VATA: A Library for Efficient Manipulation of Non-deterministic Tree Automata

Ondřej Lengál¹ Jiří Šimáček^{1,2} Tomáš Vojnar¹

¹Brno University of Technology, Czech Republic ²VERIMAG, UJF/CNRS/INPG, Gières, France

March 27, 2012

Trees

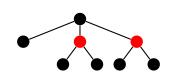
Very popular in computer science:

- data structures,
- computer network topologies,
- distributed protocols, ...

Trees

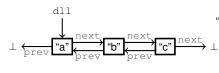
Very popular in computer science:

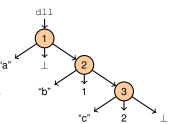
- data structures,
- computer network topologies,
- distributed protocols, . . .



In formal verification:

- encoding of complex data structures
 - e.g. doubly linked lists



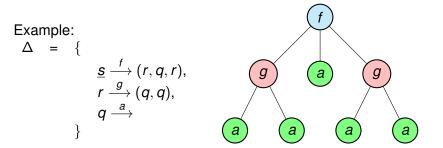


Finite Non-deterministic Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q . . . finite set of states,
 - Σ . . . finite alphabet of symbols with arity, #a,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n), \#a = n$,
 - F ... set of final states.

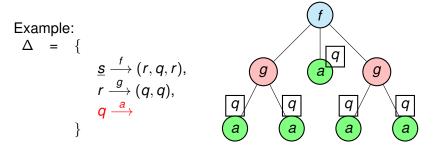
Finite Non-deterministic Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ ... finite alphabet of symbols with arity, #a,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n), \#a = n$,
 - F . . . set of final states.



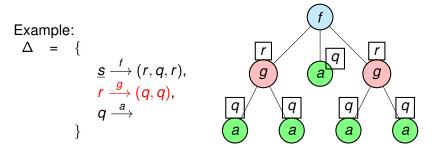
Finite Non-deterministic Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ ... finite alphabet of symbols with arity, #a,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n), \#a = n$,
 - F . . . set of final states.



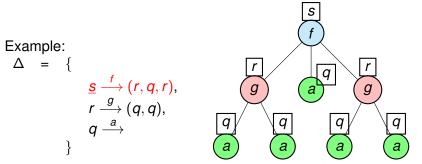
Finite Non-deterministic Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q . . . finite set of states,
 - Σ ... finite alphabet of symbols with arity, #a,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n), \#a = n$,
 - F ... set of final states.



Finite Non-deterministic Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q . . . finite set of states,
 - Σ ... finite alphabet of symbols with arity, #a,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n), \#a = n$,
 - F ... set of final states.



Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ... formal verification, decision procedures of some logics, ...

Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ...formal verification, decision procedures of some logics, ...

Tree automata in formal verification:

- often large due to determinisation
 - often advantageous to use non-deterministic tree automata,
 - manipulate them without determinisation,
 - even for operations such as language inclusion or size reduction,
- handling large alphabets (MSO, WSkS).

Available Tree Automata Libraries

■ Timbuk/Taml:

- written in OCaml,
- explicit encoding,
- basic support for operations on non-deterministic automata.

■ MONA TA library:

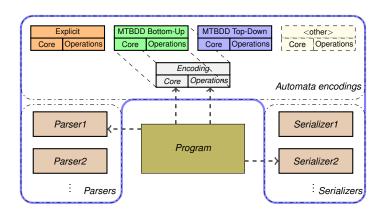
- · written in C,
- semi-symbolic encoding using MTBDDs,
 - multi-terminal binary decision diagrams,
- supports deterministic binary automata only.

VATA: A Tree Automata Library

VATA is a new tree automata library that

- supports non-deterministic tree automata,
- provides encodings suitable for different contexts:
 - · explicit, and
 - semi-symbolic,
- is written in C++,
- is open source and free under GNU GPLv3,
 - http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

Architecture of VATA

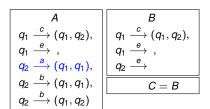


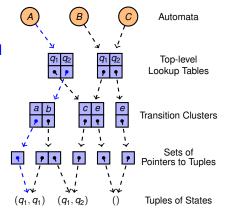
VATA is a framework that can be easily extended:

- the whole infrastructure can be used even for an own TA encoding,
- lacktriangledown easy to be extended with word automata, ω -automata,
- word automata currently supported as unary TA. http://goo.gl/KNpMH

VATA: Explicit Encoding

- Transitions stored in the top-down manner,
 - advantageous in some cases.
- Transitions maintained in shared structures,
 - modifications using copy-on-write.





VATA: Semi-symbolic Encoding

Dual representation using our own MTBDD library:

Top-down: Bottom-up: (q_1,\ldots,q_n) $\{(r,s),(r,t)\}$ $\{r,s\}$ $\{(u, u, u)\}$ $\{(s),(t),(u)\}$

Bottom-up: inspired by MONA, but has sets of states in leaves.

Top-down: sets of state tuples in leaves.

http://goo.gl/kNpMH

Supported Operations

Supported operations:

- union,
- intersection,
- removing unreachable or useless states and transitions,
- testing language emptiness,
- computing downward and upward simulation,
- simulation-based reduction,
- testing language inclusion,
- import from file/export to file.

Simulations

Explicit:

- \blacksquare downward simulation \leq_D ,
- upward simulation \leq_U .

Work by transforming automaton to labelled transition systems,

- computing simulation on the LTS, [Holík, Šimáček. MEMICS'09],
 - which is an improvement of [Ranzato, Tapparo. LICS'07].

Semi-symbolic:

 downward simulation computation based on [Henzinger, Henzinger, Kopke. FOCS'95].

Tree Automata Reduction

Simulation-based reduction of TA:

- 1 Compute the downward simulation relation \leq_D on states of TA.
- 2 Take the symmetric fragment \sim_D of \preceq_D , $\sim_D = \preceq_D \cap \preceq_D^{-1}$
 - \sim_D is a language compatible equivalence relation.
- **3** Merge states in all equivalence classes of \sim_D .

Language Inclusion Checking

Textbook approach for checking $\mathcal{L}(A_S) \subseteq \mathcal{L}(A_B)$ on TA:

■ Check $A_S \cap \overline{A_B} = \emptyset$.

Two methods in VATA:

- upward (optimised version of the textbook approach),
- downward.

■ [Abdulla, Chen, Holík, Mayr, Vojnar. TACAS'10]

The idea will be presented on testing universality of $\mathcal{A} = (Q, \Sigma, \Delta, F)$.

■ the extension to checking TA inclusion is straightforward.

On-the-fly approach:

- 1 Traverse A bottom-up.
- 2 Maintain a workset W of sets $P \subseteq Q$.
- **3** Generate tuples (P_1, \ldots, P_n) where $P_1, \ldots, P_n \in W$.
- d ∀ f ∈ Σ generate T s.t. $(P_1, ..., P_n) \xrightarrow{f} T$.
- If you encounter R where $R \cap F = \emptyset$, return false.
- 6 If no new sets are found, return true.

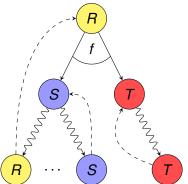
Optimisations:

use antichains and upward simulation.

- [Holík, Lengál, Šimáček, Vojnar. ATVA'11]
- The main idea will also be explained on checking TA universality.
- A set of states R is universal, U(R), iff for all symbols $f \in \Sigma$:
 - if #f = 0, then there is a state $g \in R$ s.t. $g \xrightarrow{f}$,
 - if #f = n > 0,
 - given the set U of all tuples accessible from R over f,
 - ▶ for all choice functions $c: U \rightarrow \{1, ..., n\}$,
 - ▶ there exists $i \in \{1, ..., n\}$ s.t. $U(c^{-1}(i))$ (recursively).

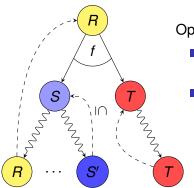
Idea of the algorithm:

- Start from the set of accepting states.
- Perform a DFS while checking the universality condition.
- 3 Cut the DFS when
 - the condition is falsified, or
 - the DFS finds a set already on the stack.



Idea of the algorithm:

- Start from the set of accepting states.
- Perform a DFS while checking the universality condition.
- 3 Cut the DFS when
 - the condition is falsified, or
 - the DFS finds a set already on the stack.

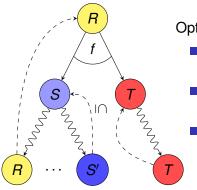


Optimisation 1:

- compare sets of states w.r.t. inclusion rather than equality:
- if S is universal, U(S), and $S' \supseteq S$, then S' will also be universal, U(S'),

Idea of the algorithm:

- 1 Start from the set of accepting states.
- Perform a DFS while checking the universality condition.
- 3 Cut the DFS when
 - the condition is falsified, or
 - the DFS finds a set already on the stack.

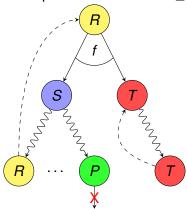


Optimisation 1:

- compare sets of states w.r.t. inclusion rather than equality:
- if S is universal, U(S), and $S' \supseteq S$, then S' will also be universal, U(S'),
- instead of inclusion, a weaker language compatible relation, such as downward simulation, can be used.

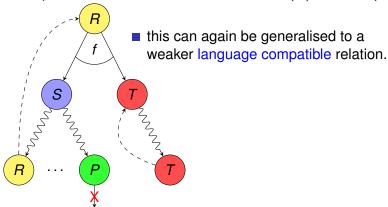
Optimisation 2: (antichains)

■ if we find a set P which is not universal, $\neg U(P)$, we cache it and never expand a set P' s.t. $P' \subseteq P$, because $\neg U(P) \implies \neg U(P')$,



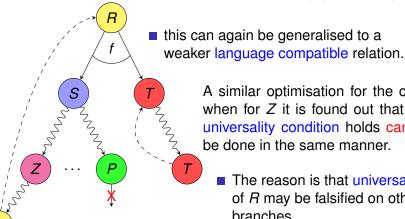
Optimisation 2: (antichains)

■ if we find a set P which is not universal, $\neg U(P)$, we cache it and never expand a set P' s.t. $P' \subseteq P$, because $\neg U(P) \implies \neg U(P')$,



Optimisation 2: (antichains)

■ if we find a set P which is not universal, $\neg U(P)$, we cache it and never expand a set P' s.t. $P' \subseteq P$, because $\neg U(P) \implies \neg U(P')$,



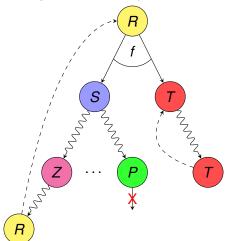
A similar optimisation for the case when for Z it is found out that the universality condition holds cannot

be done in the same manner.

The reason is that universality of R may be falsified on other branches.

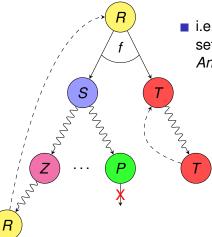
Optimisation 3: (further improving [ATVA'11])

cache the set Z for which the universality condition holds, but together with the precondition why it holds:



Optimisation 3: (further improving [ATVA'11])

cache the set Z for which the universality condition holds, but together with the precondition why it holds:



 i.e. we maintain a pair (Ant, Con) of sets of sets of states meaning that Ant ⇒ Con, i.e.

$$\bigwedge_{A \in Ant} U(A) \implies \bigwedge_{C \in Con} U(C),$$

- when the DFS is returning via G, it removes G from Ant and adds G to Con.
- when *Ant* becomes empty, all sets from *Con* are cached.

Experiments

Explicit encoding:

- $lue{}$ Comparison to Timbuk/Taml (tested on \sim 3,000 pairs of TA):
 - 20,000× faster on union,
 - 100,000× faster on intersection.
- Comparison of different inclusion checking algorithms
 - down downward, up upward,
 - +s using upward/downward simulation,
 - -o with optimisation 3 (*Ant*, *Con*).

	down	down+s	down-o	down-o+s	up	up+s
Winner	36.35%	4.15%	32.20%	3.15%	24.14%	0.00%
Timeouts	32.51 %	18.27%	32.51 %	18.27%	0.00%	0.00%

Experiments

Semi-symbolic encoding:

- Comparison to our previous version that used CUDD:
 - being over 300 times faster on inclusion checking on average,
- Comparison of different inclusion checking algorithms
 - down downward, up upward,
 - +s using downward simulation,
 - -o with optimisation 3 (Ant, Con).

	down	down+s	down-o	down-o+s	up
Winner	44.02%	0.00%	31.73%	0.00%	24.25%
Timeouts	5.87%	77.93%	5.87%	78.00%	22.26%

Conclusion

- We developed a new tree automata library,
 - containing various optimisations of the used algorithms.
- Support for working with non-deterministic automata.
- Easy to extend with own encoding/operations.
- The library is open source and free under GNU GPLv3.
- Available at

```
http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
```

Future work

- Improve the semi-symbolic downward simulation algorithm.
- Add new representations of finite word/tree automata,
 - that address particular issues, such as large number of states or fast checking of language inclusion.
- Add missing operations,
 - development is demand-driven
 - if you miss something, write to us, the feature may appear soon.

Questions?