Lazy Automata Techniques for WS1S

Tomáš Fiedor^{1,2} Lukáš Holík² Petr Janků²

1 Red Hat, Czech Republic

Ondřej Lengál^{2,3} Tomáš Vojnar²
²Brno University of Technology, Czech Republic
³Academia Sinica, Taiwan

TACAS'17

- weak monadic second-order logic of one successor
 - ▶ second-order ⇒ quantification over relations;
 - ▶ monadic ⇒ relations are unary (i.e. sets);
 - weak ⇒ sets are finite;
 - ▶ of one successor ⇒ reasoning about linear structures.

- weak monadic second-order logic of one successor
 - second-order ⇒ quantification over relations;
 - ► monadic ⇒ relations are unary (i.e. sets);
 - weak ⇒ sets are finite:
 - ▶ of one successor ⇒ reasoning about linear structures.
- corresponds to finite automata [Büchi'60]

- weak monadic second-order logic of one successor
 - second-order ⇒ quantification over relations;
 - ► monadic ⇒ relations are unary (i.e. sets);
 - weak ⇒ sets are finite:
 - ▶ of one successor ⇒ reasoning about linear structures.
- corresponds to finite automata [Büchi'60]
- decidable but NONELEMENTARY
 - constructive proof via translation to finite automata

allows one to define rich invariants

- allows one to define rich invariants
- used in tools for checking structural invariants
 - ► Pointer Assertion Logic Engine (PALE)
 - STRucture ANd Data (STRAND)
 - Unbounded Arrays Bounded Elements (UABE)

- allows one to define rich invariants
- used in tools for checking structural invariants
 - Pointer Assertion Logic Engine (PALE)
 - STRucture ANd Data (STRAND)
 - Unbounded Arrays Bounded Elements (UABE)
- many other applications
 - program and protocol verifications, linguistics, theorem provers . . .

- allows one to define rich invariants
- used in tools for checking structural invariants
 - Pointer Assertion Logic Engine (PALE)
 - STRucture ANd Data (STRAND)
 - Unbounded Arrays Bounded Elements (UABE)
- many other applications
 - program and protocol verifications, linguistics, theorem provers . . .
- decision procedure: the well-known MONA tool
 - sometimes efficient in practice
 - other times the complexity strikes back (unavoidable in general)
 - we try to push the usability border further!!

■ Syntax:

▶ term $\psi ::= X \subseteq Y \mid \operatorname{Sing}(X) \mid X = \{0\} \mid X = \sigma(Y)$

■ Syntax:

- ▶ term ψ ::= $X \subseteq Y$ | Sing(X) | $X = \{0\}$ | $X = \sigma(Y)$
- ▶ formula $\varphi ::= \psi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$

Syntax:

- ▶ term $\psi ::= X \subseteq Y \mid \operatorname{Sing}(X) \mid X = \{0\} \mid X = \sigma(Y)$ ▶ formula $\varphi ::= \psi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$
- Interpretation: over finite subsets of N
 - models of formulae = assignments of sets to variables
- sets can be encoded as binary strings:

Syntax:

- ▶ term ψ ::= $X \subseteq Y$ | Sing(X) | $X = \{0\}$ | $X = \sigma(Y)$ ▶ formula φ ::= ψ | $\varphi \land \varphi$ | $\varphi \lor \varphi$ | $\neg \varphi$ | $\exists X. \varphi$
- Interpretation: over finite subsets of N
 - models of formulae = assignments of sets to variables
- sets can be encoded as binary strings:

$$\begin{array}{c} \text{Index:} & \text{012345} & \text{012345} | 6 \\ \bullet & \text{11,4,5} \\ \bullet & \text{Membership:} \\ \text{Encoding:} & \text{010011} \\ \end{array} , \begin{array}{c} \text{012345} | 6 \\ \times \sqrt{\times} \sqrt{\times} \\ \text{010011} \\ \text{010011} \\ \end{array} , \begin{array}{c} \text{012345} | 6 \\ \times \sqrt{\times} \sqrt{\times} \\ \text{010011} \\ \text{010011} \\ \end{array} \right) . . .$$

- **Language interpretation** $L(\varphi)$:
 - Alphabet: for each variable, we have one track in the alphabet
 - e.g. $X: \begin{bmatrix} 0 \\ Y: \end{bmatrix}$ is a symbol

Syntax:

- ▶ term $\psi ::= X \subseteq Y \mid \operatorname{Sing}(X) \mid X = \{0\} \mid X = \sigma(Y)$ ▶ formula $\varphi ::= \psi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$
- Interpretation: over finite subsets of N
 - models of formulae = assignments of sets to variables
- sets can be encoded as binary strings:

$$\begin{array}{c} \text{Index:} & \text{012345} & \text{012345} | 6 \\ \bullet & \text{11,4,5} \\ \bullet & \text{Membership:} \\ \text{Encoding:} & \text{010011} \\ \end{array} , \begin{array}{c} \text{012345} | 6 \\ \times \sqrt{\times} \sqrt{\times} \\ \text{010011} \\ \text{010011} \\ \end{array} , \begin{array}{c} \text{012345} | 6 \\ \times \sqrt{\times} \sqrt{\times} \\ \text{010011} \\ \text{010011} \\ \end{array} \right) . . .$$

- **Language interpretation** $L(\varphi)$:
 - Alphabet: for each variable, we have one track in the alphabet

• e.g.
$$X: \begin{bmatrix} 0 \\ Y: \end{bmatrix}$$
 is a symbol

- Models are represented as a stack of (0-padded) binary strings
- Example:

$$\{X \mapsto \emptyset, Y \mapsto \{2,4\}\} \models \varphi \quad \text{iff} \quad {\textstyle X: \begin{bmatrix} 0 \\ Y: \end{bmatrix}} {\textstyle \begin{bmatrix} 0 \\ 0 \end{bmatrix}} {\textstyle \begin{bmatrix} 0 \\ 1 \end{bmatrix}} {\textstyle \begin{bmatrix} 0 \\ 0 \end{bmatrix}} {\textstyle \begin{bmatrix} 0 \\ 1 \end{bmatrix}} \in L(\varphi)$$

example of base automaton for $X = \sigma(Y)$ (successor)

$$\neg(X \subseteq Y) \land \left(\operatorname{Sing}(Z) \lor \exists W.W = \sigma(Z)\right)$$

example of base automaton for $X = \sigma(Y)$ (successor)

$$\neg(X \subseteq Y) \land \left(\operatorname{Sing}(Z) \lor \exists W.W = \sigma(Z)\right)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

example of base automaton for $X = \sigma(Y)$ (successor)

$$\neg(X \subseteq Y) \land \left(\operatorname{Sing}(Z) \lor \exists W.W = \sigma(Z)\right)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow$$

example of base automaton for $X = \sigma(Y)$ (successor)

example of base automaton for $X = \sigma(Y)$ (successor)

■ Example:

project
$$W: \frac{W}{Z: \begin{bmatrix} \mathbf{v} \\ 1 \end{bmatrix}} \mapsto Z: [1]$$

example of base automaton for $X = \sigma(Y)$ (successor)

example of base automaton for $X = \sigma(Y)$ (successor)

■ Example:

- issue with projection (existential quantification)
 - after removing of the tracks not all models would be accepted (problem with 0-padding)
 - needed for soundness!
 - it is necessary to accept all or none encodings of the models
 - so after projection we need to adjust the final states by saturation
 - pump the final states with all states backward reachable with 0

- issue with projection (existential quantification)
 - after removing of the tracks not all models would be accepted (problem with 0-padding)
 - needed for soundness!
 - it is necessary to accept all or none encodings of the models
 - so after projection we need to adjust the final states by saturation
 - pump the final states with all states backward reachable with 0

- issue with projection (existential quantification)
 - after removing of the tracks not all models would be accepted (problem with 0-padding)
 - needed for soundness!
 - it is necessary to accept all or none encodings of the models
 - so after projection we need to adjust the final states by saturation
 - pump the final states with all states backward reachable with 0

- issue with projection (existential quantification)
 - after removing of the tracks not all models would be accepted (problem with 0-padding)
 - needed for soundness!
 - it is necessary to accept all or none encodings of the models
 - so after projection we need to adjust the final states by saturation
 - pump the final states with all states backward reachable with 0

- issue with projection (existential quantification)
 - after removing of the tracks not all models would be accepted (problem with 0-padding)
 - needed for soundness!
 - it is necessary to accept all or none encodings of the models
 - so after projection we need to adjust the final states by saturation
 - pump the final states with all states backward reachable with 0

Ground Formulae

We focus on validity of ground formulae (all variables are quantified)

■ satisfiability/validity of other formulae: prefixing with ∃/∀

Key observation for ground formulae

$$\models \varphi \quad \text{iff} \quad \varepsilon \in L(\varphi)$$

Ground Formulae

We focus on validity of ground formulae (all variables are quantified)

■ satisfiability/validity of other formulae: prefixing with ∃/∀

Key observation for ground formulae

$$\models \varphi \quad \text{iff} \quad \varepsilon \in L(\varphi)$$

Why?

- **The Property of Science 19** Formula φ is valid if it accepts everything $(L(\varphi) = \Sigma^*)$
- Formula φ is unsatisfiable if it accepts nothing ($L(\varphi) = \emptyset$)
 - ightharpoonup so it is sufficient to just test membership of arepsilon

1 Constructing the whole automaton, checking $\varepsilon \in L(A)$ later!

- **1** Constructing the whole automaton, checking $\varepsilon \in L(A)$ later!
- 2 Quantifier alternations (∀∃ ~ ¬∃¬∃)
 - → exponential blow-up after subset construction.

- 1 Constructing the whole automaton, checking $\varepsilon \in L(A)$ later!
- Quantifier alternations (∀∃ ~> ¬∃¬∃)
 ~> exponential blow-up after subset construction.
- **3** For $A_1 \cap A_2$, what if $L(A_1) = \emptyset$?
 - ▶ No need to construct A_2 and $A_1 \cap A_2$!

- Instead, we:
 - Represent (sub)formulae as so-called language terms

- Represent (sub)formulae as so-called language terms
- ▶ Evaluate the $\varepsilon \in L(A)$ query lazily \rightarrow on-the-fly

- Represent (sub)formulae as so-called language terms
- ▶ Evaluate the $\varepsilon \in L(A)$ query lazily \rightarrow on-the-fly
- Compute the saturation fixpoints lazily

- Represent (sub)formulae as so-called language terms
- ▶ Evaluate the $\varepsilon \in L(A)$ query lazily \rightarrow on-the-fly
- Compute the saturation fixpoints lazily
- Use subsumption to prune state space

- Reasoning over language terms
 - Structure of the terms $t_{\varphi} \sim$ structure of φ
 - but terms can be partially evaluated, unfolded, DAGified, etc.

- Reasoning over language terms
 - Structure of the terms $t_{\varphi} \sim$ structure of φ
 - but terms can be partially evaluated, unfolded, DAGified, etc.
 - Leaves of the terms correspond to states of Finite Automata

- Reasoning over language terms
 - Structure of the terms $t_{\varphi} \sim$ structure of φ
 - but terms can be partially evaluated, unfolded, DAGified, etc.
 - Leaves of the terms correspond to states of Finite Automata
 - Inner nodes:
 - $\varphi \wedge \psi \sim t_{\varphi} \cap t_{\psi}$
 - $\varphi \lor \psi \leadsto t_{\varphi} \cup t_{\psi}$

- Reasoning over language terms
 - Structure of the terms $t_{\varphi} \sim$ structure of φ
 - but terms can be partially evaluated, unfolded, DAGified, etc.
 - Leaves of the terms correspond to states of Finite Automata
 - Inner nodes:
 - $\varphi \wedge \psi \rightsquigarrow t_{\varphi} \cap t_{\psi}$
 - $\varphi \lor \psi \leadsto t_{\varphi} \cup t_{\psi}$
 - ullet $eg arphi \sim \overline{t_{oldsymbol{arphi}}}$

- Reasoning over language terms
 - Structure of the terms $t_{\varphi} \sim$ structure of φ
 - but terms can be partially evaluated, unfolded, DAGified, etc.
 - Leaves of the terms correspond to states of Finite Automata
 - Inner nodes:
 - $\varphi \wedge \psi \sim t_{\varphi} \cap t_{\psi}$
 - $\varphi \lor \psi \leadsto t_{\varphi} \cup t_{\psi}$
 - $\neg \varphi \sim \overline{t_{\varphi}}$
 - $\exists X.\varphi \sim \pi_{x}(t_{\varphi}) \overline{0}^{*}$
 - \blacksquare π_X corresponds to the projection of the variable X in $L(\varphi)$
 - -0^* corresponds to the left quotient of $L(\varphi)$

- Reasoning over language terms
 - Structure of the terms $t_{\varphi} \sim$ structure of φ
 - but terms can be partially evaluated, unfolded, DAGified, etc.
 - Leaves of the terms correspond to states of Finite Automata
 - Inner nodes:
 - $\varphi \wedge \psi \rightsquigarrow t_{\varphi} \cap t_{\psi}$
 - $\varphi \lor \psi \leadsto t_{\varphi} \cup t_{\psi}$
 - $\neg \varphi \sim \overline{t_{\varphi}}$
 - $\exists X.\varphi \sim \pi_{\mathsf{X}}(t_{\varphi}) \overline{\mathsf{0}}^*$
 - \blacksquare π_X corresponds to the projection of the variable X in $L(\varphi)$
 - -0^* corresonds to the left quotient of $L(\varphi)$
- **2** Validity checking of ground formula φ is reduced to the ε -membership test on t_{φ}

- Reasoning over language terms
 - Structure of the terms $t_{arphi} \sim$ structure of arphi
 - but terms can be partially evaluated, unfolded, DAGified, etc.
 - Leaves of the terms correspond to states of Finite Automata
 - Inner nodes:
 - $\varphi \wedge \psi \rightsquigarrow t_{\varphi} \cap t_{\psi}$
 - $\varphi \lor \psi \leadsto t_{\varphi} \cup t_{\psi}$
 - $\neg \varphi \sim \overline{t_{\omega}}$
 - $\exists X.\varphi \sim \pi_{x}(t_{\varphi}) \overline{0}^{*}$
 - \blacksquare π_X corresponds to the projection of the variable X in $L(\varphi)$
 - -0^* corresponds to the left quotient of $L(\varphi)$
- **2** Validity checking of ground formula φ is reduced to the ε -membership test on t_{φ}
 - ▶ Intuition: Automaton either accepts Σ^* or nothing, so ε test suffices
 - $\blacktriangleright \models \varphi \iff \varepsilon \in t_{\varphi}$

3 Lazy evaluation of ε -membership on term t

- **3** Lazy evaluation of ε -membership on term t
 - $\bullet \ \varepsilon \in \mathcal{A} \Leftrightarrow I_{\mathcal{A}} \cap F_{\mathcal{A}} \neq \emptyset$

- **3** Lazy evaluation of ε -membership on term t
 - $\varepsilon \in \mathcal{A} \Leftrightarrow I_{\mathcal{A}} \cap F_{\mathcal{A}} \neq \emptyset$
 - $\triangleright \ \varepsilon \in t_{\varphi} \cap t_{\psi} \Leftrightarrow \varepsilon \in t_{\varphi} \wedge \varepsilon \in t_{\psi}$
 - if $\varepsilon \notin t_{\varphi}$ no need to check if $\varepsilon \in t_{\psi}$

- **3** Lazy evaluation of ε -membership on term t
 - $\varepsilon \in \mathcal{A} \Leftrightarrow I_{\mathcal{A}} \cap F_{\mathcal{A}} \neq \emptyset$
 - $\triangleright \ \varepsilon \in t_{\varphi} \cap t_{\psi} \Leftrightarrow \varepsilon \in t_{\varphi} \wedge \varepsilon \in t_{\psi}$
 - if $\varepsilon \notin t_{\varphi}$ no need to check if $\varepsilon \in t_{\psi}$
 - $\triangleright \ \varepsilon \in t_{\omega} \cup t_{\psi} \Leftrightarrow \varepsilon \in t_{\omega} \vee \varepsilon \in t_{\psi}$
 - if $\varepsilon \in t_{\varphi}$ no need to check if $\varepsilon \in t_{\psi}$

- **3** Lazy evaluation of ε -membership on term t
 - $\varepsilon \in \mathcal{A} \Leftrightarrow I_{\mathcal{A}} \cap F_{\mathcal{A}} \neq \emptyset$
 - $\triangleright \ \varepsilon \in t_{\varphi} \cap t_{\psi} \Leftrightarrow \varepsilon \in t_{\varphi} \wedge \varepsilon \in t_{\psi}$
 - if $\varepsilon \notin t_{\varphi}$ no need to check if $\varepsilon \in t_{\psi}$
 - $\triangleright \ \varepsilon \in t_{\varphi} \cup t_{\psi} \Leftrightarrow \varepsilon \in t_{\varphi} \vee \varepsilon \in t_{\psi}$
 - if $\varepsilon \in t_{\varphi}$ no need to check if $\varepsilon \in t_{\psi}$
 - $\blacktriangleright \ \varepsilon \in \overline{t_{\varphi}} \Leftrightarrow \varepsilon \notin t_{\varphi}$

- **3** Lazy evaluation of ε -membership on term t
 - $\varepsilon \in \mathcal{A} \Leftrightarrow I_{\mathcal{A}} \cap F_{\mathcal{A}} \neq \emptyset$
 - $\triangleright \ \varepsilon \in t_{\varphi} \cap t_{\psi} \Leftrightarrow \varepsilon \in t_{\varphi} \wedge \varepsilon \in t_{\psi}$
 - if $\varepsilon \notin t_{\varphi}$ no need to check if $\varepsilon \in t_{\psi}$
 - - if $\varepsilon \in t_{\varphi}$ no need to check if $\varepsilon \in t_{\psi}$
 - $\triangleright \ \varepsilon \in \overline{t_{\varphi}} \Leftrightarrow \varepsilon \notin t_{\varphi}$
 - $\triangleright \ \varepsilon \in \pi_X(t_{\varphi}) \Leftrightarrow \varepsilon \in t_{\varphi}$

- **3** Lazy evaluation of ε -membership on term t
 - - evaluation of the quotients leads to fixpoint computations
 - lazy evaluation \sim iteratively test $\varepsilon \in t, \varepsilon \in t \overline{0}, \dots$
 - ... until fixpoint reached or satisfying member found

- **3** Lazy evaluation of ε -membership on term t
 - - evaluation of the quotients leads to fixpoint computations
 - lazy evaluation \sim iteratively test $\varepsilon \in t, \varepsilon \in t \overline{0}, \dots$
 - ... until fixpoint reached or satisfying member found
 - $\epsilon \in t \overline{0}$
 - $-\overline{0}$ on inner nodes: push through to leaves
 - $-\overline{0}$ on leaves: compute 0-predecessors of final states

- **3** Lazy evaluation of ε -membership on term t
 - $\triangleright \varepsilon \in t \overline{0}^* \Leftrightarrow \varepsilon \in t \vee \varepsilon \in t \overline{0} \vee \varepsilon \in t \overline{0} \overline{0} \vee \dots$
 - evaluation of the quotients leads to fixpoint computations
 - lazy evaluation \sim iteratively test $\varepsilon \in t, \varepsilon \in t \overline{0}, \dots$
 - ... until fixpoint reached or satisfying member found
 - $\epsilon \in t \overline{0}$
 - $-\overline{0}$ on inner nodes: push through to leaves
 - $-\overline{0}$ on leaves: compute 0-predecessors of final states

- 4 Further optimizations
 - e.g. subsumption, continuations, formula preprocessing, etc.

- We represent the formula symbolically as a language terms $t_{\exists Y.(\exists X.\varphi) \land \psi}$ and test the emptiness.
- $\varepsilon \in t_{\exists Y.(\exists X.\varphi) \land \psi} \iff \varepsilon \in t_{\exists X.\varphi} \cap t_{\psi} \bar{0}^*$ $\iff \varepsilon \in t_{\exists X.\varphi} \cap t_{\psi} \lor \varepsilon \in t_{\exists X.\varphi} \cap t_{\psi} \bar{0} \lor \varepsilon \in t_{\exists X.\varphi} \cap t_{\psi} \bar{0}^2 \dots$
- We will demonstrate our method just on testing if $\varepsilon \in t_{\exists X._{\varphi}} \cap t_{\psi}$
 - (some details will be omitted)

Validity checking of $\exists Y. (\exists X. \varphi) \land \psi$ $\downarrow^{X: [1]} \downarrow^{X: [1]} \downarrow^{X: [1]} \downarrow^{X: [1]} \downarrow^{X: [1]} \downarrow^{X: [0]} \downarrow$

Term $t_{\exists X, \varphi}$ corresponds to the left subformula $\exists X. \varphi$

Term $t_{\exists X, \varphi}$ corresponds to the left subformula $\exists X. \varphi$

(a) Automaton for $\exists X.\varphi$

$$X:\begin{bmatrix}1\\Y:\begin{bmatrix}0\\0\end{bmatrix}Y:\begin{bmatrix}0\\0\end{bmatrix} \\ Y:\begin{bmatrix}0\\0\end{bmatrix} \\ Y:\begin{bmatrix}0\\1\end{bmatrix} \\ Y:\begin{bmatrix}1\\1\end{bmatrix} \\ Y:\begin{bmatrix}1\\1\\1\end{bmatrix} \\$$

- Term $t_{\exists X.\varphi}$ corresponds to the left subformula $\exists X.\varphi$
- Term t_{ψ} corresponds to the right subformula ψ

(a) Automaton for $\exists X.\varphi$

(b) Automaton for *ψ*

- We commence the emptiness check from final states of leaf automata.
- (After projection new final states are backward reachable from current final states)

Validity checking of $\exists Y.(\exists X.\varphi) \land \psi$ (a) Automaton for $\exists X.\varphi$

(b) Automaton for ψ

 $\begin{array}{c}
X : \begin{bmatrix} 1 \\ Y : \begin{bmatrix} 1 \end{bmatrix} X : \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\
Y : \begin{bmatrix} 1 \end{bmatrix}
\end{array}$

- We commence the emptiness check from final states of leaf automata.
- (After projection new final states are backward reachable from current final states)

(a) Automaton for $\exists X.\varphi$

- We commence the emptiness check from final states of leaf automata.
- (After projection new final states are backward reachable from current final states)

(a) Automaton for $\exists X.\varphi$

(b) Automaton for ψ

 $\mathbf{\epsilon} \in t_{\exists X.\boldsymbol{\varphi}} \cap t_{\boldsymbol{\psi}} \iff$

(a) Automaton for $\exists X.\varphi$

$$\begin{array}{c} X:\begin{bmatrix}1\\Y:\begin{bmatrix}0\end{bmatrix}X:\begin{bmatrix}0\\Y:\begin{bmatrix}0\end{bmatrix}\end{bmatrix}\\Y:\begin{bmatrix}0\end{bmatrix}\end{array}$$

$$\begin{array}{c} Y:\begin{bmatrix}1\\Y:\begin{bmatrix}1\end{bmatrix}X:\begin{bmatrix}0\\Y:\begin{bmatrix}1\end{bmatrix}\end{bmatrix}\\Y:\begin{bmatrix}1\end{bmatrix}\end{array}$$

(a) Automaton for $\exists X.\varphi$

$$\begin{array}{c}
X : \begin{bmatrix} 1 \\ Y : \begin{bmatrix} 0 \end{bmatrix} X : \begin{bmatrix} 0 \\ Y : \begin{bmatrix} 0 \end{bmatrix} Y : \begin{bmatrix} 0 \end{bmatrix} \\
\end{array}$$

$$\begin{array}{c}
X : \begin{bmatrix} 1 \\ Y : \end{bmatrix} X : \begin{bmatrix} 0 \end{bmatrix} \\
Y : \begin{bmatrix} 1 \end{bmatrix} Y : \begin{bmatrix} 1 \end{bmatrix} Y : \begin{bmatrix} 1 \end{bmatrix}$$

$$\varepsilon \in t_{\exists X.\varphi} \cap t_{\psi} \iff \\ \Longleftrightarrow \varepsilon \in t_{\exists X.\varphi} \wedge \varepsilon \in t_{\psi}$$

(a) Automaton for $\exists X.\varphi$

$$\varepsilon \in t_{\exists X.\varphi} \cap t_{\psi} \iff \\ \Longleftrightarrow \varepsilon \in t_{\exists X.\varphi} \wedge \varepsilon \in t_{\psi}$$

(a) Automaton for $\exists X.\varphi$

$$\begin{array}{c} X : \begin{bmatrix} 1 \\ Y : \begin{bmatrix} 0 \end{bmatrix} X : \begin{bmatrix} 0 \\ Y : \begin{bmatrix} 0 \end{bmatrix} Y : \begin{bmatrix} 0 \end{bmatrix} \\ Y : \begin{bmatrix} 0 \end{bmatrix} Y : \begin{bmatrix} 0 \end{bmatrix} \end{array}$$

$$\begin{array}{c} X : \begin{bmatrix} 1 \\ Y : \begin{bmatrix} 1 \end{bmatrix} X : \begin{bmatrix} 0 \\ Y : \begin{bmatrix} 1 \end{bmatrix} Y : \begin{bmatrix} 1 \end{bmatrix} \\ Y : \begin{bmatrix} 1 \end{bmatrix} Y : \begin{bmatrix} 1 \end{bmatrix} \end{array}$$

(b) Automaton for ψ

$$\varepsilon \in t_{\exists X.\varphi} \iff \varepsilon \in t_{\varphi} - \bar{0}^*$$

$$\iff \varepsilon \in t_{\varphi} \lor \varepsilon \in t_{\varphi} - \bar{0} \lor \varepsilon \in t_{\varphi} - \bar{0}^2 \dots$$

 $\bullet \quad \varepsilon \in t_{\varphi} \iff I_{\varphi} \cap F_{\varphi} \neq \emptyset.$

(a) Automaton for $\exists X.\varphi$

$$\begin{array}{cccc}
X : \begin{bmatrix} 1 \\ X : \begin{bmatrix} 0 \end{bmatrix} & X : \begin{bmatrix} 0 \\ Y : \begin{bmatrix} 0 \end{bmatrix} & Y : \begin{bmatrix} 0 \end{bmatrix} &$$

- $\varepsilon \in t_{\exists X.\varphi} \iff \varepsilon \in t_{\varphi} \bar{0}^*$ $\iff \varepsilon \in t_{\varphi} \lor \varepsilon \in t_{\varphi} \bar{0} \lor \varepsilon \in t_{\varphi} \bar{0}^2 \dots$
- $\bullet \quad \varepsilon \in t_{\varphi} \iff I_{\varphi} \cap F_{\varphi} \neq \emptyset.$

(a) Automaton for $\exists X.\varphi$

$$\begin{array}{c}
X : \begin{bmatrix} 1 \\ X : \end{bmatrix} X : \begin{bmatrix} 0 \\ Y : \end{bmatrix} C_1 \\
Y : \begin{bmatrix} 0 \\ Y : \end{bmatrix} Y : \begin{bmatrix} 0 \\ Y : \end{bmatrix} C_2
\end{array}$$

$$\begin{array}{c}
X : \begin{bmatrix} 1 \\ Y : \end{bmatrix} X : \begin{bmatrix} 0 \\ Y : \end{bmatrix} C_2$$

(b) Automaton for ψ

$$\varepsilon \in t_{\exists X.\varphi} \iff \varepsilon \in t_{\varphi} - \bar{0}^*$$

$$\iff \varepsilon \in t_{\varphi} \lor \varepsilon \in t_{\varphi} - \bar{0} \lor \varepsilon \in t_{\varphi} - \bar{0}^2 \dots$$

 $\bullet \quad \varepsilon \in t_{\varphi} \iff I_{\varphi} \cap F_{\varphi} \neq \emptyset.$

(a) Automaton for $\exists X.\varphi$

$$\begin{array}{c}
X : \begin{bmatrix} 1 \\ X : \end{bmatrix} X : \begin{bmatrix} 0 \\ Y : \end{bmatrix} & (f_1) \\
Y : \begin{bmatrix} 0 \\ Y : \end{bmatrix} & (f_2) & (f_3) \\
Y : \begin{bmatrix} 1 \\ Y : \end{bmatrix} & (f_3) & (f_3) & (f_3) \\
Y : \begin{bmatrix} 1 \\ Y : \end{bmatrix} & (f_3) & (f_3) & (f_3) & (f_3) \\
Y : \begin{bmatrix} 1 \\ Y : \end{bmatrix} & (f_3) & (f_3) & (f_3) & (f_3) \\
Y : \begin{bmatrix} 1 \\ Y : \end{bmatrix} & (f_3) & (f_3) & (f_3) & (f_3) \\
Y : \begin{bmatrix} 1 \\ Y : \end{bmatrix} & (f_3) & (f_3) & (f_3) & (f_3) \\
Y : \begin{bmatrix} 1 \\ Y : \end{bmatrix} & (f_3) & (f_3) & (f_3) & (f_3) \\
Y : \begin{bmatrix} 1 \\ Y : \end{bmatrix} & (f_3) & (f_3) & (f_3) & (f_3) \\
Y : \begin{bmatrix} 1 \\ Y : \end{bmatrix} & (f_3) & (f_3) & (f_3) & (f_3) \\
Y : \end{bmatrix} & (f_3) & (f_3) & (f_3) & (f_3) & (f_3) & (f_3) \\
Y : \begin{bmatrix} 1 \\ Y : \end{bmatrix} & (f_3) & (f_3) & (f_3) & (f_3) & (f_3) & (f_3) \\
Y : \end{bmatrix} & (f_3) &$$

- ... but we cannot conclude that $\varepsilon \notin t_{\exists X.\varphi}$, ...

(a) Automaton for $\exists X.\varphi$

$$\begin{array}{c}
X : \begin{bmatrix} 1 \\ X : \begin{bmatrix} 0 \end{bmatrix} \\ Y : \begin{bmatrix} 1 \\ Y : \end{bmatrix}$$

- ... but we cannot conclude that $\varepsilon \notin t_{\exists X.\varphi}$, ...

Validity checking of $\exists Y.(\exists X.\varphi) \land \psi$ $\varepsilon \stackrel{?}{\in} t_{\exists X.\varphi} \cap t_{\psi}$ $\varepsilon \stackrel{?}{\in} t_{\exists X.\varphi}$ $\varepsilon \stackrel{?}{\in} t_{\pmb{\psi}}$

(a) Automaton for $\exists X.\varphi$

- We have to saturate the final states (because of projection)
- One step of saturation yields set of states $F_{\omega} \overline{0}$.

Validity checking of $\exists Y.(\exists X.\varphi) \land \psi$ $\varepsilon \stackrel{?}{\in} t_{\exists X.\varphi} \cap t_{\psi}$ $\varepsilon \stackrel{?}{\in} t_{\exists X.\varphi}$ $\varepsilon \stackrel{?}{\in} t_{\pmb{\psi}}$

(a) Automaton for $\exists X.\varphi$

$$\begin{array}{c}
X : \begin{bmatrix} 1 \\ X : \begin{bmatrix} 0 \end{bmatrix} \\ Y : \begin{bmatrix} 0 \end{bmatrix} \\$$

- We have to saturate the final states (because of projection)
- One step of saturation yields set of states $F_{\omega} \overline{0}$.

(a) Automaton for $\exists X.\varphi$

- We have to saturate the final states (because of projection)
- One step of saturation yields set of states $F_{\varphi} \overline{0}$.

(a) Automaton for $\exists X.\varphi$

• We repeat the check:
$$\varepsilon \in t_{\varphi} - \overline{0} \iff t_{\varphi} \cap F_{\varphi} - \overline{0} \neq \emptyset$$

(a) Automaton for $\exists X.\varphi$

■ We repeat the check:
$$\varepsilon \in t_{\varphi} - \overline{0} \iff I_{\varphi} \cap F_{\varphi} - \overline{0} \neq \emptyset$$

(a) Automaton for $\exists X.\varphi$

• We repeat the check:
$$\varepsilon \in t_{\varphi} - \overline{0} \iff I_{\varphi} \cap F_{\varphi} - \overline{0} \neq \emptyset$$

(a) Automaton for $\exists X.\varphi$

- Since $\{q_0, q_2\} \cap \{q_3, q_4, q_2\} \neq \emptyset, \dots$
- ... we conclude that $\varepsilon \in t_{\varphi} \overline{0}$ and hence $\varepsilon \in t_{\exists X.\varphi}$.

Validity checking of $\exists Y.(\exists X.\varphi) \land \psi$ $\varepsilon \stackrel{?}{\in} t_{\exists X.\omega} \cap t_{\psi}$ X:[†] Y:[1] $\varepsilon \in t_{X,\varphi}$ $\varepsilon \stackrel{?}{\in} t_{\pmb{\psi}}$

$$\underbrace{\{q_0,q_2\}}_{I_{\varphi}} \cap \underbrace{\{q_3,q_4,q_2\}}_{F_{\varphi}-\bar{0}} \neq \emptyset$$

(a) Automaton for $\exists X.\varphi$

$$\begin{array}{c}
X: \begin{bmatrix} 1 \\ X : \begin{bmatrix} 0 \end{bmatrix} & F_1 \\
Y: \begin{bmatrix} 0 \end{bmatrix} & F_2 \\
\end{array}$$

$$\xrightarrow{f_0}$$

$$X: \begin{bmatrix} 1 \\ X : \begin{bmatrix} 0 \end{bmatrix} & F_2 \\
\end{array}$$

$$\xrightarrow{f_0}$$

- Since $\{q_0, q_2\} \cap \{q_3, q_4, q_2\} \neq \emptyset, \dots$
- ... we conclude that $\varepsilon \in t_{\varphi} \overline{0}$ and hence $\varepsilon \in t_{\exists X, \varphi}$.

Validity checking of $\exists Y.(\exists X.\varphi) \land \psi$ $\varepsilon \stackrel{?}{\in} t_{\exists X. \varphi} \cap t_{\psi}$ X: [†] Y: [1] $\varepsilon \stackrel{?}{\in} t_{X,\varphi}$ $\varepsilon \stackrel{?}{\in} t_{\pmb{\psi}}$

(a) Automaton for $\exists X.\varphi$

(b) Automaton for ψ

- However, we cannot short-circuit the test.
- So we have to compute $\varepsilon \in t_{\psi}$

 $\{q_3, q_4, q_2\}$

(a) Automaton for $\exists X.\varphi$

- However, we cannot short-circuit the test.
- So we have to compute $\varepsilon \in t_{\psi}$

(a) Automaton for $\exists X.\varphi$

- However, we cannot short-circuit the test.
- So we have to compute $\varepsilon \in t_{\psi}$

Until we find satisfying member or all of the fixpoints are computed...

- lazy evaluation
 - ▶ if one branch of a binary operator suffices: short-circuit!

- if one branch of a binary operator suffices: short-circuit!
- ▶ if we find a satisfying guy in a fixpoint computation: short-circuit!

- if one branch of a binary operator suffices: short-circuit!
- if we find a satisfying guy in a fixpoint computation: short-circuit!
- but with a caveat!

- if one branch of a binary operator suffices: short-circuit!
- if we find a satisfying guy in a fixpoint computation: short-circuit!
- but with a caveat!
- the algorithm has 2 interleaved phases:
 - 1 testing ε -membership
 - 2 computing left quotients

- if one branch of a binary operator suffices: short-circuit!
- if we find a satisfying guy in a fixpoint computation: short-circuit!
- but with a caveat!
- the algorithm has 2 interleaved phases:
 - 1 testing ε -membership
 - 2 computing left quotients
- when computing quotients, we may need the result of a previously short-circuited operation
 - one need to continue unfolding the fixpoint

- if one branch of a binary operator suffices: short-circuit!
- if we find a satisfying guy in a fixpoint computation: short-circuit!
- but with a caveat!
- the algorithm has 2 interleaved phases:
 - 1 testing ε -membership
 - 2 computing left quotients
- when computing quotients, we may need the result of a previously short-circuited operation
 - one need to continue unfolding the fixpoint
- combination with the explicit automata procedure (MONA)
 - we can prepare a minimal automaton for a subformula
 - reduces the underlying state space
 - various heuristics
 - we explicitly construct quantifier-free subformulae

Subsumption

- when computing fixpoints, some elements can subsume others
- keep fixpoint states minimal (cf. antichains)
- subsumption even on partially computed elements

Subsumption

- when computing fixpoints, some elements can subsume others
- keep fixpoint states minimal (cf. antichains)
- subsumption even on partially computed elements

Formula pre-processing

- pre-processing of the formula can greatly affect performance
- anti-prenexing pushing quantifiers down can reduce the explored state space (even exponentially!)

Experimental Evaluation of our tool GASTON

- Results on formulae generated by the UABE tool
 - formulae encode various array invariants
- $lue{}$ ∞ represents that the tool timeouted in 2 minutes

Benchmark	Mo	NA	GASTON		
Delicilliark	Time [s]	Space	Time [s]	Space	
a-a	1.51	30 253	∞	∞	
ex10	6.92	131 835	11.82	82 236	
ex11	4.04	2 3 9 3	0.10	4 1 5 6	
ex12	0.11	2 5 9 1	5.40	68 159	
ex13	0.01	2601	0.87	16883	
ex16	0.01	3 384	0.18	3 960	
ex17	3.15	165 173	0.09	3 9 5 2	
ex18	0.18	19 463	∞	∞	
ex2	0.10	26 565	0.01	1 841	
ex20	1.26	1 077	0.21	12 266	
ex21	1.51	30 253	∞	∞	
ex4	0.03	6 797	0.33	22 442	
ex6	3.69	27 903	21.44	132 848	
ex7	0.75	857	0.01	594	
ex8	6.83	106 555	0.01	1 624	
ex9	6.37	586 447	8.31	412417	
fib	0.04	8128	22.15	126 688	

Experimental Evaluation of our tool GASTON

- Results on set of parametrized benchmarks up to k = 20
- lacksquare oom(k) represents that the tool run out of memory on formula k
- lacksquare ∞ (k) represents that the tool timeouted in 2 minutes on formula k

Benchmark	Mona	DWINA	Toss	COALG	SFA	GASTON
HornLeq	oom(18)	0.03	0.08	∞(08)	0.03	0.01
HornLeq (+3)	oom(18)	∞(11)	0.16	∞(07)	∞(11)	0.01
HornLeq (+4)	oom(18)	∞(13)	0.04	∞(06)	∞(11)	0.01
HornIn	oom(15)	∞(11)	0.07	∞(08)	∞ (08)	0.01
HornTrans	86.43	∞(14)	N/A	N/A	38.56	1.06
SetClosed	oom(05)	∞(14)	∞ (03)	∞(01)	∞ (04)	∞(06)
SetSingle	oom(04)	∞(08)	0.10	N/A	∞ (03)	0.01
Ex8	oom(08)	N/A	N/A	N/A	N/A	0.15
Ex11(10)	oom(14)	N/A	N/A	N/A	N/A	1.62

- DWINA: Fiedor et al.: Nested antichains for WS1S
- Toss: Ganzow and Kaizer: New algorithm for weak monadic second-order login on inductive structures
- COALG: Traytel: A coalgebraic decision procedure for WS1S
- SFA: D'Antoni and Veanes: Minimization of symbolic automata

Future Work

- extension to WSkS
 - weak monadic second-order logic of k successors
 - opens whole new world of tree structures

Future Work

- extension to WSkS
 - weak monadic second-order logic of k successors
 - opens whole new world of tree structures
- extension to infinite words/trees

Future Work

- extension to WSkS
 - weak monadic second-order logic of k successors
 - opens whole new world of tree structures
- extension to infinite words/trees
- application of the ideas in other automata-handling algorithms