depends on ordering relations
between stored data values. The underlying formalism of our framework is that of
forest automata (FA), which has previously been developed for verification of heap-
manipulating programs. We extend FA with constraints between data elements
associated with nodes of the heaps represented by FA, and we present extended
versions of all operations needed for using the extended FA in a fully-automated
verification approach, based on abstract interpretation. We have implemented our
approach as an extension of the Forester tool and successfully applied it to a num-
ber of programs dealing with data structures such as various forms of singly- and
doubly-linked lists, binary search trees, as well as skip lists.
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1 Introduction

Automated verification of programs that manipulate complex dynamic linked data
structures is one of the most challenging problems in software verification. The
problem becomes even more challenging when program correctness depends on
relationships between data values that are stored in the dynamically allocated
structures. Such ordering relations on data are central for the operation of many
data structures such as search trees, priority queues (based, e.g., on skip lists), key-
value stores, or for the correctness of programs that perform sorting and searching,
etc. The challenge for automated verification of such programs is to handle both

infinite sets of reachable heap configurations that have a form of complex graphs
and the different possible relationships between data values embedded in such
graphs, needed, e.g., to establish sortedness properties.

As discussed below in the section on related work, there exist many automated
verification techniques, based on different kinds of logics, automata, graphs, or
grammars, that handle dynamically allocated pointer structures. Most of these
approaches abstract from properties of data stored in dynamically allocated mem-
ory cells. The few approaches that can automatically reason about data properties
are often limited to specific classes of structures, mostly singly-linked lists (SLLs),
and/or are not fully automated (as also discussed in the related work section).

In this paper, we present a general framework for verifying programs with
complex dynamic linked data structures whose correctness depends on relations
between the stored data values. Our framework is based on the notion of forest

automata (FA) which has previously been developed for representing sets of reach-
able configurations of programs with complex dynamic linked data structures [15].
In the FA framework, a heap graph is represented as a composition of tree com-
ponents. Sets of heap graphs can then be represented by tuples of tree automata
(TA). A fully-automated shape analysis framework based on FAs, employing the
framework of abstract regular tree model checking (ARTMC) [8], has been imple-
mented in the Forester tool [17]. This approach has been shown to handle a wide
variety of different dynamically allocated data structures with a performance that
compares favourably to other state-of-the-art fully-automated tools.

Our extension of the FA framework allows us to represent relationships between
data elements stored inside heap structures. This makes it possible to automati-
cally verify programs that depend on relationships between data, such as various
search trees, lists, and skip lists [23], and to also verify, e.g., different sorting al-
gorithms. Technically, we express relationships between data elements associated
with nodes of the heap graph by two classes of constraints. Local data constraints

are associated with transitions of TAs and capture relationships between data of
neighbouring nodes in a heap graph; they can be used, e.g., to represent ordering
internal to some structure such as a binary search tree. Global data constraints are
associated with states of TAs and capture relationships between data in distant
parts of the heap. In order to obtain a powerful analysis based on such extended
FAs, the entire analysis machinery must be redesigned, including a need to develop
mechanisms for propagating data constraints through FAs, to adapt the abstrac-
tion mechanisms of ARTMC, to develop a new inclusion check between extended
FAs, and to define extended abstract transformers.

Our verification method analyzes sequential, non-recursive C programs, and au-
tomatically discovers memory safety errors, such as invalid dereferences or memory
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leaks, and provides an over-approximation of the set of reachable program configu-
rations. Functional properties, like sortedness, can be checked by adding code that
checks pre- and post-conditions. Functional properties can be checked by querying
the computed over-approximation of the set of reachable configurations as well.

We have implemented our approach as an extension of the Forester tool, which
is a gcc plug-in analyzing the intermediate representation generated from C pro-
grams. We have applied the tool to verification of data properties, notably sorted-
ness, of sequential programs with data structures, like various forms of singly- and
doubly-linked lists (DLLs), possibly cyclic or shared, binary search trees (BSTs),
and even 2-level and 3-level skip lists. The verified programs include operations like
insertion, deletion, or reversal, and also bubble-sort and insert-sort both on SLLs
and DLLs. The experiments confirm that our approach is not only fully automated
and rather general, but also quite efficient, outperforming many previously known
approaches even though they are not of the same level of automation or generality.
In the case of skip lists, our analysis is the first fully-automated shape analysis
which is able to handle skip lists. Our previous fully-automated shape analysis,
which did not handle ordering relations, could also handle skip lists automati-
cally [17], but only after modifying the code in such a way that the preservation
of the shape invariant does not depend on ordering relations.

This paper is an extension of the work originally published in [3]. In addition to
what was presented in that work, we provide missing proofs and cover the related
work in more detail. Furthermore, to make the presentation easier to comprehend,
we provide more examples and more detailed descriptions of the concepts in the
sections on constraint saturation, abstract transformers, and boxes.

Outline. After a review of related work, in Section 3, we present our approach
to modeling heap graphs by forests. Then, in Section 4, we propose a represen-
tation of sets of heap graphs by forest automata that use constraints to specify
relationships between data values. Section 5 contains a description of our analysis
procedure, including a procedure for saturating the set of constraints over data
values. Section 6 outlines how hierarchically nested forest automata can repre-
sent more complex data structures. Section 7 describes our implementation of the
proposed ideas as well as the obtained experimental results. Section 8 contains
conclusions and directions for future work.

2 Related Work

As discussed previously, our approach builds on the fully automated FA-based
approach for shape analysis of programs with complex dynamic linked data struc-
tures [15,17]. We significantly extend this approach by allowing it to track ordering
relations between data values stored inside dynamic linked data structures.

For shape analysis, many other formalisms than FAs have been used, including,
e.g., separation logic and various related graph formalisms [29,21,10,14], other
logics [26,18], automata [8], or graph grammars [16]. Compared with FAs, these
approaches typically handle less general heap structures (often restricted to various
classes of lists) [29,14], they are less automated (requiring the user to specify loop
invariants [18] or at least inductive definitions of the involved data structures [21,
10,16]), or less scalable [8].
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Verification of properties depending on the ordering of data stored in SLLs
was considered in [6], which translates programs with SLLs to counter automata.
A subsequent analysis of these automata allows one to prove memory safety, sort-
edness, and termination for the original programs. The work is, however, strongly
limited to SLLs. In this paper, we get inspired by the way that [6] uses for dealing
with ordering relations on data, but we significantly redesign it to be able to track
not only ordering between simple list segments but rather general heap shapes
described by FAs. In order to achieve this, we had to not only propose a suitable
way of combining ordering relations with FAs, but we also had to significantly
modify many of the operations used over FAs.

In [1], another approach for verifying data-dependent properties of programs
with lists was proposed. However, even this approach is strongly limited to SLLs,
and it is also much less efficient than our current approach. In [2], concurrent pro-
grams operating on SLLs are analyzed using an adaptation of a transitive closure
logic [5], which also tracks simple sortedness properties between data elements.

Verification of properties of programs depending on the data stored in dynamic
linked data structures was considered in the context of the TVLA tool [20] as well.
Unlike our approach, [20] assumes a fixed set of shape predicates and uses inductive
logic programming to learn predicates needed for tracking non-pointer data. The
experiments presented in [20] involve verification of sorting and stability properties
of several programs on SLLs (merging, reversal, bubble-sort, insert-sort) as well
as insertion and deletion in BSTs. We do not handle stability, but for the other
properties, our approach is much faster. Moreover, for BSTs, we verify that a
node is greater/smaller than all the nodes in its left/right subtrees (not just than
the immediate successors as in [20]). A diffent aproach was taken in [4], where the
TVLA framework is combined with predicate abstraction implemented in BLAST.
The approach was experimentally run on several list-manipulating programs only.

An approach based on separation logic extended with constraints on the data
stored inside dynamic linked data structures and capable of handling size, order-
ing, as well as bag properties was presented in [12]. Using the approach, various
programs with SLLs, DLLs, and also AVL trees and red-black trees were verified.
The approach, however, requires the user to manually provide inductive shape
predicates as well as loop invariants. Later, the need to provide loop invariants
was avoided in [24], but a need to manually provide inductive shape predicates
remains.

The work considered in [9] extends the previous work [10] with data constraints.
The method still needs shape invariants extended with data to be provided manu-
ally. The join and widening operations used on the shape level are extended with
subsequent join and widening on the data level to cope with the data during the
analysis.

Another work that targets verification of programs with dynamic linked data
structures, including properties depending on the data stored in them, is [30]. It
generates verification conditions in an undecidable fragment of higher-order logic
and discharges them using decision procedures, first-order theorem proving, and
interactive theorem proving. To generate the verification conditions, loop invari-
ants are needed. These can either be provided manually or sometimes synthesized
semi-automatically using the approach of [27]. The latter approach was successfully
applied to several programs with SLLs, DLLs, trees, trees with parent pointers,
and 2-level skip lists. However, for some of them, the user still had to provide
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0 Node *insert(Node *root, Data d)
1 {
2 Node* newNode = calloc(sizeof(Node));
3 newNode→data = d;
4 if (root == NULL) return newNode;
5 Node *x = root;
6 while (x→data != newNode→data)
7 {
8 if (x→data < newNode→data)
9 if (x→right 6= NULL) x = x→right;

10 else {
11 x→right = newNode;
12 break;
13 }
14 else
15 if (x→left 6= NULL) x = x→left;
16 else {
17 x→left = newNode;
18 break;
19 }
20 }
21 if (x→data == newNode→data) free(newNode);
22 x = NULL;
23 return root;
24 }

Fig. 1 A function which inserts a new node into a BST and returns a pointer to its root node.

some of the needed abstraction predicates. A further extension of this approach
given in [28] increases the degree of automation and synthesizes the loop invariants
automatically using counterexample guided refinement.

Several works, including [7], define frameworks for reasoning about pre- and
post-conditions of programs with SLLs and data. Decidable fragments, which can
express more complex properties on data than we consider, are identified, but the
approach does not perform fully automated verification, only checking of pre-post
condition pairs. Other approaches presenting various logical fragments for reason-
ing about heaps and the data stored in them together with decision procedures of
these fragments were presented, e.g., in [22,25,11,19]. None of these approaches
has been extended to a fully automatic verification method.

3 Programs, Graphs, and Forests

We consider sequential non-recursive C programs, operating on a set of variables
and the heap, using standard commands and control flow constructs. Variables are
either data variables or pointer variables. Heap cells contain zero or several selector
fields and a data field. Atomic commands include tests between data variables or
fields of heap cells, as well as assignments between data variables, pointer variables,
or fields of heap cells. We also support commands for allocation and deallocation
of dynamically allocated memory.

Fig. 1 shows an example of a C function inserting a new node into a BST
(recall that in BSTs, the data value in a node is larger than all the values of its
left subtree and smaller than all the values of its right subtree). Variable x descends
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the BST to find the position at which the node newNode with a new data value d

should be inserted.

Configurations of the considered programs consist to a large extent of heap-
allocated data. A heap can be viewed as a (directed) graph whose nodes correspond
to allocated memory cells. Each node contains a set of selectors and a data field.
Each selector either points to another node, to the value ⊥ representing the NULL

value, or is undefined. The same holds for pointer variables of the program.

We represent graphs as a composition of trees as follows. We first identify
the cut-points of the graph, i.e., nodes that are either referenced by a pointer
variable or by several selectors. We then split the graph into tree components
such that each cut-point becomes the root of a tree component. To represent
the interconnection of tree components, we introduce a set of root references, one
for each tree component. After decomposition of the graph, selector fields that
point to cut-points in the graph are redirected to point to the corresponding root
references. Such a tuple of tree components is called a forest. The decomposition
of a graph into tree components can be performed canonically as described at the
end of Section 4.

Fig. 2(a) shows a possible heap of the program in Fig. 1. Nodes are shown as
circles, labeled by their data values. Selectors are shown as edges. Each selector
points either to a node or to ⊥ (denoting NULL). Some nodes are labeled by a pointer
variable that points to them. The node with data value 15 is a cut-point since it
is referenced by variable x. Fig. 2(b) shows a tree decomposition of the graph into
two trees, one rooted at the node referenced by root, and the other rooted at the
node pointed by x. The right selector of the root node in the first tree points to
root reference 2 (i denotes a reference to the i-th tree ti) to indicate that in the
graph, it points to the corresponding cut-point.

Let us now formalize these ideas. We will define graphs as parameterized by
a set Γ of selectors and a set Ω of references. Intuitively, the references are the
objects that selectors can point to, in addition to other nodes. E.g., when repre-
senting heaps, Ω will contain the special value ⊥; in tree components, Ω will also
include root references.

We use f : A ⇀ B to denote a partial function from A to B (also viewed
as a total function f : A → (B ∪ {>}), assuming that > 6∈ B). We assume an
unbounded data domain D with a total ordering relation �.

Graphs. Let Γ be a finite set of selectors and Ω be a finite set of references. A graph g

over 〈Γ,Ω〉 is a tuple 〈Vg, nextg, λg〉 where Vg is a finite set of nodes (assuming
Vg ∩ Ω = ∅), nextg : Γ → (Vg ⇀ (Vg ∪ Ω)) maps each selector a ∈ Γ to a partial
mapping nextg(a) from nodes to nodes and references, and λg : (Vg ∪ Ω) ⇀ D is
a partial data labelling of nodes and references. For a selector a ∈ Γ , we use ag to
denote the mapping nextg(a).

Program semantics. A heap over Γ is a graph over 〈Γ, {⊥}〉 where ⊥ denotes the null
value. A configuration of a program with selectors Γ consists of a program control
location, a heap g over Γ , and a partial valuation, which maps pointer variables to
Vg∪{⊥} and data variables to D. For uniformity, data variables will be represented
as pointer variables (pointing to nodes that hold the respective data values) so we
can further consider pointer variables only. The dynamic behaviour of a program
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(b) A forest decomposition.

Fig. 2 Decomposition of a graph into trees.

is given by a standard mapping from configurations to their successors, which we
omit here.

Forest representation of graphs. A graph t is a tree if its nodes and selectors (i.e.,
not references) form a tree with a unique root node, denoted root(t). A forest over
〈Γ,Ω〉 is a sequence t1 · · · tn of trees over 〈Γ, (Ω ] {1, . . . , n})〉. The elements in
{1, . . . , n} are called root references (note that n must be the number of trees in
the forest). A forest t1 · · · tn is composable if λtk(j) = λtj (root(tj)) for any k, j, i.e.,
the data labeling of root references agrees with that of roots. A composable forest
t1 · · · tn over 〈Γ,Ω〉 represents a graph over 〈Γ, {⊥}〉, denoted ⊗t1 · · · tn, obtained by
taking the union of the trees of t1 · · · tn (assuming w.l.o.g. that the sets of nodes of
the trees are disjoint), and connecting root references with the corresponding roots.
Formally, ⊗t1 · · · tn is the graph g defined by (i) Vg = ∪ni=1Vti , and (ii) for a ∈ Γ
and v ∈ Vtk , if atk(v) ∈ {1, . . . , n} then ag(v) = root(tatk (v)) else ag(v) = atk(v),

and finally (iii) λg(v) = λtk(v) for v ∈ Vtk . We will use the following notation to
talk about relations of data values of nodes within a forest. Given nodes u, v of
trees t, t′, respectively, of a forest and a relation ∼ ∈ {≺,�,=,�,�}, we denote by
u ∼rr v that λt(u) ∼ λt′(v) and we denote by u ∼ra v that λt(u) ∼ λt′(w) for all
nodes w in the subtree of t′ rooted at v. We call these two types of relationships
root-root and root-all relations, respectively.

4 Forest Automata

A forest automaton is essentially a tuple of tree automata accepting a set of tuples
of composable trees that represents a set of graphs via their forest decomposition.

Tree automata. A (finite, non-deterministic, top-down) tree automaton (TA) over
〈Γ,Ω〉 extended with data constraints is a triple A = (Q, q0,∆) where Q is a finite
set of states, q0 ∈ Q is the root state (or initial state), denoted root(A), and ∆ is
a set of transitions. Each transition is of the form q → a(q1, . . . , qm) : c where m ≥ 0,
q ∈ Q, q1, . . . , qm ∈ (Q ∪ Ω), a = a1 · · · am is a sequence of different symbols from



8 Parosh Aziz Abdulla et al.

Γ , and c is a set of local constraints. Each local constraint is of the form 0 ∼rx i

where ∼ ∈ {≺,�,�,�} (with = viewed as syntactic sugar1), i ∈ {1, . . . ,m}, and
x ∈ {r, a}.

Intuitively, a local constraint of the form 0 ∼rr i associated with a transition
of the form q → a(q1, . . . , qm) of a TA A = (Q, q0,∆) states that, for each tree t′

accepted by A at q0, the data value of the root of the subtree t of t′ that is accepted
at q is related by ∼ with the data value of the root of the i-th subtree of t accepted
at qi. A local constraint of the form 0 ∼ra i states that, for each tree t′ accepted by
A, the data value of the root of the subtree t of t′ that is accepted at q is related
by ∼ to the data values of all nodes of the i-th subtree of t accepted at qi.

Let t be a tree over 〈Γ,Ω〉, and let A = (Q, q0,∆) be a TA over 〈Γ,Ω〉. A run

of A over t is a total map ρ : Vt → Q where ρ(root(t)) = q0 and for each node
v ∈ Vt there is a transition q → a(q1, . . . , qm) : c in ∆ with a = a1 · · · am such that
(1) ρ(v) = q, (2) for all 1 ≤ i ≤ m, we have (i) if qi ∈ Q, then ait(v) ∈ Vt and
ρ(ait(v)) = qi, and (ii) if qi ∈ Ω, then ait(v) = qi, and (3) for each constraint 0 ∼rx i

in c where x ∈ {r, a}, it holds that v ∼rx a
i
t(v). We define the language of A as

L(A) = {t | there is a run of A over t}.

Example 1 BSTs, such as the tree labeled by root but without the variable x in
Fig. 2(a), are accepted by the TA over 〈Γ,Ω〉 with one state q1, which is also the
root state (denoted by q1), and the following four transitions:

q1 → left, right(q1, q1) : 0 �ra 1, 0 ≺ra 2
q1 → left, right(⊥, q1) : 0 ≺ra 2

q1 → left, right(q1,⊥) : 0 �ra 1
q1 → left, right(⊥,⊥)

The local constraints of the transitions express that the data value in a node is
always greater than the data values of all nodes in its left subtree and less than
the data values of all nodes in its right subtree. ut

Forest automata. A forest automaton with data constraints (or simply a forest au-
tomaton, FA) over 〈Γ,Ω〉 is a tuple of the form F = 〈A1 · · ·An, ϕ〉 where:

– A1 · · ·An, with n ≥ 0, is a sequence of TAs over 〈Γ,Ω ] {1, . . . , n}〉 whose sets
of states Q1, . . . , Qn are mutually disjoint.

– ϕ is a set of global data constraints between the states of A1 · · ·An, each of the
form q ∼rr q

′ or q ∼ra q
′ where q, q′ ∈ ∪ni=1Qi, at least one of q, q′ is a root state

and ∼ ∈ {≺,�,�,�} (with = viewed as syntactic sugar). Intuitively, q ∼rx q
′

says that for any two nodes v, v′ in a forest accepted by q and q′, respectively,
data values must satisfy v ∼rx v

′.

A forest t1 · · · tn over 〈Γ,Ω〉 is accepted by F iff there are runs ρ1, . . . , ρn such that
ρi is a run of Ai over ti for every 1 ≤ i ≤ n, and for each global constraint of the
form q ∼rx q

′ where x ∈ {r, a}, q is a state of some Ai and q′ is a state of some Aj ,
we have v ∼rx v

′ whenever ρi(v) = q and ρj(v
′) = q′. The language of F , denoted

as L(F ), is the set of graphs over 〈Γ,Ω〉 obtained by applying ⊗ on composable
forests accepted by F . An FA F over 〈Γ, {⊥}〉 represents a set of heaps H over Γ 2.

1 The use of 6= is forbidden because it would lead to a disjunction of constraints, which we
do not support in this work.

2 Note that from the definitions of languages of TAs and FAs, the effect of the ∼ra data
constraint (both local and global) is local to the TAs it is related to.
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F = 〈A1 A2, ϕ〉
σ(root) = 1, σ(x) = 2

A1 :

 qr → left, right(q1, 2) : 0 �ra 1, 0 ≺ra 2
q1 → left, right(⊥, q2) : 0 ≺ra 2
q2 → left, right(⊥,⊥)

A2 :

{
qx → left, right(⊥, q3) : 0 ≺ra 2
q3 → left, right(⊥,⊥)

ϕ =

{
qx �ra qr, q3 �ra qr,
qr �ra qx, q1 ≺ra qx, q2 ≺ra qx

}
Fig. 3 An example of an abstract configuration that is a possible representation of the concrete
configuration shown in Fig. 2(b).

Note that global constraints can imply some local ones, but they cannot in
general be replaced by local constraints only. Indeed, global constraints can re-
late states of different automata as well as states that do not appear in a single
transition and hence relate nodes which can be arbitrarily far from each other and
unrelated by any sequence of local constraints.

Canonicity. In our analysis, we will represent only garbage-free heaps in which
all nodes are reachable from some pointer variable by following some sequence of
selectors. In practice, this is not a restriction since emergence of garbage is checked
for each statement in our analysis; if some garbage arises, an error message can
be issued, or the garbage removed. The representation of a garbage-free heap H

as t1 · · · tn can be made canonical by assuming a total order on variables and
on selectors. Such an ordering induces a canonical ordering of cut-points using
a depth-first traversal of H starting from pointer variables, taken in their order,
and exploring H according to the order of selectors. The representation of H as
t1 · · · tn is called canonical iff the roots of the trees in t1 · · · tn are the cut-points of
H, and the trees are ordered according to their canonical ordering. An FA F =
〈A1 · · ·An, ϕ〉 is canonicity respecting iff for all H ∈ L(F ), formed as H = ⊗t1 · · · tn,
the representation t1 · · · tn is canonical. The canonicity respecting form allows us
to check inclusion on the sets of heaps represented by FAs by checking inclusion
component-wise on the languages of the component TAs.

5 FA-based Shape Analysis with Data

Our verification procedure performs a standard abstract interpretation [13]. The
concrete domain in our case assigns to each program location a finite set of pairs
〈σ,H〉 where the valuation σ maps every variable to ⊥, a node in H, or to an
undefined value, and H is a heap representing a memory configuration. On the
other hand, the abstract domain maps each program location to a finite set of
abstract configurations. Each abstract configuration is a pair 〈σ, F 〉 where σ maps
every variable to ⊥, an index of a TA in F , or to an undefined value, and F is an
FA representing a set of heaps.

Example 2 Fig. 3 illustrates an abstract configuration 〈σ, F 〉 that is a possible rep-
resentation of the concrete configuration 〈σ,H〉 shown in Fig. 2(b). ut
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The verification starts from an element in the abstract domain that represents
the initial program configuration (i.e., it maps the initial program location to an
abstract configuration where the heap is empty and the values of all variables are
undefined, and maps non-initial program locations to an empty set of abstract
configurations). The verification then iteratively updates the sets of abstract con-
figurations at each program point until a fixpoint is reached. Each iteration consists
of the following steps:

1. The sets of abstract configurations at each program point are updated by
abstract transformers corresponding to program statements. At junctions of
program paths, we take the unions of the sets produced by the abstract trans-
formers.

2. At junctions that correspond to loop points, the union is followed by a widening
operation and a check for language inclusion between sets of FAs in order to
determine whether a fixpoint has been reached. Prior to checking language
inclusion, we normalize the FAs, thereby transforming them into the canonicity
respecting form, which is needed for inclusion checking as explained at the end
of Section 4.

Our widening operation bounds the size of the TA that occur in abstract config-
urations. It is based on the framework of abstract regular (tree) model checking [8].
The widening is applied to individual TAs inside each FA and collapses states
which are equivalent w.r.t. certain criteria. More precisely, we collapse TA states
q, q′ which are equivalent in the sense that they (1) accept trees with the same
sets of prefixes of height at most k and (2) occur in isomorphic global data con-
straints (i.e., q ∼rx p occurs as a global constraint if and only if q′ ∼rx p occurs
as a global constraint, for any p and x). We use a refinement of this criterion by
certain FA-specific requirements, by adapting the refinement described in [17]. Col-
lapsing states may increase the set of trees accepted by a TA, thereby introducing
overapproximation into our analysis.

At the beginning of each iteration, the FAs to be manipulated are in the sat-
urated form, meaning that they explicitly include all (local and global) data con-
straints that are consequences of the existing ones. FAs can be put into a saturated
form by a saturation procedure, which is performed before the normalization pro-
cedure. The saturation procedure must also be performed before applying abstract
transformers that may remove root states from an FA, such as memory dealloca-
tion.

In the following subsections, we provide more detail on some of the major
steps of our analysis. Section 5.1 describes the constraint saturation procedure,
Section 5.2 describes some representative abstract transformers, Section 5.3 de-
scribes normalization, and Section 5.4 describes our check for inclusion.

5.1 Constraint Saturation

In this section, we show the saturation rules that are used to deduce new data con-
straints from already existing ones. The saturation rules are used in a fixed point
computation to deduce both global and local constraints from global constraints,
local constraints, or their combinations.
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Table 1 Rules for inferring global constraints from global constraints.

q ∼rr q
′ q′ ∼′rx q′′

q (∼ ◦ ∼′)rx q′′
G-Trans

q 'rr q
G-Refl1

q′ ∼rr q

q ∼−1
rr q′

G-Refl2

q ∼rr q
′ Leaf(q′)

q ∼ra q
′ G-Stre

q ∼ra q
′

q ∼rr q
′ G-Weak1

q ∼rx q
′

q 'rx q
′ G-Weak2

root(A) ∼ra root(A′) q′ ∈ Q(A′)

root(A) ∼ra q
′ G-RootAll

– x ∈ {r, a}
– ' ∈ {�,�},
– ∼ ◦ ∼′ denotes the composition of ∼ and ∼′,
– Leaf(q) means that q has only nullary outgoing transitions or q ∈ Ω,
– Q(A′) is the set of states of the TA A′,
– root(A) is the root state of the TA A (likewise for A′).

Before the description of the saturation rules, we first introduce some no-
tation. For relations ∼ and ∼′ on D, let ∼ ◦ ∼′ be the weakest relation from
{≺rx,�rx,�rx, �rx}, for x ∈ {r, a}, such that for all d1, d2, d3 ∈ D, it holds that
d1 ∼ d2 ∧ d2 ∼′ d3 =⇒ d1 (∼ ◦ ∼′) d3. We write ∼ ⊆ ∼′ iff d ∼ d′ implies d ∼′ d′,
and we define ∼−1 by d ∼−1 d′ iff d′ ∼ d. We say that a constraint q ∼′ry q′ is
a weakening of a constraint q ∼rx q

′ iff it holds that ∼ ⊆ ∼′ and, in the case y is a

(i.e., a “for all” constraint), it also holds that x is a. The saturation rules that can
be used are as follows.

5.1.1 Inferring global constraints from global constraints

The saturation rules for inferring global constraints from global constraints, as
shown in Table 1, are based on the following principles:

1. properties of the ordering relations:
– G-Trans is based on transitivity,
– G-Refl1 and G-Refl2 are based on reflexivity of � and �,

2. weakening of existing data constraints:
– G-Weak1 states that from q ∼ra q

′, we can infer a weaker constraint q ∼rr q
′,

– G-Weak2 gives a rule for inferring the weaker constraints q �rx q′ from
q ≺rx q

′ and q �rx q
′ from q �rx q

′ for any x ∈ {r, a},
3. strengthening of existing data constraints:

– G-Stre states that each global constraint q ∼rr q
′ where q′ ∈ Ω or q′ has

nullary outgoing transitions only can be strengthened to q ≺ra q
′,

4. properties of the ra relation:
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Table 2 Rules for inferring local constraints from local constraints.

0 ∼ra i ∈ c
0 ∼rr i ∈ c

L-RootRoot

0 ∼rx i ∈ c
0 'rx i ∈ c

L-Weak
0 ∼rr i ∈ c Leaf(qi)

0 ∼ra i ∈ c
L-Stre

– We assume the transition q → a(q1, . . . , qm) : c and 1 ≤ i ≤ m,
– x ∈ {r, a},
– ' ∈ {�,�},
– Leaf(q) is true iff q has only nullary outgoing transitions or q ∈ Ω,
– root(A) is the root state of the TA A.

Table 3 Rules for inferring local constraints from global constraints.

q ∼rx qi

0 ∼rx i ∈ c
L-G-Prop

qi = j ∈ Ω q ∼rx root(Aj)

0 ∼rx i ∈ c
L-G-Ref

– We assume the transition q → a(q1, . . . , qm) : c and 1 ≤ i ≤ m,
– x ∈ {r, a}.

– G-RootAll states for a pair of TAs A and A′ of the given FA that if q′ is
a state of a TA A′, then a global constraint root(A) ∼ra root(A′) will add
the constraint root(A) ∼ra q

′.

5.1.2 Inferring local constraints from local constraints

The saturation rules (shown in Table 2) which infer new local constraints from
already existing ones in a transition q → a(q1, . . . , qm) : c, s.t. 1 ≤ i ≤ m, are based
on the following:

1. weakening the existing constraints: if q → a(q1, . . . , qm) : c is a transition, then
– L-RootRoot weakens a ∼ra relation to a ∼rr relation,
– L-Weak infers the weaker constraints 0 �rx i from 0 ≺rx i and 0 �rx i from

0 �rx i for any x ∈ {r, a},
2. strengthening of existing data constraints:

– L-Stre is used for qi such that qi is either in Ω or has only nullary outgoing
transitions to strengthen a constraint 0 ∼rr i to the constraint 0 ∼ra i.

5.1.3 Inferring local constraints from global constraints

Inference of local constraints in a transition q → a(q1, . . . , qm) : c, s.t. 1 ≤ i ≤ m,
from global constraints is done using the rules shown in Table 3:

– L-G-Prop propagates a global constraint q ∼rx qi for states used in the same
transition into a local constraint 0 ∼rx i,

– L-G-Ref propagates a global constraint q ∼rx root(j) between a state q and
the root state of a TA j into a local constraint 0 ∼ra i between q and qi = j.
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5.1.4 Inferring global constraints from local constraints

Finally, global constraints can be inferred from existing ones by propagating them
over local constraints of transitions in which the states of the global constraints
occur. Since a single state may be reached in several different ways, propagation
of global constraints through local constraints on all transitions arriving to the
given state must be considered. If some of the ways how to get to the state does
not allow the propagation, it cannot be done. Moreover, since one propagation can
enable another one, the propagation must be done iteratively until a fixpoint is
reached. The iterative propagation must terminate since the number of constraints
that can be used is finite. The propagation of constraints between states of a TA
can be performed either downwards from the root towards leaves or upwards from
leaves towards the root as described below. Let p be the root state of some TA A.
For each state q of A, let Φ(q, p) be the set of global constraints between q and p.
The data constraints are propagated in two directions:

Downward propagation. In the downward propagation, we simultaneously extend
the sets Φ(q, p) to larger ones Ψ(q, p) starting from the root state q0 of A and
setting Ψ(q0, p) = Φ(q0, p) (i.e. no constraints are added for this case). Then, for
non-root states q, we extend the set of constraints in Ψ(q, p) by traversing over the
transitions of A and adding constraints according to the following rules:

– We add the constraint q ((∼′)−1◦ ∼)rx p, with x ∈ {a, r}, if, for every occurrence
of q as qi in any transition δ = q′ → a(q1, . . . , qn) : c, there is a local constraint
0 ∼′rr i in c and a global constraint q′ ∼rx p in Ψ(q′, p).

– We add the constraint p (∼ ◦ ∼′)rx q, with x ∈ {a, r}, if, for every occurrence
of q as qi in any transition δ = q′ → a(q1, . . . , qn) : c, there is a local constraint
0 ∼′rx i in c and a global constraint p ∼ry q

′ in Ψ(q′, p) with y ∈ {a, r}.
– We add the constraint p ∼ra q if, for every occurrence of q as qi in any transition
δ = q′ → a(q1, . . . , qn) : c, it holds that p ∼ra q

′ is in Ψ(q′, p).

Intuitively, the first two cases use transitivity to propagate a constraint involving
q′ to a constraint involving qi; the last case uses the semantics of p ∼ra q

′.

Upward propagation. The upward propagation can be defined analogously. Already
existing sets of constraints Φ(q, p) can be extended to sets Ψ(q, p) by traversing
over the transitions of A and adding constraints according to the following rules:

– We add the constraint p ∼ra q if there is the constraint p ∼rr q is in Ψ(q, p), and
for every transition δ = q → a(q1, . . . , qn) : c it holds that p ∼ra qi ∈ Ψ(qi, p) for
every 1 ≤ i ≤ n.

– We add the constraint q (∼′ ◦ ∼)rx p, with x ∈ {a, r}, if there is no nullary
transition going from q and for every transition δ = q → a(q1, . . . , qn) : c, there
are the constraints 0 ∼′rr i in c and qi ∼rx p in Ψ(qi, p) for some 1 ≤ i ≤ n.

– We add the constraint p (∼ ◦(∼′)−1)rr q, with x ∈ {a, r}, if there is no nullary
transition going from q and for every transition δ = q → a(q1, . . . , qn) : c, there
are the constraints 0 ∼′rr i in c and p ∼rx qi in Ψ(qi, p) for some 1 ≤ i ≤ n.

Proposition 1 The constraint saturation process always terminates.

Proof Follows from the facts that the maximum number of constraints in an FA
is finite and that adding a new constraint is a monotone operation. ut
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5.2 Abstract Transformers

For each operation op in the intermediate representation of the analysed program
corresponding to the function fop on concrete configurations 〈σ,H〉, we define an
abstract transformer τop on abstract configurations 〈σ, F 〉 such that the result of
τop(〈σ, F 〉) denotes the set {fop(〈σ,H〉) | H ∈ L(F )}. The abstract transformer τop
is applied separately for each pair 〈σ, F 〉 in an abstract configuration. Note that
all our abstract transformers τop are exact.

Below, we present the abstract transformers corresponding to some of the op-
erations on abstract states of the form 〈σ, F 〉—the rest of the transformers is
analogous. For simplicity of the presentation, we assume that for all TAs Ai in F ,
(a) the root state of Ai does not appear on the right-hand side of any transition,
and (b) it occurs on the left-hand side of exactly one transition. It is easy to see
that any TA can be transformed into this form. Indeed, in order to transform
a TA A = 〈Q, qf ,∆〉 from an FA F into the form where qf does not appear on the
right-hand side of any transition and appears on the left-hand side of exactly one
transition, we may perform the following sequence of actions:

1. create a copy q′f of qf , which replaces qf on the right-hand side of all transitions,

2. duplicate all transitions from qf to become transitions also from q′f (while again

substituting any occurrence of qf with q′f ),
3. split A into several TAs, one for each transition from the accepting state qf ,

creating several copies of the FA F that contains A, and
4. adapt the local and global constraints by duplicating them whenever some

state is duplicated.

An example of this transformation, which basically unfolds once all loops on qf ,
will be given in Example 3 below.

We now introduce some common notation and operations for the below pre-
sented transformers. We use Aσ(x) and Aσ(y) to denote the TA pointed by variables
x and y, respectively, and qx and qy to denote the root states of these TAs. Let
qy → a(q1, . . . , qi, . . . , qm) : c be the unique transition from qy. Before describing
the actual update, let us first define how to split a TA.

The operation of splitting a TA Aσ(y) at the i-th position, for 1 ≤ i ≤ m, is
described by the following sequence of operations:

1. First, a new TA Ak is appended to F such that Ak is a copy of Aσ(y) but with
qi as the root state.

2. Second, the root transition in Aσ(y) is changed to qy → a(q1, . . . , k, . . . , qm) : c′

where c′ is obtained from c by replacing any local constraint of the form 0 ∼rx i

by the global constraint qy ∼rx root(Ak).
3. Global data constraints are adapted as follows: For each constraint q ∼rx p

where q is in Aσ(y) such that q 6= qy, a new constraint q′ ∼rx p is added, where
q′ is the version of q in Ak. Likewise, for each constraint q ∼rx p where p is
in Aσ(y) such that p 6= qy, a new constraint q ∼rx p

′ is added (again, p′ is the
version of p in Ak). Finally, for each constraint of the form p ∼ra qy, a new
constraint p ∼ra root(Ak) is added.

An example of the splitting step is given in Example 3 below.
In what follows, we assume that sel is represented by ai in the sequence

a = a1 · · · am so that qi corresponds to the target of sel. Before performing the
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actual update, we check whether the operation to be performed tries to derefer-
ence a pointer to ⊥ or to an undefined value, in which case we stop the analysis
and report an error. Otherwise, we continue by performing one of the following
actions, depending on the particular statement.

x = malloc() We extend F with a new TA Anew containing one state and one
transition where all selector values are undefined and assign σ(x) to the index
of Anew in F .

x = y->sel If qi is a root reference (say, j), it is sufficient to change the value
of σ(x) to j. Otherwise, we split Aσ(y) at the i-th position (creating Ak) and
assign k to σ(x).

y->sel = x If qi is a state, then we split Aσ(y) at the i-th position. Then we put

σ(x) to the i-th position in the right-hand side of the root transition of Aσ(y);
this is done both if qi is a state and if qi is a root reference. Any local constraint
in c of the form 0 ∼rx i which concerns the removed root reference qi is then
removed from c.

y->data = x->data First, we remove any local constraint that involves qy or a root
reference to Aσ(y). Then, we add a new global constraint qy =rr qx, and we also
keep all global constraints of the form q′ ∼rx qy if q′ ∼rr qx is implied by the
constraints obtained after the update.

y->data ∼ x->data (where ∼ ∈ {≺,�,�,�}) First, we execute the saturation pro-
cedure in order to infer the strongest constraints between qy and qx. Then,
if there exists a global constraint qy ∼′ qx that implies qy ∼ qx (or its nega-
tion), we return true (or false). Otherwise, we copy 〈σ, F 〉 into two abstract
configurations: 〈σ, Ftrue〉 for the true branch and 〈σ, Ffalse〉 for the false branch.
Moreover, we extend Ftrue with the global constraint qy ∼ qx and Ffalse with
its negation.

x = y or x = NULL We simply update σ accordingly.
free(y) First, we split Aσ(y) at all j-th positions, 1 ≤ j ≤ m, that appear in its root

transition, then we remove Aσ(y) from F and set σ(y) to undefined. However,
to keep all possible data constraints, before removing Aσ(y), the saturation pro-
cedure is executed. After the action is done, every global constraint involving
qy is removed.

x == y This operation is evaluated simply by checking whether σ(x) = σ(y). If
σ(x) or σ(y) is undefined, we assume both possibilities.

After the update, we check that all TAs in F are referenced, either by a variable
or from a root reference, otherwise we report an emergence of garbage.

Example 3 We now present the computation of the abstract configuration that re-
sults from executing the program statements which appear at line 9 of the program
in Fig. 1 when starting from the abstract configuration described in Fig. 4(a) (for
the sake of brevity, we leave out the newNode variable and the corresponding TA
from the example). In order to compute this abstract configuration, a sequence
of two statements including the test statement x->right 6= NULL and the update
statement x = x->right is executed. First, the test statement x->right 6= NULL is
executed in the following two steps:

1. As can be seen from the FA Fa from Fig. 4(a) encoding BSTs, the root state
q1 of Aa1 (the only TA of Fa) occurs on the right-hand side of three transitions
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q1

⊥⊥

�ra
left

≺ra

right

�ra

left

right

≺ra

right

left

right

left

Aa1

Fa = 〈Aa1, ∅〉
σ(root) = 1, σ(x) = 1

Aa1

1a : q1 → l, r(q1, q1) : 0 �ra 1, 0 ≺ra 2
2a : q1 → l, r(⊥, q1) : 0 ≺ra 2
3a : q1 → l, r(q1,⊥) : 0 �ra 1
4a : q1 → l, r(⊥,⊥)

a) An example abstract configuration at line 9 of the program in Fig. 1. The abstract
configuration represents a set of BSTs (l, r abbreviates left, right).

q′1

⊥⊥

�ra
left

≺ra

right

�ra

left

right

≺ra

right

left

right

left

q1

⊥⊥

right
≺ra

left
�ra

right
≺ra

left

left
�ra

right

left

right

Ab1

Fb = 〈Ab1, ∅〉
σ(root) = 1, σ(x) = 1

Ab1

1b : q1 → l, r(q′1, q
′
1) : 0 �ra 1, 0 ≺ra 2

2b : q1 → l, r(⊥, q′1) : 0 ≺ra 2
3b : q1 → l, r(q′1,⊥) : 0 �ra 1
4b : q1 → l, r(⊥,⊥)
5b : q′1 → l, r(q′1, q

′
1) : 0 �ra 1, 0 ≺ra 2

6b : q′1 → l, r(⊥, q′1) : 0 ≺ra 2
7b : q′1 → l, r(q′1,⊥) : 0 �ra 1
8b : q′1 → l, r(⊥,⊥)

b) An intermediate state of a transformation of the forest automaton Fa from (a) into the
form with a single root transition.

Fig. 4 An example of a transformation of an FA into the form with a single root transition.

of Aa1, and we will therefore create a state q′1, a copy of q1, and duplicate to
q′1 the four transitions leaving from q1 (the resulting intermediate FA Fb can
be seen in Fig. 4(b)). Then, for each transition t ∈ {1b, 2b, 3b, 4b} leaving from
q1 in A1b, we create a copy of the intermediate FA called Fc, Fd, Fe, and Ff .
From the obtained TA A1c, A1d, A1e, and A1f , we subsequently remove all
transitions leaving from q1 other than t, resulting in the four FAs in Fig. 5.

2. The next step is to remove configurations where the root transition of the TA
pointed by x contains ⊥ at the the second position of the right-hand side since
they do not meet the condition x->right 6= NULL (they will be processed in the
else branch). Due to this, the abstract configurations with the FAs Fe and Ff
are removed.

Second, the update statement x = x->right is executed on the abstract config-
urations shown in Fig. 5(a) and Fig. 5(b). Here, we show the steps only for the
abstract configuration from Fig. 5(a), the other one could be computed in a similar
manner. The resulting abstract configuration is shown in Fig. 6.
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q′1

⊥⊥

�ra
left

≺ra

right

�ra

left

right

≺ra

right

left

right

left

q1

right
≺ra

left
�ra

A1c

Fc = 〈A1c, ∅〉, σ(root) = 1, σ(x) = 1

A1c

1c : q1 → l, r(q′1, q
′
1) : 0 �ra 1, 0 ≺ra 2

2c : q′1 → l, r(q′1, q
′
1) : 0 �ra 1, 0 ≺ra 2

3c : q′1 → l, r(⊥, q′1) : 0 ≺ra 2
4c : q′1 → l, r(q′1,⊥) : 0 �ra 1
5c : q′1 → l, r(⊥,⊥)

a) The resulting FA for the transition
1b : q1 → l, r(q′1, q

′
1) : 0 �ra 1, 0 ≺ra 2.

q′1

⊥⊥

�ra
left

≺ra

right

�ra

left

right

≺ra

right

left

right

left

q1

⊥

right
≺ra

left

A1d

Fd = 〈A1d, ∅〉, σ(root) = 1, σ(x) = 1

A1d

1d : q1 → l, r(⊥, q′1) : 0 ≺ra 2
2d : q′1 → l, r(q′1, q

′
1) : 0 �ra 1, 0 ≺ra 2

3d : q′1 → l, r(⊥, q′1) : 0 ≺ra 2
4d : q′1 → l, r(q′1,⊥) : 0 �ra 1
5d : q′1 → l, r(⊥,⊥)

b) The resulting FA for the transition
2b : q1 → l, r(⊥, q′1) : 0 ≺ra 2.

q′1

⊥⊥

�ra
left

≺ra

right

�ra

left

right

≺ra

right

left

right

left

q1

⊥

left
�ra

right

A1e

Fe = 〈A1e, ∅〉, σ(root) = 1, σ(x) = 1

A1e

1e : q1 → l, r(q′1,⊥) : 0 �ra 1
2e : q′1 → l, r(q′1, q

′
1) : 0 �ra 1, 0 ≺ra 2

3e : q′1 → l, r(⊥, q′1) : 0 ≺ra 2
4e : q′1 → l, r(q′1,⊥) : 0 �ra 1
5e : q′1 → l, r(⊥,⊥)

c) The resulting FA for the transition
3b : q1 → l, r(q′1,⊥) : 0 �ra 1.

q1

⊥left

right

A1f

Ff = 〈A1f , ∅〉, σ(root) = 1, σ(x) = 1

A1f

1f : q1 → l, r(⊥,⊥)

d) The resulting FA for the transition
4b : q1 → l, r(⊥,⊥).

Fig. 5 The results of the transformation of the FA from Fig. 4.
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q′1

⊥⊥

�ra
left

≺ra

right

�ra

left

right

≺ra

right

left

right

left

q1

2

left
�ra

right
≺ra

q2

⊥⊥

�ra
left

≺ra

right

�ra

left

right

≺ra

right

left

right

left

A1g

A2g

Fg = 〈A1g A2g , {q1 ≺ra q2}〉
σ(root) = 1, σ(x) = 2

A1g

1g : q1 → l, r(q′1, 2) : 0 �ra 1, 0 ≺ra 2
2g : q′1 → l, r(q′1, q

′
1) : 0 �ra 1, 0 ≺ra 2

3g : q′1 → l, r(⊥, q′1) : 0 ≺ra 2
4g : q′1 → l, r(q′1,⊥) : 0 �ra 1
5g : q′1 → l, r(⊥,⊥)

A2g

6g : q2 → l, r(q2, q2) : 0 �ra 1, 0 ≺ra 2
7g : q2 → l, r(⊥, q2) : 0 ≺ra 2
8g : q2 → l, r(q2,⊥) : 0 �ra 1
9g : q2 → l, r(⊥,⊥)

Fig. 6 The FA obtained from Fc from Fig. 5(a) by splitting A1c at the second position.

1. The first step is to compute the new FA resulting from splitting the root transi-
tion 1c of the TA A1c in the FA Fc in Fig. 5(a) at the second position, yielding
the FA Fg. First, we create the TA A2g from A1c by copying it, renaming q′1 to
q2, and making the state q2 the root state (note that q1 becomes unreachable
in A2g, and so we discard it). Then, we copy A1c to A1g and change the root
transition 1c of A1g by replacing the state q′1 at the second position of its tuple
of children states (corresponding to the selector right) by 2 and add the global
constraint q1 ≺ra q2.

2. The second step is to update the valuation σ of both abstract configurations
to σ := σ{x 7→ 2} meaning that x will point to roots of BSTs accepted by A2g

whereas σ(root) is kept unchanged.

5.3 Normalization

Normalization transforms an FA F = (A1 · · ·An, ϕ) into a canonicity respecting
FA in three major steps:

1. First, we transform F into a form in which roots of trees of accepted forests
correspond to cut-points in a uniform way. In particular, for all 1 ≤ i ≤ n and
all accepted forests t1 · · · tn, one of the following holds: (a) If the root of ti is
the j-th cut-point in the canonical ordering of an accepted forest, then it is the
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j-th cut-point in the canonical ordering of all accepted forests. (b) Otherwise
the root of ti is not a cut-point of any of the accepted forests.

2. Then we merge TAs so that the roots of trees of accepted forests are cut-points
only, which is described in detail below.

3. Finally, we reorder the TAs according to the canonical ordering of cut-points
(which are roots of the accepted trees).

Our procedure is an augmentation of that in [15] used to normalize FAs without
data constraints. The difference, which we describe below, is an update of data
constraints while performing Step 2.

In order to minimize a possible loss of information encoded by data constraints,
Step 2 is preceded by saturation (Section 5.1). Then, for all 1 ≤ i ≤ n such that
roots of trees accepted by Ai = (QA, qA,∆A) are not cut-points of the graphs in
L(F ) and such that there is a TA B = (QB , qB ,∆B) that contains a root reference
to Ai, Step 2 performs the following. The TA Ai is removed from F , the data
constraints between qA and non-root states of F are removed from ϕ, and Ai is
connected to B at the places where B refers to it. In detail, B is replaced by the
TA (QA∪QB , qB ,∆A+B) where ∆A+B is constructed from ∆A∪∆B by modifying
every transition q → a(q1, . . . , qm) : c ∈ ∆B as follows:

1. all occurrences of i among q1, . . . , qm are replaced by qA, and
2. for all 1 ≤ k ≤ m s.t. qk can reach i by following top-down a sequence of

the original rules of ∆B , the constraint 0 ∼ra k is removed from c unless
qk ∼ra qA ∈ ϕ or qk = i and q ∼ra qA ∈ ϕ.

Example 4 In this example, we show normalization of the FA in a possible abstract
configuration after the execution of line 22 in the program in Fig. 1. The abstract
configuration can be seen in Fig. 7(a). Because the roots of the trees accepted
by the TA A2h do not correspond to the cut-points of the graphs in L(Fh), we
join A1h and A2h in the following way. First, the states and transitions of A2h

are copied to A1h and the root state of A2h substitutes the reference 2 in the
transition 1h of A1h. Afterwards, the TA A2h is removed together with the global
data constraint q1 ≺ra q2 from the FA. The constraint 0 ≺ra 2 is not removed from
the root transition 1h because q1 ≺ra q2 was in the set of global data constraints
of Fh before normalization and, therefore, 0 ≺ra 2 will still hold. The resulting FA
Fi is shown in Fig. 7(b).

5.4 Checking Language Inclusion

In this section, we describe a reduction of checking language inclusion of FAs with
data constraints to checking language inclusion of FAs without data constraints,
which can be then done using the techniques of [15]. We note that “ordinary FAs”
correspond to FAs with no global and no local data constraints. The reduction
encodes an FA with data constraints as an FA without data constraints such that
its language, when decoded in a particular way, is the same as the language of the
original automaton.

An encoding of an FA F = (A1 · · ·An, ϕ) with data constraints is an ordinary
FA FE = (A′1 · · ·A′n, ∅) where the data constraints are written into symbols of
transitions. That is, each transition q → a(q1, . . . , qm) : c of Ai, 1 ≤ i ≤ n, is in
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q′1

⊥⊥

�ra
left

≺ra

right

�ra

left

right

≺ra

right

left

right

left

q1

2

left
�ra

right
≺ra

q2

⊥⊥

�ra
left

≺ra

right

�ra

left

right

≺ra

right

left

right

left

A1h

A2h

Fh = 〈A1h A2h, {q1 ≺ra q2}〉
σ(root) = 1, σ(x) = ⊥

A1h

1h : q1 → l, r(q′1, 2) : 0 �ra 1, 0 ≺ra 2
2h : q′1 → l, r(q′1, q

′
1) : 0 �ra 1, 0 ≺ra 2

3h : q′1 → l, r(⊥, q′1) : 0 ≺ra 2
4h : q′1 → l, r(q′1,⊥) : 0 �ra 1
5h : q′1 → l, r(⊥,⊥)

A2h

6h : q2 → l, r(q2, q2) : 0 �ra 1, 0 ≺ra 2
7h : q2 → l, r(⊥, q2) : 0 ≺ra 2
8h : q2 → l, r(q2,⊥) : 0 �ra 1
9h : q2 → l, r(⊥,⊥)

a) An abstract configuration.

q′1

⊥⊥

�ra
left

≺ra

right

�ra

left

right

≺ra

right

left

right

left

q1

q2
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�ra

left
≺ra

right

�ra

left
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≺ra

right

left

left
right

right
≺ra

left
�ra

A1i

Fi = 〈A1i, ∅〉
σ(root) = 1, σ(x) = ⊥

A1i

1i : q1 → l, r(q′1, q2) : 0 �ra 1, 0 ≺ra 2
2i : q′1 → l, r(q′1, q

′
1) : 0 �ra 1, 0 ≺ra 2

3i : q′1 → l, r(⊥, q′1) : 0 ≺ra 2
4i : q′1 → l, r(q′1,⊥) : 0 �ra 1
5i : q′1 → l, r(⊥,⊥)
6i : q2 → l, r(q2, q2) : 0 �ra 1, 0 ≺ra 2
7i : q2 → l, r(⊥, q2) : 0 ≺ra 2
8i : q2 → l, r(q2,⊥) : 0 �ra 1
9i : q2 → l, r(⊥,⊥)

b) The abstract configuration from (a) after
normalization.

Fig. 7 An example of running normalization on the abstract configuration obtained from the
program in Fig. 1 after executing line 22.

A′i replaced by the transition q → 〈(a1, `1, g) · · · (am, `m, g)〉(q1, . . . , qm) : ∅ where
for 1 ≤ j ≤ m, `j is the subset of c containing the local constraints involving
j, and g encodes the global constraints involving q as follows: Let r be the root
state of some Ak, 1 ≤ k ≤ n, that does not appear within any right-hand side of
a rule. Then for a global constraint q ∼rx r, or r ∼rx q, g contains 0 ∼rx k, or
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k ∼rx 0, respectively. The language of A′i thus consists of trees over the alphabet
ΓE = Γ ×C×C where C is the set of constraints of the form j ∼rx k for j, k ∈ N0.

To show that testing inclusion of encoded FAs is a sound approximation of
language inclusion test of FAs with constraints, we need to establish a correspon-
dence between languages of the encoded FAs and languages of the original ones.
For this, we define a decoding of a forest t′1 · · · t′n from a language of an encoded
FA over ΓE as the set of forests t1 · · · tn over Γ such that t1 · · · tn arises from
t′1 · · · t′n by (1) removing encoded constraints from the symbols, and (2) choosing
data labeling that satisfies the constraints encoded within the symbols of t′1 · · · t′n.
Formally, for all 1 ≤ i ≤ n, Vti = Vt′i , and for all a ∈ Γ , u, v ∈ Vti , and `, g ⊆ C, we
have (a, `, g)t′i(u) = v iff: (1) ati(u) = v and (2) for all 1 ≤ j ≤ n: if 0 ∼rx j ∈ `,
then u ∼rx v (in ti), and if 0 ∼rx j ∈ g, then u ∼rx root(tj) (symmetrically for
j ∼rx 0). The notion of decoding allows us to summarise the correspondence of
languages of FAs and languages of their encodings as follows.

Lemma 1 The set of forests accepted by an FA F is equal to the set of decodings of

forests accepted by FE .

Proof Let F = 〈A1 · · ·An, ϕ〉 and FE = 〈A′1 · · ·A′n, ∅〉. We first prove that every
forest t1 · · · tn accepted by F is a decoding of some forest accepted by FE . Let
ρ1, . . . , ρn be the runs of A1 · · ·An on t1 · · · tn, respectively. We will construct runs
ρ′1, . . . , ρ

′
n of A′1 . . . A

′
n on the forest t′1 · · · t′n of which t1 · · · tn is a decoding such

that for every ρi, 1 ≤ i ≤ n, we will construct the run ρ′i. Let us first simplify the
notation by denoting ρi, ti, ρ

′
i, t
′
i, Ai, and A′i by ρ, t, ρ′, t′, A, and A′, respectively.

The run ρ′ is constructed as follows. Vt′ = Vt and λt′ can be chosen arbitrarily.
For every v ∈ Vt such that a1t (v) = v1, . . . , a

m
t (v) = vm are the edges of t with

the source v, there is a transition of A of the form δ = q → a(q1, . . . , qm) : c such
that ρ(v) = q, ρ(v1) = q1, . . . , ρ(vm) = qm, c is satisfied by v, v1, . . . , vm in t, and
also global constraints q ∼rx r, r ∼rx q ∈ ϕ are satisfied by v and ρk(r) for the k
such that r is a state of Ak. (by the definition of a run). The run ρ′ then labels
v, v1, . . . , vm using the rule δ′ = q → ᾱ(q1, . . . , qm) : ∅ which is the encoding of δ
(ᾱ = 〈(a1, `1, g) · · · (am, `m, g)〉 where g contains encoded the part of ϕ involving q
and c = `1 ∪ · · · ∪ `m). ρ′ is obviously a run of A′. The described construction of ρ′

defines a map f which assigns to every v, v1, . . . , vm ∈ Vt, where v1, . . . , vm are the
children of v, a pair of transitions (δ, δ′) of A and A′, respectively, where δ and δ′

are the rules used within ρ and ρ′, respectively, to label v, v1, . . . , vm.
Let us argue that t1 · · · tn is indeed a decoding of t′1 · · · t′n. It is trivially satisfied

for all 1 ≤ i ≤ n that Vti = Vt′i and that every node has the same children in
both forests. In order to argue that data values in t1 · · · tn satisfy the constraints
encoded in t′1 · · · t′n as required by the definition of decoding, we let v ∈ Vti be
a node with children v1, . . . , vm such that f(v, v1, . . . , vm) = (δ, δ′) where δ = q →
a(q1, . . . , qm) : c and δ′ = q → ᾱ(q1, . . . , qm) : ∅ and ᾱ = 〈(a1, `1, g) · · · (am, `m, g)〉.
Then the constraints imposed on the data value of v within t1 · · · tn by ϕ and those
imposed by c due to the use of δ are the same as the constraints enforced on v due
to ᾱ when t′1 · · · t′n is decoded into t1 · · · tn. In detail, c contains a local constraint
0 ∼ k iff `k contains 0 ∼ k (by the def. of encoding). This means that in the run
of A on t, it is required that v ∼ vk, which is the same constraint as required by
the decoding function. Secondly, there is a global constraint of the form q ∼ r ∈ ϕ
such that r is the root state of Ak (not appearing within right-hand sides of its
transitions) iff 0 ∼ k ∈ g (and analogically for the symmetrical cases). In the run
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of A, q ∼ r enforces that v ∼ u where u is the root of tk. Notice that u cannot
be any other node than the root since r does not appear within right-hand sides
of transitions of Ak. v ∼ u is precisely what is enforced due to 0 ∼ k ∈ g when
decoding t′1 · · · t′n.

Secondly, we prove that every decoding t1 · · · tn of a forest t′1 · · · t′n ∈ L(FE) is
accepted by F . We will do that by showing that every n-tuple of runs ρ′1, . . . , ρ

′
n of

A′1, . . . , A
′
n on t1, . . . , tn respectively also encodes runs of A1, . . . , An on t1, . . . , tn

respectively.

Recall first that by the definition of a decoding, for each 1 ≤ i ≤ n, ti and t′i
have the same sets of nodes and every node have the same tuple of children. To
simplify the notation, let t, ρ′, t′, A,A′ be denoted as ti, ρ

′
i, t
′
i, Ai, A

′
i respectively.

Let v ∈ Vt′ and let α1
t′(v) = v1, . . . , α

m
t′ (v) = vm be the edges of t′ with the

source v where for all 1 ≤ j ≤ m, αj = (aj , `j , g). By the definition of a decoding,
v satisfies all constraints encoded within ᾱ. Since t′ is accepted by A′, there is
a transition of A′ of the form δ′ = q → ᾱ(q1, . . . , qm) : ∅ such that ρ′(v) = q,
ρ′(v1) = q1, . . . , ρ

′(vm) = qm. By the definition of encoding, δ′ was created from
a rule δ = q → a(q1, . . . , qm) : c of A where `1 ∪ · · · ∪ `m = c and g encodes all
global constraints involving q and a root state r which does not appear within
a right-hand side of any rule. These constraints are precisely those encoded within
ᾱ and hence required to hold for v in t1 · · · tn by decoding. ρ′ is thus indeed a run
of A since for every v and its children v1, . . . , vm, there is a rule δ which can be
used according to the definition of a run. ut

A direct consequence of Lemma 1 is that if L(FEA ) ⊆ L(FEB ), then L(FA) ⊆
L(FB). We can thus use the language inclusion checking procedure of [15] for or-
dinary FAs to safely approximate language inclusion of FAs with data constraints.

This language inclusion test is not complete, the above implication does not
hold in the opposite direction. There are two reasons for this. First, encoding
translates a constraint of FB that is strictly weaker than a constraint of FA into two
different and unrelated labels. This may result in the situation that even though
L(FA) ⊆ L(FB), language inclusion of encodings of FAs does not hold due to the
reason that the trees accepted are labelled by different symbols. For instance, let
FA = (A1, ∅) where A1 contains only a single transition δA = q → a(1) : {0 ≺rr 1}
and FB = (B1, ∅) where B1 also contains only a single transition δB = r → a(1) : ∅.
It holds that L(FA) ⊆ L(FB) (indeed, L(FA) = ∅ due to the strict inequality on the
root), but L(FEA ) is incomparable with L(FEB ). The reason is that δA and δB are
encoded as transitions the symbols of which differ due to different data constraints.
The fact that the constraint ∅ is weaker than the constraint of 0 ≺rr 1 plays no
role. The second source of incompleteness of the inclusion test is that decodings
of some forests accepted by FEA and FEB may be empty due to inconsistent data
constraints. If the set of such inconsistent forests of FEA is not included in that of
FEB , then L(FEA ) cannot be included in L(FEB ), but the inclusion L(FA) ⊆ L(FB)
can still hold since the forests with the empty decodings do not contribute to
L(FA) and L(FB) (in the sense of Lemma 1).

We do not attempt to resolve the problem of inconsistent data constraints
since it does not seem to occur in practice, as witnessed by our experiments. On
the other hand, the issue of incompatible encodings of related data constraints
appears to be of a practical consequence. We address it with a quite simple trans-
formation of FEB : we pump-up the TAs of FEB by variants of their transitions which



Verification of Heap Manipulating Programs with Ordered Data by Extended FAs 23

encode stronger data constraints than originals and match the data constraints on
transitions of FEA . Since we are adding transitions with stronger constraints than
the existing ones, this does not change the language of FB . For instance, in our
previous example, we add the transition r → a(1) : {0 ≺rr 1} to B1. This transi-
tion, when encoded, can then correspond to the encoded version of the transition
q → a(1) : {0 ≺rr 1} of A1 and the language inclusion of the encodings will hold.

Formally, we call a sequence α = 〈(a1, `1, g) · · · (am, `m, g)〉 ∈ (ΓE)m stronger

than a sequence β = 〈(a1, `′1, g′) · · · (am, `′m, g′)〉 iff
∧
g =⇒

∧
g′ and for all

1 ≤ i ≤ m,
∧
`i =⇒

∧
`′i. Intuitively, α encodes the same sequence of symbols

a = a1 · · · am as β and stronger local and global data constraints than β. We
modify FEB in such a way that for each transition r → α(r1, . . . , rm) of FEB and
each transition of FEA of the form q → β(q1, . . . , qm) where β is stronger than α, we

add the transition q → β(q1, . . . , qm). The modified FA, denoted by FE
+

B , accepts
the same or more forests than FEB (since its TAs have more transitions), but the
sets of decodings of the accepted forests are the same (since the added transitions

encode stronger constraints than the existing transitions). The FA FE
+

B can thus
be used within language inclusion checking in the place of FEB . This technique
prevents the inclusion check to fail because of incompatible encodings of data
constraints. Its soundness is summarised by the following lemma.

Lemma 2 Given two FAs FA and FB, L(FEA ) ⊆ L(FE
+

B ) =⇒ L(FA) ⊆ L(FB).

Proof (sketch) Since the transformation from FE2 to FE
+

2 adds only versions of

existing rules encoding stronger constraints, the sets of decodings of forest of FE
+

2

is the same the set of decodings of forests of FE2 . The statement then follows
immediately from Lemma 1. ut

We note that the same construction is used when checking language inclusion
between sets of FAs with data constraints in a combination with the construction
of [15] for checking inclusion of sets of ordinary FAs. We also note that for the
purpose of checking language inclusion, we need to work with TAs where the tuples
a of symbols (selectors) on all rules are ordered according to a fixed total ordering
of selectors [15] (we use the one from Section 4, used to define canonical forests).

6 Boxes

Forest automata, as defined in Section 4, can represent graphs with cut-points of
an unbounded in-degree as, e.g., in SLLs with head/tail pointers (indeed there can
be any number of references from leaf nodes to a certain root). However, the basic
definition of FAs cannot deal with graphs with an unbounded number of cut-points
since this would require an unbounded number of TAs within FAs. An example
of such a set of graphs is the set of all DLLs of an arbitrary length where each
internal node is a cut-point. The solution provided in [15] is to allow FAs to use
other nested FAs, called boxes, as symbols to “hide” recurring subgraphs and in
this way eliminate cut-points. The alphabet of a box itself may also include boxes,
however, these boxes are required to form a hierarchy, they cannot be recursively
nested. To make the semantics of a box clear, we will need to extend the definitions
of an FA from Section 4 to allow so-called ports. Ports are nodes of a graph hidden
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within a box at which should be the hidden graph connected to its surroundings.
For simplicity of presentation, we give only a simplified version of the definition
in [15], which is more general and allows boxes with an arbitrary number of output
ports.

Formally, we define an io-graph over 〈Γ,Ω〉 to be a tuple gio = 〈g, i, o〉 where g
is a graph with two designated distinct nodes i and o called the input and output

port respectively. An io-forest (t1 · · · tn)io over 〈Γ,Ω〉 is defined as (t1 · · · tn)io =
〈t1 · · · tn, i, o〉 where t1 · · · tn is a forest and i, o ∈ {1, . . . , n}, i 6= o, are the input port

and output port indices. The composition operator ⊗ is extended to io-forests in the
following way: ⊗〈t1 · · · tn, i, o〉 = 〈⊗t1 · · · tn, root(ti), root(to)〉, so the composition of
an io-forest is an io-graph.

A nested forest automaton (NFA) over 〈Γ,Ω〉 is an FA over 〈Γ ∪ B, Ω〉 where
B is a finite set of boxes. A box � over 〈Γ,Ω〉, where Γ does not contain �, is
a triple � = 〈F�, i, o〉 such that F� is an NFA F� = 〈A1 · · ·An, ϕ〉 over 〈Γ,Ω〉,
i ∈ {1, . . . , n} is the input port index, and o ∈ {1, . . . , n} is the output port index such
that i 6= o. The set of boxes of an NFA is required to form a hierarchy, i.e. a box
cannot recursively contain itself. The io-language Lio(�) of a box � = 〈F�, i, o〉 is
the set of io-graphs Lio(�) = {⊗〈t1 · · · tn, i, o〉 | t1 · · · tn is accepted by F�}.

In the case of an NFA F , we need to distinguish between its language L(F ),
which is a set of graphs over 〈Γ ∪ B, Ω〉 and its semantics, which is a set of graphs
over 〈Γ,Ω〉 that emerges when all boxes in the graphs of the language are recur-
sively unfolded in all possible ways. Formally, given a graph g, a graph g′ is an
unfolding of g (written as g  g′) if there is an occurrence (u,�, v) ∈ nextg of
a box � in g (which may be seen as an edge from u to v over � in g), such that
g′ can be constructed from g by substituting (u,�, v) with g�, which is done by
removing (u,�, v) from g, uniting g with g�, and associating the input port of g�
with u and the output port of g� with v, where g� ∈ Lio(�). We use ∗ to denote
the reflexive transitive closure of  . The semantics of F , written as JF K, is the set
of all graphs g′ over 〈Γ,Ω〉 for which there is a graph g in L(F ) such that g  ∗ g′.

In a verification run, boxes are automatically inferred using the techniques
presented in [17]. Abstraction is combined with folding, which substitutes sub-
structures of FAs by TA transitions which use boxes as labels. On the other hand,
unfolding is required by abstract transformers that refer to nodes or selectors en-
coded within a box to expose the content of the box by making it a part of the
top-level FA.

Extension of forest automata of [15,17] by data constraints must be reflected
within treatment of boxes. Particularly, in order not to lose information stored
within data constraints, folding and unfolding require calls of the saturation pro-
cedure. When folding, saturation is used to transform global constraints into local
ones. Namely, global constraints between the root state of the TA which is to
become the input port of a box and the state of the TA which is to become the
output port of the box is transformed into a local constraint of the newly intro-
duced transition which uses the box as a label. When unfolding, saturation is used
to transform local constraints into global ones. Namely, local constraints between
the left-hand side of the transition with the unfolded box and the right-hand side
position attached to the unfolded box is transformed to a global constraint be-
tween the root states of the TAs within the box which correspond to its input and
output port.
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Fig. 8 An example of a 2-level skip list.

Example 5 In this example we show how to unfold and fold boxes on a sample
abstract configuration of a program manipulating a 2-level skip list. A skip list
is a linked list sorted by keys. Each node is assigned a height, either 1 or 2, and
one successor for every level. For example, a node of level 2 has two next pointers,
here called n1 and n2, where n1 points to the next node of level 1 and n2 points
to the next node of level 2. Fig. 8 shows an example configuration of a 2-level
skip list with integer keys (the nodes head and tail with the keys −∞ and +∞
respectively are used as sentinels).

We can see from Fig. 8 that each internal node of level 2 is a cut-point. In order
to be able to represent a skip list of any length, it is necessary to introduce a box
that effectively hides these cut-points. We use, in particular, the box skl2 from
Fig. 9(a), which represents all skip list segments between a pair of nodes of level 2.
Fig. 9(b) shows an abstract configuration of a skip list with 3 nodes of level 2: the
head node, the tail node, and one regular node in between. The number of level
1 nodes (hidden inside the two skl2 boxes) is arbitrary. Note that the output port
of skl2 contains an automaton accepting ε; this is because there are no transitions
leading from the output port of the box.

Fig. 9(c) shows an unfolding of the first occurrence of the skl2 box in the FA.
Intuitively, the unfolding proceeded in the following steps:

1. As a preparatory step for replacing the use of skl2 on the transition 1b by the
contents of the box represented by skl2, the TA B1 was split at the state t2 to
isolate the transition 1b. This produced two auxiliary TAs B′1 and B′3 consisting
of the transitions 1b′ : t1 → skl2(3) : 0 ≺ra 1 and 2b : t2 → skl2(2) : 0 ≺ra 1,
respectively, with 3 being a newly introduced cut-point.

2. Subsequently, the TA A1 corresponding to the input port of skl2 was inserted
in between of t1 and 3 instead of the transition 1b′ over skl2, yielding the
TA B′′1 . (Notice that if the transition 1b′ led—via other symbols than skl2—
to more targets than just 3, the part of 1b′ leading from t1 to such targets
would be preserved and merged with the root transitions of A1.) On the other
hand, the TA A2 corresponding to the output port of skl2 was merged with
the transtion 2b leading from t2. However, since A2 accepts ε, the resulting
transition 6c of B′′3 remains the same as the original transition 2b. (The TA B2

was copied into the TA B′′2 without any modification.)
3. The local data constraint from the transition 1b : t1 → skl2(t2) : 0 ≺ra 1 was

transformed into the global data constraint t1 ≺ra t2 during the unfolding.

The subsequent saturation then also generated the local constraints 0 ≺ra 1 and
0 ≺ra 2 on the transitions 1c and 2c from t1 to 3, and the global constraints
r2 ≺ra t2 and r2 ≺ra u1 (these changes are emphasized by a bold typeface in
Fig. 9(c)).
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3a : r2 → n1, n2(r2,⊥) : 0 ≺ra 1
4a : r2 → n1, n2(2,⊥) : 0 ≺ra 1
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a) The 2-level skip list box skl2.
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1b : t1 → skl2(t2) : 0 ≺ra 1
2b : t2 → skl2(2) : 0 ≺ra 1

B2
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b) A heap containing a skip list with two segments.
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0 ≺ra 1,
0 ≺ra 2

2c : t1 → n1, n2(3, 3) :
0 ≺ra 1,
0 ≺ra 2

3c : r2 → n1, n2(r2,⊥) : 0 ≺ra 1
4c : r2 → n1, n2(3,⊥) : 0 ≺ra 1

B′′2

5c : u1 → n1, n2(⊥,⊥)

B′′3

6c : t2 → skl2(2) : 0 ≺ra 1

c) Unfolding of the first occurrence of the skl2 box in (b).

Fig. 9 An example of unfolding of a box representing a 2-level skip list segment. For the sake
of conciseness, we omitted all ≺rr constraints which are subsumed by ≺ra constraints.
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The inverse operation of folding would transform the FA from Fig. 9(c), while
using the skl2 box, into the FA in Fig. 9(b). See [15] for more details on box
folding and unfolding.

7 Experimental Results

We have implemented the above presented techniques as an extension of the
Forester tool and tested their generality and efficiency on a number of case stud-
ies. We considered programs dealing with SLLs, DLLs, BSTs, and skip lists. We
verified the original implementation of skip lists that uses the data ordering rela-
tion to detect the end of the operated window (as opposed to the implementation
handled in [17] which was modified to remove the dependency of the algorithm on
sortedness). Although the examples are of a smaller size, they are very challenging
as they include complex manipulation with dynamic memory that may depend on
data values stored in memory cells.

Table 4 gives running times in seconds (the average of 10 executions) of the
extension of Forester on our case studies. The names of the examples in the table
contain the name of the data structure manipulated in the program, which is “SLL”
for singly-linked lists, “DLL” for doubly-linked lists, and “BST” for binary search
trees. “SL” stands for skip lists where the subscript denotes their level (the total
number of next pointers in each cell). All experiments start with a random creation
of an instance of the specified structure and end with its disposal. The indicated
procedure is performed in between. The “insert” procedure inserts a node into an
ordered instance of the structure, at the position given by the data value of the
node, “delete” removes the first node with a particular data value, and “reverse”
reverses the structure. “Bubblesort” and “insertsort” perform the given sorting
algorithm on an unordered instance of the list. “Left rotate” and “right rotate”
rotate the BST in the specified direction. Before the disposal of the data structure,
we further check that it remained ordered after execution of the operation. The
experiments were run on a machine with the Intel Core i5-480M @2.67 GHz CPU
and 5 GiB of RAM.

Compared with works [20,27,6,24], which we consider the closest to our ap-
proach, the running times show that our approach is significantly faster. We, how-
ever, note that a precise comparison is not easy even with the mentioned works
since as discussed in the related work paragraph, they can handle more complex
properties on data, but on the other hand, they are less automated or handle less
general classes of pointer structures.

7.1 Discussion

In the above, we described evaluation of our approach on programs manipulating
skip lists of two and three levels. A natural question would be why we limit our-
selves to two and three levels and not consider skip lists of even higher or, which
would be the best case, of an arbitrary level.

Based on our experience, already going from 2-level to 3-level skip lists makes
a huge difference in difficulty, due to the occurrence of a combinatorial explosion
in the number of shapes considered by our approach. In order to make handling



28 Parosh Aziz Abdulla et al.

Table 4 Results of the experiments.

Example Time [s]

SLL

insert 0.06
delete 0.08
reverse 0.07
bubblesort 0.13
insertsort 0.10

DLL

insert 0.14
delete 0.38
reverse 0.16
bubblesort 0.39
insertsort 0.43

Example Time [s]

SL2
insert 9.65
delete 10.14

SL3
insert 56.99
delete 57.35

BST

insert 6.87
delete 15.00
left rotate 7.35
right rotate 6.25

of a 3-level skip list feasible, we had to refine our finite height abstraction from
a quite coarse one, which was sufficient for the other considered data structures,
to take into account the number of unique paths from a state to a root reference
(this step is described in more detail in Section 5 of [17] for the case without data
relations). For the case of 4-level skip lists, this ad-hoc abstraction refinement was
not sufficient and our experiments did not finish in reasonable time.

Moreover, in order to support skip lists with an arbitrary number of next se-
lectors, these would need to be stored in a dynamic list, therefore making the data
structure yet more complex. Even more, the support of a data structure of an ar-
bitrary level in the current technique would need to use recursive nesting of boxes,
which is not supported. Allowing this would demand to rewrite the box learning
algorithm to be able to find such recursive boxes, and the operations for manipu-
lating those, including the language inclusion algorithm. These modifications are
quite challenging and an interesting future research direction.

8 Conclusion

We have extended the FA-based analysis of heap manipulating programs with
a support for reasoning about data stored in dynamic memory. The resulting
method allows for verification of pointer programs where the needed inductive
invariants combine complex shape properties with constraints over stored data,
such as sortedness. The method is fully automatic, quite general, and its efficiency
is comparable with other state-of-the-art analyses even though they handle less
general classes of programs and/or are less automated. We presented experimental
results from verifying programs dealing with variants of (ordered) lists and trees.
To the best of our knowledge, our method is the first one to cope fully automatically
with a full C implementation of a 3-level skip list.

We conjecture that our method generalises to handle other types of proper-
ties in the data domain (e.g., comparing sets of stored values) or other types of
constraints (e.g., constraints over lengths of lists or branches in a tree needed to
express, e.g., balancedness of a tree). We are currently working on an extension of
FAs that can express more general classes of shapes (e.g., B+ trees) by allowing
recursive nesting of boxes, and employing the CEGAR loop of ARTMC. We also
plan to combine the method with techniques to handle concurrency.
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Vojnar. Programs with lists are counter automata. Formal Methods in System Design,
38(2):158–192, 2011.
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