Z3-Noodler 1.3: Shepherding Decision Procedures for Strings with Model Generation

or How to Select Appropriate Decision Procedures and Generate Models in 73-Noodler

David Chocholatý, Voitěch Havlena, Lukáš Holík, Jan Hranička, Ondřej Lengál, and Juraj Síč Brno University of Technology, Czech Republic

SMT String constraint solving

Checking satisfiability of formulae with string variables and operations

regular constraints length constraints $x = yz \land y \neq u \land x \in (ab)^* a^+(b|c) \land |x| = 2|u| + 1 \land contains(u, replace(z, b, c)) \land \dots$ (dis)equations more complex operations

SMT String constraint solving

Checking satisfiability of formulae with string variables and operations

```
regular constraints length constraints
x = yz \land y \neq u \land x \in (ab)^* a^+(b|c) \land |x| = 2|u| + 1 \land contains(u, replace(z, b, c)) \land \dots
                                                                           more complex operations
```

- Motivation: large and complex real-world programs need security quarantees
 - analysis of string manipulating programs (vulnerabilities of web applications)

```
let x = y. substring (1, y.length - 1); x_0 = substr(y, 1, |y| - 1) \land
let z = v.concat(x):
                                                     z_0 = v \cdot x_0 \wedge
assert(x === z):
                                                     x_0 \neq z_0
```

Amazon web services: cloud access control policies [Rungta-CAV'22] action: deactivate. $A = "deactivate" \land$ $(R = "a1" \lor R = "a2") \land$ resource: (a1, a2),

condition: {StringLike, s3:prefix, home*} $prefix \in home^*$

verification of cockpit systems (Boeing), etc.

SMT String constraint solving

Checking satisfiability of formulae with string variables and operations

```
regular constraints length constraints
x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land contains(u, replace(z, b, c)) \land \dots
                                                                           more complex operations
```

- Motivation: large and complex real-world programs need security quarantees
 - analysis of string manipulating programs (vulnerabilities of web applications)

```
let x = y. substring (1, y.length - 1); x_0 = substr(y, 1, |y| - 1) \land
let z = v.concat(x):
                                                     z_0 = v \cdot x_0 \wedge
assert(x === z):
                                                     x_0 \neq z_0
```

Amazon web services: cloud access control policies [Rungta-CAV'22] action: deactivate. A = "deactivate" ∧ $(R = "a1" \lor R = "a2") \land$ resource: (a1, a2),

condition: {StringLike, s3:prefix, home*} $prefix \in home^*$

- verification of cockpit systems (Boeing), etc.
- efficient and expressive SMT string solvers are needed
- improving efficiency, but also expressiveness (on the edge of decidability)

Z3-Noodler: SMT string solver

- Based on SMT solver Z3
 - formula parsed by Z3 and handled by DPPL(T)-based framework
 - Z3-Noodler replaces Z3's string theory solver
 - modified string rewriter (simplifications)
 - uses Z3's linear arithmetic (LIA) theory solver

¹Chocholatý, D. et al. Mata: A Fast and Simple Finite Automata Library. In: TACAS'24

Z3-Noodler: SMT string solver

- Based on SMT solver Z3
 - formula parsed by Z3 and handled by DPPL(T)-based framework
 - Z3-Noodler replaces Z3's string theory solver
 - modified string rewriter (simplifications)
 - uses **Z3's linear arithmetic** (LIA) theory solver
- Uses Nondeterministic finite automata (NFAs)
 - Uses Mata¹ automata library for efficient handling of finite automata and operations
 - **Explicit alphabets** sufficient

The fastest string solver: winner of SMT-COMP'24 string division

¹Chocholatý, D. et al. Mata: A Fast and Simple Finite Automata Library. In: TACAS'24

$$\underbrace{x = yz \land y \neq u}_{\textit{(dis)equations}} \land \underbrace{x \in (ab)^*a^+(b|c)}_{\textit{length constraints}} \land \underbrace{(ab)^*a^+(b|c)}_{\textit{length constraints}} \land \underbrace{(ab)^*a^+(b|c)}_{\textit{more complex operations}} \land \underbrace$$

$$\underbrace{x = yz \land y \neq u \land x \in (ab)^* a^+(b|c)}_{(dis)equations} \land \underbrace{|x| = 2|u| + 1}_{length \ constraints} \land \underbrace{|x| = 2|u| + 1}_{more \ complex \ operations} \land \underbrace{|x| = 2|u| + 1}_{more \ complex \ operations}$$

FM'23

- **tight integration** of equations with regular constraints
- works with languages of variables encoded as NFAs
- refining the languages of variables
- algorithm **stabilization** (**noodlification**)

$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land \underbrace{\text{contains}(u, \text{replace}(z, b, c)) \land \dots}_{\text{(some) more complex operations}}$$

FM'23

- **tight integration** of equations with regular constraints
- works with languages of variables encoded as NFAs
- refining the languages of variables
- algorithm stabilization (noodlification)

OOPSLA'23

- combines FM'23 with Align&Split
- linear-integer arithmetic (LIA) encoding
- complete for chain-free fragment
- complex operations reduced to simpler ones (regular, length constraints, and equations)

$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land \underbrace{\text{contains}(u, \text{replace}(z, b, c))}_{\text{(some) more complex operations}}$$

TACAS'24: tool paper for Z3-Noodler v1.0

$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land \underbrace{\text{contains}(u, \text{replace}(z, b, c))}_{\text{(dis)equations}} \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land \underbrace{\text{contains}(u, \text{replace}(z, b, c))}_{\text{(some) more complex operations}}$$

TACAS'24: tool paper for Z3-Noodler v1.0 **SAT'24**

- Extends OOPSLA'23 procedure with handling string-integer conversions
 - **to_int/from_int** string to/from integer: $to_{int}('0324') = 324$ $to_{int}('34a') = -1$ $from_{int}(134) = '134'$
 - to_code/from_code char to/from (Unicode) code point:
 - $to_code('0') = 48$ from_code(97) = 'a' to_code('ab') = -1
- encoding conversions into LIA formulae
 - **L** $\wedge \varphi_{len} \wedge \varphi_{conv}$ is satisfiable, or find a different solution

This work

- Earlier work: General fast decision procedure stabilization
- Improve further by combining with specialized decision procedures for specific (theory) fragments or constraints

This work

- Earlier work: General fast decision procedure stabilization
- Improve further by combining with specialized decision procedures for specific (theory) fragments or constraints
- An interface for selecting appropriate decision procedures
 - **pure regular constraints** (regexes as NFAs)
 - quadratic equations (Nielsen transformation)
 - lengths for block acyclic constraints

This work

- Earlier work: General fast decision procedure stabilization
- Improve further by combining with specialized decision procedures for specific (theory) fragments or constraints
- An interface for selecting appropriate decision procedures
 - **pure regular constraints** (regexes as NFAs)
 - quadratic equations (Nielsen transformation)
 - lengths for block acyclic constraints
- Model generation for all decision procedures
 - for stabilization
 - for the specialized decision procedures

Pure regular constraints: General regular constraints

$$\bigwedge_{1 \le i \le n} x \in \mathcal{S}_i \wedge \bigwedge_{1 \le i \le m} x \not\in \mathcal{R}_i \qquad P = \bigcap_{1 \le i \le n} \operatorname{aut}(\mathcal{S}_i) \qquad U = \bigcup_{1 \le i \le m} \operatorname{aut}(\mathcal{R}_i)$$

Problem: Expensive complement computation (determinization) for negations

Pure regular constraints: General regular constraints

$$\bigwedge_{1 \le i \le n} x \in \mathcal{S}_i \land \bigwedge_{1 \le i \le m} x \notin \mathcal{R}_i \qquad P = \bigcap_{1 \le i \le n} \operatorname{aut}(\mathcal{S}_i) \qquad U = \bigcup_{1 \le i \le m} \operatorname{aut}(\mathcal{R}_i)$$

- Problem: Expensive complement computation (determinization) for negations
- Solution: Postpone the construction of the complement, construct lazily
- Solved by automata-/Regex-based reasoning
- **Expensive emptiness check**: the difference of P and U ($P \cap U^{\complement} = \emptyset$)
- Instead: Simple inclusion checking: $L(P) \subseteq L(U)$ does not hold
 - **antichain-based algorithms**: perform well on real-world problems

Pure regular constraints: Single regular constraint

- Analyze regexes $(x \in \mathcal{R}, x \notin \mathcal{R})$ to extract properties as bool flags
- **Propagate flags** (e, u, ℓ) through operations:
 - $e \in \mathbb{B}_3$: the regex includes the empty word
 - $u \in \mathbb{B}_3$: the regex is universal
 - $\ell \in \mathbb{N} \cup \{\text{undef}\}$: the minimum length of a word recognized by the regex

$$R_1:(e_1,u_1,\ell_1)$$
 $R_2:(e_2,u_2,\ell_2)$ re.++ (R_1,R_2)
 $(e_1 \land e_2,u,\ell_1+\ell_2),\ell_1+\ell_2>0 \rightsquigarrow u=\bot$, otherwise $u=$ undef

Pure regular constraints: Single regular constraint

- Analyze regexes $(x \in \mathcal{R}, x \notin \mathcal{R})$ to extract properties as bool flags
- **Propagate flags** (e, u, ℓ) through operations:
 - $lacksymbol{e} e \in \mathbb{B}_3$: the regex includes the empty word
 - $u \in \mathbb{B}_3$: the regex is universal
 - $\ell \in \mathbb{N} \cup \{\text{undef}\}$: the minimum length of a word recognized by the regex

$$R_1:(e_1,u_1,\ell_1)$$
 $R_2:(e_2,u_2,\ell_2)$ re.++ (R_1,R_2) $(e_1 \wedge e_2,u,\ell_1+\ell_2),\ell_1+\ell_2>0 \rightsquigarrow u=\bot$, otherwise $u=$ undef

- Completely avoid the NFA construction by reasoning about the flags
- undef: only when flags are insufficient \rightsquigarrow construct NFAs

Pure regular constraints: Model generation

- General regular constraints:
 - Simple regexes: direct generation from regexes
 - Automata construction: Depth-First-Search through NFAs in found solutions **Lazy construction** of $P \cap U^{\mathbb{C}}$ (exit on first accepted word)

Pure regular constraints: Model generation

General regular constraints:

- Simple regexes: direct generation from regexes
- Automata construction: Depth-First-Search through NFAs in found solutions Lazy construction of $P \cap U^{\mathbb{C}}$ (exit on first accepted word)

Single regular constraint:

- Positive regex and no complex operations (intersection, complement, or difference): direct generation from the regex
- Otherwise: Automata construction

Ouadratic equations: Nielsen transformation

- Ouadratic: each variable has at most two occurrences in a conjunction of equations
- Create a Nielsen graph (finite for a quadratic system of equations)
 - Node: set of equations. Nielsen tranformation metarules:

$$(\mathbf{x} \hookrightarrow \alpha \mathbf{x}) : \frac{\mathcal{E}' \uplus \{\mathbf{x}\mathbf{u} = \alpha \mathbf{v}\}}{\operatorname{trim}(\mathcal{E}[\mathbf{x}/\alpha \mathbf{x}])} \mathcal{E} = \mathcal{E}' \uplus \{\mathbf{x}\mathbf{u} = \alpha \mathbf{v}\} \qquad (\mathbf{x} \hookrightarrow \epsilon) : \frac{\mathcal{E}' \uplus \{\mathbf{x}\mathbf{u} = \mathbf{v}\}}{\operatorname{trim}(\mathcal{E}[\mathbf{x}/\epsilon])} \mathcal{E} = \mathcal{E}' \uplus \{\mathbf{x}\mathbf{u} = \mathbf{v}\}$$

Quadratic equations: Nielsen transformation

- Quadratic: each variable has at most two occurrences in a conjunction of equations
- Create a Nielsen graph (finite for a quadratic system of equations)
 - Node: set of equations, Nielsen tranformation metarules:

Quadratic equations: Counter abstraction system

Derived from the Nielsen graph

[LIN-LMCS'21]

- heuristic for handling lengths in Nielsen transformation
- Infinitely many runs \(\simes \) heuristic: selecting runs with self-loops
- Self-loop saturation

$$xaby = yabx \land len(x) \ge 50$$

$$xaby = yabx \land len(x) \ge 50$$

$$xaby = yabx \land len(x) \ge 50$$

- NFA with counter updates on edges
- under-approximation: selected runs into LIA formulae
- Still often enough for unsat
- Fresh counter variables for each step

$$\varphi(x,y) \Leftrightarrow x_0 = 0 \land y_0 = 0 \land$$

$$x_1 = 0 \land y_1 = y_0 \land$$

$$x_2 = x_1 + 2k \land y_2 = y_1 \land$$

$$y_3 = 0 \land x_3 = x_2 \land$$

$$x = x_3 \land y = y_3$$

$$xaby = yabx \land len(x) \ge 50$$

- NFA with counter updates on edges
- under-approximation: selected runs into LIA formulae
- Still often enough for unsat
- Fresh counter variables for each step

$$\varphi(x,y) \Leftrightarrow x_0 = 0 \land y_0 = 0 \land$$

$$x_1 = 0 \land y_1 = y_0 \land$$

$$x_2 = x_1 + 2k \land y_2 = y_1 \land$$

$$y_3 = 0 \land x_3 = x_2 \land$$

$$x = x_3 \land y = y_3$$

Is $\varphi(\text{len}(x), \text{len}(y)) \wedge \text{len}(x) \geq 50$ satisfiable?

Quadratic equations: Model generation

- From counter abstraction system from runs
- Remember Nielsen rules for the counter updates, and number of times each self-loop was taken
- Model constructed by following a run with applied rules

Length-based decision procedure

$$x = abyc \land x = zw \land x = uddc \land y = vad \land y = as$$

- Large systems (many equations, unrestricted variables and literals)
- Symbolically encode all possible alignments of literals (their positions) into LIA formulae
- Solving string formula converted into solving LIA formula

Length-based decision procedure

$$x = abyc \land x = zw \land x = uddc \land y = vad \land y = as$$

- Large systems (many equations, unrestricted variables and literals)
- Symbolically encode all possible alignments of literals (their positions) into LIA formulae
- Solving string formula converted into solving LIA formula
- Equational blocks of a variable
- *Block string constraint*: a conjunction of equational blocks *→ block graph*
- Block-acyclic string constraint: acyclic block graph
- Block-acyclic string constraints extended with length constraints

$$\bigwedge_{1 \le i \le n} x = R_i$$

Length-based decision procedure: Alignments to LIA formula

$$x = abyc \land x = zw \land x = uddc \land y = vad \land y = as$$

Length-based decision procedure: Alignments to LIA formula

$$x = abyc \land x = zw \land x = uddc \land y = vad \land y = as$$

Length-based decision procedure: Alignments to LIA formula

$$x = abyc \land x = zw \land x = uddc \land y = vad \land y = as$$

Length-based decision procedure: Blocks with cycles

- Extension to blocks with cycles using under-approximation
- Shared non-block variables between two blocks with a cycle

$$x = ayz \wedge x = ab \wedge y = bz$$

Length-based decision procedure: Model generation

- Model for each variable derived from the positions of the literals
- Iteratively filling in an empty skeleton for each variable with the corresponding string literals

Stabilization: Model generation

- **Recursive construction** of models for variables
- Language assignments for variables
- Restrict to found lengths

Experimental evaluation

- SMT-LIB benchmarks, split into 3 categories:
 - Regex (mainly regular and length constraints): AutomatArk, Denghang, Redos, StringFuzz, Sygus-qgen
 - Equations (mostly word equations and length constraints with some small number of more complex constraints): Kaluza, Kepler, Norn, Omark, Slent, Slog, Webapp, Woorpje
 - Predicates-small (complex predicates): FullStrInt, LeetCode, PyEx, StrSmallRw, Transducer+

- Timeout: 120 s, memory limit: 8 GiB
- Significantly faster than other solvers

Experimental evaluation: Procedures comparison

	number	Regex	c proc.	Nielser	transf.	Length	-based	Stabilliza	tion-based
	of calls	called	solved	called	solved	called	solved	called	solved
Sygus-qgen	747	100%	100%	0%	0%	0%	0%	0%	0%
Denghang	999	0.10%	0.10%	0%	0%	96.10%	96.10%	3.80%	3.80%
AutomatArk	20,062	99.97%	99.97%	0%	0%	0.02%	0.02%	0.01%	0.01%
StringFuzz	9,941	46.45%	46.45%	0%	0%	27.98%	27.96%	25.58%	25.58%
Redos	2,952	70.02%	70.02%	0%	0%	11.21%	11.21%	18.77%	18.77%
Full Regex	34,701	79.21%	79.21%	0%	0%	11.75%	11.74%	9.04%	9.04%
LeetCode	874	1.37%	1.37%	0%	0%	59.27%	16.70%	81.92%	81.92%
StrSmallRw	6,327	0%	0%	0%	0%	4.85%	3.75%	96.25%	96.25%
PyEx	26,045	0.10%	0.10%	0%	0%	0.08%	0.08%	99.82%	99.82%
FullStrint	9,003	0.04%	0.04%	0%	0%	0.26%	0.26%	99.70%	99.70%
Transducer+	0		-		•		-		-
Full Predicates-small	42,249	0.10%	0.10%	0%	0%	2.06%	1.01%	98.89%	98.89%
Norn	918	11.76%	11.76%	0%	0%	6.86%	6.86%	81.37%	81.37%
Slog	1,565	25.37%	25.37%	0%	0%	0.13%	0.13%	74.50%	74.50%
Slent	1,489	0.40%	0.40%	0%	0%	35.19%	30.09%	69.51%	69.51%
Omark	9	0%	0%	11.11%	11.11%	11.11%	0%	88.89%	88.89%
Kepler	579	0%	0%	99.83%	99.83%	0%	0%	0%	0%
Woorpje	478	0.84%	0.84%	43.10%	42.47%	30.96%	27.20%	20.50%	20.50%
Webapp	381	0.52%	0.52%	0%	0%	2.36%	0.26%	99.21%	99.21%
Kaluza	11,222	35.31%	35.31%	0%	0%	63.45%	61.78%	2.91%	2.91%
Full Equations	16,641	26.92%	26.92%	4.72%	4.70%	47.27%	45.53%	22.59%	22.59%
All	93,591	34.20%	34.20%	0.84%	0.84%	13.69%	12.91%	52.01%	52.01%

Experimental evaluation: Generating models

	Regex (32,242)		Equations (25,727)		Predicates-small (45,436)		All (103,405)	
	solved	time	solved	time	solved	time	solved	time
Z3-Noodler	32,232	3,688	25,301	1,147	45,035	6,353	102,568	11,118
Z3-Noodler $^{\mathcal{M}}$	32,228	4,010	25,299	1,456	45,035	7,321	102,562	12,787
cvc5	29,290	59,705	25,214	2,529	45,337	11,627	99,841	73,861
cvc5 $^{\mathcal{M}}$	29,287	59,892	25,214	2,756	45,337	12,220	99,838	74,868
Z3	29,075	51,379	24,569	3,240	44,101	74,094	97,745	128,712
$Z3^\mathcal{M}$	29,064	51,830	24,571	4,013	44,096	74,708	97,731	130,551

Experimental evaluation: Comparison with other solvers

Times are in seconds, axes are logarithmic, timeouts on side dashed lines (120 s)

• Regex, • Equations, and • Predicates-small.

Conclusion

- Combination of decision procedures
- Specialized decision procedures (regular and length constraints, quadratic equations)
- Model generation
- 23-Noodler: https://github.com/VeriFIT/z3-noodler
- The fastest string solver

Conclusion

- Combination of decision procedures
- Specialized decision procedures (regular and length constraints, quadratic equations)
- Model generation
- Z3-Noodler:

https://github.com/VeriFIT/z3-noodler

■ The fastest string solver

Future work:

- using transducers for replace_all operations (nearly done)
- better handling of negated contains
- application of Z3-Noodler on the analysis of the security of web applications

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

$$\Sigma = \{a, b\}$$

$$xyx = zu \land ww = xa \land u \in (baba)^*a \land z \in a(ba)^* \land x \in \Sigma^* \land y \in \Sigma^* \land w \in \Sigma^*$$

- $\Sigma = \{a, b\}$
- Regular constraints are collected in a language assignment represented by automata

$$Lang = \{u \mapsto (baba)^*a, z \mapsto a(ba)^*, x \mapsto \Sigma^*, y \mapsto \Sigma^*, w \mapsto \Sigma^*\}$$

$$\boxed{ xyx = zu \quad ww = xa } \quad u \mapsto (baba)^*a \quad z \mapsto a(ba)^* \quad x \mapsto \Sigma^* \quad y \mapsto \Sigma^* \quad w \mapsto \Sigma^*$$

- $\Sigma = \{a, b\}$
- Regular constraints are collected in a language assignment represented by automata

$$Lang = \{u \mapsto (baba)^*a, z \mapsto a(ba)^*, x \mapsto \Sigma^*, y \mapsto \Sigma^*, w \mapsto \Sigma^*\}$$

$$\boxed{\textbf{xyx} = \textbf{zu} \quad ww = \textbf{xa} \quad u \mapsto (baba)^* a \quad z \mapsto a(ba)^* \quad x \mapsto \Sigma^* \quad y \mapsto \Sigma^* \quad w \mapsto \Sigma^*}$$

- $\Sigma = \{a, b\}$
- Regular constraints are collected in a language assignment represented by automata

$$Lang = \{u \mapsto (baba)^*a, z \mapsto a(ba)^*, x \mapsto \Sigma^*, y \mapsto \Sigma^*, w \mapsto \Sigma^*\}$$

- Use equations to refine Lang, starting with xyx = zu
- For any solution (assignment ν) string $s = \nu(x) \cdot \nu(y) \cdot \nu(x) = \nu(z) \cdot \nu(u)$ satisfies:

$$s \in \sum_{x} \sum_{x} \sum_{x} \sum_{x} \bigcap a(ba)^{x} (baba)^{x} a$$

Use right side to refine languages of variables x, y on the left side by noodlification

$$\boxed{\textbf{xyx} = \textbf{zu} \quad ww = \textbf{xa} \quad u \mapsto (baba)^* a \quad z \mapsto a(ba)^* \quad x \mapsto \Sigma^* \quad y \mapsto \Sigma^* \quad w \mapsto \Sigma^*}$$

Use right side to refine languages of variables x, y on the left side by noodlification

$$\boxed{\textbf{xyx} = \textbf{zu} \quad ww = \textbf{xa} \quad u \mapsto (baba)^* a \quad z \mapsto a(ba)^* \quad x \mapsto \Sigma^* \quad y \mapsto \Sigma^* \quad w \mapsto \Sigma^*}$$

- Use right side to refine languages of variables x, y on the left side by noodlification
- Leads to two noodles:

$$N_1: \overbrace{\Sigma^*}^{x} \overbrace{\Sigma^*}^{y} \overbrace{\Sigma^*}^{x} \cap \overbrace{a(ba)^*}^{z} \underbrace{(baba)^*a}_{(baba)^*a} \qquad N_2: \overbrace{\Sigma^*}^{x} \overbrace{\Sigma^*}^{y} \overbrace{\Sigma^*}^{x} \cap \overbrace{a(ba)^*}^{z} \underbrace{(baba)^*a}_{(baba)^*a}$$

$$\boxed{\textbf{xyx} = \textbf{zu} \quad ww = \textbf{xa} \quad u \mapsto (baba)^* a \quad z \mapsto a(ba)^* \quad x \mapsto \Sigma^* \quad y \mapsto \Sigma^* \quad w \mapsto \Sigma^*}$$

- Use right side to refine languages of variables x, y on the left side by noodlification
- Leads to two noodles:

$$N_1: \stackrel{x}{a} \stackrel{y}{(ba)^*} \stackrel{x}{a} \cap \stackrel{z}{a(ba)^*} \stackrel{u}{(baba)^*a} \qquad N_2: \stackrel{x}{\Sigma^*} \stackrel{y}{\Sigma^*} \stackrel{x}{\Sigma^*} \cap \stackrel{z}{a(ba)^*} \stackrel{u}{(baba)^*a}$$

$$\boxed{\textbf{xyx} = \textbf{zu} \quad ww = \textbf{xa} \quad u \mapsto (baba)^* a \quad z \mapsto a(ba)^* \quad x \mapsto \Sigma^* \quad y \mapsto \Sigma^* \quad w \mapsto \Sigma^*}$$

- Use right side to refine languages of variables x, y on the left side by noodlification
- Leads to two noodles:

$$N_1: \stackrel{x}{a} \stackrel{y}{(ba)^*} \stackrel{x}{a} \cap \stackrel{z}{a(ba)^*} \stackrel{u}{(baba)^*a} \qquad N_2: \stackrel{x}{\epsilon} \stackrel{y}{a(ba)^*a} \stackrel{x}{\epsilon} \cap \stackrel{z}{a(ba)^*} \stackrel{u}{(baba)^*a}$$

$$\boxed{\textbf{xyx} = \textbf{zu} \quad ww = \textbf{xa} \quad u \mapsto (baba)^* a \quad z \mapsto a(ba)^* \quad x \mapsto \textbf{a} \quad y \mapsto \textbf{(ba)^*} \quad w \mapsto \Sigma^*}$$

- Use right side to refine languages of variables x, y on the left side by noodlification
- Leads to two noodles:

$$N_1: \stackrel{x}{a} \stackrel{y}{(ba)^*} \stackrel{x}{a} \cap \stackrel{z}{a(ba)^*} \stackrel{u}{(baba)^*a} \qquad N_2: \stackrel{x}{\epsilon} \stackrel{y}{a(ba)^*a} \stackrel{x}{\epsilon} \cap \stackrel{z}{a(ba)^*} \stackrel{u}{(baba)^*a}$$

$$xyx = zu$$
 $ww = xa$ $u \mapsto (baba)^*a$ $z \mapsto a(ba)^*$ $x \mapsto a$ $y \mapsto (ba)^*$ $w \mapsto \Sigma^*$

Refine further with ww = xa:

$$\sum_{x}^{w} \sum_{x}^{w} \cap a a.$$

$$xyx = zu$$
 $ww = xa$ $u \mapsto (baba)^*a$ $z \mapsto a(ba)^*$ $x \mapsto a$ $y \mapsto (ba)^*$ $w \mapsto a$

Refine further with ww = xa:

$$\overset{w}{a} \overset{w}{a} \cap \overset{x}{a} \overset{a}{a}$$

$$xyx = zu$$
 $ww = xa$ $u \mapsto (baba)^*a$ $z \mapsto a(ba)^*$ $x \mapsto a$ $y \mapsto (ba)^*$ $w \mapsto a$

Refine further with ww = xa:

$$\stackrel{w}{\underset{a}{\longrightarrow}} \stackrel{w}{\underset{a}{\longrightarrow}} = \stackrel{x}{\underset{a}{\longrightarrow}} \stackrel{a}{\underset{a}{\longrightarrow}} a$$

Languages in equations now match:

$$\overbrace{a} (ba)^* \overbrace{a} = \overbrace{a(ba)^*}^x (baba)^* a \quad \text{and} \quad \overbrace{a} \stackrel{w}{a} = \overbrace{a} \stackrel{x}{a} a.$$

$$xyx = zu$$
 $ww = xa$ $u \mapsto (baba)^*a$ $z \mapsto a(ba)^*$ $x \mapsto a$ $y \mapsto (ba)^*$ $w \mapsto a$

Refine further with ww = xa:

$$\stackrel{w}{\underset{a}{\longrightarrow}} \stackrel{w}{\underset{a}{\longrightarrow}} = \stackrel{x}{\underset{a}{\longrightarrow}} \stackrel{a}{\underset{a}{\longrightarrow}} a$$

Languages in equations now match:

$$\overbrace{a}^{x} \overbrace{(ba)^{*}}^{y} \overbrace{a}^{x} = \overbrace{a(ba)^{*}}^{z} \overbrace{(baba)^{*}a}^{u} \quad \text{and} \quad \overbrace{a}^{w} = \overbrace{a}^{x} \underbrace{a}_{a}.$$

Lang is a stable solution (we prove this is enough to decide it is SAT)

OOPSLA'23

$$x = yz \land y \neq u \land x \in (ab)^*a^+(b|c) \land |x| = 2|u| + 1 \land \underbrace{\text{contains}(u, \text{replace}(z, b, c)) \land \dots}_{\text{(some) more complex operations}}$$

- FM'23 can handle equations and regular constraints (at least chain-free fragment)
- How to handle more complex operations and disequations? → reduced (at least partially) to simpler constraints
- How to handle lengths?
 - create linear-integer arithmetic (LIA) formula encoding possible lengths of words in each language in Lang
 - stable solution *Lang* does not keep dependencies between lengths of vars → we use noodlification combined with Align&Split algorithm [Abdulla-CAV'14]

$$xx = w \quad z = xy \quad w \mapsto a^{+} \quad x \mapsto \Sigma^{*} \quad y \mapsto \Sigma^{*} \quad z \mapsto \Sigma^{*}$$

$$Align \& Split \quad (xx = w)$$

$$x = v_{1} \quad w = v_{1}v_{1} \quad z = xy \quad v_{1} \mapsto a^{+} \quad w \mapsto a^{+} \quad x \mapsto \Sigma^{*} \quad y \mapsto \Sigma^{*} \quad z \mapsto \Sigma^{*}$$

$$Subst \quad (x = v_{1})$$

$$w = v_{1}v_{1} \quad z = v_{1}y \quad v_{1} \mapsto a^{+} \quad w \mapsto a^{+} \quad y \mapsto \Sigma^{*} \quad z \mapsto \Sigma^{*} \quad x \mapsto v_{1}$$

$$Subst \quad (w = v_{1}v_{1})$$

$$z = v_{1}y \quad v_{1} \mapsto a^{+} \quad y \mapsto \Sigma^{*} \quad z \mapsto \Sigma^{*} \quad x \mapsto v_{1} \quad w \mapsto v_{1}v_{1}$$

$$Subst \quad (z = v_{1}y)$$

$$v_{1} \mapsto a^{+} \quad y \mapsto \Sigma^{*} \quad x \mapsto v_{1} \quad w \mapsto v_{1}v_{1} \quad z \mapsto v_{1}y$$

$$xx = w \quad z = xy \quad w \mapsto a^{+} \quad x \mapsto \Sigma^{*} \quad y \mapsto \Sigma^{*} \quad z \mapsto \Sigma^{*}$$

$$Align \& Split \quad (xx = w)$$

$$x = v_{1} \quad w = v_{1}v_{1} \quad z = xy \quad v_{1} \mapsto a^{+} \quad w \mapsto a^{+} \quad x \mapsto \Sigma^{*} \quad y \mapsto \Sigma^{*} \quad z \mapsto \Sigma^{*}$$

$$Subst \quad (x = v_{1})$$

$$w = v_{1}v_{1} \quad z = v_{1}y \quad v_{1} \mapsto a^{+} \quad w \mapsto a^{+} \quad y \mapsto \Sigma^{*} \quad z \mapsto \Sigma^{*} \quad x \mapsto v_{1}$$

$$Subst \quad (w = v_{1}v_{1})$$

$$z = v_{1}y \quad v_{1} \mapsto a^{+} \quad y \mapsto \Sigma^{*} \quad z \mapsto \Sigma^{*} \quad x \mapsto v_{1} \quad w \mapsto v_{1}v_{1}$$

$$Subst \quad (z = v_{1}y)$$

$$v_{1} \mapsto a^{+} \quad y \mapsto \Sigma^{*} \quad x \mapsto v_{1} \quad w \mapsto v_{1}v_{1} \quad z \mapsto v_{1}y$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \quad x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution (Lang, \sigma)**:
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** $\sigma: X \mapsto V_1, W \mapsto V_1V_1, Z \mapsto V_1V_2$

OOPSLA'23 on example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1\mapsto a^+\quad y\mapsto \Sigma^* \ |\ x\mapsto v_1\quad w\mapsto v_1v_1\quad z\mapsto v_1y$$

- **stable solution (Lang, \sigma)**:
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** $\sigma: X \mapsto V_1, W \mapsto V_1V_1, Z \mapsto V_1V_2$
- **LIA formula** encoding **possible lengths** of variables:

$$\varphi_{\operatorname{len}} \stackrel{\operatorname{def.}}{\Leftrightarrow} \wedge \wedge \wedge \wedge \wedge$$

OOPSLA'23 on example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1\mapsto a^+\quad y\mapsto \Sigma^* \ |\ x\mapsto v_1\quad w\mapsto v_1v_1\quad z\mapsto v_1y$$

- **stable solution (Lang, \sigma)**:
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** $\sigma: X \mapsto V_1, W \mapsto V_1V_1, Z \mapsto V_1V_2$
- **LIA formula** encoding **possible lengths** of variables:

$$\varphi_{\mathsf{len}} \stackrel{\mathsf{def.}}{\Leftrightarrow} |v_1| \geq 1 \, \wedge \qquad \wedge \qquad \wedge$$

OOPSLA'23 on example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1\mapsto a^+\quad y\mapsto \Sigma^* \ |\ x\mapsto v_1\quad w\mapsto v_1v_1\quad z\mapsto v_1y$$

- **stable solution (Lang, \sigma)**:
 - language assignment Lang: $v_1 \mapsto a^+, v \mapsto \Sigma^*$
 - **substitution map** $\sigma: X \mapsto V_1, W \mapsto V_1V_1, Z \mapsto V_1V_2$
- **LIA formula** encoding **possible lengths** of variables:

$$\varphi_{\text{len}} \stackrel{\text{def.}}{\Leftrightarrow} |v_1| \ge 1 \land |y| \ge 0 \land \land \land$$

OOPSLA'23 on example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \quad x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution (Lang, \sigma)**:
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** $\sigma: x \mapsto v_1, w \mapsto v_1v_1, z \mapsto v_1y$
- **LIA formula** encoding **possible lengths** of variables:

$$\varphi_{\mathsf{len}} \stackrel{\mathsf{def.}}{\Leftrightarrow} |v_1| \ge 1 \land |y| \ge 0 \land |x| = |v_1| \land \land$$

OOPSLA'23 on example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \quad x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution (Lang, \sigma)**:
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** $\sigma: X \mapsto V_1, W \mapsto V_1V_1, Z \mapsto V_1V_2$
- **LIA formula** encoding **possible lengths** of variables:

$$\varphi_{\mathsf{len}} \overset{\mathsf{def.}}{\Leftrightarrow} |v_1| \geq 1 \land |y| \geq 0 \land |x| = |v_1| \land |w| = |v_1| + |v_1| \land |v| = |v_1| + |v_1| \land |v| = |v| + |$$

OOPSLA'23 on example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \quad x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution (Lang, \sigma)**:
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution** map $\sigma: X \mapsto V_1, W \mapsto V_1V_1, Z \mapsto V_1V_2$
- **LIA formula** encoding **possible lengths** of variables:

$$arphi_{\mathsf{len}} \overset{\mathsf{def.}}{\Leftrightarrow} |v_1| \geq 1 \land |y| \geq 0 \land |x| = |v_1| \land |w| = |v_1| + |v_1| \land |z| = |v_1| + |y|$$

$$v_1\mapsto a^+\quad y\mapsto \Sigma^* \ |\ x\mapsto v_1\quad w\mapsto v_1v_1\quad z\mapsto v_1y$$

- **stable solution (Lang, \sigma)**:
 - language assignment Lang: $v_1 \mapsto a^+, v \mapsto \Sigma^*$
 - **substitution map** $\sigma: X \mapsto V_1, W \mapsto V_1V_1, Z \mapsto V_1V_2$
- **LIA formula** encoding **possible lengths** of variables:

$$arphi_{\mathsf{len}} \overset{\mathsf{def.}}{\Leftrightarrow} |v_1| \geq 1 \land |y| \geq 0 \land |x| = |v_1| \land |w| = |v_1| + |v_1| \land |z| = |v_1| + |y|$$

- ask LIA solver if $|z| = 2|w| |x| \wedge \varphi_{len}$ is satisfiable
 - it is, we have model $|v_1| = |x| = 1$, |w| = |v| = 2, |z| = 3
 - we can choose any word from $Lang(v_1)$ and Lang(v) with correct lengths:

$$v_1 = a$$
 and $y = bc$

models for x, w, and z are computed using the substitution map σ :

$$x = v_1 = a, w = v_1v_1 = aa, and z = v_1v = abc$$

How to combine OOPSLA'23 with conversions?

- What we have:
 - \blacksquare stable solution (*Lang*, σ)
 - the LIA part of the initial formula £
 - \blacksquare formula φ_{len} encoding possible lengths of variables
 - set of conversion constraints $C = \{k = \text{to_int}(x), y = \text{from_code}(l), \dots \}$
- How about encoding conversions into LIA formula too?
 - \blacksquare each conversion constraint $c \in \mathcal{C}$ encoded into LIA formula φ_c
 - $\varphi_{\text{conv}} \stackrel{\text{def.}}{\Leftrightarrow} \bigwedge_{c \in C} \varphi_c$
 - if $\mathcal{L} \wedge \varphi_{len} \wedge \varphi_{conv}$ is satisfiable, we have a solution
 - otherwise find different stable solution (if possible)

Handling $k = to_int(x)$

- Semantics:
 - for a valid x (it contains only digits), k is the number represented by x
 - for an invalid x (it contains some non-digit), k = -1
- For stable solution (Lang, σ) we have two distinct cases:
 - \mathbf{x} is mapped to some language L_x in language assignment Lang
 - \mathbf{x} is substituted by $x_1 \cdots x_n$ in substitution map σ

- Assume that $x \mapsto L_x \in Lang$
- LIA formula $\varphi_{k=\text{to_int}(x)}$ should encode that k is the result of applying to_int on some word from L_x
- Generally possible only with non-linear arithmetic

- Assume that $x \mapsto L_x \in Lang$
- LIA formula $\varphi_{k=\text{to_int}(x)}$ should encode that k is the result of applying to_int on some word from L_{x}
- Generally possible only with non-linear arithmetic
 - \rightarrow stronger restriction: L_x is **finite** (can be mitigated with underapproximations)

- Assume that $x \mapsto L_x \in Lang$
- LIA formula $\varphi_{k=\text{to_int}(x)}$ should encode that k is the result of applying to_int on some word from L_x
- Generally possible only with non-linear arithmetic
 → stronger restriction: L_x is finite (can be mitigated with underapproximations)
- We can iterate over all words:

$$\varphi_{k=\text{to_int}(x)} \stackrel{\text{def.}}{\Leftrightarrow} \bigvee_{w \in L_x} (\text{to_int}(x) = \text{to_int}(w))$$

- Assume that $x \mapsto L_x \in Lang$
- LIA formula $\varphi_{k=\text{to_int}(x)}$ should encode that k is the result of applying to_int on some word from L_{x}
- Generally possible only with non-linear arithmetic \rightarrow stronger restriction: L_x is **finite** (can be mitigated with underapproximations)
- We can iterate over all words:

$$\varphi_{k=\text{to_int}(x)} \stackrel{\text{def.}}{\Leftrightarrow} \bigvee_{w \in L_x} (\text{to_int}(x) = \text{to_int}(w))$$

Problems:

- Assume that $x \mapsto L_x \in Lang$
- LIA formula $\varphi_{k=\text{to_int}(x)}$ should encode that k is the result of applying to_int on some word from L_x
- Generally possible only with non-linear arithmetic
 → stronger restriction: L_x is finite (can be mitigated with underapproximations)
- We can iterate over all words:

$$\varphi_{k=\text{to_int}(x)} \stackrel{\text{def.}}{\Leftrightarrow} \bigvee_{w \in L_x} (\text{to_int}(x) = \text{to_int}(w))$$

- Problems:
 - 1. the correspondence between the length of x and the value of to_int(x)

- Assume that $x \mapsto L_x \in Lang$
- LIA formula $\varphi_{k=\text{to_int}(x)}$ should encode that k is the result of applying to_int on some word from L_x
- Generally possible only with non-linear arithmetic
 → stronger restriction: L_x is finite (can be mitigated with underapproximations)
- We can iterate over all words:

$$\varphi_{k=\text{to_int}(x)} \stackrel{\text{def.}}{\Leftrightarrow} \bigvee_{w \in L_x} (\text{to_int}(x) = \text{to_int}(w) \land |x| = |w|)$$

- Problems:
 - the correspondence between the length of x and the value of to_int(x)
 relate words with the corresponding length

- Assume that $x \mapsto L_x \in Lang$
- LIA formula $\varphi_{k=\text{to_int}(x)}$ should encode that k is the result of applying to_int on some word from L_x
- Generally possible only with non-linear arithmetic
 → stronger restriction: L_x is finite (can be mitigated with underapproximations)
- We can iterate over all words:

$$\varphi_{k=\text{to_int}(x)} \stackrel{\text{def.}}{\Leftrightarrow} \bigvee_{w \in L_x} (\text{to_int}(x) = \text{to_int}(w) \land |x| = |w|)$$

- Problems:
 - the correspondence between the length of x and the value of to_int(x)
 relate words with the corresponding length
 - 2. can easily blow-up

- Assume that $x \mapsto L_x \in Lang$
- LIA formula $\varphi_{k=\text{to_int}(x)}$ should encode that k is the result of applying to_int on some word from L_x
- Generally possible only with non-linear arithmetic
 → stronger restriction: L_x is finite (can be mitigated with underapproximations)
- We can iterate over all words:

$$\varphi_{k=\texttt{to_int}(x)} \stackrel{\text{def.}}{\Leftrightarrow} \bigvee_{w \in L_x} (\texttt{to_int}(x) = \texttt{to_int}(w) \land |x| = |w|)$$

- Problems:
 - the correspondence between the length of x and the value of to_int(x)
 → relate words with the corresponding length
 - 2. can easily blow-up
 - → encode intervals of words instead of single words

- Let $L_x = [0-7] \cup [2-5][0-9] \cup [3-6][0-9][0-9]$
- We create the following formula:

$$\varphi_{k=\text{to_int}(x)} \stackrel{\text{def.}}{\Leftrightarrow}$$

- Let $L_x = [0-7] \cup [2-5][0-9] \cup [3-6][0-9][0-9]$
- We create the following formula:

$$\varphi_{k=\text{to_int}(x)} \stackrel{\text{def.}}{\Leftrightarrow} (0 \leq \text{to_int}(x) \leq 7 \land |x| = 1)$$

- Let $L_x = [0-7] \cup [2-5][0-9] \cup [3-6][0-9][0-9]$
- We create the following formula:

$$\varphi_{k=\text{to_int}(x)} \stackrel{\text{def.}}{\Leftrightarrow} (0 \le \text{to_int}(x) \le 7 \land |x| = 1)$$

$$\lor (20 \le \text{to_int}(x) \le 59 \land |x| = 2)$$

- Let $L_x = [0-7] \cup [2-5][0-9] \cup [3-6][0-9][0-9]$
- We create the following formula:

$$arphi_{k= exttt{to_int}(x)} \overset{\text{def.}}{\Leftrightarrow} (0 \leq exttt{to_int}(x) \leq 7 \land |x| = 1)$$

$$\lor (20 \leq exttt{to_int}(x) \leq 59 \land |x| = 2)$$

$$\lor (300 \leq exttt{to_int}(x) \leq 699 \land |x| = 3)$$

- Let $L_x = [0-7] \cup [2-5][0-9] \cup [3-6][0-9][0-9]$
- We create the following formula:

$$arphi_{k= exttt{to_int}(x)} \overset{\text{def.}}{\Leftrightarrow} (0 \leq exttt{to_int}(x) \leq 7 \land |x| = 1)$$

$$\lor (20 \leq exttt{to_int}(x) \leq 59 \land |x| = 2)$$

$$\lor (300 \leq exttt{to_int}(x) \leq 699 \land |x| = 3)$$

- Easily implementable on automata level
- Handling invalid cases makes it a bit more complicated

Handling $k = to_int(x)$ when x is in the substitution map

- Assume that $x \mapsto x_1 \cdots x_n \in \sigma$
- In stable solution, each x_i is mapped to some L_{x_i} in the language assignment Lang
- We can create LIA formulas encoding each $to_int(x_i)$ using the interval method
- For each (l_1, \ldots, l_n) with l_i some possible length of x_i we create

$$\mathsf{to}_{-}\mathsf{int}(x) = \sum_{1 \leq i \leq n} \left(\mathsf{to}_{-}\mathsf{int}(x_i) \cdot 10^{\ell_{i+1} + \dots + \ell_n} \right) \wedge \bigwedge_{1 \leq i \leq n} \left(|x_i| = \ell_i \right)$$

- $\varphi_{k=\text{to_int}(x)}$ is defined as a disjunction of these equations
- Again, invalid cases make it more complicated

Handling $k = to_code(x)$

- Semantics:
 - for a valid x (a char), k is the code points of x
 - for an invalid x (not a char), k = -1
- Valid part is always finite
 - **no problem** with **infinite** languages
 - we can iterate over all characters:

$$\varphi_{k=\mathsf{to_code}(x)} \overset{\mathsf{def.}}{\Leftrightarrow} \bigvee_{a \in L_x \cap \Sigma} \mathsf{to_code}(x) = \mathsf{to_code}(a) \land |x| = 1$$

- Still problem with a **blow-up** (Σ is large)
 - \blacksquare set Σ_e of explicitly used symbols in formula is usually small
 - \blacksquare introduce a special symbol δ representing all unused symbols
 - work with a much smaller alphabet $\Sigma = \Sigma_e \cup \{\delta\}$
 - \blacksquare special handling of δ
- Needs to also encode the **correspondence** between $to_code(x)$ and $to_int(x)$

Handling from_int/from_code

- Very similar to to_int/from_code
- Instead of constraining the result, we want to constrain the argument
- We can use nearly the same encoding
- Slight difference in handling invalid cases

Handling word disequations trough to_code

In OOPSLA'23 we showed how to handle arbitrary disequation $s \neq t$:

$$\varphi_{s\neq t} \stackrel{\text{def.}}{\Leftrightarrow} |s| \neq |t| \vee \left(s = x_1 a_1 y_1 \wedge t = x_2 a_2 y_2 \wedge |x_1| = |x_2| \wedge a_1 \in \Sigma \wedge a_2 \in \Sigma \wedge \overbrace{a_1 \neq a_2}^{\text{dist}(a_1, a_2)}\right)$$

- Convoluted LIA formula $dist(a_1, a_2)$ computed after getting stable solution
- Important: this encoding has no impact on chain-free fragment
- Problem: encoding of dist (a_1, a_2) is **incompatible** with conversions
- Solution:

$$\mathsf{dist}(a_1,a_2) \stackrel{\mathsf{def.}}{\Leftrightarrow} \mathsf{to_code}(a_1) \neq \mathsf{to_code}(a_2)$$

Still no impact on chain-free fragment