
Verification of Heap Manipulating
Programs with Ordered Data by

Extended Forest Automata

FIT BUT Technical Report Series

Parosh Aziz Abdulla, Lukáš Hoĺık, Bengt Jonsson,
Onďrej Lengál, Cong Quy Trinh, and Tomáš Vojnar

Technical Report No. FIT-TR-2013-02
Faculty of Information Technology, Brno University of Technology

Last modified: February 5, 2014

NOTE: This technical report contains an extended version of the ATVA’13 paper with
the same name.

Verification of Heap Manipulating Programs with
Ordered Data by Extended Forest Automata

Parosh Aziz Abdulla1, Lukáš Holı́k2, Bengt Jonsson1, Ondřej Lengál2,
Cong Quy Trinh1, and Tomáš Vojnar2

1 Department of Information Technology, Uppsala University, Sweden
2 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. We present a general framework for verifying programs with complex
dynamic linked data structures whose correctness depends on ordering relations
between stored data values. The underlying formalism of our framework is that
of forest automata (FA), which has previously been developed for verification
of heap-manipulating programs. We extend FA by constraints between data el-
ements associated with nodes of the heaps represented by FA, and we present
extended versions of all operations needed for using the extended FA in a fully-
automated verification approach, based on abstract interpretation. We have imple-
mented our approach as an extension of the Forester tool and successfully applied
it to a number of programs dealing with data structures such as various forms of
singly- and doubly-linked lists, binary search trees, as well as skip lists.

1 Introduction

Automated verification of programs that manipulate complex dynamic linked data struc-
tures is one of the most challenging problems in software verification. The problem
becomes even more challenging when program correctness depends on relationships
between data values that are stored in the dynamically allocated structures. Such order-
ing relations on data are central for the operation of many data structures such as search
trees, priority queues (based, e.g., on skip lists), key-value stores, or for the correctness
of programs that perform sorting and searching, etc. The challenge for automated verifi-
cation of such programs is to handle both infinite sets of reachable heap configurations
that have a form of complex graphs and the different possible relationships between
data values embedded in such graphs, needed, e.g., to establish sortedness properties.

As discussed below in the section on related work, there exist many automated
verification techniques, based on different kinds of logics, automata, graphs, or gram-
mars, that handle dynamically allocated pointer structures. Most of these approaches
abstract from properties of data stored in dynamically allocated memory cells. The
few approaches that can automatically reason about data properties are often limited
to specific classes of structures, mostly singly-linked lists (SLLs), and/or are not fully
automated (as also discussed in the related work paragraph).

In this paper, we present a general framework for verifying programs with complex
dynamic linked data structures whose correctness depends on relations between the
stored data values. Our framework is based on the notion of forest automata (FA) which

has previously been developed for representing sets of reachable configurations of pro-
grams with complex dynamic linked data structures [11]. In the FA framework, a heap
graph is represented as a composition of tree components. Sets of heap graphs can then
be represented by tuples of tree automata (TA). A fully-automated shape analysis frame-
work based on FAs, employing the framework of abstract regular tree model checking
(ARTMC) [6], has been implemented in the Forester tool [13]. This approach has been
shown to handle a wide variety of different dynamically allocated data structures with
a performance that compares favourably to other state-of-the-art fully-automated tools.

Our extension of the FA framework allows us to represent relationships between
data elements stored inside heap structures. This makes it possible to automatically
verify programs that depend on relationships between data, such as various search trees,
lists, and skip lists [17], and to also verify, e.g., different sorting algorithms. Technically,
we express relationships between data elements associated with nodes of the heap graph
by two classes of constraints. Local data constraints are associated with transitions of
TAs and capture relationships between data of neighbouring nodes in a heap graph; they
can be used, e.g., to represent ordering internal to some structure such as a binary search
tree. Global data constraints are associated with states of TAs and capture relationships
between data in distant parts of the heap. In order to obtain a powerful analysis based on
such extended FAs, the entire analysis machinery must have been redesigned, including
a need to develop mechanisms for propagating data constraints through FAs, to adapt
the abstraction mechanisms of ARTMC, to develop a new inclusion check between
extended FAs, and to define extended abstract transformers.

Our verification method analyzes sequential, non-recursive C programs, and au-
tomatically discovers memory safety errors, such as invalid dereferences or memory
leaks, and provides an over-approximation of the set of reachable program configura-
tions. Functional properties, like sortedness, can be checked by adding code that checks
pre- and post-conditions. Functional properties can be checked by querying the com-
puted over-approximation of the set of reachable configurations as well.

We have implemented our approach as an extension of the Forester tool, which is
a gcc plug-in analyzing the intermediate representation generated from C programs. We
have applied the tool to verification of data properties, notably sortedness, of sequential
programs with data structures, like various forms of singly- and doubly-linked lists
(DLLs), possibly cyclic or shared, binary search trees (BSTs), and even 2-level and
3-level skip lists. The verified programs include operations like insertion, deletion, or
reversal, and also bubble-sort and insert-sort both on SLLs and DLLs. The experiments
confirm that our approach is not only fully automated and rather general, but also quite
efficient, outperforming many previously known approaches even though they are not
of the same level of automation or generality. In the case of skip lists, our analysis is
the first fully-automated shape analysis which is able to handle skip lists. Our previous
fully-automated shape analysis, which did not handle ordering relations, could also
handle skip lists automatically [13], but only after modifying the code in such a way
that the preservation of the shape invariant does not depend on ordering relations.

Outline. After a review of related works, in Section 3, we present our way of modeling
heap graphs by forests. Then, in Section 4, we propose a representation of sets of heap
graphs by forest automata that use constraints to specify relationships between data val-

2

ues. Section 5 contains a description of our analysis procedure, including a procedure
for saturating the set of constraints over data values. Section 6 outlines how hierar-
chically nested forest automata can represent more complex data structures. Section 7
describes our implementation of the proposed ideas as well as the obtained experimental
results. Section 8 contains conclusions and future work.

2 Related Work

As discussed previously, our approach builds on the fully automated FA-based approach
for shape analysis of programs with complex dynamic linked data structures [11,13].
We significantly extend this approach by allowing it to track ordering relations between
data values stored inside dynamic linked data structures.

For shape analysis, many other formalisms than FAs have been used, including, e.g.,
separation logic and various related graph formalisms [21,16,7,9], other logics [19,14],
automata [6], or graph grammars [12]. Compared with FAs, these approaches typically
handle less general heap structures (often restricted to various classes of lists) [21,9],
they are less automated (requiring the user to specify loop invariants or at least inductive
definitions of the involved data structures) [16,7,9,12], or less scalable [6].

Verification of properties depending on the ordering of data stored in SLLs was con-
sidered in [4], which translates programs with SLLs to counter automata. A subsequent
analysis of these automata allows one to prove memory safety, sortedness, and termina-
tion for the original programs. The work is, however, strongly limited to SLLs. In this
paper, we get inspired by the way that [4] uses for dealing with ordering relations on
data, but we significantly redesign it to be able to track not only ordering between sim-
ple list segments but rather general heap shapes described by FAs. In order to achieve
this, we had to not only propose a suitable way of combining ordering relations with
FAs, but we also had to significantly modify many of the operations used over FAs.

In [1], another approach for verifying data-dependent properties of programs with
lists was proposed. However, even this approach is strongly limited to SLLs, and it is
also much less efficient than our current approach. In [2], concurrent programs operat-
ing on SLLs are analyzed using an adaptation of a transitive closure logic [3], which
also tracks simple sortedness properties between data elements.

Verification of properties of programs depending on the data stored in dynamic
linked data structures was considered in the context of the TVLA tool [15] as well.
Unlike our approach, [15] assumes a fixed set of shape predicates and uses inductive
logic programming to learn predicates needed for tracking non-pointer data. The experi-
ments presented in [15] involve verification of sorting and stability properties of several
programs on SLLs (merging, reversal, bubble-sort, insert-sort) as well as insertion and
deletion in BSTs. We do not handle stability, but for the other properties, our approach
is much faster. Moreover, for BSTs, we verify that a node is greater/smaller than all the
nodes in its left/right subtrees (not just than the immediate successors as in [15]).

An approach based on separation logic extended with constraints on the data stored
inside dynamic linked data structures and capable of handling size, ordering, as well as
bag properties was presented in [8]. Using the approach, various programs with SLLs,
DLLs, and also AVL trees and red-black trees were verified. The approach, however,

3

requires the user to manually provide inductive shape predicates as well as loop in-
variants. Later, the need to provide loop invariants was avoided in [18], but a need to
manually provide inductive shape predicates remains.

Another work that targets verification of programs with dynamic linked data struc-
tures, including properties depending on the data stored in them, is [22]. It generates
verification conditions in an undecidable fragment of higher-order logic and discharges
them using decision procedures, first-order theorem proving, and interactive theorem
proving. To generate the verification conditions, loop invariants are needed. These can
either be provided manually or sometimes synthesized semi-automatically using the ap-
proach of [20]. The latter approach was successfully applied to several programs with
SLLs, DLLs, trees, trees with parent pointers, and 2-level skip lists. However, for some
of them, the user still had to provide some of the needed abstraction predicates.

Several works, including [5], define frameworks for reasoning about pre- and post-
conditions of programs with SLLs and data. Decidable fragments, which can express
more complex properties on data than we consider, are identified, but the approach does
not perform fully automated verification, only checking of pre-post condition pairs.

3 Programs, Graphs, and Forests

We consider sequential non-recursive C programs, operating on a set of variables and
the heap, using standard commands and control flow constructs. Variables are either
data variables or pointer variables. Heap cells contain zero or several selector fields and
a data field (our framework and implementation extends easily to several data fields).
Atomic commands include tests between data variables or fields of heap cells, as well
as assignments between data variables, pointer variables, or fields of heap cells. We also
support commands for allocation and deallocation of dynamically allocated memory.

0 Node *insert(Node *root, Data d){
1 Node* newNode = calloc(sizeof(Node));
2 if (!newNode) return NULL;
3 newNode→data = d;
4 if (!root) return newNode;
5 Node *x = root;
6 while (x→data != newNode→data)
7 if (x→data < newNode→data)
8 if (x→right) x = x→right;
9 else x→right = newNode;

10 else
11 if (x→left) x = x→left;
12 else x→left = newNode;
13 if (x != newNode) free(newNode);
14 return root;
15 }

Fig. 1: A function which inserts
a new node into a BST and returns
a pointer to its root node

Fig. 1 shows an example of a C function in-
serting a new node into a BST (recall that in BSTs,
the data value in a node is larger than all the values
of its left subtree and smaller than all the values of
its right subtree). Variable x descends the BST to
find the position at which the node newNode with
a new data value d should be inserted.

Configurations of the considered programs
consist to a large extent of heap-allocated data.
A heap can be viewed as a (directed) graph whose
nodes correspond to allocated memory cells. Each
node contains a set of selectors and a data field.
Each selector either points to another node, to the
value null, or is undefined. The same holds for
pointer variables of the program.

We represent graphs as a composition of trees as follows. We first identify the cut-
points of the graph, i.e., nodes that are either referenced by a pointer variable or by
several selectors. We then split the graph into tree components such that each cut-
point becomes the root of a tree component. To represent the interconnection of tree

4

components, we introduce a set of root references, one for each tree component. After
decomposition of the graph, selector fields that point to cut-points in the graph are redi-
rected to point to the corresponding root references. Such a tuple of tree components is
called a forest. The decomposition of a graph into tree components can be performed
canonically as described at the end of Section 4.

9

⊥
10

⊥ ⊥

12

root

15

xleft

left

right

left right

right

⊥

left

20

right

⊥

left

⊥

right

(a) Graph.

9

⊥
10

⊥ ⊥

12

root
t1

2

left

left
right

left right

right

15

x
t2

⊥

left

20

right

⊥

left

⊥

right

(b) Forest decomposition.
Fig. 2: Decomposition of a graph into trees.

Fig. 2(a) shows a possi-
ble heap of the program in
Fig. 1. Nodes are shown as
circles, labeled by their data
values. Selectors are shown as
edges. Each selector points ei-
ther to a node or to ⊥ (denot-
ing null). Some nodes are la-
beled by a pointer variable that
points to them. The node with
data value 15 is a cut-point since it is referenced by variable x. Fig. 2(b) shows a tree
decomposition of the graph into two trees, one rooted at the node referenced by root,
and the other rooted at the node pointed by x. The right selector of the root node in
the first tree points to root reference 2 (i denotes a reference to the i-th tree ti) to indicate
that in the graph, it points to the corresponding cut-point.

Let us now formalize these ideas. We will define graphs as parameterized by a set
Γ of selectors and a set Ω of references. Intuitively, the references are the objects that
selectors can point to, in addition to other nodes. E.g., when representing heaps, Ω will
contain the special value null; in tree components, Ω will also include root references.

We use f : A ⇀ B to denote a partial function from A to B (also viewed as a total
function f : A→ (B∪ {⊥}), assuming that ⊥ 6∈ B). We assume an unbounded data
domain D with a total ordering relation �.

Graphs. Let Γ be a finite set of selectors and Ω be a finite set of references. A graph g
over 〈Γ,Ω〉 is a tuple 〈Vg,nextg,λg〉where Vg is a finite set of nodes (assuming Vg∩Ω =
/0), nextg : Γ→ (Vg ⇀ (Vg∪Ω)) maps each selector a ∈ Γ to a partial mapping nextg(a)
from nodes to nodes and references, and λg : (Vg∪Ω)⇀D is a partial data labelling of
nodes and references. For a selector a ∈ Γ, we use ag to denote the mapping nextg(a).

Program semantics. A heap over Γ is a graph over 〈Γ,{null}〉where null denotes the
null value. A configuration of a program with selectors Γ consists of a program control
location, a heap g over Γ, and a partial valuation, which maps pointer variables to Vg∪
{null} and data variables to D. For uniformity, data variables will be represented as
pointer variables (pointing to nodes that hold the respective data values) so we can
further consider pointer variables only. The dynamic behaviour of a program is given
by a standard mapping from configurations to their successors, which we omit here.

Forest representation of graphs. A graph t is a tree if its nodes and selectors (i.e., not
references) form a tree with a unique root node, denoted root(t). A forest over 〈Γ,Ω〉
is a sequence t1 · · · tn of trees over 〈Γ,(Ω]{1, . . . ,n})〉. The elements in {1, . . . ,n} are
called root references (note that n must be the number of trees in the forest). A forest

5

9

⊥
10

⊥ ⊥

12

root

15

xleft

left

right

left right

right

left

20

right

⊥

left

⊥

right

(a) A graph.

12

root

1

32

left right
9

2

⊥
10

⊥ ⊥

left

right

left right

2 15

x

3

left

20

right

⊥

left

⊥

right

(b) A forest representation.

Fig. 3: An example of a forest representation.

t1 · · · tn is composable if λtk(j) = λt j(root(t j)) for any k, j, i.e., the data labeling of root
references agrees with that of roots. A composable forest t1 · · · tn over 〈Γ,Ω〉 represents
a graph over 〈Γ,{null}〉, denoted⊗t1 · · · tn, obtained by taking the union of the trees of
t1 · · · tn (assuming w.l.o.g. that the sets of nodes of the trees are disjoint), and connecting
root references with the corresponding roots. Formally, ⊗t1 · · · tn is the graph g defined
by (i) Vg = ∪n

i=1Vti , and (ii) for a ∈ Γ and v ∈ Vtk , if atk(v) ∈ {1, . . . ,n} then ag(v) =
root(tatk (v)

) else ag(v) = atk(v), and finally (iii) λg(v) = λtk(v) for v ∈ Vtk . Fig. 3 gives
an example of how a graph is represented by a forest. Fig. 3a shows a particular graph
while Fig. 3b is its forest representation. We will use the following notation to talk
about relations of data values of nodes within a forest. Given nodes u,v of trees t, t ′,
respectively, of a forest and a relation ∼ ∈ {≺,�,=,�,�}, we denote by u ∼rr v that
λt(u)∼ λt ′(v) and we denote by u∼ra v that λt(u)∼ λt ′(w) for all nodes w in the subtree
of t ′ rooted at v. We call these two types of relationships root-root and root-all relations,
respectively.

4 Forest Automata

A forest automaton is essentially a tuple of tree automata accepting a set of tuples of
trees that represents a set of graphs via their forest decomposition.

Tree automata. A (finite, non-deterministic, top-down) tree automaton (TA) over 〈Γ,Ω〉
extended with data constraints is a triple A = (Q,q0,∆) where Q is a finite set of states,
q0 ∈ Q is the root state (or initial state), denoted root(A), and ∆ is a set of transitions.
Each transition is of the form q→ a(q1, . . . ,qm) : c where m ≥ 0, q ∈ Q, q1, . . . ,qm ∈
(Q∪Ω), a = a1 · · ·am is a sequence of different symbols from Γ, and c is a set of local
constraints. Each local constraint is of the form 0∼rx i where∼∈{≺,�,�,�} (with =
viewed as syntactic sugar3), i ∈ {1, . . . ,m}, and x ∈ {r,a}. Intuitively, a local constraint
of the form 0 ∼rr i states that the data value of the root of every tree t accepted at q
is related by ∼ with the data value of the root of the i-th subtree of t accepted at qi.

3 Note that in the original ATVA’13 paper we mistakenly considered also the non-equality rela-
tion 6=. However, in order to represent non-equality, we would either need to be able to rep-
resent disjunction or negation of data constraints, none of which is present in the considered
framework.

6

A local constraint of the form 0∼ra i states that the data value of the root of every tree
t accepted at q is related by ∼ to the data values of all nodes of the i-th subtree of t
accepted at qi.

Let t be a tree over 〈Γ,Ω〉, and let A = (Q,q0,∆) be a TA over 〈Γ,Ω〉. A run of A
over t is a total map ρ : Vt → Q where ρ(root(t)) = q0 and for each node v ∈Vt there is
a transition q→ a(q1, . . . ,qm) : c in ∆ with a = a1 · · ·am such that (1) ρ(v) = q, (2) for
all 1≤ i≤m, we have (i) if qi ∈Q, then ai

t(v) ∈Vt and ρ(ai
t(v)) = qi, and (ii) if qi ∈Ω,

then ai
t(v) = qi, and (3) for each constraint 0 ∼rx i in c where x ∈ {r,a}, it holds that

v∼rx ai
t(v). We define the language of A as L(A) = {t | there is a run of A over t}.

Example 1. BSTs, like the tree labeled by x in Fig. 2, are accepted by the TA with one
state q1, which is also the root state, and the following four transitions:

q1→ left,right(q1,q1) : 0�ra 1,0≺ra 2
q1→ left,right(null,q1) : 0≺ra 2

q1→ left,right(q1,null) : 0�ra 1
q1→ left,right(null,null)

The local constraints of the transitions express that the data value in a node is always
greater than the data values of all nodes in its left subtree and less than the data values
of all nodes in its right subtree.

A TA that accepts BSTs in which the right selector of the root node points to
a root reference, like that labeled by root in Fig. 2, can be obtained from the above
TA by adding one more state q0, which then becomes the root state, and the additional
transition q0→ left,right(q1,2) : 0�ra 1,0≺rr 2 (note that the occurrence of 2
in the root reference 2 is not related with the occurrence of 2 in the local constraint). ut

Forest automata. A forest automaton with data constraints (or simply a forest automa-
ton, FA) over 〈Γ,Ω〉 is a tuple of the form F = 〈A1 · · ·An,ϕ〉 where:

– A1 · · ·An, with n ≥ 0, is a sequence of TAs over 〈Γ,Ω]{1, . . . ,n}〉 whose sets of
states Q1, . . . , Qn are mutually disjoint.

– ϕ is a set of global data constraints between the states of A1 · · ·An, each of the
form q ∼rr q′ or q ∼ra q′ where q,q′ ∈ ∪n

i=1Qi, at least one of q, q′ is a root state
which does not appear on the right-hand side of any transition (i.e., it can accept
only the root of a tree), and ∼ ∈ {≺,�,�,�} (with = viewed as syntactic sugar).
Intuitively, q ∼rx q′ says that for any two nodes v,v′ in a forest accepted by q and
q′, respectively, data values must satisfy v∼rx v′.

A forest t1 · · · tn over 〈Γ,Ω〉 is accepted by F iff there are runs ρ1, . . . ,ρn such that ρi is
a run of Ai over ti for every 1≤ i≤ n, and for each global constraint of the form q∼rx q′

where x ∈ {r,a}, q is a state of some Ai and q′ is a state of some A j, we have v ∼rx v′

whenever ρi(v) = q and ρ j(v′) = q′. The language of F , denoted as L(F), is the set of
graphs over 〈Γ,Ω〉 obtained by applying ⊗ on composable forests accepted by F . An
FA F over 〈Γ,{null}〉 represents a set of heaps H over Γ.

Note that global constraints can imply some local ones, but they cannot in general
be replaced by local constraints only. Indeed, global constraints can relate states of
different automata as well as states that do not appear in a single transition and hence
accept nodes which can be arbitrarily far from each other and unrelated by any sequence
of local constraints.

7

Canonicity. In our analysis, we will represent only garbage-free heaps in which all
nodes are reachable from some pointer variable by following some sequence of selec-
tors. In practice, this is not a restriction since emergence of garbage is checked for each
statement in our analysis; if some garbage arises, an error message can be issued, or
the garbage removed. The representation of a garbage-free heap H as t1 · · · tn can be
made canonical by assuming a total order on variables and on selectors. Such an order-
ing induces a canonical ordering of cut-points using a depth-first traversal of H starting
from pointer variables, taken in their order, and exploring H according to the order of
selectors. The representation of H as t1 · · · tn is called canonical iff the roots of the trees
in t1 · · · tn are the cut-points of H, and the trees are ordered according to their canonical
ordering. An FA F = 〈A1 · · ·An,ϕ〉 is canonicity respecting iff for all H ∈ L(F), formed
as H =⊗t1 · · · tn, the representation t1 · · · tn is canonical. The canonicity respecting form
allows us to check inclusion on the sets of heaps represented by FAs by checking inclu-
sion component-wise on the languages of the component TAs.

5 FA-based Shape Analysis with Data

Our verification procedure performs a standard abstract interpretation. The concrete
domain in our case assigns to each program location a finite set of pairs 〈σ,H〉 where
the valuation σ maps every variable to null, a node in H, or to an undefined value,
and H is a heap representing a memory configuration. On the other hand, the abstract
domain maps each program location to a finite set of abstract configurations. Each
abstract configuration is a pair 〈σ,F〉 where σ maps every variable to null, an index of
a TA in F , or to an undefined value, and F is an FA representing a set of heaps.

Example 2. F = 〈A1 A2 A3,ϕ〉
σ(root) = 1,σ(x) = 2,σ(newNode) = 3

A1 :
{

qr→ left,right(q,null) : 0�ra 1
q→ left,right(null,2) : 0≺ra 2

A2 : qx→ left,right(null,null)

A3 : qnN→ left,right(null,null)
ϕ = {qr �ra qnN,q≺ra qnN,qx �ra qnN,q≺ra qx}

Example 2. The example illus-
trates an abstract configuration
〈σ,F〉 encoding a single concrete
configuration 〈σ,H〉 of the pro-
gram in Fig. 1. We use q to donote
that q is a root state. A memory
node referenced by newNode is go-
ing to be added as the left child of
the leaf referenced by x, which is reachable from the root by the sequence of selectors
left · right. The data values along the path from root to x must be in the proper
relations with the data value of newNode, in order for the tree to stay sorted also af-
ter the addition. The data value of newNode must be smaller than that of the root (i.e.,
qr �ra qnN), larger than that of its left child (i.e., q ≺ra qnN), and smaller than that of x
(i.e., qx �ra qnN). These relations and also q ≺ra qx have been accumulated during the
tree traversal. ut

The verification starts from an element in the abstract domain that represents the
initial program configuration (i.e., it maps the initial program location to an abstract
configuration where the heap is empty and the values of all variables are undefined,
and maps non-initial program locations to an empty set of abstract configurations). The
verification then iteratively updates the sets of abstract configurations at each program
point until a fixpoint is reached. Each iteration consists of the following steps:

8

1. The sets of abstract configurations at each program point are updated by abstract
transformers corresponding to program statements. At junctions of program paths,
we take the unions of the sets produced by the abstract transformers.

2. At junctions that correspond to loop points, the union is followed by a widening
operation and a check for language inclusion between sets of FAs in order to deter-
mine whether a fixpoint has been reached. Prior to checking language inclusion, we
normalize the FAs, thereby transforming them into the canonicity respecting form,
which is needed for inclusion checking as explained at the end of Section 4.

Our widening operation bounds the size of the TA that occur in abstract configura-
tions. It is based on the framework of abstract regular (tree) model checking [6]. The
widening is applied to individual TAs inside each FA and collapses states which are
equivalent w.r.t. certain criteria. More precisely, we collapse TA states q,q′ which are
equivalent in the sense that they (1) accept trees with the same sets of prefixes of height
at most k and (2) occur in isomorphic global data constraints (i.e., q ∼rx p occurs as
a global constraint if and only if q′ ∼rx p occurs as a global constraint, for any p and x).
We use a refinement of this criterion by certain FA-specific requirements, by adapting
the refinement described in [13]. Collapsing states may increase the set of trees accepted
by a TA, thereby introducing overapproximation into our analysis.

At the beginning of each iteration, the FAs to be manipulated are in the saturated
form, meaning that they explicitly include all (local and global) data constraints that are
consequences of the existing ones. FAs can be put into a saturated form by a saturation
procedure, which is performed before the normalization procedure. The saturation pro-
cedure must also be performed before applying abstract transformers that may remove
root states from an FA, such as memory deallocation.

In the following subsections, we provide more detail on some of the major steps of
our analysis. Section 5.1 describes the constraint saturation procedure, Section 5.2 de-
scribes some representative abstract transformers, Section 5.3 describes normalization,
and Section 5.4 describes our check for inclusion.

5.1 Constraint Saturation

In this section, we show the saturation rules that are used to deduce new data constraints
from already existing ones. Before their description, we first introduce some notation.
For relations ∼ and ∼′ on D, let ∼ ◦ ∼′ be the composition of ∼ and ∼′. We write
∼ ⊆ ∼′ iff d ∼ d′ implies d ∼′ d′, and we define ∼−1 by d ∼−1 d′ iff d′ ∼ d. We say
that a constraint q∼′ry q′ is a weakening of a constraint q∼rx q′ iff it holds that ∼ ⊆ ∼′
and in the case y = a it also holds that x = a. The saturation rules that can be used are
as follows:

Inferring global constraints from global constraints The saturation rules for infer-
ring global constraints from global constraints, as shown in Table 1, are based on the
following principles:

1. properties of the ordering relations:
– G-TRANS is based on transitivity,

9

Table 1: Rules for inferring global constraints from global constraints

q∼rr q′ q′ ∼′rx q′′

q(∼ ◦ ∼′)rx q′′
G-TRANS

q'rr q
G-REFL1

q′ ∼rr q

q∼−1
rr q′

G-REFL2

q∼rr q′ Leaf(q′)

q∼ra q′
G-STRE

q∼ra q′

q∼rr q′
G-WEAK1

q∼rx q′

q'rx q′
G-WEAK2

q∼ra root(A) q′ ∈ Q(A)

q∼ra q′
G-ROOTALL

– x ∈ {r,a}
– ' ∈ {�,�},
– Leaf(q) means that q has only nullary outgoing transitions or q ∈Ω,
– Q(A) is the set of states of the TA A,
– root(A) is the root state of the TA A.

– G-REFL1 and G-REFL2 are based on reflexivity of � and �,
2. weakening of existing data constraints:

– G-WEAK1 states that from q∼ra q′ we can infer a weaker constraint q∼rr q′,
– G-WEAK2 gives a rule for inferring the weaker constraints q�rx q′ from q≺rx

q′ and q�rx q′ from q�rx q′ for any x ∈ {r,a},
3. strengthening of existing data constraints:

– G-STRE states that each global constraint q∼rr q′ where q′ ∈Ω or q′ has nullary
outgoing transitions only can be strengthened to q≺ra q′,

4. properties of the ra relation:
– G-ROOTALL states that if q is a state of a TA and p is the root state of a TA A

of the given FA then a global constraint p∼ra root(A) will add p∼ra q.

Inferring local constraints from local constraints The saturation rules (shown in
Table 2) which infer new local constraints from already existing ones in a transition
q→ a(q1, . . . ,qm) : c, s.t. 1≤ i≤ m, are based on the following:

1. weakening the existing constraints: If q→ a(q1, . . . ,qm) : c is a transition then
– L-ROOTROOT weakens a ∼ra relation to a ∼rr relation,
– L-WEAK infers the weaker constraints 0 �rx i from 0 ≺rx i and 0 �rx i from

0�rx i for any x ∈ {r,a},
2. strengthening of existing data constraints:

– L-STRE is used for qi such that qi is either in Ω or has only nullary outgoing
transitions to strengthen a constraint 0∼rr i to the constraint 0∼ra i.

10

Table 2: Rules for inferring local constraints from local constraints

0∼ra i ∈ c

0∼rr i ∈ c
L-ROOTROOT

0∼rx i ∈ c

0'rx i ∈ c
L-WEAK

0∼rr i ∈ c Leaf(qi)

0∼ra i ∈ c
L-STRE

– We assume the transition q→ a(q1, . . . ,qm) : c and 1≤ i≤ m,
– x ∈ {r,a},
– ' ∈ {�,�},
– Leaf(q) is true iff q has only nullary outgoing transitions or q ∈Ω,
– root(A) is the root state of the TA A.

Inferring local constraints from global constraints Inference of local constraints in
a transition q→ a(q1, . . . ,qm) : c, s.t. 1 ≤ i ≤ m, from global constraints is done using
the rules in Table 3:

– L-G-PROP propagates a global constraint q ∼rx qi for states used in the same tran-
sition into a local constraint 0∼rx i,

– L-G-REF propagates a global constraint q ∼rx root(j) between a state q and the
root state of a TA j into a local constraint 0∼ra i between q and qi = j.

Inferring global constraints from local constraints Finally, global constraints can
be inferred from existing ones by propagating them over local constraints of transitions
in which the states of the global constraints occur. Since a single state may be reached
in several different ways, propagation of global constraints through local constraints
on all transitions arriving to the given state must be considered. If some of the ways
how to get to the state does not allow the propagation, it cannot be done. Moreover,
since one propagation can enable another one, the propagation must be done iteratively
until a fixpoint is reached. The iterative propagation must terminate since the number
of constraints that can be used is finite. The propagation of constraints between states
of a TA can be performed either downwards from the root towards leaves or upwards
from leaves towards the root as described below. Let p be the root state of some TA.
For each state q of A, let Φ(q, p) be the set of global constraints between q and p. The
data constraints are propagated in two directions:

Downwards propagation. In the downwards propagation, we simultaneously extend
the sets Φ(q, p) to larger ones Ψ(q, p) provided that Ψ(q, p) = Φ(q, p) when q is the
root state (i.e., no constraints are added at the root state) and provided that (when q is
not the root state) for each constraint φ in Ψ(q, p) \Φ(q, p) and each occurrence of q
as qi (say) in the right-hand side of a transition δ = q′ → a(q1, . . . ,qm) : c, one of the
following conditions holds

11

– there is a local constraint 0 ∼′rr i in c and a global constraint q′ ∼rx p in Ψ(q′, p)
with x ∈ {a,r} such that φ is of the form q ((∼′)−1◦ ∼)rx p or a weakening thereof,

– there is a local constraint 0 ∼′rx i in c and a global constraint p ∼ry q′ in Ψ(q′, p)
with x,y ∈ {a,r} such that φ is of the form p (∼ ◦ ∼′)rx q or a weakening thereof,
or

– p∼ra q′ is in Ψ(q′, p) and φ is p∼ra q or a weakening thereof.

Intuitively, the first two cases use transitivity to propagate a constraint involving q′ to a
constraint involving qi; the last case uses the semantics of p∼ra q′.

Upwards propagation. The upwards propagation can be defined analogously. Already
existing sets of constraints Φ(q, p) can be extended to sets Ψ(q, p) provided that for
each constraint φ in Ψ(q, p)\Φ(q, p) and each occurence of q in the left-hand side of a
transition δ = q→ a(q1, . . . ,qm) : c, either

– φ is of the form p∼ra q, the constraint p∼rr q is in Ψ(q, p), and p∼ra qi ∈Φ(qi, p)
for each i in 1, . . . ,m such that qi is a state, or

– there are no nullary transitions from q and it further holds that either
• there is a constraint 0 ∼′rr i in c and a constraint qi ∼rx p in Ψ(qi, p) with

x ∈ {a,r} such that φ is of the form q (∼′ ◦ ∼)rx p or its weakening, or
• there is a constraint 0 ∼′rr i in c and a constraint p ∼rx qi in Ψ(qi, p) with

x ∈ {a,r} such that φ is of the form p (∼ ◦(∼′)−1)rr q or its weakening.

5.2 Abstract Transformers

For each operation op in the intermediate representation of the analysed program cor-
responding to the function fop on concrete configurations 〈σ,H〉, we define an abstract
transformer τop on abstract configurations 〈σ,F〉 such that the result of τop(〈σ,F〉) de-
notes the set { fop(〈σ,H〉) | H ∈ L(F)}. The abstract transformer τop is applied sepa-
rately for each pair 〈σ,F〉 in an abstract configuration. Note that all our abstract trans-
formers τop are exact.

Let us present the abstract transformers corresponding to some operations on ab-
stract states of the form 〈σ,F〉. For simplicity of presentation, we assume that for all
TAs Ai in F , (a) the root state of Ai does not appear in the right-hand side of any tran-
sition, and (b) it occurs on the left-hand side of exactly one transition. It is easy to
see that any TA can be transformed into this form. Indeed, in order to transform a TA
A = 〈Q,q f ,∆〉 from an FA F into the form where q f does not appear on the right-hand

Table 3: Rule for inferring local constraints from global constraints

q∼rx qi

0∼rx i ∈ c
L-G-PROP

qi = j ∈Ω q∼rx root(A j)

0∼rx i ∈ c
L-G-REF

– We assume the transition q→ a(q1, . . . ,qm) : c and 1≤ i≤ m,
– x ∈ {r,a}.

12

side of any transition and appears on the left-hand side of exactly one transition, we
may perform the following sequence of actions:

1. create a copy q′f of q f , which replaces q f in the right-hand side of all transitions,
2. duplicate all transitions from q f to become transitions also from q′f ,
3. split A into several TAs, one for each transition from the accepting state q f , creating

several copies of the FA F that contains A, and
4. adapt the local and global constraints by duplicating them whenever some state is

duplicated.

Let us introduce some common notation and operations for the below transformers.
We use Aσ(x) and Aσ(y) to denote the TA pointed by variables x and y, respectively, and
qx and qy to denote the root states of these TAs. Let qy → a(q1, . . . ,qi, . . . ,qm) : c be
the unique transition from qy. We assume that sel is represented by ai in the sequence
a = a1 · · ·am so that qi corresponds to the target of sel. Before describing the actual
update, let us first define how to split a TA.

The operation of splitting a TA Aσ(y) at a state qi, for 1≤ i≤ m, is described by the
following sequence of operations:

1. First, a new TA Ak is appended to F such that Ak is a copy of Aσ(y) but with qi as
the root state.

2. Second, the root transition in Aσ(y) is changed to qy→ a(q1, . . . ,k, . . . ,qm) : c′ where
c′ is obtained from c by replacing any local constraint of the form 0 ∼rx i by the
global constraint qy ∼rx root(Ak).

3. Global data constraints are adapted as follows: For each constraint q ∼rx p where
q is in Aσ(y) such that q 6= qy, a new constraint q′ ∼rx p is added, where q′ is the
version of q in Ak. Likewise, for each constraint q ∼rx p where p is in Aσ(y) such
that p 6= qy, a new constraint q∼rx p′ is added (again, p′ is the version of p in Ak).
Finally, for each constraint of the form p∼ra qy, a new constraint p∼ra root(Ak) is
added.

Before performing the actual update, we check whether the operation to be per-
formed tries to dereference a pointer to null or to an undefined value, in which case
we stop the analysis and report an error. Otherwise, we continue by performing one of
the following actions, depending on the particular statement.

x= malloc() We extend F with a new TA Anew containing one state and one transition
where all selector values are undefined and assign σ(x) to the index of Anew in F .

x= y->sel If qi is a root reference (say, j), it is sufficient to change the value of σ(x)
to j. Otherwise, we split Aσ(y) at qi (creating Ak) and assign k to σ(x).

y->sel= x If qi is a state, then we split Aσ(y) at qi. Then we put σ(x) to the i-th
position in the right-hand side of the root transition of Aσ(y); this is done both if qi
is a state and if qi is a root reference. Any local constraint in c of the form 0 ∼rx i
which concerns the removed root reference qi is then removed from c.

y->data= x->data First, we remove any local constraint that involves qy or a root
reference to Aσ(y). Then, we add a new global constraint qy =rr qx, and we also keep
all global constraints of the form q′ ∼rx qy if q′ ∼rr qx is implied by the constraints
obtained after the update.

13

y->data∼ x->data (where ∼ ∈ {≺,�,�,�}) First, we execute the saturation pro-
cedure in order to infer the strongest constraints between qy and qx. Then, if there
exists a global constraint qy ∼′ qx that implies qy ∼ qx (or its negation), we return
true (or false). Otherwise, we copy 〈σ,F〉 into two abstract configurations: 〈σ,Ftrue〉
for the true branch and 〈σ,Ffalse〉 for the false branch. Moreover, we extend Ftrue
with the global constraint qy ∼ qx and Ffalse with its negation.

x= y or x= NULL We simply update σ accordingly.
free(y) First, we split Aσ(y) at all states q j, 1≤ j≤m, that appear in its root transition,

then we remove Aσ(y) from F and set σ(y) to undefined. However, to keep all pos-
sible data constraints, before removing Aσ(y), the saturation procedure is executed.
After the action is done, every global constraint involving qy is removed.

x== y This operation is evaluated simply by checking whether σ(x) = σ(y). If σ(x)
or σ(y) is undefined, we assume both possibilities.

After the update, we check that all TAs in F are referenced, either by a variable or from
a root reference, otherwise we report an emergence of garbage.

Example 3. Let us now present an example of an execution of the assignment statement
x= root->right on the FA Fa in Fig. 4a representing BSTs rooted in the variable
root. The first step is to transform the TA A1, the root of which is referenced by the
variable root, to the form such that the root state q1 does not appear in the right-hand
side of any transition. To do that, we create a copy q′1 of q1, substitute every occurrence
of q1 in right-hand sides of transitions of A1 with q′1, and copy all transitions of A1
leading from q1 while substituting the left-hand side with q′1. Then, we split Fa to four
FAs, one for every transition from q1 (one of these FAs, Fb, is in Fig. 4b). Finally, for
each of these FAs, we split A1 at the given position (for Fb this is at q′1), creating the TA
A2, assign x to point to A2 (see Fig. 4c for Fc resulting from the FA Fb where we use
q′′1 to denote the copy of q′1 in A2), and derive the global constraint q1 ≺ra q′′1 from the
local constraint 0≺ra 2 of the root transition of A1.

5.3 Normalization

Normalization transforms an FA F = (A1 · · ·An,ϕ) into a canonicity respecting FA in
three major steps:

1. First, we transform F into a form in which roots of trees of accepted forests corre-
spond to cut-points in a uniform way. In particular, for all 1≤ i≤ n and all accepted
forests t1 · · · tn, one of the following holds: (a) If the root of ti is the j-th cut-point
in the canonical ordering of an accepted forest, then it is the j-th cut-point in the
canonical ordering of all accepted forests. (b) Otherwise the root of ti is not a cut-
point of any of the accepted forests.

2. Then we merge TAs so that the roots of trees of accepted forests are cut-points only,
which is described in detail below.

3. Finally, we reorder the TAs according to the canonical ordering of cut-points (which
are roots of the accepted trees).

14

Fa = 〈A1,ϕ〉
σ(root) = 1

A1 :


q1→ left,right(q1,q1) : 0�ra 1,0≺ra 2
q1→ left,right(null,q1) : 0≺ra 2
q1→ left,right(q1,null) : 0�ra 1
q1→ left,right(null,null)

ϕ = {}

(a)

. .
Fb = 〈A1,ϕ〉
σ(root) = 1

A1 :


q1→ left,right(q′1,q

′
1) : 0�ra 1,0≺ra 2

q′1→ left,right(q′1,q
′
1) : 0�ra 1,0≺ra 2

q′1→ left,right(null,q′1) : 0≺ra 2
q′1→ left,right(q′1,null) : 0�ra 1
q′1→ left,right(null,null)

ϕ = {}

(b)

. .

Fc = 〈A1 A2,ϕ〉
σ(root) = 1,σ(x) = 2

A1 :


q1→ left,right(q′1,2) : 0�ra 1,0≺ra 2
q′1→ left,right(q′1,q

′
1) : 0≺ra 2

q′1→ left,right(null,q′1) : 0≺ra 2
q′1→ left,right(q′1,null) : 0�ra 1
q′1→ left,right(null,null)

A2 :


q′′1 → left,right(q′′1 ,q

′′
1) : 0≺ra 2

q′′1 → left,right(null,q′′1) : 0≺ra 2
q′′1 → left,right(q′′1 ,null) : 0�ra 1
q′′1 → left,right(null,null)

ϕ = {q1 ≺ra q′′1}

(c)

Fig. 4: An example of an execution of the statement x= root->right.

Our procedure is an augmentation of that in [11] used to normalize FAs without data
constraints. The difference, which we describe below, is an update of data constraints
while performing Step 2.

In order to minimize a possible loss of information encoded by data constraints, Step
2 is preceded by saturation (Section 5.1). Then, for all 1≤ i≤ n such that roots of trees
accepted by Ai = (QA,qA,∆A) are not cut-points of the graphs in L(F) and such that
there is a TA B = (QB,qB,∆B) that contains a root reference to Ai, Step 2 performs the
following. The TA Ai is removed from F , the data constraints between qA and non-root
states of F are removed from ϕ, and Ai is connected to B at the places where B refers
to it. In detail, B is replaced by the TA (QA∪QB,qB,∆A+B) where ∆A+B is constructed
from ∆A∪∆B by modifying every transition q→ a(q1, . . . ,qm) : c ∈ ∆B as follows:

1. all occurrences of i among q1, . . . ,qm are replaced by qA, and

15

2. for all 1≤ k≤m s.t. qk can reach i by following top-down a sequence of the original
rules of ∆B, the constraint 0∼ra k is removed from c unless qk ∼ra qA ∈ ϕ.

5.4 Checking Language Inclusion

In this section, we describe a reduction of checking language inclusion of FAs with data
constraints to checking language inclusion of FAs without data constraints, which can
be then done using the techniques of [11]. We note that “ordinary FAs” correspond to
FAs with no global and no local data constraints. The reduction encodes an FA with
data constraints as an FA without data constraints such that its language, when decoded
in a particular way, is the same as the language of the original automaton.

An encoding of an FA F = (A1 · · ·An,ϕ) with data constraints is an ordinary FA
FE = (A′1 · · ·A′n, /0) where the data constraints are written into symbols of transitions.
That is, each transition q→ a(q1, . . . ,qm) : c of Ai,1 ≤ i ≤ n, is in A′i replaced by the
transition q→ 〈(a1, `1,g) · · ·(am, `m,g)〉(q1, . . . ,qm) : /0 where for 1 ≤ j ≤ m, ` j is the
subset of c containing the local constraints involving j, and g encodes the global con-
straints involving q as follows: Let r be the root state of some Ak,1 ≤ k ≤ n, that does
not appear within any right-hand side of a rule. Then for a global constraint q∼rx r, or
r ∼rx q, g contains 0∼rx k, or k ∼rx 0, respectively. The language of A′i thus consists of
trees over the alphabet ΓE = Γ×C×C where C is the set of constraints of the form
j ∼rx k for j,k ∈ N0.

To show that testing inclusion of encoded FAs is a sound approximation of language
inclusion test of FAs with constraints, we need to establish a correspondence between
languages of the encoded FAs and languages of the original ones. For this, we define
a decoding of a forest t ′1 · · · t ′n from a language of an encoded FA over ΓE as the set
of forests t1 · · · tn over Γ such that t1 · · · tn arises from t ′1 · · · t ′n by (1) removing encoded
constraints from the symbols, and (2) choosing data labeling that satisfies the constraints
encoded within the symbols of t ′1 · · · t ′n. Formally, for all 1 ≤ i ≤ n, Vti = Vt ′i

, and for
all a ∈ Γ, u,v ∈ Vti , and `,g ⊆ C, we have (a, `,g)t ′i

(u) = v iff: (1) ati(u) = v and
(2) for all 1 ≤ j ≤ n: if 0 ∼rx j ∈ `, then u ∼rx v (in ti), and if 0 ∼rx j ∈ g, then u ∼rx
root(t j) (symmetrically for j∼rx 0). The notion of decoding allows us to summarise the
correspondence of languages of FAs and languages of their encodings as follows.

Lemma 1. The set of forests accepted by an FA F is equal to the set of decodings of
forests accepted by FE .

Proof. Let F = 〈A1 · · ·An,ϕ〉 and FE = 〈A′1 · · ·A′n, /0〉. We first prove that every forest
t1 · · · tn accepted by F is a decoding of some forest accepted by FE . Let ρ1, . . . ,ρn be the
runs of A1 · · ·An on t1 · · · tn, respectively. We will construct runs ρ′1, . . . ,ρ

′
n of A′1 . . .A

′
n on

the forest t ′1 · · · t ′n of which t1 · · · tn is a decoding such that for every ρi, 1≤ i≤ n, we will
construct the run ρ′i. Let us first simplify the notation by denoting ρi, ti, ρ′i, t ′i , Ai, and A′i
by ρ, t, ρ′, t ′, A, and A′, respectively. The run ρ′ is constructed as follows. Vt ′ =Vt and λt ′

can be chosen arbitrarily. For every v ∈Vt such that a1
t (v) = v1, . . . ,am

t (v) = vm are the
edges of t with the source v, there is a transition of A of the form δ = q→ a(q1, . . . ,qm) :
c such that ρ(v) = q, ρ(v1) = q1, . . . ,ρ(vm) = qm, c is satisfied by v,v1, . . . ,vm in t, and
also global constraints q∼rx r,r∼rx q∈ ϕ are satisfied by v and ρk(r) for the k such that

16

r is a state of Ak. (by the definition of a run). The run ρ′ then labels v,v1, . . . ,vm using the
rule δ′= q→ ᾱ(q1, . . . ,qm) : /0 which is the encoding of δ (ᾱ= 〈(a1, `1,g) · · ·(am, `m,g)〉
where g contains encoded the part of ϕ involving q and c= `1∪·· ·∪`m). ρ′ is obviously
a run of A′. The described construction of ρ′ defines a map f which assigns to every
v,v1, . . . ,vm ∈Vt , where v1, . . . ,vm are the children of v, a pair of transitions (δ,δ′) of A
and A′, respectively, where δ and δ′ are the rules used within ρ and ρ′, respectively, to
label v,v1, . . . ,vm.

Let us argue that t1 · · · tn is indeed a decoding of t ′1 · · · t ′n. It is trivially satisfied for all
1≤ i≤ n that Vti =Vt ′i

and that every node has the same children in both forests. In order
to argue that data values in t1 · · · tn satisfy the constraints encoded in t ′1 · · · t ′n as required
by the definition of decoding, we let v ∈Vti be a node with children v1, . . . ,vm such that
f (v,v1, . . . ,vm) = (δ,δ′) where δ = q→ a(q1, . . . ,qm) : c and δ′ = q→ ᾱ(q1, . . . ,qm) : /0

and ᾱ = 〈(a1, `1,g) · · ·(am, `m,g)〉. Then the constraints imposed on the data value of
v within t1 · · · tn by ϕ and those imposed by c due to the use of δ are the same as the
constraints enforced on v due to ᾱ when t ′1 · · · t ′n is decoded into t1 · · · tn. In detail, c
contains a local constraint 0 ∼ k iff `k contains 0 ∼ k (by the def. of encoding). This
means that in the run of A on t, it is required that v ∼ vk, which is the same constraint
as required by the decoding function. Secondly, there is a global constraint of the form
q ∼ r ∈ ϕ such that r is the root state of Ak (not appearing within right-hand sides of
its transitions) iff 0 ∼ k ∈ g (and analogically for the symmetrical cases). In the run of
A, q∼ r enforces that v∼ u where u is the root of tk. Notice that u cannot be any other
node than the root since r does not appear within right-hand sides of transitions of Ak.
v∼ u is precisely what is enforced due to 0∼ k ∈ g when decoding t ′1 · · · t ′n.

Secondly, we prove that every decoding t1 · · · tn of a forest t ′1 · · · t ′n ∈ L(FE) is ac-
cepted by F . We will do that by showing that every n-tuple of runs ρ′1, . . . ,ρ

′
n of A′1, . . . ,A

′
n

on t1, . . . , tn respectively also encodes runs of A1, . . . ,An on t1, . . . , tn respectively.
Recall first that by the definition of a decoding, for each 1 ≤ i ≤ n, ti and t ′i have

the same sets of nodes and every node have the same tuple of children. To simplify the
notation, let t,ρ′, t ′,A,A′ be denoted as ti,ρ′i, t

′
i ,Ai,A′i respectively. Let v ∈ Vt ′ and let

α1
t ′(v) = v1, . . . ,α

m
t ′ (v) = vm be the edges of t ′ with the source v where for all 1 ≤ j ≤

m, α j = (a j, ` j,g). By the definition of a decoding, v satisfies all constraints encoded
within ᾱ. Since t ′ is accepted by A′, there is a transition of A′ of the form δ′ = q→
ᾱ(q1, . . . ,qm) : /0 such that ρ′(v) = q, ρ′(v1) = q1, . . . ,ρ

′(vm) = qm. By the definition of
encoding, δ′ was created from a rule δ = q→ a(q1, . . . ,qm) : c of A where `1 ∪ ·· · ∪
`m = c and g encodes all global constraints involving q and a root state r which does
not appear within a right-hand side of any rule. These constraints are precisely those
encoded within ᾱ and hence required to hold for v in t1 · · · tn by decoding. ρ′ is thus
indeed a run of A since for every v and its children v1, . . . ,vm, there is a rule δ which
can be used according to the definition of a run. ut

A direct consequence of Lemma 1 is that if L(FE
A) ⊆ L(FE

B), then L(FA) ⊆ L(FB).
We can thus use the language inclusion checking procedure of [11] for ordinary FAs to
safely approximate language inclusion of FAs with data constraints.

This language inclusion test is not complete, the above implication does not hold
in the opposite direction. There are two reasons for this. First, encoding translates a
constraint of FB that is strictly weaker than a constraint of FA into two different and un-

17

related labels. This may result in the situation that even though L(FA)⊆ L(FB), language
inclusion of encodings of FAs does not hold due to the reason that the trees accepted are
labelled by different symbols. For instance, let FA = (A1, /0) where A1 contains only a
single transition δA = q→ a(1) : {0≺rr 1} and FB = (B1, /0) where B1 also contains only
a single transition δB = r→ a(1) : /0. It holds that L(FA) ⊆ L(FB) (indeed, L(FA) = /0

due to the strict inequality on the root), but L(FE
A) is incomparable with L(FE

B). The
reason is that δA and δB are encoded as transitions the symbols of which differ due to
different data constraints. The fact that the constraint /0 is weaker than the constraint of
0≺rr 1 plays no role. The second source of incompleteness of the inclusion test is that
decodings of some forests accepted by FE

A and FE
B may be empty due to inconsistent

data constraints. If the set of such inconsistent forests of FE
A is not included in that of

FE
B , then L(FE

A) cannot be included in L(FE
B), but the inclusion L(FA)⊆ L(FB) can still

hold since the forests with the empty decodings do not contribute to L(FA) and L(FB)
(in the sense of Lemma 1).

We do not attempt to resolve the problem of inconsistent data constraints since
it does not seem to occur in practice, as witnessed by our experiments. On the other
hand, the issue of incompatible encodings of related data constraints appears to be of
a practical consequence. We address it with a quite simple transformation of FE

B : we
pump-up the TAs of FE

B by variants of their transitions which encode stronger data
constraints than originals and match the data constraints on transitions of FE

A . Since
we are adding transitions with stronger constraints than the existing ones, this does not
change the language of FB. For instance, in our previous example, we add the transition
r→ a(1) : {0 ≺rr 1} to B1. This transition, when encoded, can then correspond to the
encoded version of the transition q→ a(1) : {0≺rr 1} of A1 and the language inclusion
of the encodings will hold.

Formally, we call a sequence α = 〈(a1, `1,g) · · ·(am, `m,g)〉 ∈ (ΓE)m stronger than
a sequence β = 〈(a1, `

′
1,g
′) · · ·(am, `

′
m,g
′)〉 iff

∧
g =⇒

∧
g′ and for all 1 ≤ i ≤ m,∧

`i =⇒
∧
`′i. Intuitively, α encodes the same sequence of symbols a = a1 · · ·am as

β and stronger local and global data constraints than β. We modify FE
B in such a way

that for each transition r→ α(r1, . . . ,rm) of FE
B and each transition of FE

A of the form
q→ β(q1, . . . ,qm) where β is stronger than α, we add the transition q→ β(q1, . . . ,qm).
The modified FA, denoted by FE+

B , accepts the same or more forests than FE
B (since

its TAs have more transitions), but the sets of decodings of the accepted forests are the
same (since the added transitions encode stronger constraints than the existing transi-
tions). The FA FE+

B can thus be used within language inclusion checking in the place of
FE

B . This technique prevents the inclusion check to fail because of incompatible encod-
ings of data constraints. Its soundness is summarised by the following lemma.

Lemma 2. Given two FAs FA and FB, L(FE
A)⊆ L(FE+

B) =⇒ L(FA)⊆ L(FB).

Proof (sketch). Since the transformation from FE
2 to FE+

2 adds only versions of existing
rules encoding stronger constraints, the sets of decodings of forest of FE+

2 is the same
the set of decodings of forests of FE

2 . The statement then follows immediately from
Lemma 1. ut

We note that the same construction is used when checking language inclusion be-
tween sets of FAs with data constraints in a combination with the construction of [11]

18

for checking inclusion of sets of ordinary FAs. We also note that for the purpose of
checking language inclusion, we need to work with TAs where the tuples a of symbols
(selectors) on all rules are ordered according to a fixed total ordering of selectors [11]
(we use the one from Section 4, used to define canonical forests).

6 Boxes

Forest automata, as defined in Section 4, cannot be used to represent sets of graphs with
an unbounded number of cut-points since this would require an unbounded number of
TAs within FAs. An example of such a set of graphs is the set of all DLLs of an arbitrary
length where each internal node is a cut-point. The solution provided in [11] is to allow
FAs to use other nested FAs, called boxes, as symbols to “hide” recurring subgraphs and
in this way eliminate cut-points. The alphabet of a box itself may also include boxes,
however, these boxes are required to form a hierarchy, they cannot be recursively nested.
To make the semantics of a box clear, we will need to extend the definitions of an FA
from Section 4 to allow so-called ports. Ports are nodes of a graph hidden within a box
at which should be the hidden graph connected to its surroundings. For simplicity of
presentation, we give only a simplified version of the definition in [11], which is more
general and allows boxes with an arbitrary number of output ports.

Formally, we define an io-graph over 〈Γ,Ω〉 to be a tuple gio = 〈g, i,o〉 where g
is a graph with two designated distinct nodes i and o called the input and output port
respectively. An io-forest (t1 · · · tn)io over 〈Γ,Ω〉 is defined as (t1 · · · tn)io = 〈t1 · · · tn, i,o〉
where t1 · · · tn is a forest and i,o ∈ {1, . . . ,n}, i 6= o, are the input port and output port
indices. The composition operator ⊗ is extended to io-forests in the following way:
⊗〈t1 · · · tn, i,o〉 = 〈⊗t1 · · · tn,root(ti),root(to)〉, so the composition of an io-forest is an
io-graph.

A nested forest automaton (NFA) over 〈Γ,Ω〉 is an FA over 〈Γ∪B,Ω〉 where B
is a finite set of boxes. A box � over 〈Γ,Ω〉, where Γ does not contain �, is a triple
� = 〈F�, i,o〉 such that F� is an NFA F� = 〈A1 · · ·An,ϕ〉 over 〈Γ,Ω〉, i ∈ {1, . . . ,n}
is the input port index, and o ∈ {1, . . . ,n} is the output port index such that i 6= o. The
set of boxes of an NFA is required to form a hierarchy, i.e. a box cannot recursively
contain itself. The io-language Lio(�) of a box � = 〈F�, i,o〉 is the set of io-graphs
Lio(�) = {⊗〈t1 · · · tn, i,o〉 | t1 · · · tn is accepted by F�}.

In the case of an NFA F , we need to distinguish between its language L(F), which
is a set of graphs over 〈Γ∪B,Ω〉 and its semantics, which is a set of graphs over 〈Γ,Ω〉
that emerges when all boxes in the graphs of the language are recursively unfolded in
all possible ways. Formally, given a graph g, a graph g′ is an unfolding of g (written
as g g′) if there is an occurrence (u,�,v) ∈ nextg of a box � in g (which may be
seen as an edge from u to v over � in g), such that g′ can be constructed from g by
substituting (u,�,v) with g�, which is done by removing (u,�,v) from g, uniting g
with g�, and associating the input port of g� with u and the output port of g� with
v, where g� ∈ Lio(�). We use ∗ to denote the reflexive transitive closure of . The
semantics of F , written as JFK, is the set of all graphs g′ over 〈Γ,Ω〉 for which there is
a graph g in L(F) such that g ∗ g′.

19

Table 4: Results of the experiments
Example time [s]
SLL insert 0.06
SLL delete 0.08
SLL reverse 0.07
SLL bubblesort 0.13
SLL insertsort 0.10
DLL insert 0.14
DLL delete 0.38
DLL reverse 0.16
DLL bubblesort 0.39
DLL insertsort 0.43

Example time [s]
SL2 insert 9.65
SL2 delete 10.14
SL3 insert 56.99
SL3 delete 57.35

BST insert 6.87
BST delete 15.00
BST left rotate 7.35
BST right rotate 6.25

In a verification run, boxes are automatically inferred using the techniques presented
in [13]. Abstraction is combined with folding, which substitutes substructures of FAs
by TA transitions which use boxes as labels. On the other hand, unfolding is required
by abstract transformers that refer to nodes or selectors encoded within a box to expose
the content of the box by making it a part of the top-level FA.

Extension of forest automata of [11,13] by data constraints must be reflected within
treatment of boxes. Particularly, in order not to loose information stored within data
constraints, folding and unfolding require calls of the saturation procedure. When fold-
ing, saturation is used to transform global constraints into local ones. Namely, global
constraints between the root state of the TA which is to become the input port of a box
and the state of the TA which is to become the output port of the box is transformed
into a local constraint of the newly introduced transition which uses the box as a la-
bel. When unfolding, saturation is used to transform local constraints into global ones.
Namely, local constraints between the left-hand side of the transition with the unfolded
box and the right-hand side position attached to the unfolded box is transformed to a
global constraint between the root states of the TAs within the box which correspond to
its input and output port.

7 Experimental Results

We have implemented the above presented techniques as an extension of the Forester
tool and tested their generality and efficiency on a number of case studies. We consid-
ered programs dealing with SLLs, DLLs, BSTs, and skip lists. We verified the original
implementation of skip lists that uses the data ordering relation to detect the end of
the operated window (as opposed to the implementation handled in [13] which was
modified to remove the dependency of the algorithm on sortedness).

Table 4 gives running times in seconds (the average of 10 executions) of the exten-
sion of Forester on our case studies. The names of the examples in the table contain the
name of the data structure manipulated in the program, which is “SLL” for singly-linked
lists, “DLL” for doubly-linked lists, and “BST” for binary search trees. “SL” stands for
skip lists where the subscript denotes their level (the total number of next pointers in

20

each cell). All experiments start with a random creation of an instance of the specified
structure and end with its disposal. The indicated procedure is performed in between.
The “insert” procedure inserts a node into an ordered instance of the structure, at the
position given by the data value of the node, “delete” removes the first node with a par-
ticular data value, and “reverse” reverses the structure. “Bubblesort” and “insertsort”
perform the given sorting algorithm on an unordered instance of the list. “Left rotate”
and “right rotate” rotate the BST in the specified direction. Before the disposal of the
data structure, we further check that it remained ordered after execution of the opera-
tion. The experiments were run on a machine with the Intel i5 M 480 (2.67 GHz) CPU
and 5 GB of RAM.

Compared with works [15,20,4,18], which we consider the closest to our approach,
the running times show that our approach is significantly faster. We, however, note that
a precise comparison is not easy even with the mentioned works since as discussed in
the related work paragraph, they can handle more complex properties on data, but on the
other hand, they are less automated or handle less general classes of pointer structures.

8 Conclusion

We have extended the FA-based analysis of heap manipulating programs with a support
for reasoning about data stored in dynamic memory. The resulting method allows for
verification of pointer programs where the needed inductive invariants combine com-
plex shape properties with constraints over stored data, such as sortedness. The method
is fully automatic, quite general, and its efficiency is comparable with other state-of-the-
art analyses even though they handle less general classes of programs and/or are less
automated. We presented experimental results from verifying programs dealing with
variants of (ordered) lists and trees. To the best of our knowledge, our method is the
first one to cope fully automatically with a full C implementation of a 3-level skip list.

We conjecture that our method generalises to handle other types of properties in the
data domain (e.g., comparing sets of stored values) or other types of constraints (e.g.,
constraints over lengths of lists or branches in a tree needed to express, e.g., balanced-
ness of a tree). We are currently working on an extension of FAs that can express more
general classes of shapes (e.g., B+ trees) by allowing recursive nesting of boxes, and
employing the CEGAR loop of ARTMC. We also plan to combine the method with
techniques to handle concurrency.

Acknowledgement. This work was supported by the Czech Science Foundation (projects
P103/10/0306, 13-37876P), the Czech Ministry of Education, Youth, and Sports (project
MSM 0021630528), the BUT FIT project FIT-S-12-1, the EU/Czech IT4Innovations
Centre of Excellence project CZ.1.05/1.1.00/02.0070, the Swedish Foundation for Strate-
gic Research within the ProFuN project, and by the Swedish Research Council within
the UPMARC centre of excellence.

References
1. P. Abdulla, M. Atto, J. Cederberg, and R. Ji. Automated Analysis of Data-Dependent Pro-

grams with Dynamic Memory. In Proc. of ATVA’09, LNCS 5799. Springer, 2009.

21

2. P. Abdulla, F. Haziza, L. Holı́k, B. Jonsson, and A. Rezine. An Integrated Specification and
Verification Technique for Highly Concurrent Data Structures. Proc of TACAS’13, LNCS
7795. Springer, 2013.

3. J. Bingham and Z. Rakamaric. A Logic and Decision Procedure for Predicate Abstraction of
Heap-Manipulating Programs. In Proc. of VMCAI’06, LNCS 3855. Springer, 2006.

4. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with Lists
Are Counter Automata. Formal Methods in System Design, 38(2):158–192, 2011.

5. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Accurate Invariant Checking for
Programs Manipulating Lists and Arrays with Infinite Data. In Proc. of ATVA’12, LNCS
7561. Springer, 2012.

6. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular (Tree) Model
Checking. International Journal on Software Tools for Technology Transfer, 14(2):167–191,
2012.

7. B.-Y. Chang, X. Rival, and G. Necula. Shape Analysis with Structural Invariant Checkers.
In Proc. of SAS’07, LNCS 4634. Springer, 2007.

8. W.-N. Chin, C. David, H. Nguyen, and S. Qin. Automated Verification of Shape, Size and
Bag Properties via User-defined Predicates in Separation Logic. Science of Computer Pro-
gramming, 77(9):1006–1036, 2012.

9. K. Dudka, P. Peringer, and T. Vojnar. Byte-Precise Verification of Low-Level List Manipu-
lation. In Proc. of SAS’13, LNCS 7935. Springer, 2013.

10. P. Habermehl, L. Holı́k, A. Rogalewicz, J. Šimáček, and T. Vojnar. Forest Automata for
Verification of Heap Manipulation. In Proc. of CAV’11, LNCS 6806. Springer, 2011.

11. P. Habermehl, L. Holı́k, A. Rogalewicz, J. Šimáček, and T. Vojnar. Forest Automata for
Verification of Heap Manipulation. Formal Methods in System Design, 41(1):83–106, 2012.

12. J. Heinen, T. Noll, and S. Rieger. Juggrnaut: Graph Grammar Abstraction for Unbounded
Heap Structures. ENTCS, 266, 2010.

13. L. Holı́k, O. Lengál, A. Rogalewicz, J. Šimáček, and T. Vojnar. Fully Automated Shape
Analysis Based on Forest Automata. In Proc. of CAV’13, LNCS 8044. Springer, 2013.

14. J. Jensen, M. Jørgensen, N. Klarlund, and M. Schwartzbach. Automatic Verification of
Pointer Programs Using Monadic Second-order Logic. In Proc. of PLDI’97. ACM, 1997.

15. A. Loginov, T. Reps, and M. Sagiv. Abstraction Refinement via Inductive Learning. In Proc.
of CAV’05, LNCS 3576. Springer, 2005.

16. S. Magill, M. Tsai, P. Lee, and Y.-K. Tsay. A Calculus of Atomic Actions. In Proc. of
POPL’10, ACM, 2010.

17. W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. CACM, 33(6), 1990.
18. S. Qin, G. He, C. Luo, W.-N. Chin, and X. Chen. Loop Invariant Synthesis in a Combined

Abstract Domain. Journal of Symbolic Computation, 50, 2013.
19. S. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-valued Logic. TOPLAS,

24(3). ACM Press, 2002.
20. T. Wies, V. Kuncak, K. Zee, A. Podelski, and M. Rinard. On Verifying Complex Properties

using Symbolic Shape Analysis. In Proc. of HAV’07, 2007.
21. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn. Scalable

Shape Analysis for Systems Code. In Proc. of CAV’08, LNCS 5123. Springer, 2008.
22. K. Zee, V. Kuncak, and M. Rinard. Full Functional Verification of Linked Data Structures.

In Proc. of PLDI’08. ACM Press, 2008.

22

A Source Code of the Considered Case Studies

This appendix provides all source code examples that are actually analyzed by our
framework.

A.1 Singly-Linked Lists

/**
Name: Node
Description: Structure of a node in a singly-linked list

***/
struct Node {

struct Node* next; // Next pointer field
int data; // Data field

};
/**

Name: insert
Description: Insert a node into a singly-linked sorted list.
Input: A head pointer ’head’ of the list and the new node pointer ’new’.
Output: New head pointer ’head’ of the new list after inserting

***/
struct Node* insert(struct Node* new, struct Node* head){

struct Node* curr = head;
struct Node* prev = NULL;
// Search for position of the new node
while(curr != NULL && new->data > curr->data){

prev = curr;
curr = curr->next;

}
// If the new node is inserted after head node
if(prev != NULL){

new->next = curr;
prev->next = new;

}
// If the new node is inserted before head node
else{

new->next = curr;
// new node will be the new head node
return new;

}
return head;

}
/**

Name: remove
Description: Remove a node from a sorted list
Input: A head pointer ’head’ of the list and the value v of node that

is removed
Output: New head pointer ’head’ of the new list after removing

***/

23

struct Node* remove(int v, struct Node* head){
struct Node* curr = head;
struct Node* pred = NULL;
while (curr != NULL){

// if current node is the removed node
if (curr->data == v){

// if current node is not head node
if (pred)

pred->next = curr->next;
else

// if current node is head node
head = head->next;

free(curr);
break;

}
// if the removed node is not not found yet
if(curr->data < v){

pred = curr;
curr = curr->next;

}
else

// there is no node in the list with value v
return head;

}
return head;

}
/**

Name: reverse
Description: Reverse a sorted list
Input: A head pointer ’head’ of the list
Output: New head pointer ’head’ of the new list after reversing

***/
struct Node* reverse(struct T* head){

struct Node* z = NULL;
struct Node* y = NULL;
while(head != NULL){

y = head;
head = head->next;
y->next = z;
z = y;

}
return y;

}
/**

Name: insertionsort
Description: Sort a singly-linked list by insertion sort algorithm
Input: A head pointer ’head’ of the list
Output: New head pointer ’head’ of the sorted list

***/
struct Node* insertionsort(struct Node* head){

24

// sorted is pointer to a sorted list
struct Node* sorted = NULL;
struct Node* pred = NULL;
struct Node* z = NULL;
struct Node* x = head;
struct Node* y = head;
while(x){

y = x;
x = x->next;
pred = NULL;
// find the position of y in the sorted list
z = sorted;
while (z && y->data > z->data){

pred = z;
z = z->next;

}
// insert y into the sorted list
y->next = z;
if(pred) pred->next = y;
else
// update sorted pointer
sorted = y;

}
return sorted;

}
/**

Name: bubblesort
Description: Sort a singly-linked list by bubblesort algorithm
Input: A head pointer ’head’ of the list
Output: New head pointer ’head’ of the sorted list

***/
struct Node* bubblesort(struct Node* head){

struct Node* pred = NULL;
struct Node* succ = NULL;
struct Node* t = NULL;
bool sorted = false;
// while a list is not sorted
while(!sorted){

sorted = true;
succ = head;
while(succ->next != NULL){

pred = succ;
succ = succ->next;
// if a swap between two neighbour nodes is needed
if(pred->data > succ->data){

// swap
pred->next = succ->next;
succ->next = pred;
if(t)

t->next = succ;

25

else
head = succ;

t = pred;
pred = succ;
succ = t;
// update sorted to false
sorted = false;

}
t = pred;

}
t = NULL;

}
return head;

}

A.2 Doubly-Linked Lists

/**
Name: Node
Description: Structure of a node in a doubly-linked list

***/
struct Node {

struct Node* next; // Next pointer field
struct Node* prev; // Prev pointer field
int data; // Data field

};
/**

Name: insert
Description: Insert a node into a sorted list.
Input: A head pointer ’head’ of the list and the new node pointer ’new’.
Output: New head pointer ’head’ of the new list after inserting

***/
struct Node* insert(struct Node* new, struct Node* head){

struct Node* curr = head;
struct Node* prev = NULL;
// search for position of inserted node
while(curr != NULL && new->data > curr->data){

prev = curr;
curr = curr->next;

}
// if the inserted node is insert at the middle of the list
if(prev != NULL && curr != NULL){

prev->next = new;
curr->prev = new;
new->prev = prev;
new->next = curr;

}
else {

// if the inserted node is inserted at tail of the list
if(prev != NULL){

26

prev->next = new;
new->prev = prev;
new->next = curr;

}
else{
// if the inserted node is inserted at the head of the list
new->next = curr;
curr->prev = new;
new->prev = NULL;
head = new;

}
}
return head;

}
/**

Name: remove
Description: Remove a node from a sorted list
Input: A head pointer ’head’ of the list and the value v of node that

is removed
Output: New head pointer ’head’ of the new list after removing

***/
struct Node* remove(int v, struct Node* head){

struct Node* curr = head;
struct Node* pred = NULL;
while(curr != NULL){

// if current node is node we need to remove
if (curr->data == v){

// current node is not head node
if (pred){

pred->next = curr->next;
if(curr->next)

curr->next->prev = pred;
}
else

// if current node is head node then head is updated
head = head->next;
free(curr);
break;

}
// if removed node is not found yet
if(curr->data < v){

pred = curr;
curr = curr->next;

}
else

// if there is node node with value v
return head;

}
return head;

}

27

/**
Name: reverse
Description: Reverse a sorted list
Input: A head pointer ’head’ of the list
Output: New head pointer ’head’ of the new list after reversing

***/
struct Node* reverse(struct T* head){

struct Node* x = NULL;
while(head != NULL){

struct Node* z = head;
head = head->next;
if(head)
head->prev = NULL;

z->next = x;
z->prev = NULL;
if(x)
x->prev = z;

x = z;
}
return x;

}
/**

Name: insertionsort
Description: Sort a linked list by insertion sort algorithm
Input: A head pointer ’head’ of the list
Output: New head pointer ’head’ of the sorted list

***/
struct Node* insertionsort(struct Node* head){

// ’sorted’ is pointer to a sorted list
struct Node* sorted = NULL;
struct Node* pred = NULL;
struct Node* z = NULL;
struct Node* x = head;
struct Node* y = NULL;
while(x){

y = x;
x = x->next;
if(x) x->prev = NULL;
// find the position of y in the sorted list
z = sorted;
pred = NULL;
while (z && y->data > z->data){

pred = z;
z = z->next;

}
// insert y into the sorted list
y->next = z;
if(z) z->prev = y;
y->prev = pred;
if(pred) pred->next = y;

28

else sorted = y;
}
return sorted;

}
/**

Name: bubblesort
Description: Sort a singly-linked list by bubble sort algorithm
Input: A head pointer ’head’ of the list
Output: New head pointer ’head’ of the sorted list

***/
struct Node* bubblesort(struct Node* head){

struct Node* pred = NULL;
struct Node* succ = NULL;
struct Node* t = NULL;
bool sorted = false;
// when the list has not been sorted yet
while(!sorted){

sorted = true;
succ = head;
while(succ->next){

pred = succ;
succ = succ->next;
// if its needed to swap two neighbour nodes
if(pred->data > succ->data){

// swap
if(succ->next){

pred->next = succ->next;
succ->next->prev = pred;

}
else

pred->next = NULL;
succ->next = pred;
pred->prev = succ;
if(t){

t->next = succ;
succ->prev = t;

}
else{

head = succ;
head->prev = NULL;

}
t = pred;
pred = succ;
succ = t;
/* update sorted variable to false
because the list is not sorted*/
sorted = false;

}
t = pred;

}

29

t = NULL;
}
return head;

}

A.3 Skip Lists with Two Levels

/**
Name: Node
Description: Structure of a node in a 2-pointer skip list

***/
struct Node {

struct Node* n1; // pointer field at higher level
struct Node* n2 // pointer field at lower level
int data; // Data field

};
/**

Name: insert
Description: Insert a node into a skip list.
Input: A head pointer ’head’ and tail pointer ’tail’.
Output: Return true if the node is inserted into the list, otherwise

the function return false
***/
bool insert(struct Node* newNode, struct Node* head, struct Node* tail) {

struct Node* sPred, sSucc,mPred, mSucc, pred, curr;
pred = head ;
curr = pred->n1;
// in the case that new node is in data range of the list
if(newNode->data < tail->data && head->data < newNode->data){
// search for position at higher level
while(newNode->data > curr->data){

pred = curr ;
curr = pred->n1 ;

}
sPred = pred;
sSucc = curr;
curr = pred->n2;
// search for position at lower level
while(newNode->data > curr->data){

pred = curr ;
curr = pred->n2 ;

}
mPred = pred;
mSucc = curr;
/* if the value of new node is not equal to value of any node
in the list*/
if(newNode->data != mSucc->data && newNode->data != sSucc->data){

// insert at lower level
newNode->n2 = mSucc;
mPred->n2 = newNode ;

30

// insert at higher level non-deterministically
if(__nondet()){

newNode->n1 = sSucc;
sPred->n1 = newNode ;

}
// finish the inserting and return true
return true;

}
else

// if the value of new node is found in the list
return false;

}
else

// if the value of new node is out of the data range of the list
return false;

}
/**

Name: remove
Description: Remove a node from a skip list
Input: A head pointer ’head’ and tail pointer ’tail’.
Output: Return true if the node with value v is removed from the list,

otherwise the function return false
***/
bool remove(int v, struct Node* head, struct Node* tail) {

struct Node* sPred, sSucc, mPred, mSucc, pred, curr;
pred = head;
curr = pred->n1;
// in the case that v is in data range of the list
if(tail->data > v && head->data < v){
// search for position at higher level
while (curr->data < v){

pred = curr;
curr = pred->n1;

}
sPred = pred;
sSucc = curr;
curr = pred->n2;
// search for position at lower level
while(curr->data < v){
pred = curr ;
curr = pred->n2 ;

}
mPred = pred;
mSucc = curr;
// if the node with data value v is found at the higher level
if(sSucc->data == v){

sPred->n1 = sSucc->n1;
mPred->n2 = mSucc->n2;
free(sSucc);
return true;

31

}
else{

// if the node with data value v is found at the lower level
if(mSucc->data == v){

mPred->n2 = mSucc->n2;
free(mSucc);
return true;

}
else

// if the node with data value v is not found in the list
return false;

}
}
else
return false;

}

A.4 Skip Lists with Three Levels

/**
Name: Node
Description: Structure of a node in a 3-pointer skip list

***/
struct Node {

struct Node* n1; // pointer field at top level
struct Node* n2 // pointer field at sub level
struct Node* n3 // pointer field at main level
int data; // Data field

};
/**

Name: insert
Description: Insert a node into a skip list.
Input: A head pointer ’head’ and tail pointer ’tail’.
Output: Return true if the node is inserted into the list, otherwise

the function return false
***/
bool insert(struct Node* newNode, struct Node* head, struct Node* tail) {

struct Node* tPred, tSucc, sPred, sSucc, mPred, mSucc, pred, curr;
pred = head ;
curr = pred->n1;
// in the case that new node is in data range of the list
if(newNode->data < tail->data && head->data < newNode->data){
// search for position at top level
while(newNode->data > curr->data){

pred = curr ;
curr = pred->n1 ;

}
tPred = pred;
tSucc = curr;

32

curr = pred->n2;
// search for position at sub level
while(newNode->data > curr->data){

pred = curr ;
curr = pred->n2 ;

}
sPred = pred;
sSucc = curr;
curr = pred->n3;
// search for position at main level
while(newNode->data > curr->data){

pred = curr ;
curr = pred->n3;

}
mPred = pred;
mSucc = curr;
/* if the value of new node is not equal to value of any node
in the list*/
if(newNode->data != tSucc->data && newNode->data != mSucc->data

&& newNode->data != sSucc->data){
// randomly insert the new node at any level of skiplist
newNode->n3 = mSucc; mPred->n3 = newNode;
if(__nondet()){

newNode->n2 = sSucc; sPred->n2 = newNode ;
if(__nondet())

newNode->n1 = tSucc; tPred->n1 = newNode ;
}

// finish the inserting and return true
return true;

}
else

// if the value of new node is found in the list
return false;

}
else

// if the value of new node is out of the data range of the list
return false;

}
/**

Name: remove
Description: Remove a node from a skip list
Input: A head pointer ’head’ and tail pointer ’tail’.
Output: Return true if the node with value v is removed from the list,

otherwise the function return false
***/
bool remove(int v, struct Node* head, struct Node* tail) {

struct Node* tPred, tSucc, sPred, sSucc, mPred, mSucc, pred, curr;
pred = head;
curr = pred->n1;
// in the case that v is in data range of the list

33

if(tail->data > v && head->data < v){
// search for position at top level
while (curr->data < v){

pred = curr;
curr = pred->n1;

}
tPred = pred;
tSucc = curr;
curr = pred->n2;
// search for position at sub level
while(curr->data < v){
pred = curr ;
curr = pred->n2 ;

}
sPred = pred;
sSucc = curr;
curr = pred->n3;
// search for position at main level
while(curr->data < v){
pred = curr ;
curr = pred->n3 ;

}
mPred = pred;
mSucc = curr;
// if the node with data value v is found at the top level
if(tSucc->data == v){

tPred->n1 = tSucc->n1;
sPred->n2 = sSucc->n2;
mPred->n3 = mSucc->n3;
free(tSucc);
return true;

}
else{

// if the node with data value v is found at the sub level
if(sSucc->data == v){

sPred->n2 = sSucc->n2;
mPred->n3 = mSucc->n3;
free(sSucc);
return true;

}
else{

// if the node with data value v is found at the main level
if(mSucc->data == v){

mPred->n3 = mSucc->n3;
free(mSucc);
return true;

}
else
// if the node with data value v is not found in the list
return false;

34

}
}

}
else
return false;

}

A.5 Binary Search Trees

/**
Name: Node
Description: Structure of a node in a binary search tree

***/
struct Node {

struct Node* left; // Left pointer field
struct Node* right; // Right pointer field
int data; // Data field

};
/**

Name: insert
Description: Insert a node into a binary search tree.
Input: A root pointer ’root’ of the tree and the new node pointer ’new’.
Output: New root pointer ’root’ of the new tree after inserting

***/
struct Node* insert(struct Node* root, struct Node* new){

Node *x;
if(!root) return new;
x = root;
while(x.data != new.data)
if(x.data < new.data)

if (x.right) x = x.right;
else x.right = new;

else
if (x.left) x = x.left;
else x.left = new;

return root;
}
/**

Name: leftRotate
Description: Left rotate a binary search tree.
Input: A root pointer ’root’ of the tree.
Output: New root pointer ’root’ of the new tree after left rotating

***/
struct Node* leftRotate(struct Node* root){
if(root->left){

struct Node* r = root->left;
root->left = r->right;
r->right = root;
return r;

35

}
return root;

}
/**

Name: rightRotate
Description: Right rotate a binary search tree.
Input: A root pointer ’root’ of the tree.
Output: New root pointer ’root’ of the new tree after right rotating

***/
struct Node* rightRotate(struct Node* root){
if(root->right){

struct Node* r = root->right;
root->right = r->left;
r->left = root;

return r;
}

return root;
}
/**

Name: remove
Description: Remove a node from a binary search tree.
Input: A root pointer ’root’ of the tree and value v of the node we need

to remove
Output: New binary search tree

***/
void remove(int v, struct Node* root){

struct Node* t;
struct Node* right = NULL;
struct Node* sparent = NULL;
struct Node* min = NULL;
struct Node* node = root;
struct Node* parent = root;
// search for the node with value v
while(node->data != v) {

parent = node;
if (parent->data < v){

if(node->left)
node = node->left;

else
break;

}
else {

if(node->right)
node = node->right;

else
break;

}
}
t = node;
// only delete the node with value v and its not a root node

36

if(node != root && node->data == v){
// if the removed node does not have right subtree
if(t->right == NULL){

node = node->left;
free(t);

}
else{

/* if the right subtree of the removed node
does not have left subtree*/

if (t->right->left == NULL){
node = node->right; node->left = t->left; free(t);

}
/* if the right subtree of the removed node
has left subtree*/

else{
right = t->right;
min = t->right->left;
sparent = right;
/* search for the smallest node pointed by ’min’

in the right subtree*/
while(min->left != NULL){

sparent = min;
min = min->left;

}
// exchange removed node with the smallest node
node = min;
sparent->left = min->right;
min->left = t->left;
min->right = right;
free(t);

}
}
if(parent->data < v) parent->left = node;
else parent->right = node;

}
}

37

	Verification of Heap Manipulating Programs with Ordered Data by Extended Forest Automata

