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WS1S

m weak monadic second-order logic of one successor

second-order = quantification over relations;
monadic = relations are unary (i.e. sets);
weak = sets are finite;

»
>
>
» of one successor = reasoning about linear structures.
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WS1S

m weak monadic second-order logic of one successor

» second-order = quantification over relations;
» monadic = relations are unary (i.e. sets);

» weak = sets are finite;

» of one successor = reasoning about linear structures.

m corresponds to finite automata [Blichi’60]

m decidable — but NONELEMENTARY
» constructive proof via translation to finite automata
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Application of WS1S

m allows one to define rich invariants
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Application of WS1S

m allows one to define rich invariants

m used in tools for checking structural invariants

» Pointer Assertion Logic Engine (PALE)
» STRucture ANd Data (STRAND)
» Unbounded Arrays Bounded Elements (UABE)

m many other applications
» program and protocol verifications, linguistics, theorem provers ...

m decision procedure: the well-known MONA tool

» sometimes efficient in practice
» other times the complexity strikes back (unavoidable in general)
» we try to push the usability border further!!
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WS1S

m Syntax:
»termy = XCY | Sing(X) | X={0} | X=o(Y)
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WS1S

m Syntax:
»termy = X CVY | Sing(X) | X={0} | X=o(Y)
» formulap = ¥ | pAe | Ve | ¢ | IXe

m Interpretation: over finite subsets of N
» models of formulae = assignments of sets to variables
m sets can be encoded as binary strings:

Index: 012345 012345|6 012345|67
» {1,4,5} — Membership:  xvxxvv , X/XXvv|Xx OF XXXy |xx
Encoding: 010011 010011|0 010011(00
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WS1S

m Syntax:
»termy = XCY | Sing(X) | X={0} | X=0o(Y)
» formulag = ¥ | pAe | oVe | e | X

m Interpretation: over finite subsets of N
» models of formulae = assignments of sets to variables
m sets can be encoded as binary strings:

Index: 012345 012345|6 012345|67
» {1,4,5} — Membership:  xvxxvv , X/XXvv|Xx OF XXXy |xx
Encoding: 010011 010011|0 010011|00

m Language interpretation L():
» Alphabet: for each variable, we have one track in the alphabet

° eg. )\(, [g] is a symbol
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WS1S

m Syntax:
»termy = XCY | Sing(X) | X={0} | X=0o(Y)
» formulap = ¥ | pAe | Ve | ¢ | IXe

m Interpretation: over finite subsets of N
» models of formulae = assignments of sets to variables
m sets can be encoded as binary strings:

Index: 012345 012345|6 012345|67
» {1,4,5} — Membership:  xvxxvv , X/XXvv|Xx OF XXXy |xx
Encoding: 010011 010011|0 010011|00

m Language interpretation L():
» Alphabet: for each variable, we have one track in the alphabet

° eg. )\5 [g] is a symbol

» Models are represented as a stack of (0-padded) binary strings
» Example:

(X 0,Y = {24} o iff 5 {g] [g} [?] [g} m e L(p)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 4/18



Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:[{0
Y: [O]

ool o
_)& Y: H @ Y: [0] C%D

(XCY)A (Sing(Z) v IWW = a(Z))

m Example:
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Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:[{0
Y: [O]

ool o
_)& Y: H @ Y: [0] C%D

~(XCY) A (Sing(2) v IWW = 0(2))
| : |
AS ./“12 Y -A1
“
project W — A4

m Example:

1
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Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:[{0
Y: [O]

ool o
_)& Y: H @ Y: [0] C%D

S(XCY) A (Sing(Z) v AWW = a(Z))
‘ | |

AS Az ; \\ -A1

m Example:

1
'

w
project W — A,
v
Ao U Ay —» A

1

project W: ';"H > Z:[1]
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Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:10
Y: [0]

ool .
_)& Y: H @ Y: [0] C%D

m Example:
(XCY)A (Sing(Z) v IWW = a(Z))
:’ | | Lo |
v A Az N Ay
v : My /
‘4 ‘ ' project W —» A4
As <« complement v
Ao U Ay —» A

1

project W: ';"H > Z:[1]
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Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:10
Y: [0]

v H X:[0 X:[1
_)& Y: H @ Y: [0] C%D

m Example:

LXcv)n (Sing(Z) v IWW = a(Z))
: ‘ | | \ l |
i As ! Az A Ay
v ! ‘ . /

‘4 ' ‘ project W — A,

Ag « complement ‘ + -
: Ao U Ay —» Ay

\

Aeﬂ/b

project W: ';"m > Z:[1]

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 5/18



Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:10
Y: [0]

v H X:[0 X:[1
_)& Y: H @ Y: [0] C%D

m Example:
S(XCY) A (Sing(Z) v IWW = a(Z))
:' ‘ | | \ l |
) As L A B A
" | W s
‘4 ' ‘ project W — A,
Ag « complement ! + e
\ : Ao U Ay —» Ay
v
L{As N A7) = project W: ';"m - an
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How to handle quantification

m issue with projection (existential quantification)

» after removing of the tracks not all models would be accepted
(problem with 0-padding)

o needed for soundness!
e it is necesssary to accept all or none encodings of the models

» so after projection we need to adjust the final states by saturation
e pump the final states with all states backward reachable with 0

le ] 23 3

Ax=o(v)
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How to handle quantification

m issue with projection (existential quantification)

» after removing of the tracks not all models would be accepted
(problem with 0-padding)

o needed for soundness!
e it is necesssary to accept all or none encodings of the models

» so after projection we need to adjust the final states by saturation
e pump the final states with all states backward reachable with 0

. -x- *.
[ Y:[0] Y:[0]
& @_é % : é (%Y[”CY[O]é
Ax=o(v) — Projection on X — Adjust states
to accept models:
1,01, 001, ...
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How to handle quantification

m issue with projection (existential quantification)

» after removing of the tracks not all models would be accepted
(problem with 0-padding)

o needed for soundness!
e it is necesssary to accept all or none encodings of the models

» so after projection we need to adjust the final states by saturation
e pump the final states with all states backward reachable with 0

X:[0 %[0 *:[&
{ ] [ } Y: [o] Y: [0] Y: [0]
&— é f *: F‘]
— Projection on X — Adjust states
to accept models:
1,01,001, ...
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Ground Formulae

We focus on validity of ground formulae (all variables are quantified)
m satisfiability/validity of other formulae: prefixing with 3/V

Key observation for ground formulae
Ep iff e€l(yp) J
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Ground Formulae

We focus on validity of ground formulae (all variables are quantified)
m satisfiability/validity of other formulae: prefixing with 3/V

Key observation for ground formulae
Ep iff e€l(yp) J

Why?
m Formula ¢ is valid if it accepts everything (L(¢) = ¥*)

m Formula ¢ is unsatisfiable if it accepts nothing (L(¢)
» so it is sufficient to just test membership of ¢

0)
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Problems with constructing automata

S(XCY)A (smg(Z) vaww = 0(2))
C

! As Ap | \ Aq
\ ‘ a4 /
“a ' project W» A,
As « complement + -
AU Ay —» A7

\ ,

v
L(As N A7) =
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Problems with constructing automata

S(XCY)A (smg(Z) vaww = 0(2))
C

! As Az | \ Ay
\ ‘ a4 /
“a ' project W» A,
As « complement + -
AU Ay —» A7

\ ,

v
L(As N A7) =

Constructing the whole automaton, checking ¢ € L(A) later!
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Problems with constructing automata

S(XCY)A (smg(Z) vaww = 0(2))
C

As b4
\ ‘ a4 /
“a ' project W» A,
Ag « complement + -
Ao U Ay —» Ay

\ ,

v
L(As N A7) =

Constructing the whole automaton, checking ¢ € L(A) later!

Quantifier alternations (V3 ~ —3-3)
~ exponential blow-up after subset construction.
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Problems with constructing automata

S(XCY)A (smg(Z) vaww = 0(2))
C

! As Ao ‘ \ Aq
\ ‘ a4 /
“a ' project W» A,
Ag « complement + -
AU Ay —» A7

\ ,

v
L(As N A7) =

Constructing the whole automaton, checking ¢ € L(A) later!
Quantifier alternations (V3 ~ —3-3)

~ exponential blow-up after subset construction.
For A1 N Ao, what if L(A1) =0?

» No need to construct A, and A N Ay!
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Towards Language Terms

(XS Y)A (smg(Z) v IWW = a(Z))

i -As A | ‘\ A1
\ ‘ Py /
“a ' project W» A,
Ag « complement ; -
AU Ay —» A5

\+
ﬂA7

?

m Instead, we:
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(X CY)A (smg(Z) vaww = a(Z))
C

i -As A | \ A1
\ ‘ Py /
“a ' project W» A,
Ag « complement ; e
Ao U Ay —» Ay

\ 7

v
.AeﬁA =

m Instead, we:
» Represent (sub)formulae as so-called language terms
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Towards Language Terms

S(XCY)A (smg(Z) vaww = U(Z))
C

i -As A | \ A1
\ ‘ Py /
“a ' project W» A,
Ag « complement ; e
AU Ay —» A5

\ 7

v
.AeﬁA =

m Instead, we:

» Represent (sub)formulae as so-called language terms
» Evaluate the € € L(A) query lazily — on-the-fly
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S(XCY)A (smg(Z) vaww = a(Z))
C

i -As A | \ A1
\ ‘ Py /
“a ' project W» A,
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\ 7

v
.AeﬁA =

m Instead, we:

» Represent (sub)formulae as so-called language terms
» Evaluate the € € L(A) query lazily — on-the-fly
» Compute the saturation fixpoints lazily
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Towards Language Terms

S(XCY)A (smg(Z) vaww = a(Z))

i -As A | \ A1
\ ‘ Py /
4 ' project W» A,
Ag « complement ; e
AU Ay —» A5

\+
L(As N A7) ;
m Instead, we:

Represent (sub)formulae as so-called language terms
Evaluate the € € L(A) query lazily — on-the-fly
Compute the saturation fixpoints lazily

Use subsumption to prune state space

v

vV vy
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Overview of our method

Reasoning over language terms
» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.
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Overview of our method

Reasoning over language terms
» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.
» Leaves of the terms correspond to states of Finite Automata
» Inner nodes:
@AY~ b, Ny
PV~ Uty
@~ E
IX.p ~ mx(t,) — 0"
m Tx corresponds to the projection of the variable X in L(p)
m —0" corresonds to the left quotient of L(¢)
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» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.
» Leaves of the terms correspond to states of Finite Automata
» Inner nodes:
@AY~ b, Ny
PV~ Uty
P~ E
IX.p ~ mx(t,) — 0"
m Tx corresponds to the projection of the variable X in L(p)
m —0" corresonds to the left quotient of L(¢)

Validity checking of ground formula ¢ is reduced to the
e-membership test on t,
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Overview of our method

Reasoning over language terms
» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.
» Leaves of the terms correspond to states of Finite Automata
» Inner nodes:
e pAp~ Ny
* PV~ Uly
o —po i,
e AX.p~ my(t,) =0
m Tx corresponds to the projection of the variable X in L(p)
m —0" corresonds to the left quotient of L(¢)

Validity checking of ground formula ¢ is reduced to the
e-membership test on t,

» Intuition: Automaton either accepts ¥* or nothing, so ¢ test suffices
P Ep <= c€t,
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Overview of our method

Lazy evaluation of e-membership on term ¢
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Overview of our method

Lazy evaluation of e-membership on term ¢
> EEA@/AOFA#Q

v

ceet, Nty &€l Neely
e ife ¢ t, noneedtocheckife €ty

v

e€t, Uty secet, Vel
e ife € {, noneed to checkif e € ¢y

v

c€t,oedt,
cenx(t,) eeet,

v
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Overview of our method

Lazy evaluation of e-membership on term ¢

»cEt—0 ©cetVeet—0Veet—00V...
e evaluation of the quotients leads to fixpoint computations
e lazy evaluation ~ iteratively teste € t,e € t — 0,...
e ... until fixpoint reached or satisfying member found

N R

Y:
0 Y: [0
*

Ax=o(y)

— Adjust states
to accept models:
1,01, 001, ...

- Projection on X
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e evaluation of the quotients leads to fixpoint computations
e lazy evaluation ~ iteratively teste € t,e € t — 0,...
e ... until fixpoint reached or satisfying member found

»ecet-0
e —0oninner nodes: push through to leaves
e —0 on leaves: compute 0-predecessors of final states

Wl ¥l x

Y: [0
*

Ax=o(v)

— Adjust states
to accept models:
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— Projection on X
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Overview of our method

Lazy evaluation of e-membership on term ¢

»cEt—0 ©cetVeet—0Veet—00V...
e evaluation of the quotients leads to fixpoint computations
e lazy evaluation ~ iteratively teste € t,e € t — 0,...
e ... until fixpoint reached or satisfying member found

»cet—0
e —0oninner nodes: push through to leaves
e —0 on leaves: compute 0-predecessors of final states

I I

Y:[0
*

Ax=o(v)

— Adjust states
to accept models:
1,01,001, ...

— Projection on X

B Further optimizations
» e.g. subsumption, continuations, formula preprocessing, etc.
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Validity checking of 3Y.(3X.¢) A ¢
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Validity checking of 3Y.(3X.¢) A ¢

m We represent the formula symbolically as a language terms t5y.(3x.,)ay and test
the emptiness.

B cc tgy‘(ng)/\d, = e€lx,Nly -0 _ _
= cE€bxoNlyVeEbx, Nty —0Vee tax,¢ﬂt¢—02...

m We will demonstrate our method just on testing if ¢ € tsx., N £y
» (some details will be omitted)
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(W)

&)

(a) Automaton for ¢

m Term t3x ., corresponds to the left subformula 3X.¢
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(a) Automaton for 3X.

m Term t3x ., corresponds to the left subformula 3X.¢
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m Term t3x ., corresponds to the left subformula 3X.¢
m Term t, corresponds to the right subformula
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(b) Automaton for

m We commence the emptiness check from final states of leaf automata.
m (After projection new final states are backward reachable from current final
states)
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{q37 q4} = F‘P

(b) Automaton for

m We commence the emptiness check from final states of leaf automata.
m (After projection new final states are backward reachable from current final
states)
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{q37 q4} = F‘P

B eccbhyx,Nty <
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©
Y:

{q37 q4} = F‘P

B eccbhyx,Nty <
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©
Y:

{q37 q4} = F‘P

[ ] Eetgx,¢ﬂf¢ <
< e€lbx,Necty

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18



?
0 EEth'g‘,f-\ltw
? ?
€€ lax.e @ eety

{rz} =Fy
®
Y:
{CISaCM} = F‘P
X:
Y:

[ ] Eetgx,¢ﬂf¢ <
< e€lbx,Necty

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18



?
0 EEth.¢ﬂtw
? ?
€€ lax.e @ eety

{rz} =Fy
®
Y:
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m We have to saturate the final states (because of projection)
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vvyVvyy

m combination with the explicit automata procedure (MONA)

» we can prepare a minimal automaton for a subformula

» reduces the underlying state space
» various heuristics

e we explicitly construct quantifier-free subformulae
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m Subsumption

» when computing fixpoints, some elements can subsume others
» keep fixpoint states minimal (cf. antichains)
» subsumption even on partially computed elements

m Formula pre-processing

» pre-processing of the formula can greatly affect performance
» anti-prenexing — pushing quantifiers down can reduce the explored
state space (even exponentially!)
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Experimental Evaluation of our tool GASTON

m Results on formulae generated by the UABE tool
» formulae encode various array invariants

m oo represents that the tool timeouted in 2 minutes

Benchmark MONA . GASTON
Time[s] | Space Time [s] [ Space
a-a 1.51 30253 00 o)
ex10 6.92 | 131835 11.82 82236
ex11l 4.04 2393 0.10 4156
ex12 0.11 2591 5.40 68 159
ex13 0.01 2601 0.87 16 883
ex16 0.01 3384 0.18 3960
ex17 3.15 | 165173 0.09 3952
ex18 0.18 19463 00 0o
ex2 0.10 26 565 0.01 1841
ex20 1.26 1077 0.21 12266
ex21 1.51 30253 00 o)
ex4 0.03 6797 0.33 22442
ex6 3.69 27903 21.44 | 132848
ex7 0.75 857 0.01 594
ex8 6.83 | 106555 0.01 1624
ex9 6.37 | 586447 8.31 412417
fib 0.04 8128 22.15 | 126688

T. Fiedor, et al. Lazy Automata Techniques for WS1S

TACAS'17
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Experimental Evaluation of our tool GASTON

m Results on set of parametrized benchmarks up to k = 20

m oom(k) represents that the tool run out of memory on formula k

m oo(K) represents that the tool timeouted in 2 minutes on formula k

[ Benchmark [ MoNA [ DWINA | Toss | COALG [ SFA [ GASTON
HornLeg oom(18) 0.03 0.08 00(08) 0.03 0.01
HornLeq (+3) oom(18) oo(11) 0.16 00(07) | oo(11) 0.01
HornLeq (+4) oom(18) 0o(13) 0.04 00(06) | oco(11) 0.01
HornIn oom(15) oo(11) 0.07 00(08) | co(08) 0.01
HornTrans 86.43 oo(14) N/A N/A | 38.56 1.06
SetClosed oom(05) oo(14) | oo(03) oo(01) | oo(04) oo(06)
SetSingle oom(04) 00(08) 0.10 N/A | co(03) 0.01
Ex8 oom(08) N/A N/A N/A N/A 0.15
Ex11(10) oom(14) N/A N/A N/A N/A 1.62

m DWINA: Fiedor et al.: Nested antichains for WS1S

m Toss: Ganzow and Kaizer: New algorithm for weak monadic second-order login on inductive structures
m COALG: Traytel: A coalgebraic decision procedure for WS1S

m SFA: D’Antoni and Veanes: Minimization of symbolic automata
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Future Work

m extension to WSkKS

» weak monadic second-order logic of k successors
» opens whole new world of tree structures
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