Lazy Automata Techniques for WS1S

Tomas Fiedor'? Lukas$ Holik® Petr Jank(?
"Red Hat, Czech Republic

Ondrej Lengal®® Tomas Vojnar?

2Brno University of Technology, Czech Republic
3Academia Sinica, Taiwan

TACAS'17

WS1S

m weak monadic second-order logic of one successor

second-order = quantification over relations;
monadic = relations are unary (i.e. sets);
weak = sets are finite;

»
>
>
» of one successor = reasoning about linear structures.

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 2/18

WS1S

m weak monadic second-order logic of one successor
» second-order = quantification over relations;
» monadic = relations are unary (i.e. sets);
» weak = sets are finite;
» of one successor = reasoning about linear structures.

m corresponds to finite automata [Blichi’60]

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 2/18

WS1S

m weak monadic second-order logic of one successor

» second-order = quantification over relations;
» monadic = relations are unary (i.e. sets);

» weak = sets are finite;

» of one successor = reasoning about linear structures.

m corresponds to finite automata [Blichi’60]

m decidable — but NONELEMENTARY
» constructive proof via translation to finite automata

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 2/18

Application of WS1S

m allows one to define rich invariants

T. Fiedor, et al. Lazy Automata Techniques for WS1S

Application of WS1S

m allows one to define rich invariants

m used in tools for checking structural invariants

» Pointer Assertion Logic Engine (PALE)
» STRucture ANd Data (STRAND)
» Unbounded Arrays Bounded Elements (UABE)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 3/18

Application of WS1S

m allows one to define rich invariants

m used in tools for checking structural invariants

» Pointer Assertion Logic Engine (PALE)
» STRucture ANd Data (STRAND)
» Unbounded Arrays Bounded Elements (UABE)

m many other applications
» program and protocol verifications, linguistics, theorem provers ...

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 3/18

Application of WS1S

m allows one to define rich invariants

m used in tools for checking structural invariants

» Pointer Assertion Logic Engine (PALE)
» STRucture ANd Data (STRAND)
» Unbounded Arrays Bounded Elements (UABE)

m many other applications
» program and protocol verifications, linguistics, theorem provers ...

m decision procedure: the well-known MONA tool

» sometimes efficient in practice
» other times the complexity strikes back (unavoidable in general)
» we try to push the usability border further!!

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 3/18

WS1S

m Syntax:
»termy = XCY | Sing(X) | X={0} | X=o(Y)

T. Fiedor, et al. Lazy Automata Techniques for WS1S

WS1S

m Syntax:
»termy = X CVY | Sing(X) | X={0} | X=o(Y)
» formulap = ¥ | pAe | Ve | ¢ | IXe

T. Fiedor, et al. Lazy Automata Techniques for WS1S

WS1S

m Syntax:
»termy = X CVY | Sing(X) | X={0} | X=o(Y)
» formulap = ¥ | pAe | Ve | ¢ | IXe

m Interpretation: over finite subsets of N
» models of formulae = assignments of sets to variables
m sets can be encoded as binary strings:

Index: 012345 012345|6 012345|67
» {1,4,5} — Membership: xvxxvv , X/XXvv|Xx OF XXXy |xx
Encoding: 010011 010011|0 010011(00

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 4/18

WS1S

m Syntax:
»termy = XCY | Sing(X) | X={0} | X=0o(Y)
» formulag = ¥ | pAe | oVe | e | X

m Interpretation: over finite subsets of N
» models of formulae = assignments of sets to variables
m sets can be encoded as binary strings:

Index: 012345 012345|6 012345|67
» {1,4,5} — Membership: xvxxvv , X/XXvv|Xx OF XXXy |xx
Encoding: 010011 010011|0 010011|00

m Language interpretation L():
» Alphabet: for each variable, we have one track in the alphabet

° eg.)\(, [g] is a symbol

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 4/18

WS1S

m Syntax:
»termy = XCY | Sing(X) | X={0} | X=0o(Y)
» formulap = ¥ | pAe | Ve | ¢ | IXe

m Interpretation: over finite subsets of N
» models of formulae = assignments of sets to variables
m sets can be encoded as binary strings:

Index: 012345 012345|6 012345|67
» {1,4,5} — Membership: xvxxvv , X/XXvv|Xx OF XXXy |xx
Encoding: 010011 010011|0 010011|00

m Language interpretation L():
» Alphabet: for each variable, we have one track in the alphabet

° eg.)\5 [g] is a symbol

» Models are represented as a stack of (0-padded) binary strings
» Example:

(X 0,Y = {24} o iff 5 {g] [g} [?] [g} m e L(p)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 4/18

Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:[{0
Y: [O]

ool o
_)& Y: H @ Y: [0] C%D

(XCY)A (Sing(Z) v IWW = a(Z))

m Example:

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 5/18

Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:[{0
Y: [O]

ool o
_)& Y: H @ Y: [0] é)

S(XCY) A <Sing(Z) v aIWW = a(Z))

Ai} Az A1

m Example:

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 5/18

Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:[{0
Y: [O]

ool o
_)& Y: H @ Y: [0] C%D

~(XCY) A (Sing(2) v IWW = 0(2))
| : |
AS ./“12 Y -A1
“
project W — A4

m Example:

1

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 5/18

project W: ';"H > Z:[1]

Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:[{0
Y: [O]

ool o
_)& Y: H @ Y: [0] C%D

S(XCY) A (Sing(Z) v AWW = a(Z))
‘ | |

AS Az ; \\ -A1

m Example:

1
'

w
project W — A,
v
Ao U Ay —» A

1

project W: ';"H > Z:[1]

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 5/18

Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:10
Y: [0]

ool .
_)& Y: H @ Y: [0] C%D

m Example:
(XCY)A (Sing(Z) v IWW = a(Z))
:’ | | Lo |
v A Az N Ay
v : My /
‘4 ‘ ' project W —» A4
As <« complement v
Ao U Ay —» A

1

project W: ';"H > Z:[1]

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 5/18

Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:10
Y: [0]

v H X:[0 X:[1
_)& Y: H @ Y: [0] C%D

m Example:

LXcv)n (Sing(Z) v IWW = a(Z))
: ‘ | | \ l |
i As ! Az A Ay
v ! ‘ . /

‘4 ' ‘ project W — A,

Ag « complement ‘ + -
: Ao U Ay —» Ay

\

Aeﬂ/b

project W: ';"m > Z:[1]

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 5/18

Deciding WS1S using automata

m example of base automaton for X = o(Y) (successor)
X:10
Y: [0]

v H X:[0 X:[1
_)& Y: H @ Y: [0] C%D

m Example:
S(XCY) A (Sing(Z) v IWW = a(Z))
:' ‘ | | \ l |
) As L A B A
" | W s
‘4 ' ‘ project W — A,
Ag « complement ! + e
\ : Ao U Ay —» Ay
v
L{As N A7) = project W: ';"m - an

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 5/18

How to handle quantification

m issue with projection (existential quantification)

» after removing of the tracks not all models would be accepted
(problem with 0-padding)

o needed for soundness!
e it is necesssary to accept all or none encodings of the models

» so after projection we need to adjust the final states by saturation
e pump the final states with all states backward reachable with 0

le] 23 3

Ax=o(v)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 6/18

How to handle quantification

m issue with projection (existential quantification)

» after removing of the tracks not all models would be accepted
(problem with 0-padding)

o needed for soundness!
e it is necesssary to accept all or none encodings of the models

» so after projection we need to adjust the final states by saturation
e pump the final states with all states backward reachable with 0

b GO T

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 6/18

How to handle quantification

m issue with projection (existential quantification)

» after removing of the tracks not all models would be accepted
(problem with 0-padding)

o needed for soundness!
e it is necesssary to accept all or none encodings of the models

» so after projection we need to adjust the final states by saturation
e pump the final states with all states backward reachable with 0

§ GO oy

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 6/18

How to handle quantification

m issue with projection (existential quantification)

» after removing of the tracks not all models would be accepted
(problem with 0-padding)

o needed for soundness!
e it is necesssary to accept all or none encodings of the models

» so after projection we need to adjust the final states by saturation
e pump the final states with all states backward reachable with 0

. -x- *.
[Y:[0] Y:[0]
& @_é % : é (%Y[”CY[O]é
Ax=o(v) — Projection on X — Adjust states
to accept models:
1,01, 001, ...

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 6/18

How to handle quantification

m issue with projection (existential quantification)

» after removing of the tracks not all models would be accepted
(problem with 0-padding)

o needed for soundness!
e it is necesssary to accept all or none encodings of the models

» so after projection we need to adjust the final states by saturation
e pump the final states with all states backward reachable with 0

X:[0 %[0 *:[&
{] [} Y: [o] Y: [0] Y: [0]
&— é f *: F‘]
— Projection on X — Adjust states
to accept models:
1,01,001, ...

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 6/18

Ground Formulae

We focus on validity of ground formulae (all variables are quantified)
m satisfiability/validity of other formulae: prefixing with 3/V

Key observation for ground formulae
Ep iff e€l(yp) J

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 7/18

Ground Formulae

We focus on validity of ground formulae (all variables are quantified)
m satisfiability/validity of other formulae: prefixing with 3/V

Key observation for ground formulae
Ep iff e€l(yp) J

Why?
m Formula ¢ is valid if it accepts everything (L(¢) = ¥*)

m Formula ¢ is unsatisfiable if it accepts nothing (L(¢)
» so it is sufficient to just test membership of ¢

0)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 7/18

Problems with constructing automata

S(XCY)A (smg(Z) vaww = 0(2))
C

! As Ap | \ Aq
\ ‘ a4 /
“a ' project W» A,
As « complement + -
AU Ay —» A7

\ ,

v
L(As N A7) =

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 8/18

Problems with constructing automata

S(XCY)A (smg(Z) vaww = 0(2))
C

! As Az | \ Ay
\ ‘ a4 /
“a ' project W» A,
As « complement + -
AU Ay —» A7

\ ,

v
L(As N A7) =

Constructing the whole automaton, checking ¢ € L(A) later!

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 8/18

Problems with constructing automata

S(XCY)A (smg(Z) vaww = 0(2))
C

As b4
\ ‘ a4 /
“a ' project W» A,
Ag « complement + -
Ao U Ay —» Ay

\ ,

v
L(As N A7) =

Constructing the whole automaton, checking ¢ € L(A) later!

Quantifier alternations (V3 ~ —3-3)
~ exponential blow-up after subset construction.

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17

8/18

Problems with constructing automata

S(XCY)A (smg(Z) vaww = 0(2))
C

! As Ao ‘ \ Aq
\ ‘ a4 /
“a ' project W» A,
Ag « complement + -
AU Ay —» A7

\ ,

v
L(As N A7) =

Constructing the whole automaton, checking ¢ € L(A) later!
Quantifier alternations (V3 ~ —3-3)

~ exponential blow-up after subset construction.
For A1 N Ao, what if L(A1) =0?

» No need to construct A, and A N Ay!

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17

8/18

Towards Language Terms

(XS Y)A (smg(Z) v IWW = a(Z))

i -As A | ‘\ A1
\ ‘ Py /
“a ' project W» A,
Ag « complement ; -
AU Ay —» A5

\+
ﬂA7

?

m Instead, we:

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 9/18

Towards Language Terms

(X CY)A (smg(Z) vaww = a(Z))
C

i -As A | \ A1
\ ‘ Py /
“a ' project W» A,
Ag « complement ; e
Ao U Ay —» Ay

\ 7

v
.AeﬁA =

m Instead, we:
» Represent (sub)formulae as so-called language terms

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 9/18

Towards Language Terms

S(XCY)A (smg(Z) vaww = U(Z))
C

i -As A | \ A1
\ ‘ Py /
“a ' project W» A,
Ag « complement ; e
AU Ay —» A5

\ 7

v
.AeﬁA =

m Instead, we:

» Represent (sub)formulae as so-called language terms
» Evaluate the € € L(A) query lazily — on-the-fly

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17

9/18

Towards Language Terms

S(XCY)A (smg(Z) vaww = a(Z))
C

i -As A | \ A1
\ ‘ Py /
“a ' project W» A,
Ag « complement ; e
AU Ay —» A5

\ 7

v
.AeﬁA =

m Instead, we:

» Represent (sub)formulae as so-called language terms
» Evaluate the € € L(A) query lazily — on-the-fly
» Compute the saturation fixpoints lazily

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17

9/18

Towards Language Terms

S(XCY)A (smg(Z) vaww = a(Z))

i -As A | \ A1
\ ‘ Py /
4 ' project W» A,
Ag « complement ; e
AU Ay —» A5

\+
L(As N A7) ;
m Instead, we:

Represent (sub)formulae as so-called language terms
Evaluate the € € L(A) query lazily — on-the-fly
Compute the saturation fixpoints lazily

Use subsumption to prune state space

v

vV vy

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17

9/18

Overview of our method

Reasoning over language terms
» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 10/18

Overview of our method

Reasoning over language terms
» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.
» Leaves of the terms correspond to states of Finite Automata

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 10/18

Overview of our method

Reasoning over language terms
» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.

» Leaves of the terms correspond to states of Finite Automata
» Inner nodes:

e pAp~ Ny
« PVt Uty

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 10/18

Overview of our method

Reasoning over language terms
» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.

» Leaves of the terms correspond to states of Finite Automata
» Inner nodes:

e pAp~ Ny

e VY~ Uty

o —p~ 1,

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 10/18

Overview of our method

Reasoning over language terms
» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.
» Leaves of the terms correspond to states of Finite Automata
» Inner nodes:
@AY~ b, Ny
PV~ Uty
@~ E
IX.p ~ mx(t,) — 0"
m Tx corresponds to the projection of the variable X in L(p)
m —0" corresonds to the left quotient of L(¢)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 10/18

Overview of our method

Reasoning over language terms
» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.
» Leaves of the terms correspond to states of Finite Automata
» Inner nodes:
@AY~ b, Ny
PV~ Uty
P~ E
IX.p ~ mx(t,) — 0"
m Tx corresponds to the projection of the variable X in L(p)
m —0" corresonds to the left quotient of L(¢)

Validity checking of ground formula ¢ is reduced to the
e-membership test on t,

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 10/18

Overview of our method

Reasoning over language terms
» Structure of the terms £, ~ structure of ¢
e but terms can be partially evaluated, unfolded, DAGified, etc.
» Leaves of the terms correspond to states of Finite Automata
» Inner nodes:
e pAp~ Ny
* PV~ Uly
o —po i,
e AX.p~ my(t,) =0
m Tx corresponds to the projection of the variable X in L(p)
m —0" corresonds to the left quotient of L(¢)

Validity checking of ground formula ¢ is reduced to the
e-membership test on t,

» Intuition: Automaton either accepts ¥* or nothing, so ¢ test suffices
P Ep <= c€t,

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 10/18

Overview of our method

Lazy evaluation of e-membership on term ¢

T. Fiedor, et al. Lazy Automata Techniques for WS1S

Overview of our method

Lazy evaluation of e-membership on term ¢
> EEA@IAQFA#Q

T. Fiedor, et al. Lazy Automata Techniques for WS1S

Overview of our method

Lazy evaluation of e-membership on term ¢
> EEA@/AOFA#Q

»eel, Nty Seet, Neety
e ife ¢ t, noneedtocheckife €ty

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 11/18

Overview of our method

Lazy evaluation of e-membership on term ¢
> EEA@/AOFA#Q

»eel, Nty Seet, Neety
e ife ¢ t, noneedtocheckife €ty

»ectl,Ulyscel,Veely
e ife € {, noneed to checkif e € ¢y

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 11/18

Overview of our method

Lazy evaluation of e-membership on term ¢
> EEA@/AOFA#Q

»eel, Nty Seet, Neety
e ife ¢ t, noneedtocheckife €ty

»ectl,Ulyscel,Veely
e ife € {, noneed to checkif e € ¢y

»cet,ecdt,

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 11/18

Overview of our method

Lazy evaluation of e-membership on term ¢
> EEA@/AOFA#Q

v

ceet, Nty &€l Neely
e ife ¢ t, noneedtocheckife €ty

v

e€t, Uty secet, Vel
e ife € {, noneed to checkif e € ¢y

v

c€t,oedt,
cenx(t,) eeet,

v

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 11/18

Overview of our method

Lazy evaluation of e-membership on term ¢

»cEt—0 ©cetVeet—0Veet—00V...
e evaluation of the quotients leads to fixpoint computations
e lazy evaluation ~ iteratively teste € t,e € t — 0,...
e ... until fixpoint reached or satisfying member found

N R

Y:
0 Y: [0
*

Ax=o(y)

— Adjust states
to accept models:
1,01, 001, ...

- Projection on X

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 12/18

Overview of our method

Lazy evaluation of e-membership on term ¢

»cEt—0 ©cetVeet—0Veet—00V...
e evaluation of the quotients leads to fixpoint computations
e lazy evaluation ~ iteratively teste € t,e € t — 0,...
e ... until fixpoint reached or satisfying member found

»ecet-0
e —0oninner nodes: push through to leaves
e —0 on leaves: compute 0-predecessors of final states

Wl ¥l x

Y: [0
*

Ax=o(v)

— Adjust states
to accept models:
1,01,001, ...

— Projection on X

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 12/18

Overview of our method

Lazy evaluation of e-membership on term ¢

»cEt—0 ©cetVeet—0Veet—00V...
e evaluation of the quotients leads to fixpoint computations
e lazy evaluation ~ iteratively teste € t,e € t — 0,...
e ... until fixpoint reached or satisfying member found

»cet—0
e —0oninner nodes: push through to leaves
e —0 on leaves: compute 0-predecessors of final states

I I

Y:[0
*

Ax=o(v)

— Adjust states
to accept models:
1,01,001, ...

— Projection on X

B Further optimizations
» e.g. subsumption, continuations, formula preprocessing, etc.

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 12/18

Validity checking of 3Y.(3X.¢) A ¢

T. Fiedor, et al. Lazy Automata Techniques for WS1S

Validity checking of 3Y.(3X.¢) A ¢

m We represent the formula symbolically as a language terms t5y.(3x.,)ay and test
the emptiness.

B cc tgy‘(ng)/\d, = e€lx,Nly -0 _ _
= cE€bxoNlyVeEbx, Nty —0Vee tax,¢ﬂt¢—02...

m We will demonstrate our method just on testing if ¢ € tsx., N £y
» (some details will be omitted)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

)
(W)

&)

(a) Automaton for ¢

m Term t3x ., corresponds to the left subformula 3X.¢

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

)
(W)

&)

(a) Automaton for 3X.

m Term t3x ., corresponds to the left subformula 3X.¢

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

m Term t3x ., corresponds to the left subformula 3X.¢
m Term t, corresponds to the right subformula

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

(b) Automaton for

m We commence the emptiness check from final states of leaf automata.
m (After projection new final states are backward reachable from current final
states)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

(b) Automaton for

m We commence the emptiness check from final states of leaf automata.
m (After projection new final states are backward reachable from current final
states)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

{q37 q4} = F‘P

(b) Automaton for

m We commence the emptiness check from final states of leaf automata.
m (After projection new final states are backward reachable from current final
states)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

{q37 q4} = F‘P

B eccbhyx,Nty <

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

©
Y:

{q37 q4} = F‘P

B eccbhyx,Nty <

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

©
Y:

{q37 q4} = F‘P

[] Eetgx,¢ﬂf¢ <
< e€lbx,Necty

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

?
0 EEth'g‘,f-\ltw
? ?
€€ lax.e @ eety

{rz} =Fy
®
Y:
{CISaCM} = F‘P
X:
Y:

[] Eetgx,¢ﬂf¢ <
< e€lbx,Necty

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

?
0 EEth.¢ﬂtw
? ?
€€ lax.e @ eety

{rz} =Fy
®
Y:
{CISaCM} = F‘P
X:
Y:

.6€t3x_¢<:>66t¢—6*_ _
— ecct,Veect,—0Veet,—0%...
mecel, < l,NF,#0.

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

?
0 EEth.¢ﬂtw
? ?
€€ lax.e @ eety

{rz} =Fy
®
Y:
{CISaCM} = F‘P
X:
Y:

.6€t3x_¢<:>66t¢—6*_ _
— ecct,Veect,—0Veet,—0%...
mecel, < l,NF,#0.

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

X:
Y:

X
Y

[V

.6€t3x_¢<:>56t¢—6*_ _
— ecct,Veect,—0Veet,—0%...
mecel, < l,NF,#0.

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

X:
Y:

X
Y

[V

B {q, }N{g,q}=0,...
m ...but we cannot conclude that e ¢ t5x., ...

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

?
° EEth.¢ﬂtw
? ?
EEth.‘P @ €€t¢

{r} =Fy
®
Y:
{90, q2} N {Q3,qa} # 0
le ;LP
X:
Y:

B {q, }N{g,q}=0,...
m ...but we cannot conclude that e ¢ t5x., ...

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

&
(¢) ‘

(b) Automaton for

m We have to saturate the final states (because of projection)
m One step of saturation yields set of states F,, — 0.

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

&
(¢) 4

(b) Automaton for

m We have to saturate the final states (because of Projection)
m One step of saturation yields set of states F, — 0.

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

?
° EEth.¢ﬂtw
? ?
€€ lax.e @ eety

{r} =Fy

®

Y:
{a3, 4} Q2
_b/
0

X
Y:

(b) Automaton for

m We have to saturate the final states (because of Projection)
m One step of saturation yields set of states F, — 0.

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

?
0 EEth'g‘,f-\ltw

?
Eetw

{r} =Fy

&)
(®) ’
{93, q4} Q2
AR g

?
€€ lax.e

(@]]

(b) Automaton for

m We repeat the check: ¢ € t, — 0 <
= I, NF,—0#0

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

?
0 EEth.¢ﬂtw

?
€€t¢

{r} =Fy

&
(®) :
{33, q4} Q2
AN g

?
€€ lax.e

|

(@]]

X
Y

[V

m We repeat the check: e € t, — 0 <=
e I,NF,—0#0

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

X:
Y:

{90, G2} N {6, Ga, G2} £ 0
—_— Y
o, F,_0

X
Y

[V

m We repeat the check: e € t, — 0 <=
e I,NF,—0#0

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

X:
Y:

{90, G2} N {6, Ga, G2} £ 0
—_— Y
o, F,_0

X
Y

[V

m Since {qo, g2} N {Qs, qu, G2} # 0, ...
m ...weconclude thate € t, — 0 and hence € € t3x .

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

?
° EEth.¢ﬂtw
? ?
e EBf g @ @ sty

{r} =Fy

X
Y

1

{90, 92} N {03, q4, G2} #£ 0
—_— Y
o, F,_0

X
Y

[V

m Since {qo, g2} N {Qs, qu, G2} # 0, ...
m ...weconclude thate € t, — 0 and hence € € t3x .

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

©
Y:

{93, Qa, @2}

X
Y

[V

m However, we cannot short-circuit the test.
® So we have to compute ¢ € ty,

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

(¢) X

{93, Qa, @2}

vl

m However, we cannot short-circuit the test.
® So we have to compute ¢ € ty,

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

{nin{rt=10
—

by Fy
{93, Qa, @2}

m However, we cannot short-circuit the test.
® So we have to compute ¢ € ty,

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

0 Eétgxlq,xtw
cteie @) (9) X

m Until we find satisfying member or all of the fixpoints are computed. . .

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 13/18

Foremost optimizations

m lazy evaluation
» if one branch of a binary operator suffices: short-circuit!

T. Fiedor, et al. Lazy Automata Techniques for WS1S

Foremost optimizations
m lazy evaluation

» if one branch of a binary operator suffices: short-circuit!
» if we find a satisfying guy in a fixpoint computation: short-circuit!

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 14/18

Foremost optimizations

m lazy evaluation

» if one branch of a binary operator suffices: short-circuit!
» if we find a satisfying guy in a fixpoint computation: short-circuit!
» but with a caveat!

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 14/18

Foremost optimizations

m lazy evaluation
» if one branch of a binary operator suffices: short-circuit!
» if we find a satisfying guy in a fixpoint computation: short-circuit!
» but with a caveat!
» the algorithm has 2 interleaved phases:
testing e-membership
computing left quotients

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 14/18

Foremost optimizations

m lazy evaluation
» if one branch of a binary operator suffices: short-circuit!
» if we find a satisfying guy in a fixpoint computation: short-circuit!
» but with a caveat!
» the algorithm has 2 interleaved phases:
testing e-membership
computing left quotients
» when computing quotients, we may need the result of a previously
short-circuited operation
e one need to continue unfolding the fixpoint

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 14/18

Foremost optimizations

m lazy evaluation
if one branch of a binary operator suffices: short-circuit!
if we find a satisfying guy in a fixpoint computation: short-circuit!
but with a caveat!
the algorithm has 2 interleaved phases:
testing e-membership
computing left quotients
» when computing quotients, we may need the result of a previously
short-circuited operation
e one need to continue unfolding the fixpoint

vvyVvyy

m combination with the explicit automata procedure (MONA)

» we can prepare a minimal automaton for a subformula

» reduces the underlying state space
» various heuristics

e we explicitly construct quantifier-free subformulae

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 14/18

Foremost optimizations

m Subsumption

» when computing fixpoints, some elements can subsume others
» keep fixpoint states minimal (cf. antichains)
» subsumption even on partially computed elements

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 15/18

Foremost optimizations

m Subsumption

» when computing fixpoints, some elements can subsume others
» keep fixpoint states minimal (cf. antichains)
» subsumption even on partially computed elements

m Formula pre-processing

» pre-processing of the formula can greatly affect performance
» anti-prenexing — pushing quantifiers down can reduce the explored
state space (even exponentially!)

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 15/18

Experimental Evaluation of our tool GASTON

m Results on formulae generated by the UABE tool
» formulae encode various array invariants

m oo represents that the tool timeouted in 2 minutes

Benchmark MONA . GASTON
Time[s] | Space Time [s] [Space
a-a 1.51 30253 00 o)
ex10 6.92 | 131835 11.82 82236
ex11l 4.04 2393 0.10 4156
ex12 0.11 2591 5.40 68 159
ex13 0.01 2601 0.87 16 883
ex16 0.01 3384 0.18 3960
ex17 3.15 | 165173 0.09 3952
ex18 0.18 19463 00 0o
ex2 0.10 26 565 0.01 1841
ex20 1.26 1077 0.21 12266
ex21 1.51 30253 00 o)
ex4 0.03 6797 0.33 22442
ex6 3.69 27903 21.44 | 132848
ex7 0.75 857 0.01 594
ex8 6.83 | 106555 0.01 1624
ex9 6.37 | 586447 8.31 412417
fib 0.04 8128 22.15 | 126688

T. Fiedor, et al. Lazy Automata Techniques for WS1S

TACAS'17

16/18

Experimental Evaluation of our tool GASTON

m Results on set of parametrized benchmarks up to k = 20

m oom(k) represents that the tool run out of memory on formula k

m oo(K) represents that the tool timeouted in 2 minutes on formula k

[Benchmark [MoNA [DWINA | Toss | COALG [SFA [GASTON
HornLeg oom(18) 0.03 0.08 00(08) 0.03 0.01
HornLeq (+3) oom(18) oo(11) 0.16 00(07) | oo(11) 0.01
HornLeq (+4) oom(18) 0o(13) 0.04 00(06) | oco(11) 0.01
HornIn oom(15) oo(11) 0.07 00(08) | co(08) 0.01
HornTrans 86.43 oo(14) N/A N/A | 38.56 1.06
SetClosed oom(05) oo(14) | oo(03) oo(01) | oo(04) oo(06)
SetSingle oom(04) 00(08) 0.10 N/A | co(03) 0.01
Ex8 oom(08) N/A N/A N/A N/A 0.15
Ex11(10) oom(14) N/A N/A N/A N/A 1.62

m DWINA: Fiedor et al.: Nested antichains for WS1S

m Toss: Ganzow and Kaizer: New algorithm for weak monadic second-order login on inductive structures
m COALG: Traytel: A coalgebraic decision procedure for WS1S

m SFA: D’Antoni and Veanes: Minimization of symbolic automata

17/18

Future Work

m extension to WSkKS

» weak monadic second-order logic of k successors
» opens whole new world of tree structures

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 18/18

Future Work

m extension to WSkKS

» weak monadic second-order logic of k successors
» opens whole new world of tree structures

m extension to infinite words/trees

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 18/18

Future Work

m extension to WSkKS

» weak monadic second-order logic of k successors
» opens whole new world of tree structures

m extension to infinite words/trees

m application of the ideas in other automata-handling algorithms

T. Fiedor, et al. Lazy Automata Techniques for WS1S TACAS'17 18/18

