
VATA: A Library for Efficient Manipulation of
Non-deterministic Tree Automata

Ondřej Lengál1 Jiřı́ Šimáček1,2 Tomáš Vojnar1

1Brno University of Technology, Czech Republic
2VERIMAG, UJF/CNRS/INPG, Gières, France

March 27, 2012



http://goo.gl/KNpMH

Trees

Very popular in computer science:
data structures,
computer network topologies,
distributed protocols, . . .

In formal verification:
encoding of complex data structures
• e.g. doubly linked lists

“a” “b” “c”

dll

⊥⊥
next next next

prevprevprev

• . . .

dll

1

“a” ⊥ 2

“b” 1 3

“c” 2 ⊥

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 2 / 23



http://goo.gl/KNpMH

Trees

Very popular in computer science:
data structures,
computer network topologies,
distributed protocols, . . .

In formal verification:
encoding of complex data structures
• e.g. doubly linked lists

“a” “b” “c”

dll

⊥⊥
next next next

prevprevprev

• . . .

dll

1

“a” ⊥ 2

“b” 1 3

“c” 2 ⊥

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 2 / 23



http://goo.gl/KNpMH

Tree Automata

Finite Non-deterministic Tree Automaton (TA): A = (Q,Σ,∆,F )
extension of finite automaton to trees:
• Q . . . finite set of states,
• Σ . . . finite alphabet of symbols with arity, #a,
• ∆ . . . set of transitions in the form of p a−→ (q1, . . . ,qn),#a = n,
• F . . . set of final states.

Example:
∆ = {

s f−→ (r ,q, r),
r

g−→ (q,q),
q a−→

}

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 3 / 23



http://goo.gl/KNpMH

Tree Automata

Finite Non-deterministic Tree Automaton (TA): A = (Q,Σ,∆,F )
extension of finite automaton to trees:
• Q . . . finite set of states,
• Σ . . . finite alphabet of symbols with arity, #a,
• ∆ . . . set of transitions in the form of p a−→ (q1, . . . ,qn),#a = n,
• F . . . set of final states.

Example:
∆ = {

s f−→ (r ,q, r),
r

g−→ (q,q),
q a−→

}

f

g

a a

a g

a a

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 3 / 23



http://goo.gl/KNpMH

Tree Automata

Finite Non-deterministic Tree Automaton (TA): A = (Q,Σ,∆,F )
extension of finite automaton to trees:
• Q . . . finite set of states,
• Σ . . . finite alphabet of symbols with arity, #a,
• ∆ . . . set of transitions in the form of p a−→ (q1, . . . ,qn),#a = n,
• F . . . set of final states.

Example:
∆ = {

s f−→ (r ,q, r),
r

g−→ (q,q),
q a−→

}

f

g

a

q

a

q

a
q

g

a

q

a

q

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 3 / 23



http://goo.gl/KNpMH

Tree Automata

Finite Non-deterministic Tree Automaton (TA): A = (Q,Σ,∆,F )
extension of finite automaton to trees:
• Q . . . finite set of states,
• Σ . . . finite alphabet of symbols with arity, #a,
• ∆ . . . set of transitions in the form of p a−→ (q1, . . . ,qn),#a = n,
• F . . . set of final states.

Example:
∆ = {

s f−→ (r ,q, r),
r

g−→ (q,q),
q a−→

}

f

g

a

q

a

q

r

a
q

g

a

q

a

q

r

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 3 / 23



http://goo.gl/KNpMH

Tree Automata

Finite Non-deterministic Tree Automaton (TA): A = (Q,Σ,∆,F )
extension of finite automaton to trees:
• Q . . . finite set of states,
• Σ . . . finite alphabet of symbols with arity, #a,
• ∆ . . . set of transitions in the form of p a−→ (q1, . . . ,qn),#a = n,
• F . . . set of final states.

Example:
∆ = {

s f−→ (r ,q, r),
r

g−→ (q,q),
q a−→

}

f

g

a

q

a

q

r

a
q

g

a

q

a

q

r

s

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 3 / 23



http://goo.gl/KNpMH

Tree Automata

Tree Automata
can represent (infinite) sets of trees with regular structure,
used in XML DBs, language processing, . . . ,
. . . formal verification, decision procedures of some logics, . . .

Tree automata in formal verification:

often large due to determinisation
• often advantageous to use non-deterministic tree automata,
• manipulate them without determinisation,
• even for operations such as language inclusion or size reduction,

handling large alphabets (MSO, WSkS).

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 4 / 23



http://goo.gl/KNpMH

Tree Automata

Tree Automata
can represent (infinite) sets of trees with regular structure,
used in XML DBs, language processing, . . . ,
. . . formal verification, decision procedures of some logics, . . .

Tree automata in formal verification:

often large due to determinisation
• often advantageous to use non-deterministic tree automata,
• manipulate them without determinisation,
• even for operations such as language inclusion or size reduction,

handling large alphabets (MSO, WSkS).

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 4 / 23



http://goo.gl/KNpMH

Available Tree Automata Libraries

Timbuk/Taml:
• written in OCaml,
• explicit encoding,
• basic support for operations on non-deterministic automata.

MONA TA library:
• written in C,
• semi-symbolic encoding using MTBDDs,

I multi-terminal binary decision diagrams,
• supports deterministic binary automata only.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 5 / 23



http://goo.gl/KNpMH

VATA: A Tree Automata Library

VATA is a new tree automata library that
supports non-deterministic tree automata,
provides encodings suitable for different contexts:
• explicit, and
• semi-symbolic,

is written in C++,
is open source and free under GNU GPLv3,
• http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 6 / 23



http://goo.gl/KNpMH

Architecture of VATA

Encoding

Core Operations

Explicit

Core Operations

MTBDD Bottom-Up

Core Operations

MTBDD Top-Down

Core Operations
<other>

Core Operations

Automata encodings

Parser1

Parser2

... Parsers

Serializer1

Serializer2

... Serializers

Program

VATA is a framework that can be easily extended:
the whole infrastructure can be used even for an own TA encoding,
easy to be extended with word automata, ω-automata,
word automata currently supported as unary TA.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 7 / 23



http://goo.gl/KNpMH

VATA: Explicit Encoding

Transitions stored in the
top-down manner,
• advantageous in some cases.

Transitions maintained in shared
structures,
• modifications using

copy-on-write.

A
q1

c−→ (q1, q2),
q1

e−→ ,
q2

a−→ (q1, q1),

q2
b−→ (q1, q1),

q2
b−→ (q1, q2)

B
q1

c−→ (q1, q2),
q1

e−→ ,
q2

e−→

C = B

AutomataA B C

Top-level
Lookup Tables

q1 q2 q1 q2

Transition Clusters
a b c e e

Sets of
Pointers to Tuples

Tuples of States(q1,q1) (q1,q2) ()

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 8 / 23



http://goo.gl/KNpMH

VATA: Semi-symbolic Encoding

Dual representation using our own MTBDD library:

Bottom-up:

(q1, . . . ,qn)

{r , s} {s, t ,u} ∅ {u}

Top-down:
q

{(r , s), (r , t)}
{(s), (t), (u)}

∅ {(u,u,u)}

Bottom-up : inspired by MONA, but has sets of states in leaves.
Top-down : sets of state tuples in leaves.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 9 / 23



http://goo.gl/KNpMH

Supported Operations

Supported operations:
union,
intersection,
removing unreachable or useless states and transitions,
testing language emptiness,

computing downward and upward simulation,
simulation-based reduction,
testing language inclusion,

import from file/export to file.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 10 / 23



http://goo.gl/KNpMH

Simulations

Explicit:
downward simulation �D,
upward simulation �U .

Work by transforming automaton to labelled transition systems,
computing simulation on the LTS, [Holı́k, Šimáček. MEMICS’09],
which is an improvement of [Ranzato, Tapparo. LICS’07].

Semi-symbolic:
downward simulation computation based on
[Henzinger, Henzinger, Kopke. FOCS’95].

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 11 / 23



http://goo.gl/KNpMH

Tree Automata Reduction

Simulation-based reduction of TA:
1 Compute the downward simulation relation �D on states of TA.
2 Take the symmetric fragment ∼D of �D, ∼D =�D ∩ �−1

D
• ∼D is a language compatible equivalence relation.

3 Merge states in all equivalence classes of ∼D.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 12 / 23



http://goo.gl/KNpMH

Language Inclusion Checking

Textbook approach for checking L(AS) ⊆ L(AB) on TA:
Check AS ∩ AB = ∅.

Two methods in VATA:
upward (optimised version of the textbook approach),
downward.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 13 / 23



http://goo.gl/KNpMH

Upward Language Inclusion Checking

[Abdulla, Chen, Holı́k, Mayr, Vojnar. TACAS’10]

The idea will be presented on testing universality of A = (Q,Σ,∆,F ).
the extension to checking TA inclusion is straightforward.

On-the-fly approach:
1 Traverse A bottom-up.
2 Maintain a workset W of sets P ⊆ Q.
3 Generate tuples (P1, . . . ,Pn) where P1, . . . ,Pn ∈W .

4 ∀f ∈ Σ generate T s.t. (P1, . . . ,Pn)
f−→ T .

5 If you encounter R where R ∩ F = ∅, return false.
6 If no new sets are found, return true.

Optimisations:
use antichains and upward simulation.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 14 / 23



http://goo.gl/KNpMH

Downward Language Inclusion Checking

[Holı́k, Lengál, Šimáček, Vojnar. ATVA’11]

The main idea will also be explained on checking TA universality.

A set of states R is universal, U(R), iff for all symbols f ∈ Σ:

• if #f = 0, then there is a state q ∈ R s.t. q f−→ ,
• if #f = n > 0,

I given the set U of all tuples accessible from R over f ,
I for all choice functions c : U → {1, . . . , n},
I there exists i ∈ {1, . . . , n} s.t. U(c−1(i)) (recursively).

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 15 / 23



http://goo.gl/KNpMH

Downward Language Inclusion Checking

Idea of the algorithm:
1 Start from the set of accepting states.
2 Perform a DFS while checking the universality condition.
3 Cut the DFS when

• the condition is falsified, or
• the DFS finds a set already on the stack.

R

S T

f

R . . . S T

Optimisation 1:
compare sets of states w.r.t. inclusion
rather than equality:
if S is universal, U(S), and S′ ⊇ S,
then S′ will also be universal, U(S′),
instead of inclusion, a weaker
language compatible relation, such as
downward simulation, can be used.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 16 / 23



http://goo.gl/KNpMH

Downward Language Inclusion Checking

Idea of the algorithm:
1 Start from the set of accepting states.
2 Perform a DFS while checking the universality condition.
3 Cut the DFS when

• the condition is falsified, or
• the DFS finds a set already on the stack.

R

S T

f

R . . . S′

⊆

T

Optimisation 1:
compare sets of states w.r.t. inclusion
rather than equality:
if S is universal, U(S), and S′ ⊇ S,
then S′ will also be universal, U(S′),

instead of inclusion, a weaker
language compatible relation, such as
downward simulation, can be used.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 16 / 23



http://goo.gl/KNpMH

Downward Language Inclusion Checking

Idea of the algorithm:
1 Start from the set of accepting states.
2 Perform a DFS while checking the universality condition.
3 Cut the DFS when

• the condition is falsified, or
• the DFS finds a set already on the stack.

R

S T

f

R . . . S′

⊆

T

Optimisation 1:
compare sets of states w.r.t. inclusion
rather than equality:
if S is universal, U(S), and S′ ⊇ S,
then S′ will also be universal, U(S′),
instead of inclusion, a weaker
language compatible relation, such as
downward simulation, can be used.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 16 / 23



http://goo.gl/KNpMH

Downward Language Inclusion Checking

Optimisation 2: (antichains)
if we find a set P which is not universal, ¬U(P), we cache it and
never expand a set P ′ s.t. P ′ ⊆ P, because ¬U(P) =⇒ ¬U(P ′),

R

S T

f

R . . . P

X

T

this can again be generalised to a
weaker language compatible relation.

A similar optimisation for the case
when for Z it is found out that the
universality condition holds cannot
be done in the same manner.

The reason is that universality
of R may be falsified on other
branches.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 17 / 23



http://goo.gl/KNpMH

Downward Language Inclusion Checking

Optimisation 2: (antichains)
if we find a set P which is not universal, ¬U(P), we cache it and
never expand a set P ′ s.t. P ′ ⊆ P, because ¬U(P) =⇒ ¬U(P ′),

R

S T

f

R . . . P

X

T

this can again be generalised to a
weaker language compatible relation.

A similar optimisation for the case
when for Z it is found out that the
universality condition holds cannot
be done in the same manner.

The reason is that universality
of R may be falsified on other
branches.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 17 / 23



http://goo.gl/KNpMH

Downward Language Inclusion Checking

Optimisation 2: (antichains)
if we find a set P which is not universal, ¬U(P), we cache it and
never expand a set P ′ s.t. P ′ ⊆ P, because ¬U(P) =⇒ ¬U(P ′),

R

S T

f

Z

R

. . . P

X

T

this can again be generalised to a
weaker language compatible relation.

A similar optimisation for the case
when for Z it is found out that the
universality condition holds cannot
be done in the same manner.

The reason is that universality
of R may be falsified on other
branches.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 17 / 23



http://goo.gl/KNpMH

Downward Language Inclusion Checking

Optimisation 3: (further improving [ATVA’11])

cache the set Z for which the universality condition holds, but
together with the precondition why it holds:

R

S T

f

Z

R

. . . P

X

T

i.e. we maintain a pair (Ant ,Con) of
sets of sets of states meaning that
Ant =⇒ Con, i.e.∧

A∈Ant

U(A) =⇒
∧

C∈Con

U(C),

when the DFS is returning via
G, it removes G from Ant and
adds G to Con.

when Ant becomes empty, all
sets from Con are cached.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 18 / 23



http://goo.gl/KNpMH

Downward Language Inclusion Checking

Optimisation 3: (further improving [ATVA’11])

cache the set Z for which the universality condition holds, but
together with the precondition why it holds:

R

S T

f

Z

R

. . . P

X

T

i.e. we maintain a pair (Ant ,Con) of
sets of sets of states meaning that
Ant =⇒ Con, i.e.∧

A∈Ant

U(A) =⇒
∧

C∈Con

U(C),

when the DFS is returning via
G, it removes G from Ant and
adds G to Con.

when Ant becomes empty, all
sets from Con are cached.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 18 / 23



http://goo.gl/KNpMH

Experiments

Explicit encoding:
Comparison to Timbuk/Taml (tested on ∼ 3,000 pairs of TA):
• 20,000× faster on union,
• 100,000× faster on intersection.

Comparison of different inclusion checking algorithms
• down — downward, up — upward,
• +s — using upward/downward simulation,
• -o — with optimisation 3 (Ant ,Con).

down down+s down-o down-o+s up up+s

Winner 36.35 % 4.15 % 32.20 % 3.15 % 24.14 % 0.00 %
Timeouts 32.51 % 18.27 % 32.51 % 18.27 % 0.00 % 0.00 %

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 19 / 23



http://goo.gl/KNpMH

Experiments

Semi-symbolic encoding:
Comparison to our previous version that used CUDD:
• being over 300 times faster on inclusion checking on average,

Comparison of different inclusion checking algorithms
• down — downward, up — upward,
• +s — using downward simulation,
• -o — with optimisation 3 (Ant ,Con).

down down+s down-o down-o+s up

Winner 44.02 % 0.00 % 31.73 % 0.00 % 24.25 %
Timeouts 5.87 % 77.93 % 5.87 % 78.00 % 22.26 %

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 20 / 23



http://goo.gl/KNpMH

Conclusion

We developed a new tree automata library,
• containing various optimisations of the used algorithms.

Support for working with non-deterministic automata.
Easy to extend with own encoding/operations.
The library is open source and free under GNU GPLv3.
Available at
http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 21 / 23



http://goo.gl/KNpMH

Future work

Improve the semi-symbolic downward simulation algorithm.
Add new representations of finite word/tree automata,
• that address particular issues, such as large number of states or

fast checking of language inclusion.
Add missing operations,
• development is demand-driven
• if you miss something, write to us, the feature may appear soon.

Lengál, Šimáček, Vojnar (BUT) VATA: A Tree Automata Library March 27, 2012 22 / 23



Questions?


	Tree Automata

