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Technical Report No. FIT-TR-2014-01
Faculty of Information Technology, Brno University of Technology

Last modified: April 4, 2014





Compositional Entailment Checking for a Fragment of
Separation Logic
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Abstract. We present a (semi-)decision procedure for checking entailment be-
tween separation logic formulas with inductive predicates specifying complex
data structures corresponding to finite nesting of various kinds of linked lists:
acyclic or cyclic, singly or doubly linked, skip lists, etc. The decision procedure
is compositional in the sense that it reduces the problem of checking entailment
between two arbitrary formulas to the problem of checking entailment between
a formula and an atom. Subsequently, in case the atom is a predicate, we reduce
the entailment to testing membership of a tree derived from the formula in the
language of a tree automaton derived from the predicate. We implemented this
decision procedure and tested it successfully on verification conditions obtained
from programs using singly and doubly linked nested lists as well as skip lists.

1 Introduction

Automatic verification of programs manipulating dynamic linked data structures is
highly challenging since it requires one to reason about complex program configura-
tions having the form of graphs of an unbounded size. In general, one needs highly ex-
pressive formalisms capable of expressing the specification of the desired program and
the effect of program statements. Moreover, in order to scale to large programs, the use
of such a formalism within program analysis should be highly efficient. In this context,
separation logic (SL) [11,16] has emerged as one of the most promising formalisms,
offering both high expressiveness and scalability. The latter is due to its support of com-
positional reasoning based on the separating conjunction ∗ and the frame rule, which
states that if a Hoare triple {φ}P{ψ} holds and P does not alter free variables in σ, then
{φ ∗σ}P{ψ ∗σ} holds too. Therefore, when reasoning about P , one has to manipulate
only specifications for the heap region altered by P .

Usually, SL is used together with higher-order inductive definitions that describe
the data structures manipulated by the program. If we consider general inductive def-
initions, then SL is undecidable [3]. Various decidable fragments of SL have been in-
troduced in the literature [1,10,14] by restricting the syntax of the inductive definitions
and the boolean structure of the formulas.

In this work, we focus on a fragment of SL with inductive definitions that allows one
to specify program configurations (heaps) containing finite nestings of various kinds of
linked lists (acyclic or cyclic, singly or doubly linked, skip lists, etc.), which are very



frequent in practice. This fragment contains formulas of the form ∃
−→
X.Π ∧ Σ where

X is a set of variables, Π is a conjunction of (dis)equalities, and Σ is a set of spatial
atoms connected by the separating conjunction. Spatial atoms can be points-to atoms,
which describe values of pointer fields of a given heap location, or inductively defined
predicates, which describe data structures of an unbounded size. We propose a novel
(semi-)decision procedure for checking the validity of an entailment of the form ϕ⇒ ψ
where ϕ may contain existential quantifiers and ψ is a quantifier-free formula. Such
a decision procedure can be used in Hoare-style reasoning to check inductive invariants
but also in program analysis frameworks to decide termination of fixpoint computations.
As usual, checking entailments of the form

∨
i ϕi ⇒

∨
j ψj can be soundly reduced to

checking that for each i there exists j such that ϕi ⇒ ψj .
The insight of our decision procedure is an idea to use the semantics of the separat-

ing conjunction in order to reduce the problem of checking ϕ ⇒ ψ to the problem of
checking a set of simpler entailments where the right-hand side is an inductively-defined
predicate P (. . .). This reduction shows that the compositionality principle holds not
only for deciding the validity of a Hoare triple but also for deciding the validity of an
entailment between two formulas.

Further, to check entailments ϕ ⇒ P (. . .) resulting from the above reduction, we
define a semi-decision procedure (safely approximating the entailment) based on the
membership problem for tree automata (TA). In particular, we reduce the entailment to
testing membership of a tree derived from ϕ in the language of a TAA[P ] derived from
P (. . .). The tree encoding preserves some edges of the graph, called backbone edges,
while others are re-directed to new nodes, related to the original destination by special
symbols. Roughly, such a symbol may be a variable represented by the original desti-
nation, or it may show how to reach the original destination using backbone edges only.

To infer (dis)equalities implied by spatial atoms, the reduction to checking simpler
entailments is based on boolean unsatisfiability checking, which is in co-NP but can
usually be checked efficiently by current SAT solvers. The rest of the procedure is
polynomial as the size of the TA A[P ] is polynomial in the size of P , and the number
of generated simpler entailment queries is also polynomial. Moreover, the approach can
be easily extended into a full decision procedure, but then it becomes exponential for
some of the considered structures (more complex than singly and doubly linked lists).

We implemented our decision procedure and tested it successfully on verification
conditions obtained from programs using singly and doubly linked nested lists as well
as skip lists. The results show that our procedure does not only have a theoretically
favourable complexity (for the given context), but it also behaves nicely in practice (at
the same time offering the additional benefit of compositionality that can be exploited
within larger verification frameworks that can cache the simpler entailment queries).

Related Work. Several decision procedures for fragments of SL have been introduced
in the literature [1,3,4,6,10,9,13,14,15].

Some of these works [1,3,4,13] consider a fragment of SL that uses only one predi-
cate describing singly linked lists, which is a much more restricted setting than what
is considered in this paper. In particular, Cook et al. [4] prove that the satisfiabil-
ity/entailment problem can be solved in polynomial time. Piskac et al. [14] show that
the boolean closure of this fragment can be translated to a decidable fragment of first-
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order logic, and this way, they prove that the satisfiability/entailment problem can be
decided in NP/co-NP. Furthermore, they consider the problem of combining SL formu-
las with constraints on data using the Nelson-Oppen theory combination framework.
Adding constraints on data to SL formulas is considered also in Qiu et al [15].

Compared with our previous work [6], we consider a larger fragment of SL in this
work that includes inductively-defined predicates for describing nestings of cyclic lists
and doubly linked lists (DLLs).

Iosif et al. [10] introduce a decidable fragment of SL that can describe data struc-
tures even more complex than those considered here, including, e.g., trees with parent
pointers or trees with linked leaves. However, [10] reduces the entailment problem to
MSO on graphs with a bounded tree width, resulting in a multiply-exponential complex-
ity. The recent work [9] considers a more restricted fragment (incomparable with ours)
and proposes a more practical, purely TA-based decision procedure, which reduces the
entailment problem to language inclusion on TA, establishing EXPTIME-completeness
of the considered fragment. Our decision procedure deals with the boolean structure of
the formulas using SAT solvers, thus reducing the entailment problem to the problem
of checking the entailment between a formula and an atom. Such simpler entailments
are then checked using a polynomial semi-decision procedure based on the membership
problem for TA. The approach of [9] can deal with various forms of trees as well as with
entailment of structures with skeletons based on different selectors (e.g., DLLs viewed
from the beginning and DLLs viewed from the end). On the other hand, it currently can-
not deal with structures of zero length and with some forms of structure concatenation
(such as concatenation of two DLL segments), which we can handle.

2 Separation Logic Fragment

Let Vars be a set of program variables, ranged over using x, y, z, and LVars a set
of logical variables, disjoint from Vars , ranged over using X , Y , Z. We assume that
Vars contains a variable NULL. Also, let F be a set of fields. We consider a fragment of
Separation Logic whose syntax is given by the following grammar:

x, y ∈ Vars program variables X,Y ∈ LVars logical variables E,F ::= x | X
f ∈ F fields ρ ::= (f,E) | ρ, ρ P ∈ P predicates

−→
B ∈ (Vars ∪ LVars)∗ vectors of variables

Π ::= E = F | E 6= F | Π ∧Π pure formulas

Σ ::= emp | E 7→ {ρ} | P (E,F,
−→
B ) | Σ ∗Σ spatial formulas

ϕ , ∃
−→
X.Π ∧Σ formulas

The set of program variables used in a formula ϕ is denoted by pv(ϕ). By ϕ(
−→
E ), we

denote a formula where the set of free variables is
−→
E . Given a formula ϕ, pure(ϕ)

denotes its pure part Π . We allow set operations to be applied over vectors. Moreover,
E 6=

−→
B is a shorthand for

∧
F∈
−→
B
E 6= F .

The points-to atom E 7→ {(fi, Fi)}i∈I specifies that the heap contains a location
E whose fi field points to Fi, for all i. W.l.o.g. we assume that each field fi appears at
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singly linked lists:
ls(E,F ) , lemp(E,F ) ∨ (E 6= F ∧ ∃Xtl. E 7→ {(f,Xtl)} ∗ ls(Xtl, F ))

lists of acyclic lists:
nll(E,F,B) , lemp(E,F ) ∨ (E 6= {F,B} ∧ ∃Xtl, Z. E 7→ {(s,Xtl), (h, Z)} ∗

ls(Z,B) ∗ nll(Xtl, F,B))lists of cyclic lists:
nlcl(E,F ) , lemp(E,F ) ∨ (E 6= F ∧ ∃Xtl, Z. E 7→ {(s,Xtl), (h, Z)} ∗

	1+ ls(Z) ∗ nlcl(Xtl, F ))skip lists with three levels:
skl3(E,F ) , lemp(E,F ) ∨ (E 6= F ∧ ∃Xtl, Z1, Z2. E 7→ {(f3, Xtl), (f2, Z2),

(f1, Z1)} ∗ skl1(Z1, Z2) ∗ skl2(Z2, Xtl) ∗ skl3(Xtl, F ))

skl2(E,F ) , lemp(E,F ) ∨ (E 6= F ∧ ∃Xtl, Z1. E 7→ {(f3,NULL), (f2, Xtl),
(f1, Z1)} ∗ skl1(Z1, Xtl) ∗ skl2(Xtl, F ))

skl1(E,F ) , lemp(E,F ) ∨ (E 6= F ∧ ∃Xtl. E 7→ {(f3,NULL), (f2,NULL),
(f1, Xtl)} ∗ skl1(Xtl, F ))

Fig. 1. Examples of inductive definitions (lemp(E,F ) , E = F ∧ emp).

most once in a set of pairs ρ. The fragment is parameterized by a set P of inductively
defined predicates; intuitively, P (E,F,

−→
B ) describes a possibly empty nested list seg-

ment delimited by its arguments, i.e., all the locations it represents are reachable from
E and co-reachable either from one of its arguments or from a non-empty loop.
Inductively defined predicates. We consider predicates defined as

P (E,F,
−→
B ) , (E = F ∧ emp) ∨

(
E 6= {F} ∪

−→
B ∧ ∃Xtl. Σ(E,Xtl,

−→
B ) ∗ P (Xtl, F,

−→
B )
)

where Σ is an existentially quantified formula, called the matrix of P , of the form:

Σ(E,Xtl,
−→
B ) , ∃

−→
Z .E 7→ ρ[Xtl,

−→
Z ,
−→
B ] ∗Σ′

Σ′ ::= Q(Z,U,
−→
Y ) | 	1+ Q[Z,

−→
Y ] | Σ′ ∗Σ′ | emp

for Z ∈
−→
Z , U ∈

−→
Z ∪
−→
B ∪ {E,Xtl},

−→
Y ⊆

−→
B ∪ {E,Xtl}, and

	1+ Q[Z,
−→
Y ] , ∃Z′. ΣQ(Z,Z′,

−→
Y ) ∗Q(Z′, Z,

−→
Y ) where ΣQ is the matrix of Q.

(1)

The formula Σ specifies the values of the fields defined in E and the (possibly cyclic)
nested list segments starting at the locations

−→
Z referenced by fields of E. We assume

that Σ contains a single points-to atom in order to simplify the presentation.
The macro ρ[Xtl,

−→
Z ,
−→
B ] denotes the (non-empty) set {(f1, X1), . . . , (fn, Xn)}

where for all 1 ≤ i ≤ n, Xi ∈ {Xtl} ∪
−→
Z ∪

−→
B, fi ∈ F, and at least one Xi = Xtl.

Further, the macro 	1+ Q[Z,
−→
Y ] is used to represent a non-empty cyclic (nested) list

segment in Z whose shape is described by the predicate Q.
We consider several restrictions on Σ which are defined using its Gaifman graph

Gf [Σ]. The nodes of Gf [Σ] represent variables of Σ and the edges of Gf [Σ] represent
spatial atoms: for every (f,X) in ρ, Gf [Σ] contains an edge from E to X labeled by
f ; for every predicate Q(Z,U,

−→
Y ), Gf [Σ] contains an edge from Z to U labeled by Q;

and for every macro 	1+ Q[Z,
−→
Y ], Gf [Σ] contains a self-loop in Z labeled by Q.

The first restriction is that Gf [Σ] contains no cycles (other than self-loops) built
solely of edges labeled by predicates. This ensures that the predicate is precise, i.e.,
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(S,H) |= E = F iff S(E) = S(F )

(S,H) |= E 6= F iff S(E) 6= S(F )

(S,H) |= ϕ ∧ ψ iff (S,H) |= ϕ and (S,H) |= ψ

(S,H) |= emp iff dom(H) = ∅
(S,H) |= E 7→ {ρ} iff dom(H) = {(S(E), fi) | (fi, Ei) ∈ {ρ}} and

for every (fi, Ei) ∈ {ρ}, H(S(E), fi) = S(Ei)

(S,H) |= Σ1 ∗Σ2 iff ∃H1, H2 s.t. ldom(H) = ldom(H1) ] ldom(H2),
(S,H1) |= Σ1, and (S,H2) |= Σ2

(S,H) |= P (E,F,
−→
B ) iff there exists k ∈ N s.t. (S,H) |= P k(E,F,

−→
B ) and

ldom(H) ∩ ({S(F )} ∪ {S(B) | B ∈
−→
B}) = ∅

(S,H) |= P 0(E,F,
−→
B ) iff (S,H) |= E = F ∧ emp

(S,H) |= P k+1(E,F,
−→
B ) iff (S,H) |= E 6= {F} ∪

−→
B ∧ ∃Xtl. Σ(E,Xtl,

−→
B ) ∗ P k(Xtl, F,

−→
B )

(S,H) |= ∃X.ϕ iff there exists ` ∈ Locs s.t. (S[X ← `], H) |= ϕ

Fig. 2. The semantics of inductive predicates (] denotes the disjoint union of sets and S[X ← `]
denotes the function S′ s.t. S′(X) = ` and S′(Y ) = S(Y ) for any Y 6= X).

for any heap, there exists at most one sub-heap on which the predicate holds. Precise
assertions are very important for concurrent separation logic [7]. Then, we require that
all the maximal paths of Gf [Σ] start inE and end either in a self-loop or in a node from
−→
B ∪{E,Xtl}. This ensures that the predicates describe heaps where only the locations
represented by variables in F ∪

−→
B are dangling. Moreover, for simplicity, we require

that every node n of Gf [Σ] has at most one outgoing edge labeled by a predicate.
For example, the predicates given in Fig. 1 describe singly linked lists, lists of

acyclic lists, lists of cyclic lists, and skip lists with three levels.
We define the relation ≺P on P by P1 ≺P P2 iff P2 appears in the matrix of

P1. The reflexive and transitive closure of ≺P is denoted by ≺∗P. For example, if
P = {skl1, skl2, skl3}, then skl3 ≺P skl2 and skl3 ≺∗P skl1.

Given a predicate P of the matrix Σ as in (1), let F7→(P ) denote the set of fields
f occurring in a pair (f,X) of ρ. For example, F 7→(nll) = {s, h} and F7→(skl3) =
F 7→(skl1) = {n3, n2, n1}. Also, let F∗7→(P ) denote the union of F 7→(P ′) for all P ≺∗P
P ′. For example, F∗7→(nll) = {s, h, n}.

We assume that ≺∗P is a partial order, i.e., there are no mutually recursive defini-
tions in P. Moreover, for simplicity, we assume that for any two predicates P1 and P2

which are incomparable w.r.t. ≺∗P it holds that F7→(P1) ∩ F7→(P2) = ∅. This is to avoid
predicates named differently but which have exactly the same set of models.

Semantics. Let Locs be a set of locations. A heap is a pair (S,H) where S : Vars ∪
LVars → Locs maps variables to locations and H : Locs × F ⇀ Locs is a partial
function that defines values of fields for some of the locations in Locs . The domain of
H is denoted by dom(H) and the set of locations in the domain of H is denoted by
ldom(H). We say that a location ` (resp., a variable E) is allocated in the heap (S,H)
or that (S,H) allocates ` (resp., E) iff ` (resp., S(E)) belongs to ldom(H).
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// normalization
ϕ1 ← norm(ϕ1); ϕ2 ← norm(ϕ2);
if ϕ1 = false then return true;
if ϕ2 = false then return false;
// entailment of pure parts
if pure(ϕ1) 6⇒ pure(ϕ2) then return false;
// entailment of shape parts
foreach a2 : points-to atom in ϕ2 do

ϕ1[a2]← select(ϕ1, a2);
if ϕ1[a2] 6⇒ a2 then return false;

for P2 ← max≺(P) down to min≺(P) do
forall the a2 = P2(E,F,

−→
B ) : predicate atom in ϕ2 s.t. pure(ϕ1) 6⇒ E = F do

ϕ1[a2]← select(ϕ1, a2);
if ϕ1[a2] 6⇒sh a2 then return false;

return isMarked(ϕ1);

Fig. 3. Compositional entailment checking (≺ is any total order compatible with ≺∗P).

The set of heaps satisfying a formula ϕ is defined by the relation (S,H) |= ϕ given
in Fig. 2. Note that a heap satisfying a predicate P (E,F,

−→
B ) should not allocate any

variable in F ∪
−→
B since these variables are considered not to be a part of its domain.

A heap satisfying this property is called well-formed w.r.t. the atom P (E,F,
−→
B ). The

set of models of a formula ϕ is denoted by [[ϕ]]. Given two formulas ϕ1 and ϕ2, we say
that ϕ1 entails ϕ2, denoted by ϕ1 ⇒ ϕ2, iff [[ϕ1]] ⊆ [[ϕ2]]. By an abuse of notation,
ϕ1 ⇒ E = F (resp., ϕ1 ⇒ E 6= F ) denotes the fact that E and F are interpreted to
the same location (resp., different locations) in all models of ϕ1.

3 Compositional Entailment Checking

We define a procedure for reducing the problem of checking the validity of an entail-
ment between two formulas to the problem of checking the validity of an entailment
between a formula and an atom. We assume that the right-hand side of the entailment is
a quantifier-free formula (which usually suffices for checking verification conditions in
practice). The reduction can be extended to the general case, but it becomes incomplete.

Hence, we consider the problem of deciding validity of entailments ϕ1 ⇒ ϕ2 with
ϕ2 quantifier-free. We assume pv(ϕ2) ⊆ pv(ϕ1); otherwise, the entailment is not valid.

The main steps of the reduction are given in Fig. 3. The reduction starts by a nor-
malization phase (described in Sec. 3.1), which adds to each of the two formulas all the
(dis-)equalities implied by spatial sub-formulas and removes all the atoms P (E,F,

−→
B )

representing empty list segments, i.e., those where E = F occurs in the pure part. The
normalization of a formula outputs false iff the input formula is unsatisfiable.

In the second phase, the procedure tests the entailment between the pure parts of the
normalized formulas. This can be done using any decision procedure for quantifier-free
formulas in the first-order theory of pure equality.

For the spatial parts, the procedure builds a mapping from spatial atoms of ϕ2 to
sub-formulas of ϕ1. Intuitively, the sub-formula ϕ1[a2] associated to an atom a2 of
ϕ2, computed by select, describes the region of a heap modeled by ϕ1 that should
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satisfy a2. For predicate atoms, procedure select is called (in the second loop of the
algorithm) only if there must exist a non-empty heap region that satisfies a2, i.e.,E = F
does not occur in ϕ1, and its output is guaranteed to describe heap regions which are
well-formed w.r.t. a2. The fact that the heap region represented by ϕ1[a2] satisfies a2
corresponds to the usual entailment when a2 is a points-to atom and to the entailment
operator⇒sh when a2 is a predicate atom. In the latter case, we cannot use the usual
entailment because ϕ1[a2] alone (i.e., without the other constraints in ϕ1) may have
models which are not well-formed. Therefore, ϕ1[a2] ⇒sh a2 holds iff all the models
of ϕ1[a2], which are well-formed w.r.t. a2, are also models of a2.

If there exists an atom a2 of ϕ2, which is not entailed by the associated sub-formula,
then ϕ1 ⇒ ϕ2 is not valid. By the semantics of the separating conjunction, the sub-
formulas of ϕ1 associated with two different atoms of ϕ2 must not share spatial atoms.
To this, the spatial atoms obtained from each application of select are marked and
cannot be reused in the future. Note that the mapping is built by enumerating the atoms
of ϕ2 in a particular order: first, the points-to atoms and then the inductive predicates,
in a decreasing order wrt ≺P. This is important for completeness (see Section 3.2).

The procedure select is detailed in Section 3.2. It returns emp if the construction
of the sub-formula of ϕ1 associated with the input atom fails (this implies that also
the entailment ϕ1 ⇒ ϕ2 is not valid). If all the entailments between formulas and
atoms are valid, then ϕ1 ⇒ ϕ2 holds provided that all the spatial atoms of ϕ1 are
marked (tested by isMarked). In Section 3.4, we introduce a procedure for checking
entailments between a formula and a spatial atom.
Graph representations. Some of the sub-procedures mentioned above work on a graph
representation of the input formulas, called SL graphs. Therefore, a formula ϕ is repre-
sented by a directed graph G[ϕ], where each node represents a maximal set of variables
that are all equal according to the pure part of ϕ, and each edge represents a disequality
E 6= F or a spatial atom. Every node n is labeled by the set of variables Var(n) it
represents; for every variable E, Node(E) denotes the node n s.t. E ∈ Var(n). Also,
(1) a disequality E 6= F is represented by an undirected edge between Node(E) and
Node(F ), (2) a spatial atom E 7→ {(f1, E1), . . . , (fn, En)} is represented by n di-
rected edges, for each 1 ≤ i ≤ n, an edge from Node(E) to Node(Ei) labeled by fi,
and (3) a spatial atom P (E,F,

−→
B ) is represented by a directed edge from Node(E) to

Node(F ) labeled by P (
−→
B ). Edges may be referred to as disequality, points-to, or predi-

cate edges, depending on the atom they represent. Also, for simplicity, we may say that
the graph representation of a formula is simply a formula.

For example, the graph representation of the formula ψ2 , y 6= t ∧ nll(x, y, z) ∗
skl2(y, t) ∗ t 7→ {(s, y)} is given in the top right-hand part of Fig. 4.
Running example. In the following, we use as a running example the entailment ψ1 ⇒
ψ2 between the formulas ψ1, ψ2 whose graphs are shown in the top part of Fig. 4 (with
the formula ψ2 given above and the formula ψ1 left out for brevity).

3.1 Normalization

To infer the implicit (dis-)equalities in a formula, we adapt the boolean abstraction
proposed in [6] for our logic. Therefore, given a formula ϕ, we define an equisatisfiable
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Initially:

x

z

y Y3

t

Y4

Y1 Y2

s s

h h

ls ls

skl2 f2

f1 f1

ls

ls

s

⇒ x y tnll(z) skl2

s

After normalization:
x

z

y
Y1, Y2

Y3

t

Y4

s s

h h

ls ls

skl2 f2

f1 f1

s

⇒ x y tnll(z) skl2

s

select(ψ1, nll(x, y, z))
select(ψ1, skl2(y, t))

Fig. 4. An example of applying compositional entailment checking. Points-to edges are repre-
sented by simple lines, predicate edges by double lines, and disequality edges by dashed lines.
For readability, we omit some of the labeling with existentially-quantified variables and some of
the disequality edges in the normalized graphs.

boolean formula BoolAbs[ϕ] in CNF over a set of boolean variables containing the
boolean variable [E = F ] for every two variables E and F occuring in ϕ and the
boolean variable [E, a] for every variable E and spatial atom a of the form E 7→ {ρ} or
P (E,F,

−→
B ) in ϕ. The variable [E = F ] denotes the equality between E and F while

[E, a] denotes the fact that the atom a describes a heap where E is allocated.
Given ϕ , ∃

−→
X.Π ∧Σ, BoolAbs[ϕ] , F (Π)∧F (Σ)∧F= ∧F∗ where F (Π) and

F (Σ) encode the atoms of ϕ (using⊕ to denote xor), F= encodes reflexivity, symmetry,
and transitivity of equality, and F∗ encodes the semantics of the separating conjunction:

FΠ ,
∧

E=F∈Π

[E = F ] ∧
∧

E 6=F∈Π

¬[E = F ] FΣ ,
∧

a=E 7→{ρ}∈Σ

[E, a] ∧
∧

a=P (E,F,
−→
B )∈Σ

[E, a]⊕ [E = F ]

F= ,
∧

E1,E2,E3 variables in ϕ

[E1 = E1]∧ ([E1 = E2]⇔ [E2 = E1])∧ ([E1 = E2]∧[E2 = E3]⇒ [E1 = E3])

F∗ ,
∧

E,F variables in ϕ
a, a′different atoms inΣ

([E = F ] ∧ [E, a])⇒ ¬[F, a′]

For example, BoolAbs[ψ1] is a conjunction of several formulas including:

1. [y, skl2(y, Y3)]⊕ [y = Y3], which encodes the atom skl2(y, Y3),
2. [Y3, Y3 7→ {(f1, Y4), (f2, t)}] and [t, t 7→ {(s, Y2)}], encoding points-to atoms,
3. ([y = t] ∧ [t, t 7→ {(s, Y2)}]) ⇒ ¬[y, skl2(y, Y3)], which encodes the separating

conjunction between t 7→ {(s, Y2)} and skl2(y, Y3),
4. ([Y3 = t] ∧ [t, t 7→ {(s, Y2)}]) ⇒ ¬[Y3, Y3 7→ {(f1, Y4), (f2, t)}], which encodes

the separating conjunction between t 7→ {(s, Y2)} and Y3 7→ {(f1, Y4), (f2, t)}.
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Proposition 1. Letϕ be a formula. Then, BoolAbs[ϕ] is equisatisfiable toϕ and for any
two variables E, F of ϕ, BoolAbs[ϕ]⇒ [E = F ] (resp., BoolAbs[ϕ]⇒ ¬[E = F ]) iff
ϕ⇒ E = F (resp. ϕ⇒ E 6= F ).

For example, BoolAbs[ψ1]⇒ ¬[y = t], which is a consequence of the sub-formulas
we have given above together with F=.

If BoolAbs[ϕ] is unsatisfiable, then the output of norm(ϕ) is false . Otherwise,
the output of norm(ϕ) is the formula ϕ′ obtained from ϕ by (1) adding all the
(dis-)equalities implied by BoolAbs[ϕ] and (2) removing all predicates P (E,F,

−→
B )

s.t. E = F occurs in the pure part. For example, the normalizations of ψ1 and ψ2 are
given in the bottom part of Fig. 4. Note that the ls atoms reachable from y are removed
because BoolAbs[ψ1]⇒ [y = Y1] and BoolAbs[ψ1]⇒ [Y1 = Y2].

The following result is important for the completeness of the select procedure.

Proposition 2. Let norm(ϕ) be the normal form of a formula ϕ. For any two distinct
nodes n and n′ in the SL graph of norm(ϕ), there cannot exist two disjoint sets of atoms
A and A′ in norm(ϕ) s.t. both A and A′ represent paths between n and n′.

If we assume by contradiction that norm(ϕ) contains two such sets of atoms, then,
by the semantics of the separating conjunction, ϕ ⇒ E = F where E and F label n
and n′, respectively. Therefore, norm(ϕ) does not include all the equalities implied by
ϕ, which contradicts its definition.

3.2 Selection of Spatial Atoms

Points-to atoms. Let ϕ1 , ∃
−→
X.Π1 ∧ Σ1 be a normalized formula. The procedure

select(ϕ1, E2 7→ {ρ2}) outputs the sub-formula ∃
−→
X.Π1 ∧ E1 7→ {ρ1} s.t. E1 = E2

occurs in Π1 if it exists, or emp otherwise. The procedure select is called only if ϕ1

is satisfiable and consequently, ϕ1 cannot contain two different atoms E1 7→ {ρ1} and
E′1 7→ {ρ′1} such that E1 = E′1 = E2. Also, if there exists no such points-to atom, then
ϕ1 ⇒ ϕ2 is not valid. In the running example, select(ψ1, t 7→ {(s, y)}) = ∃Y2. y =
Y2 ∧ . . . ∧ t 7→ {(s, Y2)} (we have omitted some existential variables and pure atoms).
Predicate atoms. Given an atom a2 = P2(E2, F2,

−→
B2), the procedure select(ϕ1, a2)

outputs the formula ∃
−→
X.Π1 ∧ Σ′ where Σ′ consists of all the atoms represented by

edges of the sub-graphG′ ofG[ϕ1] described hereafter. IfG′ is empty, thenΣ′ = emp.
Let Dangling[a2] = Node(F2) ∪ {Node(B) | B ∈

−→
B2}.

The graph G′ is built in two steps. In the first step, G′ is defined as the union of all
the paths of G[ϕ1] that (1) consist of edges labeled by fields in F∗7→(P2) or predicates
Q with P2 ≺∗P Q, (2) start in the node labeled by E2, and (3) end either in a node
from the set Dangling[a2] or in a cycle, in which case they must not traverse nodes in
Dangling[a2]. The paths in G′ that end in a node from Dangling[a2] are not allowed
to traverse other nodes from Dangling[a2]. Therefore, G′ does not contain edges that
start in a node from Dangling[a2]. The instances of G′ for select(ψ1, nll(x, y, z))
and select(ψ1, skl2(y, t)) are emphasized in Fig. 4.

In the second step, the procedure select checks that in every model of ϕ1, the
heap region described by G′ is well-formed w.r.t. a2, i.e., it does not allocate variables
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in F2 ∪
−→
B2. This is equivalent to the fact that for every variable V ∈ F2 ∪

−→
B2 and every

model of ϕ1, the interpretation of V is different from all the allocated locations in the
heap region described by G′. This is in turn equivalent to the fact that for every variable
V ∈ F2 ∪

−→
B2 the two following conditions hold:

1. For every predicate edge e included in G′ that does not end in Node(V ), V is
allocated in all the models of E 6= F ∧ (ϕ1 \ G′) where E and F are variables
labeling the source and the destination of e, respectively, and ϕ1 \ G′ is obtained
from ϕ1 by deleting all the spatial atoms represented by edges of G′.

2. For every variable V ′ labeling the source of a points-to edge of G′, ϕ1 ⇒ V 6= V ′.
The first condition guarantees that V is not interpreted as an allocated location in

a list segment described by a predicate edge of G′ (this trivially holds for predicate
edges ending in Node(V )). If V was not allocated in some model (S,H1) of E 6=
F ∧ (ϕ1 \ G′), then one could construct a model (S,H2) of G′ where e would be
interpreted to a non-empty list and S(V ) would equal an allocated location inside this
list. Therefore, there would exist a model of ϕ1, defined as the union of (S,H1) and
(S,H2), in which the heap region described by G′ would not be well-formed w.r.t.
a2. For the graph select(ψ1, skl2(y, t)) in Fig. 4, t is not interpreted as an allocated
location in the list segment skl2(y, Y3) iff t is allocated in all the models of y 6= Y3 ∧
(ψ1 \ select(ψ1, skl2(y, t))). The latter holds because of the atom t 7→ {(s, Y2)}.

To check that variables are allocated we use the following property: given a formula
ϕ , ∃

−→
X.Π ∧Σ, a variable V is allocated in every model of ϕ iff ∃

−→
X.Π ∧Σ ∗ V 7→

{(f, V1)} is unsatisfiable. Here, we assume that f and V1 are not used in ϕ. Note that,
by Prop. 1, unsatisfiability can be decided using the boolean abstraction BoolAbs.

The second condition guarantees that V is different from all the allocated locations
represented by sources of points-to edges inG′. For the graph select(ψ1, nll(x, y, z))
in Fig. 4, the variable z must be different from all the existential variables labeling a
node which is the source of a points-to edge. These disequalities appear explicitly in
the formula. By Prop. 1, ϕ1 ⇒ V 6= V ′ can be decided using the boolean abstraction.

Finally, at the end of the second step, ifG′ is not well-formed, select returns emp,
otherwise it returns the outcome of the first step.

3.3 Soundness and Completeness

The following theorem states that the procedure given in Fig. 3 is sound and complete.
The soundness is a direct consequence of the semantics. The completeness is a conse-
quence of Prop. 1 and 2. In particular, Prop. 2 implies that the sub-formula returned by
select(ϕ1, a2) is the only one that can describe a heap region satisfying a2.

Theorem 1. Let ϕ1 and ϕ2 be two formulas s.t. ϕ2 is quantifier-free. Then, ϕ1 ⇒ ϕ2

iff the procedure in Fig. 3 returns true.

3.4 Checking Entailments between a Formula and an Atom

Checking the validity of an entailment between a formula and a points-to atom is
straightforward and we omit it for brevity. Given a formula ϕ and an atom P (E,F,

−→
B ),
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we define a procedure for checking that ϕ ⇒sh P (E,F,
−→
B ), which works as follows:

(1) G[ϕ] is transformed into a tree T [ϕ] by splitting nodes that have multiple incoming
edges, (2) the inductive definition of P (E,F,

−→
B ) is used to define a tree automaton

A[P ] s.t. T [ϕ] belongs to the language of A[P ] only if ϕ ⇒sh P (E,F,
−→
B ). To keep

the size of A[P ] polynomial in the size of the inductive definition of P , this automaton
does not recognize the tree representations of all the formulas ϕ s.t. ϕ⇒sh P (E,F,

−→
B )

(cf. Sec. 5). The transformation of graphs into trees is presented in Sec. 4 while the def-
inition of the tree automata is introduced in Sec. 5.

4 Representing SL Graphs as Trees

We define a canonical representation of SL graphs (ignoring their disequality edges that
are treated by the entailment of pure parts) in the form of trees. This representation is
at the core of checking whether a formula entails a spatial atom w.r.t.⇒sh. Essentially,
an SL graph G is represented by a tree T that contains a spanning tree of G and that
is obtained by splitting every node of G with at least 2 incoming edges, called a join
node, into several copies, one for each incoming edge. The fact that these copies do
in fact represent a single node is encoded in their labelling that can either be based on
a variable that points to the original node and that will appear in the labelling of all the
copies, or the label may describe the path from the copy to the original node by one of
two allowed ways: one intended for breaking loops and the other for breaking parallel
paths between nodes. The spanning tree of G contained in T is formed of paths labeled
by sequences of fields which are minimum according to the order≺F∗ defined hereafter.

Given a predicate P with the matrix Σ as in (1), let F7→Xtl
(P ) be the set of fields f

occurring in a pair (f,Xtl) of ρ, F7→−→Z (P ) the set of fields f occurring in a pair (f, Z)

of ρ with Z ∈
−→
Z , and F7→−→B (P ) the set of fields f occurring in a pair (f,X) of ρ with

X ∈
−→
B . We assume that there exists a total order ≺F on the set of fields such that for

all predicates P , P1, P2:

∀f1 ∈ F 7→Xtl
(P ) ∀f2 ∈ F7→−→Z (P ) ∀f3 ∈ F7→−→B (P ). f1 ≺F f2 ≺F f3 and

(f1 ∈ F7→(P1) ∧ f2 ∈ F7→(P2) ∧ f1 6= f2 ∧ P1 ≺P P2)⇒ f1 ≺F f2.

For example, if P = {nll, ls} or P = {nlcl, ls}, then s ≺F h ≺F f ; and if P =
{skl2, skl1}, then f2 ≺F f1. The order ≺F is extended to a lexicographic order ≺F∗

over sequences in F∗.
Let G be an SL graph and P (E,F,

−→
B ) an atom for which we want to prove

that G ⇒sh P (E,F,
−→
B ). The tree encoding of G is computed by the procedure

toTrees(G,P (E,F,
−→
B )) described hereafter. We assume that all the nodes of G are

reachable from the node Root labeled by E. Otherwise, toTrees returns an error value
⊥ because G ⇒ P (E,F,

−→
B ) does not hold. An edge of G is called an f -edge if it is a

points-to edge labeled by f or a predicate edge labeled by P (
−→
N ) s.t. the minimum field

in F 7→(P ) w.r.t. ≺F is f . The tree encoding T [G] of G is built by toTrees as follows.
Node marking. The procedure toTrees starts by computing the so-called node mark-
ings that reflect the ≺F∗ ordering and that are subsequently used to identify which
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(c) Tree encodings for graphs satisfying skl2:
Fig. 5. Tree encodings.

edges should be redirected and how. For every path π formed of a sequence of edges
e1 e2 . . . en starting in Root , the labeling of π, denoted by L(π), is the sequence of
fields f1 f2 . . . fn s.t. ei is an fi-edge, for all i. The marking of a node n, denoted by
M(n), is defined as M(n) = Reduce(Lmin(n)), where Lmin(n) is the minimum L(π)
(w.r.t.≺F∗ ) for all paths π from Root to n, and Reduce reduces consecutive appearances
of the same field to a single appearance. For technical reasons, we add the minimum
field in F7→(P ) at the beginning of all the markings that do not contain it. Fig. 5(b)–(c)
depict two graphs and the markings of their nodes. Fig. 5(c) contains a node with the
marking f2 (the node left of the node labelled with t), which is reachable by two paths,
the first with the labeling f2 f2 and the other with f2 f1 f1. The labeling of the first path
is the minimum one and the marking of this node is obtained by reducing f2 f2 to f2.

Removing join nodes labeled by F ∪
−→
B . Every edge (m,n) ofG leading to a join node

n labeled by a variable V ∈ F ∪
−→
B is replaced by an edge (m,n′) where n′ is a fresh

copy of n. The node n′ is labeled by a special symbol alias [V ] to identify the node
of which it is a copy. In addition, to allow all nodes labeled by variables from F ∪

−→
B

to be treated uniformly, even non-join nodes labeled by a variable V ∈ F ∪
−→
B are

re-labelled by the special symbol alias [V ]. This transformation is applied to obtain the
tree encodings of select(ψ1, nll(x, y, z)) and select(ψ1, skl2(y, t)) in Fig. 5(a).

Removing join nodes not labeled by F ∪
−→
B . Let n be a join node that is not labeled

by F ∪
−→
B . Further, for any field f , let M(n) � f = M(n) provided M(n) ends by f ,

and M(n) � f = M(n) f otherwise. Every edge (m,n) of G labeled by a field f s.t.
M(n) 6= M(m)�f (meaning that (m,n) is not at the end of the minimum path leading
to n) is replaced by an edge (m,n′) where n′ is a fresh copy of n labeled by:

– alias ↑[M(n)] if m is reachable from n, and all the predecessors of m (by a simple
path) marked by M(n) are also predecessors of n. Intuitively, this label is used to
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break loops, and it refers to the closest predecessor of n having the given marking.3

The use of this labelling is illustrated in Fig. 5(b).
– alias ↑↓[M(n)] if there exists a node p which is a predecessor of m such that all the

predecessors of m that have a unique successor marked by M(n) are also prede-
cessors of p, and n is the unique successor of p marked by M(n). Intuitively, this
transformation is used to break multiple paths between p and n.4 The transforma-
tion is illustrated in Fig. 5(c).

– ⊥ otherwise.

Updating the labeling of predicate edges. The labelling of predicate edges is changed
in order to remove arguments which are not in F ∪

−→
B . By the restrictions on the syntax

of the predicate matrices, each argument X which is different from F ∪
−→
B can be

replaced by alias ↑[M(n)] or alias ↑↓[M(n)], which describe the position of the node
n labeled by X w.r.t. the source of the predicate edge. For example, X is replaced by
alias ↑[M(n)] when n is the first predecessor of the source of the predicate edge of the
marking M(n).
Transforming edge labels to node labels. Since the generated trees will be tested for
membership in the language of a tree automaton, which accepts node-labelled trees
only, toTrees moves labels of edges to the labels of their source nodes and concate-
nates them according to the ordering of the fields (predicates in the labels are ordered ac-
cording to the minimum field in their matrix). The output of toTrees(G,P (E,F,

−→
B ))

is then the resulting tree or ⊥ should the tree contain nodes labeled by ⊥.

Proposition 3. Let P (E,F,
−→
B ) be an atom and G an SL graph. If

toTrees(G,P (E,F,
−→
B )) = ⊥, then G 6⇒ P (E,F,

−→
B ).

5 Tree Automata Recognizing Tree Encodings of SL Graphs

Next, we proceed to the construction of tree automata A[P (E,F,
−→
B )] that recognize

tree encodings of SL graphs that imply atoms of the form P (E,F,
−→
B ).

Tree automata. A ranked alphabet F is a finite set of symbols, each symbol hav-
ing attached a unique arity in N. Let Fn be the set of symbols of F of arity n.
A (non-deterministic top-down) tree automaton over the ranked alphabet F is a tu-
ple A = (Q,F , q0, ∆) where Q is a set of states, q0 ∈ Q is the initial state, and ∆
is a set of transition rules of the form q ↪→ a(q1, . . . , qn), where n ≥ 0, a ∈ Fn, and
q, q1, . . . , qn ∈ Q. When a is a symbol of arity 0, a transition rule of A is of the form
q ↪→ a. The set of trees L(A) recognized by A is defined as usual.

Definition of A[P (E,F,
−→
B )]. The tree automaton A[P (E,F,

−→
B )] is defined starting

from the inductive definition of P . If P does not call other predicates, the automa-
3 The reference to the closest predecessor is needed to make the reference deterministic, e.g.,

when dealing with lists of cyclic lists where the nested cyclic lists close through the nodes of
the top level list, not through their successors as in our running example.

4 The combination of up and down arrows in the label corresponds to the need of going up and
then down in the resulting tree—whereas in the previous case, it suffices to go up only.
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ton simply recognizes the tree encodings of the SL graphs that are obtained by “con-
catenating” a sequence of Gaifman graphs representing the matrix Σ(E,Xtl,

−→
B ) and

predicate edges P (E,Xtl,
−→
B ). In these sequences, occurrences of the Gaifman graphs

representing the matrix Σ(E,Xtl,
−→
B ) and the predicate edges P (E,Xtl,

−→
B ) can be

mixed in an arbitrary order and in an arbitrary number. Intuitively, this corresponds to
a partial unfolding of the predicate P in which there appear concrete segments described
by points-to edges as well as (possibly multiple) segments described by predicate edges.
Concatenating two Gaifman graphs representing the matrix Σ(E,Xtl,

−→
B ) means that

the node labeled by Xtl in the first graph is merged with the node labeled by E in the
other graph. Note that the tree encoding of such an SL graph can be computed locally on
each of the Gaifman graphs. When P calls other predicates, the automaton recognizes
tree encodings of concatenations of more general SL graphs, obtained from Gf [Σ] by
replacing predicate edges with unfoldings of these predicates.

The automatonA[P (E,F,
−→
B )] is defined over an alphabet that contains symbols of

the form λ : −→µ where λ is empty or a node label from the tree encoding, i.e., alias [V ],
alias ↑[α] and alias ↑↓[α], and −→µ is a vector of SL graph edge labels. The arity of a
symbol is the size of µ. A transition rule of the form q ↪→ λ : −→µ (q1, . . . , qn) denotes
the fact that the current node is labeled by λ and it is the source of n edges, the i-th
edge being labeled by −→µ [i], for all 1 ≤ i ≤ n. By an abuse of notation, we will write
the transition rules as follows: q ↪→ λ : −→µ [1](q1), . . . ,

−→µ [n](qn). We assume −→µ to be
ordered according to the ordering of fields (resp. the minimum fields in the matrix in
the case of predicates) in the same way as in the case of trees encoding SL graphs.

The automaton A[P (E,F,
−→
B )] is defined recursively based on its matrix. Due to

space constraints, we describe the construction on two typical examples only—a full
description can be found in App. A. To illustrate as much as possible, we leave our
running example this time (TAs for the predicates used in this example are given in
App. B).

Instead, we first consider a predicate P1(E,F,B) that does not call other predicates
and that has the matrix

Σ1 , E 7→ {(f1, Xtl), (f2, Xtl), (f3, B)}.

The automaton A1 corresponding to P1(E,F,B) has the following transition rules:

(1) q0 ↪→ f1(q0), f2(q1), f3(q2) (5) q3 ↪→ alias [F ]

(2) q1 ↪→ alias ↑↓[f1] (6) q0 ↪→ P1(B)(q0)

(3) q2 ↪→ alias [B] (7) q0 ↪→ P1(B)(q3)

(4) q0 ↪→ f1(q3), f2(q1), f3(q2)

Rules 1–3 recognize the tree encoding of the Gaifman graph of Σ1, assuming the fol-
lowing total order on the fields: f1 ≺F f2 ≺F f3. Rule 4 is used to distinguish the “last”
instance of this tree encoding, which ends in the node labeled by alias [F ] accepted
by Rule 5. Finally, Rules 6 and 7 recognize predicate edges labeled by P1(B). As in
the previous case, we distinguish the predicate edge that ends in the node labeled by
alias [F ]. q0 is the initial state of A1.
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Now, let us consider a predicate P2(E,F ) that calls P1 and that has the matrix

Σ2 , ∃Z.E 7→ {(g1, Xtl), (g2, Z)}∗ 	1+ P1[Z,E].

The tree automaton A2 for P2(E,F ) contains the following set of transition rules:

(1) qq0 ↪→ g1(qq0), g2(q0) (2) qq0 ↪→ g1(qq1), g2(q0)

transition rules of A1, where (3) qq1 ↪→ alias [F ]

alias [F ] is substituted by alias ↑[g1 g2], (4) qq0 ↪→ P2(qq0)

alias [B] by alias ↑[g1], and (5) qq0 ↪→ P2(qq1)

alias ↑↓[f1] is substituted by alias ↑↓[g1 g2 f1]

The first new rule and the ones imported fromA1 describe tree encodings of SL graphs
that imply Σ2, obtained from Gf [Σ2] by replacing the self-loop on Z with its unfold-
ing. More precisely, they describe trees obtained from the tree encoding of Gf [Σ2] by
replacing the edge starting in Z with a tree recognized by A1. According to the defi-
nition of the tree encoding, the predicate edge starting in Z ends in a node labeled by
alias ↑[g1 g2]. Transition rules imported from A1 are modified in order to reflect (a) the
actual arguments of the recursive call to P1, i.e., alias [F ] is substituted by alias ↑[g1 g2]
and alias [B] by alias ↑[g1], and (b) the fact that trees recognized by A1 are now sub-
trees of the trees recognized byA2, hence the node markings change from α to g1 g2 α.
qq0 is the initial state of A2.

The following result states the correctness of the tree automata construction.

Theorem 2. For any atom P (E,F,
−→
B ) and any SL graph G, if the tree generated by

toTrees(G,P (E,F,
−→
B )) is recognized by A[P (E,F,

−→
B )], then G⇒ P (E,F,

−→
B ).

Precision. In general, there exist SL graphs that entail P (E,F,
−→
B ) whose tree encod-

ings are not recognized by A[P (E,F,
−→
B )]. The models of these SL graphs are nested

list segments where inner pointer fields specified by the matrix of P are aliased. For
example, the TA for skl2 does not recognize tree encodings of SL graphs modeled by
heaps where Xtl and Z1 are interpreted to the same location. The construction can be
extended to cover such SL graphs (cf. [?]), but the size of the obtained automata may
become exponential in the size of P (defined as the number of symbols in the matri-
ces of all Q with P ≺∗P Q) as it considers all the possible aliasings of targets of inner
pointer fields permitted by the predicate. For the verification conditions that we have
encountered in our experiments, the TA defined above are precise enough in the vast
majority of the cases. In particular, note that the TA generated for the predicates for ls
and dll (defined below) are precise. We have, however, implemented even the above
mentioned extension and realized that it also provides acceptable performance.

6 Extensions

The procedures presented above can be extended to a larger fragment of SL that uses
more general inductively defined predicates. In particular, they can be extended to cover
finite nestings of singly or doubly linked lists. To describe DLL segments between two
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locations E and F where P is the predecessor of E and S is the successor of F , one
can use the predicate

dll(E,F, P, S) , (E = S ∧ F = P ∧ emp) ∨(
E 6= S ∧ F 6= P ∧ ∃Xtl. E 7→ {(next,Xtl), (prev, P )} ∗ dll(Xtl, F, E, S)

)
Finite nestings of such list segments can be defined by replacing the matrix E 7→
{(next,Xtl), (prev, P )} with more general formulas that include other predicates.

The key point in this extension is the definition of the tree encoding. Basically, one
needs to consider two more types of labels for the tree nodes: alias ↑2[α] with α ∈ F∗,
which denotes the fact that the node is a copy of its second predecessor of marking α,
and alias ↑↓last[α] with α ∈ F∗, which denotes the fact that the node is a copy of the last
successor of marking α of its first predecessor that has a successor of marking α. The
first label is needed to handle inner nodes of doubly linked lists, which have two incom-
ing edges, one from their successor and one from their predecessor, while the second
label is needed to “break” cyclic doubly linked lists. In the latter case, the label is used
for the copy of the predecessor of the header of the list (cf. App. C for more details).

7 Implementation and Experimental Results

We implemented the decision procedure in a solver called SPEN (SeParation logic EN-
tailment). The tool takes as the input an entailment problem ϕ1 ⇒ ϕ2 (including the
definition of the predicates used) encoded in the SMTLIB2 format. For non-valid entail-
ments, SPEN prints the atom of ϕ2 which is not entailed by a sub-formula of ϕ1. The
tool is based on the MINISAT solver for deciding unsatisfiablity of boolean formulas
and the VATA library [12] as the tree automata backend.

We applied SPEN to entailment problems that use various recursive predicates5.
First, we considered the benchmark provided in [13], which uses only the ls predi-
cate. It consists of three classes of entailment problems called spaguetti, bolognesa,
and clones. The first two classes contain 110 problems each (split into 11 groups) gen-
erated randomly according to the rules specified in [13], whereas the last class contains
100 problems (split into 10 groups) obtained from the verification conditions generated
by the tool SMALLFOOT [2]. The results are listed in Table 1. We give the average time
for running SPEN on the 10 problems of each group. For the first two benchmark suites,
we observe a deviation of the running times of ±100 ms w.r.t. the ones reported for
SELOGER [8]6, the most efficient tool for deciding entailments of SL formulas with
singly linked lists we are aware of. The TA for ls is quite small so these experiments
evaluate the performance of the procedure in Fig. 3.

To evaluate our procedure for checking entailments between formulas and atoms,
we considered experiments listed in Table 2 (among which, skl3 required the extension
of our approach to a full decision procedure as discussed at the end of Sec. 5). The full

5 Our experiments were performed on an Intel Core 2 Duo 2.53 GHz processor with 4 GiB
DDR3 1067 MHz running a virtual machine with Fedora 20 (64-bit).

6 The times reported for SELOGER in [8] have been obtained on an Intel Core TM i5-2467M
1.60 GHz processor with 4 GiB DDR3 1066 MHz under Windows 7 Home Premium (64-bit).
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Table 1. Running SPEN on the benchmarks from [13].
Bolognesa bo-10 bo-11 bo-12 bo-13 bo-14 bo-15 bo-16 bo-17 bo-18 bo-19 bo-20

Average time [ms] 352 386 385 394 483 562 424 510 503 516 522
Spaguetti sp-10 sp-11 sp-12 sp-13 sp-14 sp-15 sp-16 sp-17 sp-18 sp-19 sp-20

Average time [ms] 146 156 145 153 189 258 198 254 249 252 282
Clones cl-01 cl-02 cl-03 cl-04 cl-05 cl-06 cl-07 cl-08 cl-09 cl-10

Average time [ms] 316 314 335 336 321 334 351 374 407 436

Table 2. Running SPEN on entailments between formulas and atoms.
ϕ2 nll nlcl skl3 dll

ϕ1 tc1 tc2 tc3 tc1 tc2 tc3 tc1 tc2 tc3 tc1 tc2 tc3

Time [ms] 344 335 319 318 316 317 334 349 326 358 324 322
Status vld vld inv vld vld inv vld vld inv vld vld inv
States/Trans. of A[ϕ2] 6/17 6/15 80/193 9/16
Nodes/Edges of T (Gf [ϕ1]) 7/7 7/7 6/7 10/9 7/7 6/6 7/7 8/8 6/6 7/7 7/7 5/5

benchmark is available with our tool [5]. The entailment problems are extracted from
verification conditions of operations like adding or deleting an element at the start, in
the middle, or at the end of various kinds of list segments (see App. D). Table 2 gives for
each example the running time, the valid/invalid status, and the size of the tree encoding
and TA for ϕ1 and ϕ2, respectively. We find the resulting times quite encouraging.

8 Conclusion

We proposed a novel (semi-)decision procedure for a fragment of SL with inductive
predicates describing various forms of lists (singly or doubly linked, nested, circular,
with skip links, etc.). The procedure is compositional in that it reduces the given en-
tailment query to a set of simpler queries between a formula and an atom. For solving
them, we proposed a novel reduction to testing membership of a tree derived from the
formula in the language of a TA derived from a predicate. We implemented the proce-
dure, and our experiments show that it has not only a favourable theoretical complexity,
but it also efficiently handles practical verification conditions.

In the future, we plan to investigate extensions of our approach to formulas with
a more general boolean structure or using more general inductive definitions. Concern-
ing the latter, we plan to investigate whether some ideas from [9] could be used to extend
our decision procedure for entailments between formulas and atoms. From a practical
point of view, apart from improving the implementation of our procedure, we plan to
integrate it into a complete program analysis framework.
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A Construction of Tree Automata for Predicates

Consider the definition of the matrix of the predicate P (E,F,
−→
B ) as given in Equa-

tion (1) repeated for the sake of convenience here:

P (E,F,
−→
B ) , (E = F ∧ emp) ∨

(
E 6= {F} ∪

−→
B ∧ ∃Xtl. Σ(E,Xtl,

−→
B ) ∗ P (Xtl, F,

−→
B )
)

where Σ is of the form

Σ(E,Xtl,
−→
B ) , ∃

−→
Z .E 7→ ρ[Xtl,

−→
Z ,
−→
B ] ∗Σ′

Σ′ ::= Q(Z,U,
−→
Y ) | 	1+ Q[Z,

−→
Y ] | Σ′ ∗Σ′ | emp

for Z ∈
−→
Z , U ∈

−→
Z ∪
−→
B ∪ {E,Xtl},

−→
Y ⊆

−→
B ∪ {E,Xtl}, and

	1+ Q[Z,
−→
Y ] , ∃Z ′. ΣQ(Z,Z ′,

−→
Y ) ∗Q(Z ′, Z,

−→
Y ) where ΣQ is the matrix of Q.

Construction of the automaton A[P ] is described in the following. Suppose the matrix
of P is of the formΣ(E,Xtl,

−→
B ) , ∃

−→
Z .E 7→ {(f1, X1), . . . , (fn, Xn)}∗Σ′. W.l.o.g.

we further assume that f1 ≺F . . . ≺F fn (i.e. f1 is the minimum field in F7→(P )). Before
we start with the construction, we obtain the SL graph G of the matrix Σ(E,Xtl,

−→
B )

in such a way that during its construction, we do not expand the macro 	1+ Q[Z,
−→
Y ]

and transform it into a predicate edge from Node(Z) to Node(Z) labelled with Q(
−→
Y ).

Then we get the modified tree encoding7 T [G] of G and check that it is not equal to ⊥,
otherwise we abort the procedure.

1. First, we create the skeleton of A[P ] by taking T [G] and transforming it in the
following way:
(a) We start with an empty automaton A[P ].
(b) For each node u of T [G], we create a unique state q(u) in A[P ] and set

q(Node(E)) as the initial node of A[P ].
(c) If the node u is labelled in T [G] with an aliasing relation r ∈
{alias [B], alias ↑[m1], alias ↑↓[m2]} for some border variable B ∈

−→
B and

markings m1 and m2, we add the transition

q(u) ↪→ r. (2)

(d) If there is a predicate edge from u to v labelled with Q(
−→
Y ), we add the transi-

tion

q(u) ↪→ Q(
−→
Y )(q(v)). (3)

Note that after transforming G to the tree T [G], the tuple
−→
Y can contain both

variables and aliasing relations.
7 The considered modification is the following: during the construction of T [G], we do not con-

sider Xtl to be a border variable and therefore avoid aliasing relations of the form alias [Xtl].
This is because Xtl is in fact existentially quantified in the definition of P and alias [Xtl]
would therefore be ambiguous. Therefore, it needs to be substituted by the relations alias ↑[m]
or alias ↑↓[m] for some marking m.
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(e) If u is the source of points-to edges e1, . . . , ek labelled with the fields
h1, . . . , hk respectively, assuming that h1 ≺F . . . ≺F hk, and entering nodes
v1, . . . , vk, in this order, we add the transition

q(u) ↪→h1(q(v1)), . . . , hk(q(vk)). (4)

Note that this rule also creates the initial transition

q(Node(E)) ↪→h1(q(Node(Xtl))), h2(q(v2)), . . . , hk(q(vk)). (5)

(f) We add the transition

q(Node(Xtl)) ↪→ alias [F ]. (6)

Note that this skeleton is able to accept precisely a single unfolding of the predicate
P between E and F such that nested predicates are not unfolded.

2. Next, we make A[P ] accept an arbitrary number of these unfoldings along the
backbone of the predicate. To do this, we take the initial transition (5) and insert
into A[P ] a new transition

q(Node(E)) ↪→h1(q(Node(E))), h2(q(v2)), . . . , hk(q(vk)). (7)

3. In the following step, for each transition over a predicate symbol

q(Node(R)) ↪→ Q(
−→
Y )(q(Node(S))), (8)

in A[P ] we instantiate the automaton for the predicate Q(R,S,
−→
Y ) with unique

names of states and make the following substitutions. First, the initial node
of A[Q(R,S,

−→
Y )] (including all its occurences in transitions) is renamed to

q(Node(R)). Second, every occurrence of alias ↑[m1] and alias ↑↓[m2] is changed
to alias ↑[mR �m1] and alias ↑↓[mR �m2] respectively, where mR is the mark-
ing of Node(R) in T [G]. Third, every occurrence of alias [U ] in a transition of
A[Q(R,S,

−→
Y )] is changed according to the following rules:

(a) if U ∈
−→
B then we keep the occurrence unchanged,

(b) if U ∈
−→
Z \ {S} then alias [U ] is changed to alias ↑↓[mU ] where mU is the

marking of Node(U) in T [G],
(c) if U = E then alias [U ] is changed to alias ↑[f1].
Fourth, let qQ,tl be the state of A[Q(R,S,

−→
Y )] to which Xtl maps in

A[Q(R,S,
−→
Y )]. We remove the transition qQ,tl ↪→ alias [S] and rename the state

qQ,tl (again, including all its occurrences in transitions) to q(Node(S)).
4. Finally, we add transitions allowing an arbitrary interleaving of folded and unfolded

occurences of the predicate P :

q(Node(E)) ↪→P (
−→
B )(q(Node(E))) (9)

q(Node(E)) ↪→P (
−→
B )(q(Node(Xtl))). (10)
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B Tree Automata for the Running Example

The automatonA[ls(E,F )] contains the following set of transition rules (with q0 being
the initial state):

q0 ↪→ f(q0) q0 ↪→ ls(q0)

q0 ↪→ f(q1) q0 ↪→ ls(q1)

q1 ↪→ alias [F ]

The automatonA[nll(G,H,B)] contains the following set of transition rules (with qq0
being the initial state):

qq0 ↪→ s(qq0), h(q0) qq0 ↪→ s(qq1), h(q0)

qq1 ↪→ alias [H] qq0 ↪→ nll(B)(qq0)

q0 ↪→ alias [B] qq0 ↪→ nll(B)(qq1)

transition rules of A[ls(E,B)]

The automaton A[skl1(K,L)] for skip lists of level three contains the following set of
transition rules (p0 is the initial state):

p0 ↪→ f3(p⊥), f2(p⊥), f1(p0) p0 ↪→ skl1(p0)

p0 ↪→ f3(p⊥), f2(p⊥), f1(p1) p0 ↪→ skl1(p1)

p1 ↪→ alias [L] p⊥ ↪→ alias [NULL]

The automatonA[skl2(M,N)] contains the following set of transition rules (pp0 is the
initial state):

pp0 ↪→ f3(p⊥), f2(pp0), f1(p0) pp0 ↪→ skl2(pp0)

pp0 ↪→ f3(p⊥), f2(pp1), f1(p0) pp0 ↪→ skl2(pp1)

p0 ↪→ alias ↑↓[f2] pp1 ↪→ alias [N ]

transition rules of A[skl1(K,L)], where
alias [L] is substituted by alias ↑↓[f2]

The automatonA[skl3(P,R)] contains the following set of transition rules (ppp0 is the
initial state):

ppp0 ↪→ f3(ppp0), f2(pp0), f1(p0) ppp0 ↪→ skl3(ppp0)

ppp0 ↪→ f3(ppp1), f2(pp0), f1(p0) ppp0 ↪→ skl3(ppp1)

pp0 ↪→ alias ↑↓[f3] ppp1 ↪→ alias [R]

transition rules of A[skl2(M,N)], where
alias [N ] is substituted by alias ↑↓[f3]
alias ↑↓[f2] is substituted by alias ↑↓[f3 f2]

p0 ↪→ alias ↑↓[f3 f2]
transition rules of A[skl1(K,L)], where
alias [N ] is substituted by alias ↑↓[f3 f2]

The automaton A[nlcl(S, T )] contains the following set of transition rules (with qq0
being the initial state):

qq0 ↪→ s(qq0), h(q0) qq0 ↪→ s(qq1), h(q0)

qq1 ↪→ alias [T ] qq0 ↪→ nlcl(qq0)

transition rules of A[ls(E,F )], where qq0 ↪→ nlcl(qq1)

alias [F ] is substituted by alias ↑[s h]
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C Extending the tree encoding to deal with doubly linked lists

Let us consider the following predicates for describing doubly linked list segments and
lists of cyclic doubly linked lists:

dll(E,F, P, S) , (E = S ∧ F = P ∧ emp) ∨(
E 6= S ∧ F 6= P ∧ ∃Xtl. E 7→ {(n,Xtl), (p, P )} ∗ dll(Xtl, F, E, S)

)
nlcdl(E,F ) , (E = F ∧ emp) ∨(

E 6= F ∧ ∃Xtl, Z.E 7→ {(s,Xtl), (h, Z)}∗ 	1+ dll(Z) ∗ nlcdl(Xtl, F )
)

where 	1+ dll(Z) is a macro for describing non-empty cyclic doubly linked lists
defined by

	1+ dll[Z] , ∃Z1, Z2. Z 7→ {(n,Z1), (p, Z2)} ∗ dll(Z1, Z2, Z, Z).

The SL graphs of two formulas that entail dll(E,F, P, S) and nlcdl(E,F ) and
their tree encodings are given in Fig. 6 and Fig. 7 respectively. To deal with doubly
linked lists, one has to modify the step of the procedure toTrees that removes join
nodes which are not labeled by P or S in the case of dll and by F in the case of
nlcdl. These are the arguments that are not supposed to be allocated in any model
of the predicate. Basically, we need to consider the labels alias ↑2[α] and alias ↑↓last[α]
introduced in Sec. 6.

An SL graph which entails dll(E,F, P, S):

P E
M : n

M : n M : n M : n S
n n n n

p p pp

and its tree encoding:

alias [P ] E

alias ↑2[n] alias ↑2[n] alias ↑2[n]

alias [S]
n n n n

p p pp

Fig. 6. Tree encodings for doubly linked lists.
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An SL graph which entails nlcdl(E,F ):

E

M : s h

M : s hn

M : s hn

M : s
M : s

M : s h

M : s hn

F
s s

h h

n
n
n p

p

p

np pn

and its tree encoding:

E

alias ↑↓last[s hn]

alias ↑[s h]

alias ↑2[s hn]

alias ↑[s h]

alias ↑↓last[s hn]

alias ↑[s h] alias ↑[s h]

alias [F ]
s s

h h

n
nn

p

p

p

n

p

p

n

Fig. 7. Tree encodings for lists of cyclic doubly linked lists.
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D Details of the Experiments

In the following, we give the formulas for ϕ1 used in the experiments for checking
entailments between formulas and atoms. For all cases, entailments are valid for tc1
and tc2, and invalid for tc3.

– ϕ2 = nll(x, y, z)

tc1 , x 7→ {(s, u), (h, a)} ∗ u 7→ {(s, y), (h, b)} ∗ ls(a, z) ∗ ls(b, z)
tc2 , nll(x, u, z) ∗ u 7→ {(s, w), (h, a)} ∗ a 7→ {(f, b)} ∗ ls(b, z)∗

nll(w, y, z)

tc3 , nll(x, u, z) ∗ u 7→ {(s, w), (h, a)} ∗ a 7→ {(f, b)} ∗ b 7→ {(f, a)}∗
nll(w, y, z)

– ϕ2 = nlcl(x, y)

tc1 , x 7→ {(s, u), (h, a)} ∗ a 7→ {(f, b)} ∗ b 7→ {(f, a)}∗
u 7→ {(s, y), (h, c)} ∗ c 7→ {(f, d)} ∗ ls(d, c)

tc2 , nlcl(x, u) ∗ u 7→ {(s, v), (h, a)} ∗ a 7→ {(f, b)} ∗ ls(b, a)∗
nlcl(v, y)

tc3 , nlcl(x, u) ∗ u 7→ {(s, v), (h, a)} ∗ a 7→ {(f, y)} ∗ nlcl(v, y)

– ϕ2 = skl3(x, y)

tc1 , x 7→ {(f1, z), (f2, z), (f3, z)} ∗ z 7→ {(f1, y), (f2, y), (f3, y)}
tc2 , skl3(x, z) ∗ z 7→ {(f3, w), (f2, z2)(f1, z1)} ∗ skl1(z1, z2)∗

skl2(z2, w) ∗ skl3(w, y)
tc3 , x 7→ {(f1, w), (f2, w), (f3, w)} ∗ w 7→ {(f1, z), (f2, w2), (f3, z)}∗

skl2(w2, z) ∗ skl3(z, y)

– ϕ2 = dll(x, y, z, v)

tc1 , x 7→ {(n, u), (p, z)} ∗ u 7→ {(n, y), (p, x)} ∗ y 7→ {(n, v), (p, u)}
tc2 , x 7→ {(n, u), (p, z)} ∗ dll(u,w, x, y) ∗ y 7→ {(n, v), (p, w)}
tc3 , x 7→ {(n, u), (p, z)} ∗ dll(u,w, x, y) ∗ y 7→ {(n, v)}
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