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FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. In the context of shape analysis, counterexample validation and ab-
straction refinement are complex and so far not sufficiently resolved problems.
We provide a novel solution to both of these problems in the context of fully-
automated and rather general shape analysis based on forest automata. Our ap-
proach is based on backward symbolic execution on forest automata, allowing
one to derive automata-based interpolants and refine the automata abstraction
used. The approach allows one to distinguish true and spurious counterexamples
and guarantees progress of the abstraction refinement. We have implemented the
approach in the FORESTER tool and present promising experimental results.

1 Introduction
In [14,16], forest automata (FAs) were proposed as a formalism for representing sets
of heap graphs within a fully-automated and scalable shape analysis of programs with
complex dynamic linked data structures. FAs were implemented in the FORESTER tool
and successfully used to verify programs over a wide range of data structures, such
as different kinds of lists (singly- and doubly-linked, circular, nested, and/or having
various additional pointers), different kinds of trees, as well as skip lists. FAs have the
form of tuples of tree automata (TAs), allowing abstract transformers corresponding
to heap operations to have a local impact (i.e., to change just a few component TAs
instead of the entire heap representation), leading to scalability. To handle complex
nested data structures, FAs may be hierarchically nested, i.e., lower-level FAs can be
used as (automatically derived) alphabet symbols of higher-level FAs.

Despite FORESTER managed to verify a number of programs, it suffered from two
important deficiencies. Namely, due to using abstraction and the lack of mechanisms
for checking validity of possible counterexamples, it could report spurious errors, and,
moreover, it was unable to refine the abstraction using the spurious counterexample.
Interestingly, as discussed in the related work section, this problem is common for many
other approaches to shape analysis, which may perhaps be attributed to the complexity
of heap abstractions. In this paper, we tackle the above problem by providing a novel
method for validation of possible counterexample traces as well as a counterexample
guided abstraction refinement (CEGAR) loop for shape analysis based on FAs.

Our counterexample validation is based on backward symbolic execution of a can-
didate counterexample trace on the level of FAs (with no abstraction on the FAs) while
checking non-emptiness of its intersection with the forward symbolic execution (which
was abstracting the FAs). For that, we have to revert not only abstract transformers cor-
responding to program statements but also various meta-operations that are used in the
forward symbolic execution and that significantly influence the way sets of heap con-
figurations are represented by FAs. In particular, this concerns folding and unfolding of



nested FAs (which we call boxes) as well as splitting, merging, and reordering of com-
ponent TAs, which is used in the forward run for the following two reasons: to prevent
the number of component TAs from growing and to obtain a canonic FA representation.

If the above meta-operations were not reverted, we would not only have problems
in reverting some program statements but also in intersecting FAs obtained from the
forward and backward run. Indeed, the general problem of checking emptiness of in-
tersection of FAs that may use different boxes and different component TAs (i.e., in-
tuitively, different decompositions of the represented heap graphs) is open. When we
carefully revert the mentioned operations, it, however, turns out that the FAs obtained
in the forward and backward run use compatible decomposition and hierarchical struc-
turing of heap graphs, and so checking emptiness of their intersection is possible. Even
then, however, the intersection is not trivial as the boxes obtained in the backward run
may represent smaller sets of sub-heaps, and hence we cannot use boxes as symbols
and instead have to perform the intersection recursively on the boxes as well.

Our abstraction on FAs is a modification of the so-called predicate language ab-
straction [10]. This particular abstraction collapses those states of component TAs that
have non-empty intersection with the same predicate languages, which are obtained
from the backward execution. We show that, in case the intersection of the set of con-
figurations of the above described forward and backward symbolic runs is empty, we
can derive from it an automata interpolant allowing us to get more predicate languages
and to refine the abstraction such that progress of the CEGAR loop is guaranteed (in
the sense that we do not repeat the same abstract forward run).

We have implemented the proposed approach in FORESTER and tested it on a num-
ber of small but challenging programs. Despite there is, of course, a lot of space for
further optimisations, the experimental results are very encouraging. FORESTER can
now not only verify correct programs with complex dynamic data structures but also
reliably report errors in such programs. For some classes of dynamic data structures
(notably skip lists), FORESTER is, to the best of our knowledge, the only tool that can
provide both sound verification as well as reliable error reporting in a fully automated
analysis (i.e., no manually provided heap predicates, no invariants, etc.). Moreover, for
some classes of programs (e.g., various kinds of doubly-linked lists, trees, and nested
lists), the only other tool that we are aware to be able to provide such functionality is
our older automata-based tool [7], which is, however, far less scalable due to the use of
a monolithic heap encoding based on a single TA. Finally, the refinement mechanism
we introduced allowed us to verify some programs that were before out of reach of
FORESTER due to handling finite domain data stored in the heap (which can be used by
the programs themselves or introduced by tagging selected elements in dynamic data
structures when checking properties such as sortedness, reordering, etc.).

2 Related Work
Many different approaches to shape analysis have been proposed, using various under-
lying formalisms, such as logics [17,24,26,20,9,23], automata [7,12,14,16,8], graphs
[11,13], or graph grammars [15]. Apart from the underlying formalisms, the approaches
differ in their degree of automation, in the heap structures they can handle, and in their
scalability. The shape analysis based on forest automata proposed in [16] that we build
on in this paper belongs among the most general, fully automated approaches, still hav-
ing decent scalability.
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As noted also in the recent work [2], a common weakness of the current approaches
to shape analysis is a lack of proper support for checking spuriousness of counterex-
ample traces, possibly followed by automated refinement of the employed abstraction.
This is exactly the problem that we tackle in this paper. Below, we characterize previous
attempts on the problem and compare our approach with them.

The work [4] adds a CEGAR loop on top of the TVLA analyzer [24], which is
based on 3-valued predicate logic with transitive closure. The refinement is, however,
restricted to adding more pointer variables and/or data fields of allocated memory cells
to be tracked only (together with combining the analysis with classic predicate analysis
on data values). The analysis assumes the other necessary heap predicates (i.e., the so-
called core and instrumentation relations in terms of [24]) to be fixed in advance and not
refined. The work [19] also builds on TVLA but goes further by learning more complex
instrumentation relations using inductive logic programming. The core relations are
still fixed in advance though. Compared with both of these works, we do not assume
any predefined fixed predicates. Moreover, the approach of [19] is not CEGAR-based—
it refines the abstraction whenever it hits a possible counterexample in which some loss
of precision happened, regardless of whether the counterexample is real or not.

In [22], a CEGAR-based approach was proposed for automated refinement of the
so-called Boolean heap abstraction using disjunctions of universally quantified Boolean
combinations of first-order predicates with free variables and transitive closure. Unlike
our work, the approach assumes the analyzed programs to be annotated by procedure
contracts and representation invariants of data structures. New predicates are inferred
using finite-trace weakest preconditions on the annotations, and hence new predicates
with reachability constraints can only be inferred via additional heuristic widening on
the inferred predicates. Moreover, the approach is not appropriate for handling nested
data structures, such as lists of lists, requiring nested reachability predicates.

In the context of approaches based on separation logic, several attempts to provide
counterexample validation and automated abstraction refinement have appeared. In [3],
the SLAYER analyzer was extended by a method to check spuriousness of counterex-
ample traces via bounded model checking and SMT. Unlike our work, the approach
may, however, fail in recognising that a given trace represents a real counterexam-
ple. Moreover, the associated refinement can only add more predicates to be tracked
from a pre-defined set of such predicates. In [2], another counterexample analysis for
the context of separation logic was proposed within a computation loop based on the
Impact algorithm [18]. The approach uses bounded backwards abduction to derive so-
called spatial interpolants and to distinguish between real and spurious counterexample
traces. It allows for refinement of the predicates used but only by extending them by
data-related properties. The basic predicates describing heap shapes are provided in
advance and fixed. Another work based on backwards abduction is [5]. The work as-
sumes working with a parametrized family of predicates, and the refinement is based
on refining the parameter. Three concrete families of this kind are provided, namely,
singly-linked lists in which one can remember bigger and bigger multisets of chosen
data values, remember nodes with certain addresses, or track ordering properties. The
basic heap predicates are again fixed. The approach does not guarantee recognition of
spurious and real counterexamples nor progress of the refinement.

Unlike our approach, none of the so-far presented works is based on automata, and
all of the works require some fixed set of shape predicates to be provided in advance.
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Among automata-based approaches, counterexample analysis and refinement was used
in [7] (and also in some related, less general approaches like [6]). In that case, however,
a single tree automaton was used to encode sets of memory configurations, which al-
lowed standard abstraction refinement from abstract regular (tree) model checking [10]
to be used. On the other hand, due to using a single automaton, the approach did not
scale well and had problems with some heap transformations.

The basic formalism of forest automata using fixed abstraction and user-provided
database of boxes was introduced in [14]. We later extended the basic framework with
automatic learning of boxes in [16]. The work [1] added ordering relations into forest
automata to allow verification of programs whose safety depends on relations among
data values from an unbounded domain. In [14,16], we conjectured that counterexam-
ple validation and abstraction refinement should be possible in the context of forest
automata too. However, only now, do we show that this is indeed the case, but also that
much more involved methods than those of [10] are needed.

3 Forest Automata and Heaps
We consider sequential non-recursive C programs, operating on a set of pointer vari-
ables and the heap, using standard statements and control flow constructs. Heap cells
contain zero or several pointer or data fields.

Configurations of the considered programs consist of memory-allocated data and an
assignment of variables. Heap memory can be viewed as a (directed) graph whose nodes
correspond to allocated memory cells. Every node contains a set of named pointer and
data fields. Each pointer field points to another node (we model the NULL and undefined
locations as special memory nodes pointed by variables NULL and undef, respectively),
and the same holds for pointer variables of the program. Data fields of memory nodes
hold a data value. We use the term selector to talk both about pointer and data fields. For
simplification, we model data variables as pointer variables pointing to allocated nodes
that contain a single data field with the value of the variable, and therefore consider
only pointer variables hereafter.

We represent heap memory by partitioning it into a tuple of trees, the so-called for-
est. The leaves of the trees contain information about roots of which trees they should be
merged with to recover the original heap. Our forest automata symbolic representations
of sets of heaps is based on representing sets of forests using tuples of tree automata.

Let us now formalize these ideas. In the following, we use f : A ⇀ B to denote
a partial function from A to B (also viewed as a total function f : A → (B ∪ {>}),
assuming that > 6∈ B). We also assume a bounded data domain D.

Graphs and Heaps. Let Γ be a finite set of selectors and Ω be a finite set of references
s.t. Ω ∩ D = ∅. A graph g over 〈Γ,Ω〉 is a tuple 〈Vg, nextg〉 where Vg is a finite set of
nodes and nextg : Γ → (Vg ⇀ (Vg ∪ Ω ∪ D)) maps each selector a ∈ Γ to a partial
mapping nextg(a) from nodes to nodes, references, or data values. References and data
values are treated as special terminal nodes that are not in the set of regular nodes, i.e.,
Vg ∩ (Ω ∪D) = ∅. For a graph g, we use Vg to denote the nodes of g, and for a selector
a ∈ Γ , we use ag to denote the mapping nextg(a). Given a finite set of variables X,
a heap h over 〈Γ,X〉 is a tuple 〈Vh, nexth, σh〉 where 〈Vh, nexth〉 is a graph over 〈Γ, ∅〉
and σh : X→ Vh is a (total) map of variables to nodes.
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Forest representation of heaps. A graph t is a tree if its nodes and pointers (i.e.,
not references nor data fields) form a tree with a unique root node, denoted root(t).
A forest over 〈Γ,X〉 is a pair 〈t1 · · · tn, σf 〉 where t1 · · · tn is a sequence of trees
over 〈Γ, {1, . . . , n}〉 and σf is a (total) mapping σf : X → {1, . . . , n}. The ele-
ments in {1, . . . , n} are called root references (note that n must be the number of
trees in the forest). A forest 〈t1 · · · tn, σf 〉 over 〈Γ,X〉 represents a heap over 〈Γ,X〉,
denoted ⊗〈t1 · · · tn, σf 〉, obtained by taking the union of the trees of t1 · · · tn (assum-
ing w.l.o.g. that the sets of nodes of the trees are disjoint), connecting root references
with the corresponding roots, and mapping every defined variable x to the root of the
tree indexed by x. Formally, ⊗〈t1 · · · tn, σf 〉 is the heap h = 〈Vh, nexth, σh〉 defined
by (i) Vh =

⋃n
i=1 Vti , and (ii) for a ∈ Γ and v ∈ Vtk , if atk(v) ∈ {1, . . . , n}

then ah(v) = root(tatk (v)) else ah(v) = atk(v), and finally (iii) for every x ∈ X,
σh(x) = root(tσf (x)).

3.1 Forest Automata

A forest automaton is essentially a tuple of tree automata accepting a set of tuples
of trees that represents a set of graphs via their forest decomposition, associated with
a mapping of variables to root references.

Tree automata. A (finite, non-deterministic) tree automaton (TA) over 〈Γ,Ω〉 is a triple
A = (Q, q0, ∆) where Q is a finite set of states (we assume Q∩ (D∪Ω) = ∅), q0 ∈ Q
is the root state (or initial state), denoted root(A), and ∆ is a set of transitions. Each
transition is of the form q → a(q1, . . . , qm) where m ≥ 0, q ∈ Q, q1, . . . , qm ∈
(Q ∪Ω ∪ D)1, and a = a1 · · · am is a sequence of different symbols from Γ .

Let t be a tree over 〈Γ,Ω〉, and let A = (Q, q0, ∆) be a TA over 〈Γ,Ω〉. A run
of A over t is a total map ρ : Vt → Q where ρ(root(t)) = q0 and for each node
v ∈ Vt there is a transition q → a(q1, . . . , qm) in ∆ with a = a1 · · · am such that
ρ(v) = q and for all 1 ≤ i ≤ m, we have (i) if qi ∈ Q, then ait(v) ∈ Vt and
ρ(ait(v)) = qi, and (ii) if qi ∈ Ω ∪ D, then ait(v) = qi. We define the language of
A as L(A) = {t | there is a run of A over t}, and the language of a state q ∈ Q as
L(A, q) = L((Q, q,∆)).

Forest automata. A forest automaton (FA) over 〈Γ,X〉 is a tuple of the form F =
〈A1 · · ·An, σ〉 where A1 · · ·An, with n ≥ 0, is a sequence of TAs over 〈Γ, {1, . . . , n}〉
whose sets of states Q1, . . . , Qn are mutually disjoint, and σ : X → {1, . . . , n} is
a mapping of variables to root references. A forest 〈t1 · · · tn, σf 〉 over 〈Γ,X〉 is accepted
by F iff σf = σ and there are runs ρ1, . . . , ρn such that for all 1 ≤ i ≤ n, ρi is a run
of Ai over ti. The language of F , denoted as L(F ), is the set of heaps over 〈Γ,X〉
obtained by applying ⊗ on forests accepted by F .

Cut-points and the dense form. A cut-point of a heap h is its node that is either pointed
by some variable or is a target of more than one selector edge. The roots of forests that
are not cut-points in the represented heaps are called false roots. A forest automaton
is dense if its accepted forests do not have false roots. Each forest automaton can be
transformed into a set of dense forest automata that together have the same language

1 For simplicity, data values and references are used as special leaf states accepting the data val-
ues and references they represent, instead of having additional leaf transitions to accept them.
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as the original. This property is a part of canonicity, which can be achieved by normal-
ization, introduced in [14] for the purpose of checking entailment of forest automata.
A transformation to the dense form is essential in the symbolic execution of a program.

3.2 Boxes

Forest automata, as defined in Sec. 3.1, can represent heaps with cut-points of an un-
bounded in-degree as, e.g., in singly-linked lists (SLLs) with head/tail pointers (indeed
there can be any number of references from leaf nodes to a certain root). The basic defi-
nition of FAs cannot, however, deal with heaps with an unbounded number of cut-points
since this would require an unbounded number of TAs within FAs. An example of such
a set of heaps is the set of all doubly-linked lists (DLLs) of an arbitrary length, where
each internal node is a cut-point. The solution provided in [14] is to allow FAs to use
other nested FAs, called boxes, as symbols to “hide” recurring subheaps and in this way
eliminate cut-points. The alphabet of a box itself may also include boxes, these boxes
are, however, required to form a finite hierarchy—they cannot be recursively nested.
The language of a box is a set of heaps over two special variables, in and out, which
correspond to the input and the output port of the box. For simplicity of presentation,
we give only a simplified version of boxes; see [14] for a more general definition that
allows boxes with an arbitrary number of output ports.

A nested forest automaton over 〈Γ,X〉 is an FA over 〈Γ ∪ B,X〉 where B is a
finite set of boxes. A box B over Γ is a nested FA 〈A1 · · ·An, σ�〉 over 〈Γ, {in, out}〉
such that σ�(in) 6= σ�(out) and A1 · · ·An do not contain an occurrence of B (even
a nested one). Unless stated otherwise, the FAs in the rest of the paper are nested.

In the case of a nested FA F , we need to distinguish between its language L(F ),
which is a set of heaps over 〈Γ ∪ B,X〉, and its semantics JF K, which is a set of heaps
over 〈Γ,X〉 that emerges when all boxes in the heaps of the language are recursively
unfolded in all possible ways. Formally, given heaps h and h′, the heap h′ is an unfold-
ing of h if there is an edge (B, u, v) ∈ nexth with a box B = 〈A1 · · ·An, σ�〉 in h,
such that h′ can be constructed from h by substituting (B, u, v) with some hB ∈ JBK
such that σ�(in) = u and σ�(out) = v. The substitution is done by removing
(B, u, v) from h and uniting the heap-graph of h with that of hB . We then write
h  (B,u,v)/hB

h′, or only h  h′ if the precise edge (B, u, v) and heap hB are
not relevant. We use ∗ to denote the reflexive transitive closure of . The semantics
of F , written as JF K, is the set of all heaps h′ over 〈Γ,X〉 for which there is a heap h in
L(F ) such that h ∗ h′.

4 Program Semantics

The dynamic behaviour of a program is defined by its control flow graph, a mapping p :
T→ (L×L) where T is a set of program statements, and L is a set of program locations.
Statements are partial functions τ : H ⇀ H where H is the set of heaps over the
selectors Γ and variables X occurring in the program, which are used as representations
of program configurations. The initial configuration is hinit = 〈∅, ∅, ∅〉. We assume that
statements are indexed by their line of code, so that no two statements of a program
are equal. If p(τ) = (`, `′), then the program p can move from ` to `′ while modifying
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the heap h at location ` into τ(h). We assume that X contains a special variable pc
that always evaluates to a location from L, and that every statement updates its value
according to the target location. Note that a single program location can have multiple
succeeding program locations (which corresponds, e.g., to conditional statements), or
no successor (which corresponds to exit points of a program). We use src(τ) to denote `
and tgt(τ) to denote `′ in the pair above. Every program p has a designated location
`init called its entry point and `err ∈ L called the error location2.

A program path π in p is a sequence of statements π = τ1 · · · τn ∈ T∗ such that
src(τ1) = `init, and, for all 1 < i ≤ n, it holds that src(τi) = tgt(τi−1). We say that
π is feasible iff τn ◦ · · · ◦ τ1(hinit) is defined. The program p is safe if it contains no
feasible program path with tgt(τn) = `err. In the following, we fix a program p with
locations L, variables X, and selectors Γ .

5 Symbolic Execution with Forest Automata

Safety of the program p is verified using symbolic execution in the domain F of for-
est automata over 〈Γ,X〉. The program is executed symbolically by iterating abstract
execution of program statements and a generalization step. These high-level operations
are implemented as sequences of atomic operations and splitting. Atomic operations are
functions of the type o : F⇀ F. Splitting splits a forest automaton F into a set S of for-
est automata such that JF K =

⋃
F ′∈S JF ′K. Splitting is necessary for some operations

since forest automata are not closed under union, i.e., some sets of heaps expressible by
a finite union of forest automata are not expressible by a single forest automaton.

To show an example of sets of heaps not expressible using a single FA, assume
that the statement x = y->sel is executed on a forest automaton that encodes cyclic
singly linked lists of an arbitrary length where y points to the head of the list. If the list
is of length 1, then x will, after execution of the statement, point to the same location
as y. If the list is longer, x and y will point to different locations. In the former case, the
configuration has a single tree component, with both variables pointing to it. In the latter
case, the two variables point to two different components. These two configurations
cannot be represented using a single forest automaton.

The symbolic execution explores the program’s abstract reachability tree (ART).
Elements of the tree are forest automata corresponding to sets of reachable configura-
tions at particular program locations. The tree is rooted by the forest automaton Finit s.t.
JFinitK = {hinit}. Every other node is a result of an application of an atomic operation
or a split on its parent, and the applied operation is recorded on the tree edge between
the two. The atomic operation corresponds to one of the following: symbolic execution
of an effect of a program statement, generalization, or an auxiliary meta-operation that
modifies the FAs while keeping its semantics (e.g., connects or cuts its components).
Splitting appears in the tree as a node with several children connected via edges labelled
by a special operation split . The said operations are described in more detail in Sec. 7.

The tree is expanded starting from the root as follows: First, a symbolic config-
uration in the parent node is generalized by iterating the following three operations:

2 For simplification, we assume checking the error line (un-)reachability property only, which
is, anyway, sufficient in most practical cases. For detection of garbage (which is not directly
expressible as line reachability), we can extend the formalism and check for garbage after
every command, and if a garbage is found, we jump to `err.
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(i) transformation to the dense form, (ii) application of regular abstraction over-approx-
imating sets of sub-graphs between cut-points of the represented heaps, (iii) folding
boxes to decrease the number of cut-points in the represented heaps, until fixpoint.
The transformation into the dense form is performed in order to obtain the most gen-
eral abstraction in the subsequent step. A configuration where one more loop of the
transformation-abstraction-folding sequence has no further effect is called stable. Op-
erations implementing effects of statements are then applied on stable configurations.
Exploration of a branch is terminated if its last configuration is entailed by a symbolic
configuration with the same program location reached previously elsewhere in the tree.

A symbolic path is a path between a node and one of its descendants in the ART,
i.e., a sequence of FAs and operations ω = F0o1F1 . . . onFn such that Fi = oi(Fi−1).
A forward run is a symbolic path where F0 = Finit. We write ωi to denote the prefix of ω
ending by Fi and iω to denote its suffix from Fi. A forward run that reaches `err is called
an abstract counterexample. We associate every operation o with its exact semantics ô,
defined as ô(H) =

⋃
h∈H{τ(h)} if o implements the program statement τ , and as

the identity for all other operations (operations implementing generalization, splitting,
etc.), for a set of heaps H . The exact execution of ω is a sequence h0 · · ·hn such that
h0 ∈ JF0K and hi ∈ ô({hi−1}) ∩ JFiK for 0 < i ≤ n. We say that ω is feasible if it
has an exact execution, otherwise it is infeasible/spurious. The atomic operations are
either semantically precise, or over-approximate their exact semantics, i.e., it always
holds that ô(JF K) ⊆ Jo(F )K. Therefore, if the exploration of the program’s ART finds
no abstract counterexample, there is no exact counterexample, and the program is safe.

The regular abstraction mentioned above is based on over-approximating sets of
reachable configurations using some of the methods described later in Sec. 9. The ana-
lysis starts with some initial abstraction function, which may, however, be too rough
and introduce spurious counterexamples. The main contribution of the present paper
is that we are able to analyse abstract counterexamples for spuriousness using the so-
called backward run (cf. Sec. 8), and if the counterexamples are indeed spurious, we
can refine the abstraction used to avoid the given spurious error symbolic path, and con-
tinue with the analysis, potentially further repeating the analyse-refine steps. We will
describe the backward run and abstraction refinement shortly in the following section
and give a more thorough description in Sec. 8 and Sec. 9.

5.1 Counterexample Analysis and Abstraction Refinement
Assume that the forward run ω = F0o1F1 · · · onFn is spurious. Then there must be an
index i > 0 such that the symbolic path iω is feasible but i−1ω is not. This means that
the operation oi over-approximated the semantics of ω and introduced into JFiK some
heaps that are not in ôi(JFi−1K) and that are bad in the sense that they make iω feasible.
An interpolant for ω is then a forest automaton Ii representing the bad heaps of JFiK
that were introduced into JFiK by the over-approximation in oi and are disjoint from
ôi(JFi−1K). Formally,

1. JIiK ∩ ôi(JFi−1K) = ∅ and
2. ωi is infeasible from all h ∈ JFiK \ JIiK.

In the following, we describe how to use backward run, which reverts operations of
the forward run on the semantic level, to check spuriousness of an abstract counterex-
ample. Moreover, we show how to derive interpolants from backward runs reporting
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spurious counterexamples, and how to use those interpolants to refine the operation of
abstraction so that it will not introduce the bad configurations in the same way again.
A backward run for ω is the sequence ω = F 0 · · ·Fn such that

1. Fn = Fn and
2.

q
F i−1

y
= ô−1

i (
q
F i

y
) ∩ JFi−1K, that is, F i−1 represents the weakest precondition

of
q
F i

y
w.r.t. ôi that is localized to JFi−1K.

If there is an F i such that
q
F i

y
= ∅ (and, consequently,

q
F 0

y
= ∅, . . . ,

q
F i−1

y
= ∅),

the forward run is spurious. In such a case, an interpolant Ii for ω can be obtained as
F i+1 where i + 1 is the smallest index such that

q
F i+1

y
6= ∅. We elaborate on the

implementation of the backward run in Sec. 8.
We note that our use of interpolants differs from that of McMillan [21] in two as-

pects. First, due to the nature of our backward run, we compute an interpolant over-
approximating the source of the suffix of a spurious run, not the effect of its prefix. Sec-
ond, for simplicity of implementation in our prototype, we do not compute a sequence
of localized interpolants but use solely the interpolant obtained from the beginning of
the longest feasible suffix of the counterexample for a global refinement. It would also,
however, be possible to use the sequence F i, . . . , Fn as localized interpolants.

In Sec. 9, we show that using the interpolant Ii, it is possible to refine regular ab-
straction oi (the only over-approximating operation) to exclude the spurious run. The
progress guarantees for the next iterations of the CEGAR loop are then the following:

1. for any FA F such that JF K ⊆ JFi−1K that is compatible with Fi−1 (as defined in
Sec. 6) it holds that Joi(F )K ∩ JIiK = ∅,

2. forward runs ω′ = F ′0o1F
′
1 · · · onF ′n such that for all 1 ≤ j ≤ n, JF ′i K ⊆ JFiK and

F ′i is compatible with Fi are excluded from the ART.

The compatibility intuitively means that boxes are folding the same sub-heaps of repre-
sented heaps and that the TA components are partitioning them in the same way.

6 Intersection of Forest Automata

The previous section used intersection of semantics of forest automata to detect spu-
riousness of a counterexample. In this section, we give an algorithm that computes an
under-approximation of the intersection of semantics of a pair of FAs, and later give
conditions (which are, in fact, met by the pairs of FAs in our backward run analysis) on
the intersected FAs to guarantee that the computed intersection is precise.

A simple way to compute the intersection of semantics of two FAs, denoted as ∩, is
component-wise, that is, for two FAs F = 〈A1 · · ·An, σ〉 and F ′ = 〈A′1 · · ·A′n, σ〉, we
compute the FA F ∩ F ′ = 〈(A1 ∩ A′1) · · · (An ∩ A′n), σ〉—note that the assignments
need to be equal. The tree automata product construction for our special kind of tree
automata synchronizes on data values and on references. That is, a pair (a, b) that would
be computed by a classical product construction where a or b is a reference or a data
value is replaced by a if a = b, and removed otherwise.

The above algorithm is, however, incomplete, i.e., it only guarantees JF ∩ F ′K ⊆
JF K∩ JF ′K. To increase the precision, we take into account the semantics of the boxes in
the product construction, yielding a construction denoted using u. When synchronising
two rules in the TA product, we recursively call intersection of forest automata. That is,
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we compute the FA F uF ′ in a similar way as ∩, but replace the tree automata product
A ∩ A′ by its variant A u A′. For A = (Q, q0, ∆) and A′ = (Q′, q′0, ∆

′), it computes
the TA A uA′ = (Q×Q′, (q0, q

′
0), ∆ u∆′) where ∆ u∆′ is built as follows:

∆ u∆′ =
{

(q, q′)→ a u a′((q1, q
′
1), . . . , (qm, q

′
m)) | q → a(q1, . . . , qm) ∈ ∆,

q′ → a′(q′1, . . . , q
′
m) ∈ ∆′

}
.

Suppose a = a1 · · · am, a′ = a′1 · · · a′m, and that there is an index 0 ≤ i ≤ m such
that if j ≤ i, aj and a′j are not boxes, and if i < j, aj and a′j are boxes. The vector
of symbols a u a′ is created as (a1 u a′1) · · · (am u a′m) if ai u a′i is defined for all i’s,
othewise the transition is not created. The symbol ai u a′i is defined as follows:

1. for j ≤ i, aj u a′j is defined as aj if aj = a′j and is undefined otherwise,
2. for j > i, aj u a′j is the intersection of FAs (both aj and a′j are boxes, i.e., FAs).

Compatibility of forest automata. For a forest automaton F = 〈A1 · · ·An, σ〉, its ver-
sion with marked components is the FA FD = 〈A1 · · ·An, σ ∪ σroot〉 where σroot is
the mapping {root1 7→ 1, . . . , rootn 7→ n}. The root variables rooti are fresh variables
that point to the roots of the tree components in L(F ).

q
FD

y
then contains the same

heaps as JF K, but the roots of the components from L(F ) remain visible as they are
explicitly marked by the root variables. In other words, the root variables track how
the forest decomposition of heaps in L(F ) partitions the heaps from JF K. By removing
the root variables of hD ∈

q
FD

y
, we get the original heap h ∈ JF K. We call hD the

component decomposition of h by F .
Using the notion of component decomposition, we further introduce a notion of the

representation of a heap by an FA. Namely, the representation of a box-free heap h by
an FA F with h ∈ JF K records how F represents h, i.e., (i) how F decomposes h into
components, and (ii) how its sub-graphs enclosed in boxes are represented by the boxes.
Formally, the representation of h by F is a pair repre = (hD, {repre1, . . . , repren})
such that hD is the component decomposition of h by F , and repre1, . . . , repren are
obtained from the sequence of unfoldings

h0  (B1,u1,v1)/g1 h1  (B2,u2,v2)/g2 · · · (Bn,un,vn)/gn hn

with h0 = hD and hn ∈ L(FD), such that for each 1 ≤ i ≤ n, reprei is (recursively)
the representation of gi in Bi.

We write JrepreK to denote {h}, and, for a set of representations R, we let JRK =⋃
repre∈R JrepreK. The set of representations accepted by a forest automaton F is the

set Repre(F ) of all representations of heaps from JF K by F . We say that a pair of FAs F
and F ′ is (representation) compatible iff JF K∩ JF ′K = JRepre(F ) ∩ Repre(F ′)K. The
compatibility of a pair of FAs intuitively means that for every heap from the semantic
intersection of the two FAs, at least one of its representations is shared by them.

Lemma 1. For a pairF andF ′ of compatible FAs, it holds that JF u F ′K = JF K∩JF ′K.
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7 Implementation of the Forward Run

This section describes the operations that are used to implement the forward symbolic
execution over FAs. To be able to implement the backward run, we will need to maintain
compatibility between the forward run and the so-far constructed part of the backward
run. Therefore, we will present the operations used in the forward run mainly from the
point of view of their effect on the representation of heaps (in the sense of Sec. 6). Then,
in Sec. 8, we will show how this effect is inverted in the backward run such that, when
starting from compatible configurations, the inverted operations preserve compatibility
of the configurations in the backward run with their forward run counterparts.

We omit most details of the way the operations are implementated on the level of
manipulations with rules and states of FAs. We refer the reader to [14,25] for the details.
We note that when we talk about removing a component or inserting a component in
an FA, this also includes renaming references and updating assignments of variables.
When a component is inserted at position i, all references to j with j > i are replaced
by i+ 1, including the assignment σ of variables. When a component is removed from
position i, all references to j with j > i are replaced by references to j − 1.

Splitting. Splitting has already been discussed in Sec. 5. It splits the symbolic execution
into several branches such that the union of the FAs after the split is semantically equal
to the original FA. The split is usually performed when transforming an FA into several
FAs that have only one variant of a root rule of some of their components. From the
point of view of a single branch of the ART, splitting is an operation, denoted further
as split , that transforms an FA F into an FA F ′ s.t. JF ′K ⊆ JF K and Repre(F ′) ⊆
Repre(F ). Therefore, F is compatible with F ′.

Operations modifying component decomposition. This class of operations is used to
implement transformation of FAs to the dense form and as pre-processing steps before
the operations of folding, unfolding, and symbolic implementation of program state-
ments. They do not modify the semantics of forest automata, but change the component
decomposition of the represented heaps.

– Connecting of components. When the j-th component Aj of a forest automaton F
accepts trees with false roots, thenAj can be connected to the component that refers
to it. Indeed, as such roots are not cut-points, a reference j to them can appear only
in a single component, say Ak, and at most once in every tree from its language
(because a false root can have at most one incoming edge). For simplicity, assume
that Aj has only one root state q that does not appear on the right-hand sides of
rules. The connection is done by adding the states and rules of Aj to Ak, replacing
the reference j in the rules ofAk by q. The j-th component is then removed from F .
The previous sequence of actions is denoted as the operation connect [j, k, q] below.

– Cutting of a component. Cutting divides a component with an index j into two.
The part of the j-th component containing the root will accept tree prefixes of the
original trees, and the new k-th component will accept their remaining sub-trees.
The cutting is done at a state q of Aj , which appears exactly once in each run (the
FA is first transformed to satisfy this). Occurrences of q at the right-hand sides of
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rules are replaced by the reference k to the new component, and q becomes the root
state of the new component. We denote this operation by cut [j, k, q].

– Swapping of components. The operation swap[j, k] swaps the j-th and the k-th
component (and renames references and assignments accordingly).

Folding of boxes. The folding operation assumes that the concerned FA is first trans-
formed into the form F = 〈AinA2 · · ·An−1AoutA

′
1 · · ·A′m, σ〉 by a sequence of split-

ting, cutting, and swapping. The tuple of TAs AinA2 · · ·An−1Aout will then be folded
into a new box B with Ain as its input component and Aout as its output. Moreover, the
operation is given sets of selectors Sin, Sout of roots of components in Ain and Aout

that are to be folded intoB. The boxB = 〈ABinA2 · · ·An−1A
B
out, {in 7→ 1, out 7→ n}〉

arises from F by taking AinA2 · · ·An−1Aout and by removing selectors that are not in
Sin and Sout from root rules of Ain and Aout to obtain ABin and ABout respectively.

Folding returns the forest automaton F ′ = 〈A′inA′outA′1 · · ·A′m, σ′〉 that arises from
F as follows. All successors of the roots accepted in Ain and Aout reachable over se-
lectors from Sin and Sout are removed in A′in and A′out respectively (since they are
enclosed in B). The root of the trees of A′in gets an additional edge labelled by B, lead-
ing to the reference n (the output port), and the components A2 · · ·An−1 are removed
(since they are also enclosed in B). This operation is denoted as fold [n, Sin, Sout, B].

Unfolding of boxes. Unfolding is called as a preprocessing step before operations that
implement program statements in order to expose the selectors accessed by the state-
ment. It is called after a sequence of cutting, splitting, and swapping that changes the
forest automaton into the form F ′ = 〈A′inA′outA′1 · · ·A′m, σ′〉 where trees of A′in have
a reference 2 to A′out accessible by an edge going from the root and labelled by the
box B that is to be unfolded. Furthermore, assume that the box B is of the form
〈ABinA2 · · ·An−1A

B
out, {in 7→ 1, out 7→ n}〉 and the input and the output ports have

outgoing selectors from the sets Sin and Sout respectively. The operation returns the
forest automaton F that arises from F ′ by inserting components ABinA2 · · ·An−1A

B
out

in between A′in and A′out, removing the B successor of the root in A′in, merging ABin
with A′in, and ABout with A′out. The merging on the TA level consists of merging root
transitions of the TAs. We denote this operation as unfold [n, Sin, Sout, B].

Symbolic execution of program statements. We will now discuss our symbolic im-
plementation of the most essential statements of a C-like programming language. We
assume that the operations are applied on an FA F = 〈A1 · · ·An, σ〉.

– x := malloc(): A new (n+1)-th componentAnew is appended to F s.t. it contains
one state and one transition with all selector values set to σ(undef). The assign-
ment σ(x) is set to n+ 1.

– x := y->sel and y->sel := x: If σ(y) = σ(undef), the operation moves to the
error location. Otherwise, by splitting, cutting, and unfolding, F is transformed
into the form where Aσ(y) has only one root rule and the rule has a sel-successor
that is a root reference j. The statement x := y->sel then changes σ(x) to j, and
y->sel := x changes the reference j in Aσ(y) to σ(x).

– assume(x ∼ y) where∼∈ {==, !=}: This statement tests the equality of σ(x) and
σ(y) and stops the current branch of the forward run if the result does not match∼.
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– assume(x->data ∼ y->data) where ∼ is some data comparison: We start by
unfolding and splitting F into the form where Aσ(x) and Aσ(y) have only one root
rule with exposed data selector. The data values at the data selectors are then com-
pared and the current branch of the forward run is stopped if they do not satisfy ∼.
The operation moves to the error locations if σ(x) or σ(x) are equal to σ(undef).

– free(x): The component Aσ(x) is removed, and all references to σ(x) are replaced
by σ(undef).

The updates are followed by checking that all components are reachable from program
variables in order to detect garbage. If some component is not reachable, the execution
either moves to the error location, or—if the analysis is set to ignore memory leaks—
removes the unreachable component and continues with the execution.

Regular Abstraction. Regular abstraction is described in Sec. 9. It is preceded by
a transformation to the dense form by connecting and splitting the FA.

8 Inverting Operations in the Backward Run

We now present how we compute the weakest localized preconditions (inversions for
short) of the operations from Sec. 7 in the backward run. As mentioned in Sec. 7, it is
crucial that compatibility with the forward run is preserved. Let Fi = o(Fi−1) appear
in the forward run and F i be an already computed configuration in the backward run
s.t. Fi and F i are compatible. We will describe how to compute F i−1 such that it is
also compatible with Fi−1.

Inverting most operations is straightforward. The operation cut [j, k, q] is inverted
by connect [k, j, qk] where qk is the root state ofAk, swap[j, k] is inverted by swap[k, j],
and split is not inverted, i.e., F i−1 = F i.

One of the more difficult cases is connect [j, k, q]. Assume for simplicity that k is
the index of the last component of Fi−1. Connecting can be inverted by cutting, but
prior to that, we need to find where the k-th component of F i should be cut. To find the
right place for the cut, we will use the fact that the places of connection are marked by
the state q in the FA Fi from the forward run. We use the tree automata product u from
Sec. 6, which propagates the information about occurrences of q to F i, to compute the
product of the k-th component of Fi and the k-th component of F i. We replace the k-th
component of F i by the product, which results in an intermediate FA F

′
i. The product

states with the first component q now mark the places where the forward run connected
the components (they were leaves referring to the k-th component). This is where the
backward run will cut the components to revert the connecting. Before that, though, we
replace the mentioned product states with q by a new state q′. This replacement does
not change the language because q was appearing exactly once in every run (because in
the forward run, it is the root state of the connected component that does not appear on
the right-hand sides of rules), therefore, a product state with q can appear at most once
in every run of the product too. Finally, we compute F i−1 as cut [k, j, q′](F

′
i).

Folding is inverted by unfolding and vice versa. Namely, fold [n, Sin, Sout, B] is in-
verted by unfold [n, Sin, Sout, B] and unfold [n, Sin, Sout, B] by fold [n, Sin, Sout, B

′]
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where the box B′ folded in the backward run might be semantically smaller than B
(since the backward run is returning with a subset of configurations of the forward run).

Regular abstraction is inverted using the intersection construction from Sec. 6. That
is, if oi is a regular abstraction, then F i−1 = F i u Fi−1.

Finally, inversions of abstract statements compute the FA F i−1 = 〈Ā′1 · · · Ā′n, σ̄′〉
from F i = 〈Ā1 · · · Ām, σ̄〉 and Fi−1 = 〈A1 · · ·An, σ〉 as follows:

– x = malloc(): We obtain F i−1 from F i by removing the j-th TA, for σ̄(x) = j.
The value of σ̄′(x) is set to σ(x).

– x := y->sel: Inversion is done by setting σ̄′(x) to the value of σ(x) from Fi−1.
– y->sel := x: The target of the sel-labelled edge from the root of Aσ̄′(y) is set to

its target in Aσ(y).
– assume(...): Tests do not modify FAs and as we are returning with a subset of con-

figurations from the forward run, they do not need to be inverted, i.e., F i−1 = F i.
– free(x): First, the component of Fi−1 at the index σ(x), which was removed in

the forward run, is inserted at the same position in F i, and σ̄′(x) is set to that
position. Then we must invert the rewriting of root references pointing to σ(x) to
σ(undef) done by the forward run. For this, we compute the u forest automata
product from Sec. 6 with Fi−1, but modified so that instead of discarding reached
pairs (σ(undef), σ(x)), it replaces them by σ(x). Intuitively, the references to x are
still present at Fi−1, so their occurrences in the product mark the occurrences of
references to undef that were changed to point to undef by free(x). The modified
product therefore redirects the marked root references to undef back to x.

The role of compatibility in the backward run. Inversions of regular abstraction, com-
ponent connection, and free(x), use the TA product construction u from Sec. 6. The
precision of all intersection and product computations in the backward run depends on
the compatibility of the backward and forward run. Inverting the program statements
also depends on the compatibility of the backward and forward run. Particularly, inver-
sions of x := y->sel and y->sel := x use indices of components from Fi−1. They
therefore depend on the property that heaps from F i are decomposed into components
in the same way. The compatibility is achieved by inverting every step of folding and
unfolding, and every operation of connecting, cutting, and swapping of components.

9 Regular Abstractions over Forest Automata

Our abstraction over FAs is based on automata abstraction from the framework of ab-
stract regular tree model checking (ARTMC) [10]. This framework comes with two
abstractions for tree automata, finite height abstraction and predicate abstraction. Both
of them are based on merging states of a tree automaton that are equivalent according
to a given equivalence relation. Formally, given a tree automaton A = (Q, q0, ∆), its
abstraction is the TA α(A) = (Q/∼, [q0]∼, ∆∼) where ∼ is an equivalence relation
on Q, Q/∼ is the set of ∼’s equivalence classes, [q0]∼ denotes the equivalence class
of q0, and ∆∼ arises from ∆ by replacing occurrences of states in transitions by their
equivalence classes. It holds that |Q/∼| ≤ |Q| and L(A) ⊆ L(α(A)).

Finite height abstraction is a function αh that merges states with languages equiva-
lent up to a given tree height h. Formally, it merges states of A according to the equiv-
alence relation ∼h defined as follows: q1 ∼h q2 ⇔ L≤h(A, q1) = L≤h(A, q2) where
L≤h(A, q) is the language of tree prefixes of trees from of L(A, q) up to the height h.
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Predicate language abstraction is a function α[P] parameterized by a set of predicate
languages P = {P1, . . . , Pn} represented by tree automata. States are merged accord-
ing to the equivalence q ∼P q′ which holds for the two states if their languages L(A, q)
and L(A, q′) intersect with the same subset of predicate languages from P .

Abstraction on forest automata. We extend the abstractions from ARTMC to FAs
by applying the abstraction over TAs to the components of the FAs. Formally, let α
be a tree automata abstraction. For an FA F = 〈A1 · · ·An, σ〉, we define α(F ) =
〈α(A1) · · ·α(An), σ〉. Additionally, in the case of predicate abstraction, which uses au-
tomata intersection to annotate states by predicate languages, we use the intersection
operator u from Sec. 6, which descends recursively into boxes, and it is thus more
precise from the point of view of the semantics of FAs. Since the abstraction only over-
approximates languages of the individual components, it holds that JF K ⊆ Jα(F )K and
Repre(F ) ⊆ Repre(α(F ))—and so F and α(F ) are compatible.

Abstraction refinement. The finite height abstraction may be refined by simply increas-
ing the height h. Advantages of finite height abstraction include its relative simplicity
and the fact that the refinement does not require counterexample analysis. A disadvan-
tage is that the refinement by increasing the height is quite rough. Moreover, the cost
of computing in the abstract domain rises quickly with increasing the height of the
abstraction as exponentially more concrete configurations may be explored before the
abstraction closes the analysis of a particular branch. The finite height abstraction was
used—in a specifically fine-tuned version—in the first versions of FORESTER [14,16],
which successfully verified a number of benchmarks, but the refinement was not suffi-
ciently flexible to prove some more challenging examples.

Predicate abstraction, upon which we build in this paper, offers the needed addi-
tional flexibility. It can be refined by adding new predicates to P and it gives strong
guarantees about excluding counterexamples. In ARTMC, interpolants in the form of
tree automata Ii are extracted from spurious counterexamples in the way described in
Sec. 5.1. The interpolant is then used to refine the abstraction so that the spurious run is
excluded from the program’s ART.

The guarantees shown to hold in [10] on the level of TAs are the following. Let A
and I = (Q, q0, ∆) be two TAs and let P(I) = {L(I, q) | q ∈ Q} denote the set of
languages of states of I . Then, if L(A)∩L(I) = ∅, it is guaranteed that L(α[P(I)](A))∩
L(I) = ∅. That is, when the abstraction is refined with languages of all states of I , it will
exclude L(I)—unless applied on a TA whose language is already intersecting L(I).

We can generalize the result of [10] to forest automata in the following way, imply-
ing the progress guarantees of CEGAR described in Section 5.1. For a forest automaton
F = 〈A1 · · ·An, σ〉, let P(F ) =

⋃n
i=1 P(Ai).

Lemma 2. Let F and I be FAs s.t. I is compatible with α[P](F ) and JF K ∩ JIK = ∅.
Then Jα[P∪P(I)](F )K ∩ JIK = ∅.
We note that the lemma still holds if P(I) is replaced by P(Ai) only where Ai is the
i-th component of I and L(Ai uA′i) = ∅ for the i-th component A′i of α[P](F ).

10 Experiments
We have implemented our counterexample analysis and abstraction refinement as an
extension of FORESTER and evaluated it on a set of C programs manipulating singly-

15



Table 1. Results of experiments.

Program Status LoC Time [s] Refnm Preds Program Status LoC Time [s] Refnm Preds

SLL (delete) safe 33 0.02 0 0 DLL (rev) safe 39 0.70 0 0
SLL (bubblesort) safe 42 0.02 0 0 CDLL safe 32 0.02 0 0
SLL (insersort) safe 36 0.04 0 0 DLL (insersort) safe 42 0.56 0 0
SLLOfCSLL safe 47 0.02 0 0 DLLOfCDLL safe 54 1.76 0 0
SLL01 safe 70 1.20 1 1 DLL01 safe 73 0.65 2 2
CircularSLL safe 49 3.57 3 3 CircularDLL safe 52 37.22 18 24
OptPtrSLL safe 59 1.90 3 3 OptPtrDLL safe 62 1.87 5 5
QueueSLL safe 71 11.32 10 10 QueueDLL safe 74 44.68 14 14
GBSLL safe 64 0.84 3 3 GBDLL safe 71 1.89 4 4
GBSLLSent safe 68 0.85 3 3 GBDLLSent safe 75 2.19 4 4
RGSLL safe 72 14.41 22 38 RGDLL safe 76 78.76 26 26
WBSLL safe 62 0.84 5 5 WBDLL safe 71 1.37 7 7
SortedSLL safe 76 227.12 15 15 SortedDLL safe 82 36.67 11 11
EndSLL safe 45 0.07 2 2 EndDLL safe 49 0.10 3 3
TreeRB error 130 0.08 0 0 TreeWB error 125 0.05 0 0
TreeCnstr safe 52 0.31 0 0 TreeCnstr error 52 0.03 0 0
TreeOfCSLL safe 109 0.57 0 0 TreeOfCSLL error 109 0.56 1 3
TreeStack safe 58 0.20 0 0 TreeStack error 58 0.01 0 0
TreeDsw safe 72 1.87 0 0 TreeDsw error 72 0.02 0 0
TreeRootPtr safe 62 1.43 0 0 TreeRootPtr error 62 0.17 2 6
SkipList safe 84 3.36 0 0 SkipList error 84 0.08 1 1

and doubly-linked list, trees, skip-lists, and their combinations. We were able to analyse
all of them fully automatically without any need to supply manually crafted predicates
nor any other manual aid. The test cases are described in detail in App. A.

We present our experimental results in Table 1. The table gives for each test case its
name, information whether the program is safe or contains an error, the number of lines
of code, the time needed for the analysis, the number of refinements, and, finally, the
number of predicates learnt during the abstraction refinement. The experiments were
performed on a computer with Intel Core i5@2.50 GHz CPU and 8 GiB of memory
running the Debian Sid OS with the Linux kernel.

Some of the test cases consider dynamic data structures without any data stored in
them, some of them data structures storing finite-domain data. Such data can be a part of
the data structure itself, as, e.g., in red-black trees, they can arise from some finite data
abstraction, or they are also sometimes used to mark some selected nodes of the data
structure when checking the way the data structure is changed by a given algorithm
(e.g., one can check whether an arbitrarily chosen successive pair of nodes of a list
marked red and green is swapped when the list is reversed—see e.g. [10]).

As the results show, some of our test cases do not need refinement. This is because
the predicate abstraction is a priori restricted in order to preserve the forest automata
“interconnection graph” [16], which roughly corresponds to the reachability relation
among variables and cut-points in the heaps represented by a forest automaton (an ap-
proach used already with the finite height abstraction in former versions of FORESTER).

Table 1 also provides a comparison with the previous version of FORESTER from [16].
In particular, the highlighted cases are not manageable by that versions of FORESTER.
These cases can be split into two classes. In the first class there are safe programs where
the initial abstraction is too coarse and introduces spurious counterexamples, and the ab-
straction thus needs to be refined. The other class consists of programs containing a real
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error (which could not be confirmed without the backward run). The times needed for
analysis are comparable in both versions of FORESTER.

To illustrate a typical learnt predicate, let us consider the test case GBSLL. This pro-
gram manipulates a list with nodes storing two data values, green and blue, for which
it holds that a green node is always followed by a blue one. The program also contains
a tester code to test this property. FORESTER first learns two predicates describing par-
ticular violations of the property: (1) a green node is at the end of the list and (2) there
are two green nodes in a row. After that, FORESTER derives a general predicate repre-
senting all lists with the needed invariant, i.e, a green node is followed by a blue one.
The program is then successfully verified.

Another example comes from the analysis of the program TreeCSLL, which creates
and deletes a tree where every tree node is also the head of a circular list. It contains an
undefined pointer dereference error in the deletion of the circular lists. FORESTER first
finds a spurious error (an undefined pointer dereference too) in the code that creates the
circular lists. In particular, the abstraction introduces a case in which a tree node that
is also the head of a list needs not be allocated, and an attempt of accessing its next
selector causes an undefined pointer dereference error. This situation is excluded by
the first refinement, after which the error within the list deletion is correctly reported.
Notice that, in this case, the refinement learns a property of the shape, not a property
over the stored data values. The ability to learn shape as well as data properties (as well
as properties relating shape with data) using a uniform mechanism is one the features
of our method which distinguishes it from most of the related work.

11 Discussion and Future Work

Both the described forward and backward symbolic execution are quite fast. We believe
that the efficiency of the backward run (despite the need of computing expensive au-
tomata products) is to a large degree because it inverts unfolding (by folding). Backward
run is therefore carried out with configurations encoded in a compact folded form.

FORESTER was not able to terminate on a few tree benchmarks. For a program ma-
nipulating a red-black tree using the rebalancing procedures, the initial forward run did
not terminate. For another tree-based implementation of a set that includes a tester code
checking full functional correctness, the CEGAR did not learn the right predicates de-
spite many refinements. The non-termination of the forward run is probably related to
the initial restrictions of the predicate abstraction. Restricting the abstraction seems to
be harmful especially in the case of tree structures. If the abstraction remembers un-
necessary fine information about tree branches, the analysis will explore exponentially
many variants of tree structures with different branches satisfying different properties.
The scenario where CEGAR seems to be unable to generalize is related to the split-
ting of the symbolic execution. The symbolic runs are then too specialised and CEGAR
learns a large number of too specialised predicates from them (which are sometimes
irrelevant to the “real” cause of the error).

A closer examination and resolution of these issues is a part of our future work.
Allowing the abstraction more freedom is mostly an implementation issue, although
nontrivial to achieve in the current implementation of FORESTER. Resolving the issue
of splitting requires to cope with the domain of forest automata not being closed under
union. This is possible, e.g., by modifying the definition of the FA language, which
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currently uses the Cartesian product of sets of trees, so that it would connect tree com-
ponents based on reachability relation between them (instead of taking all elements
of the Cartesian product). Another possibility would be to use sets of forest automata
instead of individual ones as the symbolic representation of sets of heaps.
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9. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking for pro-
grams manipulating lists and arrays with infinite data. In: Proceedings of the 10th Inter-
national Symposium on Automated Technology for Verification and Analysis—ATVA’12.
LNCS, vol. 7561, pp. 167–182. Springer (2012)

10. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree) model
checking. International Journal on Software Tools for Technology Transfer 14(2), 167–191
(2012)

11. Chang, B.Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant checkers.
In: Proceedings of the 14th International Static Analysis Symposium—SAS’07. LNCS, vol.
4634, pp. 384–401. Springer (2007)

12. Deshmukh, J., Emerson, E., Gupta, P.: Automatic Verification of Parameterized Data Struc-
tures. In: Proc. of TACAS’06. LNCS, vol. 3920. Springer (2006)

13. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list manipulation.
In: Proceedings of the 20th International Static Analysis Symposium—SAS’13. LNCS, vol.
7935, pp. 215–237. Springer (2013)
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A Description of the Test Cases

This section describes the test cases used in the experimental evaluation in Sec. 10. Note
that we use a limited set of integer values since we do not support integer abstraction.
SLL and DLL denote singly- and doubly-linked lists respectively.

The cases described in the following list satisfy some (regular-expressible) invari-
ant, which we check in our analysis. Moreover, we also verify memory safety properties
(absence of null/undefined pointer dereference, invalid free, and presence of garbage)
in all test cases.

– (SLL/DLL)01: The nodes of the list may or may not point to an external node,
which, if present, is unique for each list item. We check the invariant that each node
has a pointer set to null or to an address of an external node.

– Circular(SLL/DLL): A circular linked list consisting of nodes with integer values.
The head of the list has the dedicated value 0. The rest of nodes with their integer
values form a non-decreasing sequence. We verify that the successor of an arbitrary
node can have a smaller value only when the next node is the head of the list.

– OptPtr(SLL/DLL): Each node of the list has an integer value, a pointer to the next
node, and an optional pointer to an external node. When constructing the list, an
integer value of every node is chosen nondeterministically. When the integer value
0 or 1 is chosen, the optional pointer points to the node itself. On the other hand,
when 2 is chosen, a new external node is allocated and its address is assigned to the
optional pointer. We verify the relation of integer values and optional pointers for
all nodes.

– Queue(SLL/DLL): We create a list with nodes containing the integers 0, 1, 2, and 3.
The list can form sequences 0, 01, 012, 0123∗. A particular sequence is created
during construction of the list nondeterministically. We remember which sequence
was actually created by an auxiliary integer variable. Then we traverse the list and
check that the sequence formed by the list corresponds to the value of the auxiliary
variable.

– GB(SLL/DLL): We create a list containing green and blue nodes. The colors arbi-
trarily alternate but it holds that a green node is always followed by a blue node.

– GB(SLL/DLL)Sen: This case is similar to the previous one but instead of terminat-
ing the list with the null value, the list is terminated using a dedicated sentinel
node.

– RG(SLL/DLL): The list contains an arbitrary prefix of white nodes, one red node
followed by a green one, and an arbitrary suffix of white nodes. The list is reversed
and it is checked whether the green node is followed by the red node.

– WB(SLL/DLL): Exactly one blue node is inserted into a list of white nodes of an
arbitrary length. Then the list is traversed and it is checked that the number of blue
nodes is one.

– Sorted(SLL/DLL): This test case contains a sorted list of nodes with integer values
0 and 1. A node with value 1 is added at an arbitrary position that keeps the order
of nodes in the list. Finally, it is checked that the list is still ordered.

– End(SLL/DLL): The last element of list has a special integer value.
– SkipList: Construction and traversal of a skip list.
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– TreeRB: We construct a red black tree and then go through the tree checking (regu-
lar) invariants of this data structure. The created tree has an arbitrary height, and the
nodes may have both, one, or no child allocated. A transposition of nodes needed
to preserve the data structure’s invariants is done continuously during construction
of the tree when a new node is added. This operation is complex since it requires
relocation of nodes in several levels of trees. The nodes also have to have parent
pointers due to the transposition.

– TreeWB: We construct a tree that has all nodes white except exactly one blue node.
The blue node is at an arbitrary position. We traverse the tree and check that there
is a single blue node.

– TreeWBAllPaths: A tree with all nodes being white is constructed nondeterministi-
cally. We transform the created tree to the form where each path from the root to
any leaf contains exactly one blue node. The blue nodes are placed arbitrarily in
the tree with respect to the described invariant of the structure. Then we start an
arbitrary number of arbitrary walks from the root of tree to a leaf and check that
each of these walks contains exactly one blue node.

The following test cases from our benchmark are checked only for memory safety
properties.

– TreeCnstr: The construction of an arbitrary binary tree.
– TreeDsw: We construct a binary tree and perform the Deutsch-Schorr-Waite traver-

sal.
– TreeCSLL: We construct a binary tree where each node points to a circular singly

linked list of an arbitrary length. Then we traverse the whole tree and all nested
lists.

– TreeRootPtr: The construction and traversal of a binary tree with nodes containing
root pointers.

– TreeStack: The construction of a binary tree which is subsequently destroyed using
stack implemented by a singly-linked list.

21


	Counterexample Validation and Interpolation-Based Refinement for Forest Automata*-2mm

