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Overview

SMT String constraint solving
Checking satisfiability of formulae with string variables and operations

x = yz ∧ y ̸= u︸ ︷︷ ︸
(dis)equations

∧

regular constraints︷ ︸︸ ︷
x ∈ (ab)∗a+(b|c)∧

length constraints︷ ︸︸ ︷
|x| = 2|u|+ 1 ∧ contains(u, replace(z, b, c)) ∧ . . .︸ ︷︷ ︸

more complex operations

Motivation: large and complex real-world programs need security guarantees
analysis of string manipulating programs (vulnerabilities of web applications)
let x = y . substring (1 , y . length − 1 ) ; x0 = substr(y, 1, |y| − 1) ∧
let z = y . concat ( x ) ; z0 = y · x0 ∧
assert ( x === z ) ; x0 ̸= z0

Amazon web services: cloud access control policies [Rungta-CAV’22]
action : deactivate , A = ”deactivate” ∧
resource : ( a1 , a2 ) , (R = ”a1” ∨ R = ”a2”) ∧
condition : {StringLike , s3 : prefix , home*} prefix ∈ home∗

verification of cockpit systems (Boeing), etc.
⇝ efficient and expressive SMT string solvers are needed
improving efficiency, but also expressiveness (on the edge of decidability)
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Overview

Z3-Noodler: SMT string solver

Noodler
string theory

LIA solver
instance

Mata LIA solver

core string
rewriter

SMT string formula

1 2

43

Z3

Based on SMT solver Z3
formula parsed by Z3 and handled
by DPPL(T)-based framework
Z3-Noodler replaces Z3’s string theory solver
modified string rewriter (simplifications)
uses Z3’s linear arithmetic (LIA) theory solver

Uses Nondeterministic finite automata (NFAs)
Uses Mata1 automata library for efficient
handling of finite automata and operations
Explicit alphabets sufficient

The fastest string solver: winner of SMT-COMP’24 string division

1Chocholatý, D. et al. Mata: A Fast and Simple Finite Automata Library. In: TACAS’24
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1Chocholatý, D. et al. Mata: A Fast and Simple Finite Automata Library. In: TACAS’24
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Overview

Our previous work

x = yz ∧ y ̸= u︸ ︷︷ ︸
(dis)equations

∧
regular constraints︷ ︸︸ ︷

x ∈ (ab)∗a+(b|c)∧
length constraints︷ ︸︸ ︷
|x| = 2|u|+ 1∧ contains(u, replace(z, b, c)) ∧ . . .︸ ︷︷ ︸
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more complex operations

FM’23
tight integration of equations with
regular constraints
works with languages of variables
encoded as NFAs
refining the languages of variables
algorithm stabilization (noodlification)

OOPSLA’23
combines FM’23 with Align&Split
linear-integer arithmetic (LIA) encoding
complete for chain-free fragment
complex operations reduced to simpler
ones (regular, length constraints, and
equations)

D. Chocholatý, V. Havlena, L. Holı́k, J. Sı́č, et al. · Z3-Noodler 1.3: Shepherding Decision Procedures for Strings with Model Generation · 3 / 21



Overview

Our previous work

x = yzx = yzx = yz ∧ y ̸= uy ̸= uy ̸= u︸ ︷︷ ︸
(dis)equations

∧
regular constraints︷ ︸︸ ︷

x ∈ (ab)∗a+(b|c)x ∈ (ab)∗a+(b|c)x ∈ (ab)∗a+(b|c)∧
length constraints︷ ︸︸ ︷
|x| = 2|u|+ 1|x| = 2|u|+ 1|x| = 2|u|+ 1∧contains(u, replace(z, b, c))contains(u, replace(z, b, c))contains(u, replace(z, b, c)) ∧ . . .︸ ︷︷ ︸

(some) more complex operations

FM’23
tight integration of equations with
regular constraints
works with languages of variables
encoded as NFAs
refining the languages of variables
algorithm stabilization (noodlification)

OOPSLA’23
combines FM’23 with Align&Split
linear-integer arithmetic (LIA) encoding
complete for chain-free fragment
complex operations reduced to simpler
ones (regular, length constraints, and
equations)
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(some) more complex operations

TACAS’24: tool paper for Z3-Noodler v1.0

SAT’24
Extends OOPSLA’23 procedure with handling string-integer conversions

to int/from int - string to/from integer:
to int('0324') = 324 to int('34a') = −1 from int(134) = '134'

to code/from code - char to/from (Unicode) code point:
to code('0') = 48 from code(97) = 'a' to code('ab') = −1

encoding conversions into LIA formulae
L ∧ φlen ∧ φconvL ∧ φlen ∧ φconvL ∧ φlen ∧ φconv is satisfiable, or find a different solution
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TACAS’25

This work

Earlier work: General fast decision procedure stabilization
Improve further by combining with specialized decision procedures
for specific (theory) fragments or constraints

An interface for selecting appropriate decision procedures
pure regular constraints (regexes as NFAs)
quadratic equations (Nielsen transformation)
lengths for block acyclic constraints

Model generation for all decision procedures
for stabilization
for the specialized decision procedures
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TACAS’25

Pure regular constraints: General regular constraints

∧

1≤i≤n

x ∈ Si ∧
∧

1≤i≤m

x ̸∈ Ri P =
⋂

1≤i≤n

aut(Si) U =
⋃

1≤i≤m

aut(Ri)

Problem: Expensive complement computation (determinization) for negations

Solution: Postpone the construction of the complement, construct lazily

Solved by automata-/Regex-based reasoning
Expensive emptiness check: the difference of P and U (P ∩U∁U∁U∁ = ∅)
Instead: Simple inclusion checking: L(P) ⊆ L(U)L(U)L(U) does not hold

antichain-based algorithms: perform well on real-world problems
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TACAS’25

Pure regular constraints: Single regular constraint

Analyze regexes (x ∈ R, x ̸∈ R) to extract properties as bool flags
Propagate flags (e, u, ℓ) through operations:

e ∈ B3: the regex includes the empty word
u ∈ B3: the regex is universal
ℓ ∈ N ∪ {undef}: the minimum length of a word recognized by the regex

R1 : (e1, u1, ℓ1) R2 : (e2, u2, ℓ2) re.++(R1,R2)

(e1 ∧ e2, u, ℓ1 + ℓ2), ℓ1 + ℓ2 > 0⇝ u = ⊥, otherwise u = undef

Completely avoid the NFA construction by reasoning about the flags
undef: only when flags are insufficient⇝ construct NFAs

D. Chocholatý, V. Havlena, L. Holı́k, J. Sı́č, et al. · Z3-Noodler 1.3: Shepherding Decision Procedures for Strings with Model Generation · 6 / 21



TACAS’25

Pure regular constraints: Single regular constraint

Analyze regexes (x ∈ R, x ̸∈ R) to extract properties as bool flags
Propagate flags (e, u, ℓ) through operations:

e ∈ B3: the regex includes the empty word
u ∈ B3: the regex is universal
ℓ ∈ N ∪ {undef}: the minimum length of a word recognized by the regex

R1 : (e1, u1, ℓ1) R2 : (e2, u2, ℓ2) re.++(R1,R2)

(e1 ∧ e2, u, ℓ1 + ℓ2), ℓ1 + ℓ2 > 0⇝ u = ⊥, otherwise u = undef

Completely avoid the NFA construction by reasoning about the flags
undef: only when flags are insufficient⇝ construct NFAs
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TACAS’25

Pure regular constraints: Model generation

General regular constraints:
Simple regexes: direct generation from regexes
Automata construction: Depth-First-Search through NFAs in found solutions

Lazy construction of P ∩U∁U∁U∁ (exit on first accepted word)

Single regular constraint:
Positive regex and no complex operations (intersection, complement, or difference):
direct generation from the regex
Otherwise: Automata construction
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TACAS’25

Quadratic equations: Nielsen transformation
Quadratic: each variable has at most two occurrences in a conjunction of equations
Create a Nielsen graph (finite for a quadratic system of equations)

Node: set of equations, Nielsen tranformation metarules:

(x ↪→ αx) : E′ ⊎ {xu = αv}
trim(E[x/αx])

E = E′ ⊎ {xu = αv}(x ↪→ αx) : E′ ⊎ {xu = αv}
trim(E[x/αx])

E = E′ ⊎ {xu = αv}(x ↪→ αx) : E′ ⊎ {xu = αv}
trim(E[x/αx])

E = E′ ⊎ {xu = αv} (x ↪→ ϵ) : E′ ⊎ {xu = v}
trim(E[x/ϵ])

E = E′ ⊎ {xu = v}(x ↪→ ϵ) : E′ ⊎ {xu = v}
trim(E[x/ϵ])

E = E′ ⊎ {xu = v}(x ↪→ ϵ) : E′ ⊎ {xu = v}
trim(E[x/ϵ])

E = E′ ⊎ {xu = v}

xaby = yabx abxy = yabx bxay = yabxxaby = abyxxaby = byax

aby = yabbay = yab

xab = abxxab = bax ϵ = ϵ

y ↪→ xy y ↪→ ay

y ↪→ by

x ↪→ yxx ↪→ ax

x ↪→ bx

y ↪→ ϵ

x ↪→ ax

x ↪→ bx

x ↪→ ϵ

y ↪→ ay

y ↪→ by

x ↪→ ϵ

y ↪→ ϵ
y ↪→ ϵ

x ↪→ ϵ

x ↪→ ϵ

y ↪→ ϵ

x ↪→ ϵ

y ↪→ ϵ
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TACAS’25

Quadratic equations: Counter abstraction system
Derived from the Nielsen graph [LIN-LMCS’21]

heuristic for handling lengths in Nielsen transformation
Infinitely many runs⇝ heuristic: selecting runs with self-loops
Self-loop saturation

xaby = yabx abxy = yabx bxay = yabxxaby = abyxxaby = byax

aby = yabbay = yab

xab = abxxab = bax ϵ = ϵ

y := x + y y := y + 1

y := y + 1

x := y + xx := x + 1

x := x + 1

y := 0

x := x + 1

x := x + 1

x := 0

y := y + 1

y := y + 1

x := 0
y := 0

y := 0

x := 0

x := 0

y := 0

x := 0

y := 0

x := x + 2x := x + 2

y := y + 2y := y + 2
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TACAS’25

Quadratic equations: Derivation of a LIA formula

xaby = yabx ∧ len(x) ≥ 50

xaby = yabx

xab = abx

ϵ = ϵ

y := 0

x := 0
x := x + 2

NFA with counter updates on edges
under-approximation: selected runs into LIA
formulae
Still often enough for unsat
Fresh counter variables for each step

φ(x, y) ⇔ x0 = 0 ∧ y0 = 0 ∧
x1 = 0 ∧ y1 = y0 ∧
x2 = x1 + 2k ∧ y2 = y1 ∧
y3 = 0 ∧ x3 = x2 ∧
x = x3 ∧ y = y3

Is φ(len(x),len(y)) ∧ len(x) ≥ 50 satisfiable?
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Quadratic equations: Derivation of a LIA formula
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Quadratic equations: Model generation

From counter abstraction system from runs
Remember Nielsen rules for the counter updates, and number of times each
self-loop was taken
Model constructed by following a run with applied rules
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TACAS’25

Length-based decision procedure
x = abyc ∧ x = zw ∧ x = uddc ∧ y = vad ∧ y = as

Large systems (many equations, unrestricted variables and literals)
Symbolically encode all possible alignments of literals (their
positions) into LIA formulae
Solving string formula converted into solving LIA formula

Equational blocks of a variable
Block string constraint: a conjunction of equational blocks⇝ block
graph
Block-acyclic string constraint: acyclic block graph
Block-acyclic string constraints extended with length constraints

∧

1≤i≤n

x = Ri

x = abyc
x = zw
x = uddc

y = vad
y = as
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Length-based decision procedure: Alignments to LIA formula

x = abyc ∧ x = zw ∧ x = uddc ∧ y = vad ∧ y = as

x = abyc
x = zw
x = uddc

y = vad
y = as

ℓ1 y ℓ2

Bx
ℓ1
= 0 Bx

y = Bx
ℓ1
+ len(ℓ1) Bx

ℓ2
= Bx

y + len(y)
Bx
ℓ4
= Bx

y + By
ℓ4

z w
Bx

z Bx
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v ℓ4

By
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s
y =

0 len(y)
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Length-based decision procedure: Blocks with cycles

Extension to blocks with cycles using under-approximation
Shared non-block variables between two blocks with a cycle

x = ayzzz ∧ x = ab ∧ y = bzzz
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Length-based decision procedure: Model generation

Model for each variable derived from the positions of the literals
Iteratively filling in an empty skeleton for each variable with the corresponding
string literals
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Stabilization: Model generation

Recursive construction of models for variables
Language assignments for variables
Restrict to found lengths
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TACAS’25

Experimental evaluation

SMT-LIB benchmarks, split into 3 categories:
Regex (mainly regular and length constraints): AutomatArk, Denghang, Redos,
StringFuzz, Sygus-qgen
Equations (mostly word equations and length constraints with some small number of
more complex constraints): Kaluza, Kepler, Norn, Omark, Slent, Slog, Webapp, Woorpje
Predicates-small (complex predicates): FullStrInt, LeetCode, PyEx, StrSmallRw,
Transducer+

Timeout: 120 s, memory limit: 8 GiB
Significantly faster than other solvers
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TACAS’25

Experimental evaluation: Procedures comparison
number
of calls

Regex proc. Nielsen transf. Length-based Stabillization-based

called solved called solved called solved called solved

Sygus-qgen 747 100% 100% 0% 0% 0% 0% 0% 0%
Denghang 999 0.10% 0.10% 0% 0% 96.10% 96.10% 3.80% 3.80%
AutomatArk 20,062 99.97% 99.97% 0% 0% 0.02% 0.02% 0.01% 0.01%
StringFuzz 9,941 46.45% 46.45% 0% 0% 27.98% 27.96% 25.58% 25.58%
Redos 2,952 70.02% 70.02% 0% 0% 11.21% 11.21% 18.77% 18.77%

Full Regex 34,701 79.21% 79.21% 0% 0% 11.75% 11.74% 9.04% 9.04%

LeetCode 874 1.37% 1.37% 0% 0% 59.27% 16.70% 81.92% 81.92%
StrSmallRw 6,327 0% 0% 0% 0% 4.85% 3.75% 96.25% 96.25%
PyEx 26,045 0.10% 0.10% 0% 0% 0.08% 0.08% 99.82% 99.82%
FullStrInt 9,003 0.04% 0.04% 0% 0% 0.26% 0.26% 99.70% 99.70%
Transducer+ 0 - - - -

Full Predicates-small 42,249 0.10% 0.10% 0% 0% 2.06% 1.01% 98.89% 98.89%

Norn 918 11.76% 11.76% 0% 0% 6.86% 6.86% 81.37% 81.37%
Slog 1,565 25.37% 25.37% 0% 0% 0.13% 0.13% 74.50% 74.50%
Slent 1,489 0.40% 0.40% 0% 0% 35.19% 30.09% 69.51% 69.51%
Omark 9 0% 0% 11.11% 11.11% 11.11% 0% 88.89% 88.89%
Kepler 579 0% 0% 99.83% 99.83% 0% 0% 0% 0%
Woorpje 478 0.84% 0.84% 43.10% 42.47% 30.96% 27.20% 20.50% 20.50%
Webapp 381 0.52% 0.52% 0% 0% 2.36% 0.26% 99.21% 99.21%
Kaluza 11,222 35.31% 35.31% 0% 0% 63.45% 61.78% 2.91% 2.91%

Full Equations 16,641 26.92% 26.92% 4.72% 4.70% 47.27% 45.53% 22.59% 22.59%

All 93,591 34.20% 34.20% 0.84% 0.84% 13.69% 12.91% 52.01% 52.01%
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TACAS’25

Experimental evaluation: Generating models

Regex Equations Predicates-small All
(32,242) (25,727) (45,436) (103,405)

solved time solved time solved time solved time

Z3-Noodler 32,232 3,688 25,301 1,147 45,035 6,353 102,568 11,118
Z3-NoodlerM 32,228 4,010 25,299 1,456 45,035 7,321 102,562 12,787
cvc5 29,290 59,705 25,214 2,529 45,337 11,627 99,841 73,861
cvc5M 29,287 59,892 25,214 2,756 45,337 12,220 99,838 74,868
Z3 29,075 51,379 24,569 3,240 44,101 74,094 97,745 128,712
Z3M 29,064 51,830 24,571 4,013 44,096 74,708 97,731 130,551
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Experimental evaluation: Comparison with other solvers

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

cv
c5

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

Z3

Times are in seconds, axes are logarithmic, timeouts on side dashed lines (120 s)
•Regex, • Equations, and •Predicates-small.
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Conclusion

Combination of decision procedures
Specialized decision procedures
(regular and length constraints, quadratic equations)
Model generation
Z3-Noodler:
https://github.com/VeriFIT/z3-noodler

The fastest string solver

Future work:
using transducers for replace all operations (nearly done)
better handling of negated contains
application of Z3-Noodler on the analysis of the security of web applications
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FM’23

Noodlification (FM’23) on an example

xyx = zu ∧ ww = xa ∧ u ∈ (baba)∗a ∧ z ∈ a(ba)∗ ∧ x ∈ Σ∗ ∧ y ∈ Σ∗ ∧ w ∈ Σ∗

Σ = {a, b}

Regular constraints are collected in a language assignment represented by automata

Lang = {u 7→ (baba)∗a, z 7→ a(ba)∗, x 7→ Σ∗, y 7→ Σ∗, w 7→ Σ∗}

Use equations to refine LangLangLang, starting with xyx = zu
For any solution (assignment v) string s = ν(x) · ν(y) · ν(x) = ν(z) · ν(u) satisfies:

s ∈
x︷︸︸︷
Σ∗

y︷︸︸︷
Σ∗

x︷︸︸︷
Σ∗

=

∩
z︷ ︸︸ ︷

a(ba)∗
u︷ ︸︸ ︷

(baba)∗a

Use right side to refine languages of variables x, y on the left side by noodlification
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Noodlification (FM’23) on an example

xyx = zuxyx = zuxyx = zu ww = xa u 7→ (baba)∗a z 7→ a(ba)∗ x 7→ Σ∗ y 7→ Σ∗ w 7→ Σ∗

Use right side to refine languages of variables x, y on the left side by noodlification

Leads to two noodles:
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Noodlification (FM’23) on an example

xyx = zuxyx = zuxyx = zu ww = xa u 7→ (baba)∗a z 7→ a(ba)∗ x 7→ Σ∗ y 7→ Σ∗ w 7→ Σ∗
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D. Chocholatý, V. Havlena, L. Holı́k, J. Sı́č, et al. · Z3-Noodler 1.3: Shepherding Decision Procedures for Strings with Model Generation · 2 / 14



FM’23

Noodlification (FM’23) on an example

xyx = zuxyx = zuxyx = zu ww = xa u 7→ (baba)∗a z 7→ a(ba)∗ x 7→ aaa y 7→ (ba)∗(ba)∗(ba)∗ w 7→ Σ∗

Use right side to refine languages of variables x, y on the left side by noodlification
Leads to two noodles:

N1N1N1 :

x︷︸︸︷
aaa

y︷ ︸︸ ︷
(ba)∗(ba)∗(ba)∗

x︷︸︸︷
aaa

=

∩
z︷ ︸︸ ︷

a(ba)∗
u︷ ︸︸ ︷

(baba)∗a N2 :

x︷︸︸︷
ϵϵϵ

y︷ ︸︸ ︷
a(ba)∗aa(ba)∗aa(ba)∗a

x︷︸︸︷
ϵϵϵ

=

∩
z︷ ︸︸ ︷

a(ba)∗
u︷ ︸︸ ︷

(baba)∗a

(p, 1)

(p, 2)

(p, 3)

(q, 1)

(q, 2)

(q, 3)

(r, 1)

(r, 2)

(r, 3)

︸ ︷︷ ︸
x

︸ ︷︷ ︸
y

︸ ︷︷ ︸
x

a b

a

a b

a

a b

a
ϵ-
p
ro
d
u
ct

p q r

a, b a, b a, b

Axyx

1

2

3

a b

a

Azu

(p, 1)

(p, 2)

(p, 3)

(q, 1)

(q, 2)

(q, 3)

(r, 1)

(r, 2)

(r, 3)

︸ ︷︷ ︸
x

︸ ︷︷ ︸
y

︸ ︷︷ ︸
x

a b a b a b

a

N1

(p, 1)

(p, 2)

(p, 3)

(q, 1)

(q, 2)

(q, 3)

(r, 1)

(r, 2)

(r, 3)

︸ ︷︷ ︸
x

︸ ︷︷ ︸
y

︸ ︷︷ ︸
x

a b a b

a

N2
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FM’23

Noodlification (FM’23) on an example

xyx = zu ww = xaww = xaww = xa u 7→ (baba)∗a z 7→ a(ba)∗ x 7→ a y 7→ (ba)∗ w 7→ Σ∗

Refine further with ww = xaww = xaww = xa:
w︷︸︸︷
Σ∗

w︷︸︸︷
Σ∗

=

∩
x︷︸︸︷
a

a

a.

Languages in equations now match:
x︷︸︸︷
a

y︷ ︸︸ ︷
(ba)∗

x︷︸︸︷
a

=

=

z︷ ︸︸ ︷
a(ba)∗

u︷ ︸︸ ︷
(baba)∗a and

w︷︸︸︷
a

w︷︸︸︷
a

=

=

x︷︸︸︷
a

a

a.

Lang is a stable solution (we prove this is enough to decide it is SAT)

D. Chocholatý, V. Havlena, L. Holı́k, J. Sı́č, et al. · Z3-Noodler 1.3: Shepherding Decision Procedures for Strings with Model Generation · 3 / 14



FM’23

Noodlification (FM’23) on an example

xyx = zu ww = xaww = xaww = xa u 7→ (baba)∗a z 7→ a(ba)∗ x 7→ a y 7→ (ba)∗ w 7→ aaa

Refine further with ww = xaww = xaww = xa:
w︷︸︸︷
aaa

w︷︸︸︷
aaa

=

∩
x︷︸︸︷
a

a

a.

Languages in equations now match:
x︷︸︸︷
a

y︷ ︸︸ ︷
(ba)∗

x︷︸︸︷
a

=

=

z︷ ︸︸ ︷
a(ba)∗

u︷ ︸︸ ︷
(baba)∗a and

w︷︸︸︷
a

w︷︸︸︷
a

=

=

x︷︸︸︷
a

a

a.

Lang is a stable solution (we prove this is enough to decide it is SAT)
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OOPSLA’23

OOPSLA’23

x = yzx = yzx = yz ∧ y ̸= uy ̸= uy ̸= u︸ ︷︷ ︸
(dis)equations

∧
regular constraints︷ ︸︸ ︷

x ∈ (ab)∗a+(b|c)x ∈ (ab)∗a+(b|c)x ∈ (ab)∗a+(b|c)∧
length constraints︷ ︸︸ ︷
|x| = 2|u|+ 1|x| = 2|u|+ 1|x| = 2|u|+ 1∧contains(u, replace(z, b, c))contains(u, replace(z, b, c))contains(u, replace(z, b, c)) ∧ . . .︸ ︷︷ ︸

(some) more complex operations

FM’23 can handle equations and regular constraints (at least chain-free fragment)
How to handle more complex operations and disequations?
⇝ reduced (at least partially) to simpler constraints

How to handle lengths?
create linear-integer arithmetic (LIA) formula encoding possible lengths of words in
each language in Lang
stable solution Lang does not keep dependencies between lengths of vars
⇝ we use noodlification combined with Align&Split algorithm [Abdulla-CAV’14]
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OOPSLA’23

OOPSLA’23 on example: xx = w ∧ z = xy ∧w ∈ a+ ∧ |z| = 2|w| − |x|

xx = w z = xy w 7→ a+ x 7→ Σ∗ y 7→ Σ∗ z 7→ Σ∗

x = v1 w = v1v1 z = xy v1 7→ a+ w 7→ a+ x 7→ Σ∗ y 7→ Σ∗ z 7→ Σ∗

w = v1v1 z = v1y v1 7→ a+ w 7→ a+ y 7→ Σ∗ z 7→ Σ∗ x 7→ v1

z = v1y v1 7→ a+ y 7→ Σ∗ z 7→ Σ∗ x 7→ v1 w 7→ v1v1

v1 7→ a+ y 7→ Σ∗ x 7→ v1 w 7→ v1v1 z 7→ v1y

xx = wxx = wxx = w z = xy w 7→ a+w 7→ a+w 7→ a+ x 7→ Σ∗x 7→ Σ∗x 7→ Σ∗ y 7→ Σ∗ z 7→ Σ∗

x = v1x = v1x = v1 w = v1v1w = v1v1w = v1v1 z = xy v1 7→ a+v1 7→ a+v1 7→ a+ w 7→ a+ x 7→ Σ∗ y 7→ Σ∗ z 7→ Σ∗x = v1x = v1x = v1 w = v1v1 z = xy v1 7→ a+v1 7→ a+v1 7→ a+ w 7→ a+ x 7→ Σ∗x 7→ Σ∗x 7→ Σ∗ y 7→ Σ∗ z 7→ Σ∗

w = v1v1 z = v1y v1 7→ a+ w 7→ a+ y 7→ Σ∗ z 7→ Σ∗ x 7→ v1x 7→ v1x 7→ v1w = v1v1w = v1v1w = v1v1 z = v1y v1 7→ a+v1 7→ a+v1 7→ a+ w 7→ a+w 7→ a+w 7→ a+ y 7→ Σ∗ z 7→ Σ∗ x 7→ v1

z = v1y v1 7→ a+ y 7→ Σ∗ z 7→ Σ∗ x 7→ v1 w 7→ v1v1w 7→ v1v1w 7→ v1v1z = v1yz = v1yz = v1y v1 7→ a+v1 7→ a+v1 7→ a+ y 7→ Σ∗y 7→ Σ∗y 7→ Σ∗ z 7→ Σ∗z 7→ Σ∗z 7→ Σ∗ x 7→ v1 w 7→ v1v1

v1 7→ a+ y 7→ Σ∗ x 7→ v1 w 7→ v1v1 z 7→ v1yz 7→ v1yz 7→ v1y

Align&Split (xx = w)

Subst (x = v1)

Subst (w = v1v1)

Subst (z = v1y)
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OOPSLA’23

OOPSLA’23 on example: xx = w ∧ z = xy ∧w ∈ a+ ∧ |z| = 2|w| − |x|
v1 7→ a+ y 7→ Σ∗ x 7→ v1 w 7→ v1v1 z 7→ v1y

stable solution (Lang, σ)(Lang, σ)(Lang, σ):
language assignment Lang: v1 7→ a+, y 7→ Σ∗

substitution map σ: x 7→ v1, w 7→ v1v1, z 7→ v1y

LIA formula encoding possible lengths of variables:

φlen
def.⇔

|v1| ≥ 1

∧

|y| ≥ 0

∧

|x| = |v1|

∧

|w| = |v1|+ |v1|

∧

|z| = |v1|+ |y|

ask LIA solver if |z| = 2|w| − |x| ∧ φlen is satisfiable

it is, we have model |v1| = |x| = 1, |w| = |y| = 2, |z| = 3
we can choose any word from Lang(v1) and Lang(y) with correct lengths:

v1 = a and y = bc
models for x, w, and z are computed using the substitution map σ:

x = v1 = a, w = v1v1 = aa, and z = v1y = abc
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SAT’24

How to combine OOPSLA’23 with conversions?

What we have:
stable solution (Lang, σ)(Lang, σ)(Lang, σ)
the LIA part of the initial formula LLL
formula φlenφlenφlen encoding possible lengths of variables
set of conversion constraints CCC = {k = to int(x), y = from code(l), . . . }

How about encoding conversions into LIA formula too?
each conversion constraint c ∈ C encoded into LIA formula φcφcφc

φconvφconvφconv
def.⇔ ∧

c∈C φc
if L ∧ φlen ∧ φconvL ∧ φlen ∧ φconvL ∧ φlen ∧ φconv is satisfiable, we have a solution
otherwise find different stable solution (if possible)
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SAT’24

Handling k = to int(x)

Semantics:
for a valid x (it contains only digits), k is the number represented by x
for an invalid x (it contains some non-digit), k = −1

For stable solution (Lang, σ) we have two distinct cases:
x is mapped to some language Lx in language assignment Lang
x is substituted by x1 · · · xn in substitution map σ

D. Chocholatý, V. Havlena, L. Holı́k, J. Sı́č, et al. · Z3-Noodler 1.3: Shepherding Decision Procedures for Strings with Model Generation · 8 / 14



SAT’24

Handling k = to int(x) when x is in the language assignment
Assume that x 7→ Lx ∈ Lang
LIA formula φk=to int(x) should encode that k is the result of applying to int on
some word from Lx

Generally possible only with non-linear arithmetic

⇝ stronger restriction: Lx is finite (can be mitigated with underapproximations)
We can iterate over all words:

φk=to int(x)
def.⇔

∨

w∈Lx

(
to int(x) = to int(w)

)

Problems:

1. the correspondence between the length of x and the value of to int(x)

⇝ relate words with the corresponding length

2. can easily blow-up

⇝ encode intervals of words instead of single words
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SAT’24

Intervals on an example

Let Lx = [0-7] ∪ [2-5][0-9] ∪ [3-6][0-9][0-9]
We create the following formula:

φk=to int(x)
def.⇔

(0 ≤ to int(x) ≤ 7 ∧ |x| = 1)

∨ (20 ≤ to int(x) ≤ 59 ∧ |x| = 2)
∨ (300 ≤ to int(x) ≤ 699 ∧ |x| = 3)

Easily implementable on automata level
Handling invalid cases makes it a bit more complicated
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D. Chocholatý, V. Havlena, L. Holı́k, J. Sı́č, et al. · Z3-Noodler 1.3: Shepherding Decision Procedures for Strings with Model Generation · 10 / 14



SAT’24

Intervals on an example

Let Lx = [0-7] ∪ [2-5][0-9] ∪ [3-6][0-9][0-9]
We create the following formula:

φk=to int(x)
def.⇔ (0 ≤ to int(x) ≤ 7 ∧ |x| = 1)

∨ (20 ≤ to int(x) ≤ 59 ∧ |x| = 2)

∨ (300 ≤ to int(x) ≤ 699 ∧ |x| = 3)

Easily implementable on automata level
Handling invalid cases makes it a bit more complicated
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SAT’24

Handling k = to int(x) when x is in the substitution map

Assume that x 7→ x1 · · · xn ∈ σ

In stable solution, each xi is mapped to some Lxi in the language assignment Lang
We can create LIA formulas encoding each to int(xi) using the interval method
For each (l1, . . . , ln) with li some possible length of xi we create

to int(x) =
∑

1≤i≤n

(
to int(xi) · 10ℓi+1+···+ℓn

)
∧

∧

1≤i≤n

(
|xi| = ℓi

)

φk=to int(x) is defined as a disjunction of these equations
Again, invalid cases make it more complicated
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SAT’24

Handling k = to code(x)
Semantics:

for a valid x (a char), k is the code points of x
for an invalid x (not a char), k = −1

Valid part is always finite
no problem with infinite languages
we can iterate over all characters:

φk=to code(x)
def.⇔

∨

a∈Lx∩Σ
to code(x) = to code(a) ∧ |x| = 1

Still problem with a blow-up (Σ is large)
set Σe of explicitly used symbols in formula is usually small
introduce a special symbol δ representing all unused symbols
work with a much smaller alphabet Σ = Σe ∪ {δ}
special handling of δ

Needs to also encode the correspondence between to code(x) and to int(x)
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SAT’24

Handling from int/from code

Very similar to to int/from code

Instead of constraining the result, we want to constrain the argument
We can use nearly the same encoding
Slight difference in handling invalid cases
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SAT’24

Handling word disequations trough to code

In OOPSLA’23 we showed how to handle arbitrary disequation s ̸= t:

φs̸=t
def.⇔ |s| ̸= |t|∨

(
s = x1a1y1∧ t = x2a2y2∧|x1| = |x2|∧a1 ∈ Σ∧a2 ∈ Σ∧

dist(a1,a2)︷ ︸︸ ︷
a1 ̸= a2

)

Convoluted LIA formula dist(a1, a2) computed after getting stable solution
Important: this encoding has no impact on chain-free fragment
Problem: encoding of dist(a1, a2) is incompatible with conversions
Solution:

dist(a1, a2)
def.⇔ to code(a1) ̸= to code(a2)

Still no impact on chain-free fragment
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