
Fully Automated Shape Analysis
Based on Forest Automata†

Lukáš Holı́k Ondřej Lengál Adam Rogalewicz
Jiřı́ Šimáček Tomáš Vojnar

Brno University of Technology, Czech Republic

TAS @ UPMARC

†Published in Proc. of CAV’13

Shape Analysis

Shape analysis:
▸ reasoning about programs with dynamic linked data structures
▸ notoriously difficult: infinite sets of complex graphs

▸ memory safety: invalid dereferences, double free, memory leakage
▸ error line reachability (assertions), shape invariance (testers), ...

Existing solutions:
▸ often specialized (lists)
▸ require human help (loop invariants, inductive predicates)
▸ low scalability

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 2 / 21

Shape Analysis

Shape analysis:
▸ reasoning about programs with dynamic linked data structures
▸ notoriously difficult: infinite sets of complex graphs

▸ memory safety: invalid dereferences, double free, memory leakage
▸ error line reachability (assertions), shape invariance (testers), ...

Existing solutions:
▸ often specialized (lists)
▸ require human help (loop invariants, inductive predicates)
▸ low scalability

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 2 / 21

Inspiration

Separation Logic
, local reasoning: well scalable
/ fixed abstraction

Abstract Regular Tree Model Checking (ARTMC)
, uses tree automata (TA): flexible and refinable abstraction
/ monolithic encoding of the heap: limited scalability

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 3 / 21

Inspiration

Separation Logic
, local reasoning: well scalable
/ fixed abstraction

Abstract Regular Tree Model Checking (ARTMC)
, uses tree automata (TA): flexible and refinable abstraction
/ monolithic encoding of the heap: limited scalability

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 3 / 21

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, scalability of SL

by
▸ splitting heaps into tree components

and
▸ using tree automata to represent sets of tree components of heaps

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 4 / 21

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, scalability of SL

by
▸ splitting heaps into tree components

and
▸ using tree automata to represent sets of tree components of heaps

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 4 / 21

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, scalability of SL

by
▸ splitting heaps into tree components

and
▸ using tree automata to represent sets of tree components of heaps

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 4 / 21

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, scalability of SL

by
▸ splitting heaps into tree components

and
▸ using tree automata to represent sets of tree components of heaps

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 4 / 21

The Forest Automata-based Approach

Introduced at CAV’11.

Combines
, flexibility of ARTMC

with
, scalability of SL

by
▸ splitting heaps into tree components

and
▸ using tree automata to represent sets of tree components of heaps

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 4 / 21

Heap Representation

Forest decomposition of a heap

▸ Identify cut-points
nodes referenced:

● by variables, or
● multiple times

▸ Split the heap into tree components
▸ References are explicit

�

�
�

�

�

�

x:

y:

next
ri
gh
t

ri
gh
t

left

left

next next
ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 5 / 21

Heap Representation

Forest decomposition of a heap
▸ Identify cut-points

nodes referenced:
● by variables, or
● multiple times

▸ Split the heap into tree components
▸ References are explicit

1

�

�

3 2

�

�

�

�

x:

y:

next
ri
gh
t

ri
gh
t

left

left

next next
ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 5 / 21

Heap Representation

Forest decomposition of a heap
▸ Identify cut-points

nodes referenced:
● by variables, or
● multiple times

▸ Split the heap into tree components

▸ References are explicit

1

�

�

3 2

�

�

�

�

x:

y:

next
ri
gh
t

ri
gh
t

left

left

next next
ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 5 / 21

Heap Representation

Forest decomposition of a heap
▸ Identify cut-points

nodes referenced:
● by variables, or
● multiple times

▸ Split the heap into tree components
▸ References are explicit

1

�

�

3

2̄

2̄ 2

�

�

�

�

x:

y:

next
ri
gh
t

ri
gh
t

left

left

next next
ri
gh
t

ri
gh
t

left

left ri
gh
t

left

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 5 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ split H into classes of forests with:

1 the same number of trees (1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n)

2 having the same references
3 in the same order

▸ i.e., with the same interconnection of tree components

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}

▸ split H into classes of forests with:
1 the same number of trees (1, 2, . . . , n), (

′

1,
′

2, . . . ,
′

n)

2 having the same references
3 in the same order

▸ i.e., with the same interconnection of tree components

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ split H into classes of forests with:

1 the same number of trees (1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n)

2 having the same references
3 in the same order

▸ i.e., with the same interconnection of tree components

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ split H into classes of forests with:

1 the same number of trees (1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n)

2 having the same references

3 in the same order

▸ i.e., with the same interconnection of tree components

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ split H into classes of forests with:

1 the same number of trees (1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n)

2 having the same references
3 in the same order

▸ i.e., with the same interconnection of tree components

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ split H into classes of forests with:

1 the same number of trees (1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n)

2 having the same references
3 in the same order

▸ i.e., with the same interconnection of tree components

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ split H into classes of forests with:

1 the same number of trees (1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n)

2 having the same references
3 in the same order

▸ i.e., with the same interconnection of tree components
EXAMPLE

1

1 2

2

1
,

1

1 2

2

1

, . . .

1

1

,

1

1

, . . .

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ split H into classes of forests with:

1 the same number of trees (1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n)

2 having the same references
3 in the same order

▸ i.e., with the same interconnection of tree components

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .} ,{ 2,
′

2, . . .} , . . . ,{ n,
′

n, . . .})

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ split H into classes of forests with:

1 the same number of trees (1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n)

2 having the same references
3 in the same order

▸ i.e., with the same interconnection of tree components

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .} ,{ 2,
′

2, . . .} , . . . ,{ n,
′

n, . . .})

▸ We assume working with rectangular classes, i.e., for a class C,
(,), (,) ∈ C ⇒ (,), (,) ∈ C, or C is split.

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ split H into classes of forests with:

1 the same number of trees (1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n)

2 having the same references
3 in the same order

▸ i.e., with the same interconnection of tree components

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

,{ 2,
′

2, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, . . . ,{ n,
′

n, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)

(TA1 , TA2 , . . . , TAn)

▸ We assume working with rectangular classes, i.e., for a class C,
(,), (,) ∈ C ⇒ (,), (,) ∈ C, or C is split.

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Heap Representation

a heap h ↦ a forest (1, 2, . . . , n)

a set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}
▸ split H into classes of forests with:

1 the same number of trees (1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n)

2 having the same references
3 in the same order

▸ i.e., with the same interconnection of tree components

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

,{ 2,
′

2, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, . . . ,{ n,
′

n, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)

(TA1 , TA2 , . . . , TAn)

Forest Automaton

▸ We assume working with rectangular classes, i.e., for a class C,
(,), (,) ∈ C ⇒ (,), (,) ∈ C, or C is split.

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 6 / 21

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 7 / 21

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 7 / 21

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 7 / 21

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 7 / 21

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 7 / 21

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

modify transitions

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 7 / 21

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

modify transitions

check symbols on transitions

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 7 / 21

Abstract Transformers for Pointer Updates

y:=x.next

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 8 / 21

Abstract Transformers for Pointer Updates

y:=x.next

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 8 / 21

Abstract Transformers for Pointer Updates

y:=x.next

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 8 / 21

Abstract Transformers for Pointer Updates

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 8 / 21

Abstract Transformers for Pointer Updates

x.next:=z;

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 8 / 21

Abstract Transformers for Pointer Updates

x.next:=z;

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 8 / 21

Abstract Transformers for Pointer Updates

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 8 / 21

Abstract Transformers for Pointer Updates

z:=x;

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 8 / 21

Abstract Transformers for Pointer Updates

z:=x;

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 8 / 21

Widening

Abstraction on forest automata (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

q1 q2 q3

TA

next next

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 9 / 21

Widening

Abstraction on forest automata (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

q1 q2 q3

TA

next next

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 9 / 21

Widening

Abstraction on forest automata (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

q1 q2 q3

TA

next next

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 9 / 21

Widening

Abstraction on forest automata (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

q1 q2 q3

TA

next next

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 9 / 21

Widening

Abstraction on forest automata (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

k = 1

q1 q2 q3

TA

next next

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 9 / 21

Widening

Abstraction on forest automata (TA1, . . . ,TAn)

▸ collapse states of component TAs ; (TAα
1 , . . . ,TAα

n)

▸ finite-height abstraction (from ARTMC)
• collapse states with languages whose prefixes match up to height k

k = 1

q1 q2 q3

TA

next next α; q∗ q3
next

next TAα

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 9 / 21

Nondeterministic Tree Automata

For efficiency reasons, we never determinize TAs.

All operations done on NTAs, including:
▸ inclusion checking: based on antichains and simulations,

• discarding macro-states during an implicit subset construction,
• inclusion on (normalized) FA can be checked component-wise

—used for detecting the fixpoint

▸ size reduction: based on simulation equivalences.
• collapsing simulation-equivalent states.

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 10 / 21

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees,
SLLs with head/tail pointers, trees with root pointers, ...

/ fails for more complex data structures
▸ unbounded number of cut-points ;∞ classes of H

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 11 / 21

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees,
SLLs with head/tail pointers, trees with root pointers, ...

/ fails for more complex data structures
▸ unbounded number of cut-points ;∞ classes of H

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 11 / 21

Summary

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

. . .The so-far-presented:

, works well for singly linked lists (SLLs), trees,
SLLs with head/tail pointers, trees with root pointers, ...

/ fails for more complex data structures
▸ unbounded number of cut-points ;∞ classes of H

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 11 / 21

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs

▸ intuition: replace repeated subgraphs by a single symbol,
hiding some cut-points

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪
⎭

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 12 / 21

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪
⎭

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 12 / 21

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points

doubly linked segment

Example: a box DLS

: L(DLS) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪
⎭

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 12 / 21

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪
⎭

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 12 / 21

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪
⎭

. . .x:

next next next next next

prev prev prev prev prev

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 12 / 21

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪
⎭

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 12 / 21

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪
⎭

1 . . .x:
DLS DLS DLS DLS DLS

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 12 / 21

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪
⎭

q1 q2 q3 q4 q5 . . .
DLS DLS DLS DLS DLS

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 12 / 21

Hierarchical Forest Automata

Hierarchical Forest Automata
▸ FAs are symbols (boxes) of FAs of a higher level
▸ a hierarchy of FAs
▸ intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪
⎭

q∗ qf

DLS

DLS

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 12 / 21

Learning of Boxes

The Challenge

How to find the “right” boxes?

CAV’11 — database of boxes
CAV’13 — automatic discovery

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 13 / 21

Learning of Boxes

The Challenge

How to find the “right” boxes?

CAV’11 — database of boxes
CAV’13 — automatic discovery

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 13 / 21

Learning of Boxes

compromise between

▸ reusability: use on different heaps of the same kind
; use small boxes

▸ ability to hide cut-points
; do not use too small boxes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes

▸ ability to hide cut-points
; do not use too small boxes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes

▸ ability to hide cut-points
; do not use too small boxes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes

▸ ability to hide cut-points
; do not use too small boxes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes

▸ ability to hide cut-points
; do not use too small boxes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes

▸ ability to hide cut-points
; do not use too small boxes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes

▸ ability to hide cut-points
; do not use too small boxes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes

▸ ability to hide cut-points
; do not use too small boxes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes
▸ ability to hide cut-points

; do not use too small boxes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes
▸ ability to hide cut-points

; do not use too small boxes

x:
next next next

tail tail tail

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes
▸ ability to hide cut-points

; do not use too small boxes

1 2x:
next next next

tail tail tail

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes
▸ ability to hide cut-points

; do not use too small boxes

1 2x:
next next next

tail tail tail

B1

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes
▸ ability to hide cut-points

; do not use too small boxes

1 2x:
next next B1

tail tail

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes
▸ ability to hide cut-points

; do not use too small boxes

1 2x:
next next B1

tail tail

B2

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes
▸ ability to hide cut-points

; do not use too small boxes

1 2x:
next B2

tail

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes
▸ ability to hide cut-points

; do not use too small boxes

1 2x:
next B2

tail

B3

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes
▸ ability to hide cut-points

; do not use too small boxes

1x:
B3

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes

compromise between
▸ reusability: use on different heaps of the same kind

; use small boxes
▸ ability to hide cut-points

; do not use too small boxes

1x:
B3

B1B2B3

list of any length ;∞ hierarchy

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 14 / 21

Learning of Boxes: Knots

1 Smallest subgraphs meaningful to be folded:

2 Handle interface
▸ compose intersecting knots prevent∞ nesting

▸ enclose paths from inner nodes to leaves prevent∞
interface nodes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 15 / 21

Learning of Boxes: Knots

1 Smallest subgraphs meaningful to be folded:

2 Handle interface

▸ compose intersecting knots prevent∞ nesting

▸ enclose paths from inner nodes to leaves prevent∞
interface nodes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 15 / 21

Learning of Boxes: Knots

1 Smallest subgraphs meaningful to be folded:

2 Handle interface
▸ compose intersecting knots prevent∞ nesting

▸ enclose paths from inner nodes to leaves prevent∞
interface nodes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 15 / 21

Learning of Boxes: Knots

1 Smallest subgraphs meaningful to be folded:

2 Handle interface
▸ compose intersecting knots prevent∞ nesting

▸ enclose paths from inner nodes to leaves prevent∞
interface nodes

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 15 / 21

Learning of Boxes: Knots

3 Complexity: max number of
cutpoints in basic knots

▸ find basic knots with 1,2, . . . cut-points

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 16 / 21

Learning of Boxes: Knots

complexity = 2

complexity = 5

3 Complexity: max number of
cutpoints in basic knots

▸ find basic knots with 1,2, . . . cut-points

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 16 / 21

Learning of Boxes: Knots

complexity = 2

complexity = 5

3 Complexity: max number of
cutpoints in basic knots

▸ find basic knots with 1,2, . . . cut-points

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 16 / 21

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal
Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Abstraction Loop
2 Unfold solo boxes
3 repeat
4 Abstract
5 Fold
6 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 17 / 21

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal
Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Abstraction Loop
2 Unfold solo boxes
3 repeat
4 Abstract
5 Fold
6 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 17 / 21

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal
Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Abstraction Loop
2 Unfold solo boxes
3 repeat
4 Abstract
5 Fold
6 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 17 / 21

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Learning of Boxes: Example

tree with root ptrs of any height

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
DLS

D
LS

DLS

D
LS

DLS 1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Learning of Boxes: Example

tree-rootptr
tre

e-
ro

ot
pt

r

tree-rootptr

DLSDLS 1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Learning of Boxes: Example

tree-rootptr
tre

e-
ro

ot
pt

r

tree-rootptr

DLSDLS 1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Learning of Boxes: Example

circular-DLL-of
-trees-rootptr

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 18 / 21

Experimental Results

implemented in the Forester tool

comparison with Predator (a state-of-the-art tool for lists)
▸ winner of HeapManipulation and MemorySafety of SV-COMP’13

Table: Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 19 / 21

Experimental Results

implemented in the Forester tool
comparison with Predator (a state-of-the-art tool for lists)

▸ winner of HeapManipulation and MemorySafety of SV-COMP’13

Table: Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 19 / 21

Experimental Results

implemented in the Forester tool
comparison with Predator (a state-of-the-art tool for lists)

▸ winner of HeapManipulation and MemorySafety of SV-COMP’13

Table: Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 19 / 21

Conclusion

Shape analysis with forest automata:
fully automated
very flexible framework
Forester tool
successfully verified:

▸ (singly/doubly linked (circular)) lists (of (. . .) lists)
▸ trees
▸ skip lists

not covered here:
▸ support for pointer arithmetic
▸ tracking ordering relations

• P. Abdulla, L. Holı́k, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
Verification of Heap Manipulating Programs with Ordered Data
by Extended Forest Automata. In Proc. of ATVA’13.

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 20 / 21

Future work

CEGAR loop
▸ red-black trees, . . .

concurrent data structures
▸ lockless skip lists, . . .

recursive boxes
▸ B+ trees, . . .

Ondra Lengál (Brno UT) Shape Analysis with Forest Automata TAS @ UPMARC 21 / 21

	Heap Representation
	Learning of Boxes

