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Motivation

Hardness of problems is not always bad . . .
. . . sometimes, it is a resource to be exploited!
We wish to find problems that are quickly solvable with a partial
knowledge of the solution, but very hard without it (including
approximation/probabilistic algorithms).
We will look at cryptography from the complexity’s point of view.
For history, side channel attacks, etc., refer to the KRY class.

Note: in this lecture we fix Σ = {0,1}.
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General Setting

Alice Bob

Eavesdropper

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17



General Setting

Alice Bob

Eavesdropper

E D

Encoding and Decoding algorithms (public)

(polynomial-time)

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17



General Setting

Alice Bob

Eavesdropper

E D

e dencoding and decoding keys (private)

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17



General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17



General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17



General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

encoded message y = E(e, x)

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17



General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

encoded message y = E(e, x)

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17



General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

encoded message y = E(e, x)

decoded message x

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17



General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

encoded message y = E(e, x)

decoded message x

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17



General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

encoded message y = E(e, x)

decoded message x

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17



One-Time Pad

Example (one-time pad):
let e = d be a string w ∈ Σ∗ of length |x | and

D = E = λ a b . a⊕ b

The requirements hold:
1 • y = E(w , x) = w ⊕ x

• D(w , y) = w ⊕ (w ⊕ x) = (w ⊕ w)⊕ x = 0|x| ⊕ x = x

2 If Eavesdropper could derive x from y , then she knows d = x ⊕ y .
Issues:

1 w is usable only once
• suppose y1 = E(w , x1), y2 = E(w , x2)
• then Eavesdropper may obtain y1 ⊕ y2 (and use it for an attack)

2 distribution of keys to the parties
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Public-Key Cryptography

Public-key Cryptosystem
d — secret and private for Bob,
e — public,
it is computationally infeasible to deduce d from e, and x from y
without knowing d

Issues:
when guessing x , it is easy to check whether x ?

= D(d , y) by
checking whether y = E(e, x)

and since |x | ≤ |y |k for some k > 0, compromising it is in FNP,
=⇒ public-key cryptosystems exist only if P 6= NP.

... one-way functions (inhabitants of FNP \ FP)
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One-way Functions

A function f : Σ∗ → Σ∗ is one-way if:

1 f is injective and ∀x ∈ Σ∗, |x |
1
k ≤ |f (x)| ≤ |x |k for some k > 0,

2 f ∈ FP,
3 f−1 6∈ FP (and therefore f−1 ∈ FNP \ FP).

If there exist one-way functions, then P 6= NP.
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RSA

The RSA function:
Proposed by Ron Rivest, Adi Shamir, and Leonard Adleman.
Uses integer multiplication and exponentiation modulo a prime.
p,q . . . two large primes (private), their product pq (public)
1 < e < φ(pq) . . . an integer coprime with φ(pq) (public)

• φ(pq) = pq(1− 1
p )(1− 1

q ) = pq − p− q + 1 Euler’s totient function

d . . . an integer s.t. e · d ≡ 1 mod φ(pq) (private)
E = λ x . xe mod pq
D = λ y . yd (= (xe)d = xe·d = x1+kφ(pq) = x mod pq)

• if 1 ≤ x < pq and x and pq are coprime, then xφ(pq) = 1 mod pq
Euler’s totient theorem (generalization of Fermat’s little theorem )

fast factoring can break RSA (p, q, and e can be used to get d)
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UP

Definition (UP)
UP is the class of languages accepted by unambiguous
polynomial-time bounded nondeterministic Turing machines.

Unambiguous NTM: for any input there is at most 1 accepting run.
Obviously, P ⊆ UP ⊆ NP.
It is believed that UP 6= NP.
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UP

Theorem
UP 6= P if and only if there exist one-way functions.

Proof (idea).
“⇐”:

Suppose there is a one-way function f .
Consider the language Lf = {(x , y) | ∃z ∈ Σ∗ . f (z) = y ∧ z ≤ x}.
(words over Σ ordered first by length and then lexicographically)
Lf ∈ UP: a TM M for the input (x , y) guesses z and computes
whether y = f (z); if yes and z ≤ x , M accepts, otherwise rejects

f being injective implies this happens at most once

Lf /∈ P: if there were a PTIME algorithm for Lf , we could invert f in
PTIME using binary search =⇒ f would not be one-way
therefore, P ⊂ UP (because Lf ∈ UP \ P)
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UP

“⇒”:
Suppose there is a language L ∈ UP \ P.
Let U be an unambiguous TM accepting L.
Let x be an encoding of an accepting computation of U on input y .
Define fU(x) = 1y and fU(z) = 0z if z is not such an encoding.
fU is one-way, because

• fU is well-defined (y can be “read off” x in PTIME),
• lengths of x and fU(x) are polynomially related,
• fU is injective (f (x) = f (x ′) =⇒ x = x ′),
• inverting fU in PTIME would imply L ∈ P.
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One-way Functions Revisited

Worst-case performance of algorithms
not a good concept for cryptography!
hard problems need to be densely populating the problem space,
we need to refine the requirement for one-way functions:

3 f−1 6∈ FP (and therefore f−1 ∈ FNP \ FP).

to a stronger requirement:

3 there is no k ∈ N, and no algorithm which, for large enough n, in time
O(nk ) successfully computes f−1(y) for at least 2n

nk strings of length n.

• i.e. there is no PTIME algorithm that successfully inverts f on a
polynomial fraction of the inputs of length n.
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Randomized Cryptography

Suppose Alice needs repeatedly to send Bob a single bit
b ∈ {0,1}.

Issue: be = b for b ∈ {0,1}!
Remedy: Alice generates a random integer 0 ≤ x ≤ pq

2 and
transmits to Bob y = (2x + b)e mod pq.

Note: any message can be split into bits and send using this
scheme. This avoids the problems of repetition, guessing
messages, etc.
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Protocols

Protocols

Signature
modification of a document that unmistakably identifies the sender,
commutative public-key cryptosystems can be exploited:

E(e) ◦ D(d) = D(d) ◦ E(e) = id

private

Alice sends a signed message

SAlice(x) = (x ,D(dAlice, x))

• i.e. Alice sends the original message with its decoded counterpart

given a signed message (x , s) anyone can check whether

E(eAlice, s) = x

• i.e. check that the signature is valid
public

the RSA cryptosystem can be used.
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Protocols

Protocols

Mental Poker
3 n-bit numbers a < b < c (cards)
Alice and Bob to randomly choose one card each, such that:

1 their cards are different,
2 all 6 allowed outcomes have the same probability,
3 Alice’s (B’s) card is known only to Alice (B) until she announces it,
4 the outcome is indisputable.

The person with the highest number wins.
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Protocols

Protocols

Mental Poker — a solution:
1 The players agree on a single large prime number p.
2 Each player generates two secret keys:

• an encryption key eAlice, eBob,
• a decryption key dAlice, dBob,
• such that eAlicedAlice = eBobdBob = 1 mod p − 1.

3 Alice encrypts and sends to Bob aeAlice , beAlice , ceAlice ( mod p).
4 Bob randomly chooses one message, say beAlice , and returns it to

Alice to be her card (Alice decodes it with dAlice to obtain b).
5 Bob encrypts and sends to Alice aeAliceeBob , ceAliceeBob ( mod p).
6 Alice randomly chooses one message, say aeAliceeBob , decodes it

with dAlice and sends aeBob mod p to Bob as his card.
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Protocols

Protocols

Zero Knowledge Example: consider the problem of 3-COLOURING of
a graph G = (V ,E). Suppose Alice knows the colouring
χ : V → {00,11,01} and wants to persuade Bob of the fact, without
revealing χ to him.

A multiple round protocol, where in each step
1 Alice generates a random permutation π of the 3 colours.
2 Then she generates an RSA key pair (pi ,qi ,di ,ei) for each i ∈ V .
3 For every i ∈ V she computes the probabilistic encoding (yi , y ′i ),

according to the i-th RSA system, of i ’s new colour bib′i = π(χ(i))

4 For every i ∈ V she sends (ei ,piqi , yi , y ′i ) to Bob.
5 Now, Bob picks a random edge (k , l) ∈ E and Alice reveals the

secret keys dk and dl of the endpoints.
6 Bob computes bkb′k and blb′l and checks that indeed bkb′k 6= blb′l .
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Protocols

Protocols

If Alice does not have a legal colouring, then the probability of
finding an edge (k , l) ∈ E , s.t. bkb′k = blb′l , is at least 1

|E | .

After n|E | rounds, the probability of Bob finding out Alice has no
legal colouring is at least 1− e−n.
But if Alice has a legal colouring, Bob has not learned anything
about it.
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