
Cryptography

Complexity Theory

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Ondřej Lengál

This material was created with the support of the Czech Ministry of Education,
Youth and Sports (project FRVŠ 166/2013/G1).

Motivation

Hardness of problems is not always bad . . .
. . . sometimes, it is a resource to be exploited!
We wish to find problems that are quickly solvable with a partial
knowledge of the solution, but very hard without it (including
approximation/probabilistic algorithms).
We will look at cryptography from the complexity’s point of view.
For history, side channel attacks, etc., refer to the KRY class.

Note: in this lecture we fix Σ = {0,1}.

Complexity Theory (FIT VUT) Cryptography 2 / 17

General Setting

Alice Bob

Eavesdropper

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17

General Setting

Alice Bob

Eavesdropper

E D

Encoding and Decoding algorithms (public)

(polynomial-time)

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17

General Setting

Alice Bob

Eavesdropper

E D

e dencoding and decoding keys (private)

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17

General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17

General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17

General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

encoded message y = E(e, x)

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17

General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

encoded message y = E(e, x)

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17

General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

encoded message y = E(e, x)

decoded message x

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17

General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

encoded message y = E(e, x)

decoded message x

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17

General Setting

Alice Bob

Eavesdropper

E D

e d

message x ∈ Σ∗

encoded message y = E(e, x)

decoded message x

Requirements:
1 x = D(d ,E(e, x))

2 Eavesdropper not able to compute x from y without knowing d

Complexity Theory (FIT VUT) Cryptography 3 / 17

One-Time Pad

Example (one-time pad):
let e = d be a string w ∈ Σ∗ of length |x | and

D = E = λ a b . a⊕ b

The requirements hold:
1 • y = E(w , x) = w ⊕ x

• D(w , y) = w ⊕ (w ⊕ x) = (w ⊕ w)⊕ x = 0|x| ⊕ x = x

2 If Eavesdropper could derive x from y , then she knows d = x ⊕ y .
Issues:

1 w is usable only once
• suppose y1 = E(w , x1), y2 = E(w , x2)
• then Eavesdropper may obtain y1 ⊕ y2 (and use it for an attack)

2 distribution of keys to the parties

Complexity Theory (FIT VUT) Cryptography 4 / 17

One-Time Pad

Example (one-time pad):
let e = d be a string w ∈ Σ∗ of length |x | and

D = E = λ a b . a⊕ b

The requirements hold:
1 • y = E(w , x) = w ⊕ x

• D(w , y) = w ⊕ (w ⊕ x) = (w ⊕ w)⊕ x = 0|x| ⊕ x = x

2 If Eavesdropper could derive x from y , then she knows d = x ⊕ y .
Issues:

1 w is usable only once
• suppose y1 = E(w , x1), y2 = E(w , x2)
• then Eavesdropper may obtain y1 ⊕ y2 (and use it for an attack)

2 distribution of keys to the parties

Complexity Theory (FIT VUT) Cryptography 4 / 17

One-Time Pad

Example (one-time pad):
let e = d be a string w ∈ Σ∗ of length |x | and

D = E = λ a b . a⊕ b

The requirements hold:
1 • y = E(w , x) = w ⊕ x

• D(w , y) = w ⊕ (w ⊕ x) = (w ⊕ w)⊕ x = 0|x| ⊕ x = x

2 If Eavesdropper could derive x from y , then she knows d = x ⊕ y .

Issues:
1 w is usable only once

• suppose y1 = E(w , x1), y2 = E(w , x2)
• then Eavesdropper may obtain y1 ⊕ y2 (and use it for an attack)

2 distribution of keys to the parties

Complexity Theory (FIT VUT) Cryptography 4 / 17

One-Time Pad

Example (one-time pad):
let e = d be a string w ∈ Σ∗ of length |x | and

D = E = λ a b . a⊕ b

The requirements hold:
1 • y = E(w , x) = w ⊕ x

• D(w , y) = w ⊕ (w ⊕ x) = (w ⊕ w)⊕ x = 0|x| ⊕ x = x

2 If Eavesdropper could derive x from y , then she knows d = x ⊕ y .
Issues:

1 w is usable only once
• suppose y1 = E(w , x1), y2 = E(w , x2)
• then Eavesdropper may obtain y1 ⊕ y2 (and use it for an attack)

2 distribution of keys to the parties

Complexity Theory (FIT VUT) Cryptography 4 / 17

One-Time Pad

Example (one-time pad):
let e = d be a string w ∈ Σ∗ of length |x | and

D = E = λ a b . a⊕ b

The requirements hold:
1 • y = E(w , x) = w ⊕ x

• D(w , y) = w ⊕ (w ⊕ x) = (w ⊕ w)⊕ x = 0|x| ⊕ x = x

2 If Eavesdropper could derive x from y , then she knows d = x ⊕ y .
Issues:

1 w is usable only once
• suppose y1 = E(w , x1), y2 = E(w , x2)
• then Eavesdropper may obtain y1 ⊕ y2 (and use it for an attack)

2 distribution of keys to the parties

Complexity Theory (FIT VUT) Cryptography 4 / 17

One-Time Pad

Example (one-time pad):
let e = d be a string w ∈ Σ∗ of length |x | and

D = E = λ a b . a⊕ b

The requirements hold:
1 • y = E(w , x) = w ⊕ x

• D(w , y) = w ⊕ (w ⊕ x) = (w ⊕ w)⊕ x = 0|x| ⊕ x = x

2 If Eavesdropper could derive x from y , then she knows d = x ⊕ y .
Issues:

1 w is usable only once
• suppose y1 = E(w , x1), y2 = E(w , x2)
• then Eavesdropper may obtain y1 ⊕ y2 (and use it for an attack)

2 distribution of keys to the parties

Complexity Theory (FIT VUT) Cryptography 4 / 17

Public-Key Cryptography

Public-key Cryptosystem
d — secret and private for Bob,
e — public,
it is computationally infeasible to deduce d from e, and x from y
without knowing d

Issues:
when guessing x , it is easy to check whether x ?

= D(d , y) by
checking whether y = E(e, x)

and since |x | ≤ |y |k for some k > 0, compromising it is in FNP,
=⇒ public-key cryptosystems exist only if P 6= NP.

... one-way functions (inhabitants of FNP \ FP)

Complexity Theory (FIT VUT) Cryptography 5 / 17

One-way Functions

A function f : Σ∗ → Σ∗ is one-way if:

1 f is injective and ∀x ∈ Σ∗, |x |
1
k ≤ |f (x)| ≤ |x |k for some k > 0,

2 f ∈ FP,
3 f−1 6∈ FP (and therefore f−1 ∈ FNP \ FP).

If there exist one-way functions, then P 6= NP.

Complexity Theory (FIT VUT) Cryptography 6 / 17

RSA

The RSA function:
Proposed by Ron Rivest, Adi Shamir, and Leonard Adleman.
Uses integer multiplication and exponentiation modulo a prime.
p,q . . . two large primes (private), their product pq (public)
1 < e < φ(pq) . . . an integer coprime with φ(pq) (public)

• φ(pq) = pq(1− 1
p)(1− 1

q) = pq − p− q + 1 Euler’s totient function

d . . . an integer s.t. e · d ≡ 1 mod φ(pq) (private)
E = λ x . xe mod pq
D = λ y . yd (= (xe)d = xe·d = x1+kφ(pq) = x mod pq)

• if 1 ≤ x < pq and x and pq are coprime, then xφ(pq) = 1 mod pq
Euler’s totient theorem (generalization of Fermat’s little theorem)

fast factoring can break RSA (p, q, and e can be used to get d)

Complexity Theory (FIT VUT) Cryptography 7 / 17

UP

Definition (UP)
UP is the class of languages accepted by unambiguous
polynomial-time bounded nondeterministic Turing machines.

Unambiguous NTM: for any input there is at most 1 accepting run.
Obviously, P ⊆ UP ⊆ NP.
It is believed that UP 6= NP.

Complexity Theory (FIT VUT) Cryptography 8 / 17

UP

Theorem
UP 6= P if and only if there exist one-way functions.

Proof (idea).
“⇐”:

Suppose there is a one-way function f .
Consider the language Lf = {(x , y) | ∃z ∈ Σ∗ . f (z) = y ∧ z ≤ x}.
(words over Σ ordered first by length and then lexicographically)
Lf ∈ UP: a TM M for the input (x , y) guesses z and computes
whether y = f (z); if yes and z ≤ x , M accepts, otherwise rejects

f being injective implies this happens at most once

Lf /∈ P: if there were a PTIME algorithm for Lf , we could invert f in
PTIME using binary search =⇒ f would not be one-way
therefore, P ⊂ UP (because Lf ∈ UP \ P)

Complexity Theory (FIT VUT) Cryptography 9 / 17

UP

Theorem
UP 6= P if and only if there exist one-way functions.

Proof (idea).
“⇐”:

Suppose there is a one-way function f .
Consider the language Lf = {(x , y) | ∃z ∈ Σ∗ . f (z) = y ∧ z ≤ x}.
(words over Σ ordered first by length and then lexicographically)

Lf ∈ UP: a TM M for the input (x , y) guesses z and computes
whether y = f (z); if yes and z ≤ x , M accepts, otherwise rejects

f being injective implies this happens at most once

Lf /∈ P: if there were a PTIME algorithm for Lf , we could invert f in
PTIME using binary search =⇒ f would not be one-way
therefore, P ⊂ UP (because Lf ∈ UP \ P)

Complexity Theory (FIT VUT) Cryptography 9 / 17

UP

Theorem
UP 6= P if and only if there exist one-way functions.

Proof (idea).
“⇐”:

Suppose there is a one-way function f .
Consider the language Lf = {(x , y) | ∃z ∈ Σ∗ . f (z) = y ∧ z ≤ x}.
(words over Σ ordered first by length and then lexicographically)
Lf ∈ UP: a TM M for the input (x , y) guesses z and computes
whether y = f (z); if yes and z ≤ x , M accepts, otherwise rejects

f being injective implies this happens at most once

Lf /∈ P: if there were a PTIME algorithm for Lf , we could invert f in
PTIME using binary search =⇒ f would not be one-way
therefore, P ⊂ UP (because Lf ∈ UP \ P)

Complexity Theory (FIT VUT) Cryptography 9 / 17

UP

Theorem
UP 6= P if and only if there exist one-way functions.

Proof (idea).
“⇐”:

Suppose there is a one-way function f .
Consider the language Lf = {(x , y) | ∃z ∈ Σ∗ . f (z) = y ∧ z ≤ x}.
(words over Σ ordered first by length and then lexicographically)
Lf ∈ UP: a TM M for the input (x , y) guesses z and computes
whether y = f (z); if yes and z ≤ x , M accepts, otherwise rejects

f being injective implies this happens at most once

Lf /∈ P: if there were a PTIME algorithm for Lf , we could invert f in
PTIME using binary search =⇒ f would not be one-way
therefore, P ⊂ UP (because Lf ∈ UP \ P)

Complexity Theory (FIT VUT) Cryptography 9 / 17

UP

“⇒”:
Suppose there is a language L ∈ UP \ P.
Let U be an unambiguous TM accepting L.
Let x be an encoding of an accepting computation of U on input y .
Define fU(x) = 1y and fU(z) = 0z if z is not such an encoding.
fU is one-way, because

• fU is well-defined (y can be “read off” x in PTIME),
• lengths of x and fU(x) are polynomially related,
• fU is injective (f (x) = f (x ′) =⇒ x = x ′),
• inverting fU in PTIME would imply L ∈ P.

Complexity Theory (FIT VUT) Cryptography 10 / 17

One-way Functions Revisited

Worst-case performance of algorithms
not a good concept for cryptography!
hard problems need to be densely populating the problem space,
we need to refine the requirement for one-way functions:

3 f−1 6∈ FP (and therefore f−1 ∈ FNP \ FP).

to a stronger requirement:

3 there is no k ∈ N, and no algorithm which, for large enough n, in time
O(nk) successfully computes f−1(y) for at least 2n

nk strings of length n.

• i.e. there is no PTIME algorithm that successfully inverts f on a
polynomial fraction of the inputs of length n.

Complexity Theory (FIT VUT) Cryptography 11 / 17

Randomized Cryptography

Suppose Alice needs repeatedly to send Bob a single bit
b ∈ {0,1}.

Issue: be = b for b ∈ {0,1}!
Remedy: Alice generates a random integer 0 ≤ x ≤ pq

2 and
transmits to Bob y = (2x + b)e mod pq.

Note: any message can be split into bits and send using this
scheme. This avoids the problems of repetition, guessing
messages, etc.

Complexity Theory (FIT VUT) Cryptography 12 / 17

Randomized Cryptography

Suppose Alice needs repeatedly to send Bob a single bit
b ∈ {0,1}.
Issue: be = b for b ∈ {0,1}!

Remedy: Alice generates a random integer 0 ≤ x ≤ pq
2 and

transmits to Bob y = (2x + b)e mod pq.

Note: any message can be split into bits and send using this
scheme. This avoids the problems of repetition, guessing
messages, etc.

Complexity Theory (FIT VUT) Cryptography 12 / 17

Randomized Cryptography

Suppose Alice needs repeatedly to send Bob a single bit
b ∈ {0,1}.
Issue: be = b for b ∈ {0,1}!
Remedy: Alice generates a random integer 0 ≤ x ≤ pq

2 and
transmits to Bob y = (2x + b)e mod pq.

Note: any message can be split into bits and send using this
scheme. This avoids the problems of repetition, guessing
messages, etc.

Complexity Theory (FIT VUT) Cryptography 12 / 17

Randomized Cryptography

Suppose Alice needs repeatedly to send Bob a single bit
b ∈ {0,1}.
Issue: be = b for b ∈ {0,1}!
Remedy: Alice generates a random integer 0 ≤ x ≤ pq

2 and
transmits to Bob y = (2x + b)e mod pq.

Note: any message can be split into bits and send using this
scheme. This avoids the problems of repetition, guessing
messages, etc.

Complexity Theory (FIT VUT) Cryptography 12 / 17

Protocols

Protocols

Signature
modification of a document that unmistakably identifies the sender,
commutative public-key cryptosystems can be exploited:

E(e) ◦ D(d) = D(d) ◦ E(e) = id

private

Alice sends a signed message

SAlice(x) = (x ,D(dAlice, x))

• i.e. Alice sends the original message with its decoded counterpart

given a signed message (x , s) anyone can check whether

E(eAlice, s) = x

• i.e. check that the signature is valid
public

the RSA cryptosystem can be used.

Complexity Theory (FIT VUT) Cryptography 13 / 17

Protocols

Protocols

Mental Poker
3 n-bit numbers a < b < c (cards)
Alice and Bob to randomly choose one card each, such that:

1 their cards are different,
2 all 6 allowed outcomes have the same probability,
3 Alice’s (B’s) card is known only to Alice (B) until she announces it,
4 the outcome is indisputable.

The person with the highest number wins.

Complexity Theory (FIT VUT) Cryptography 14 / 17

Protocols

Protocols

Mental Poker — a solution:
1 The players agree on a single large prime number p.
2 Each player generates two secret keys:

• an encryption key eAlice, eBob,
• a decryption key dAlice, dBob,
• such that eAlicedAlice = eBobdBob = 1 mod p − 1.

3 Alice encrypts and sends to Bob aeAlice , beAlice , ceAlice (mod p).
4 Bob randomly chooses one message, say beAlice , and returns it to

Alice to be her card (Alice decodes it with dAlice to obtain b).
5 Bob encrypts and sends to Alice aeAliceeBob , ceAliceeBob (mod p).
6 Alice randomly chooses one message, say aeAliceeBob , decodes it

with dAlice and sends aeBob mod p to Bob as his card.

Complexity Theory (FIT VUT) Cryptography 15 / 17

Protocols

Protocols

Zero Knowledge Example: consider the problem of 3-COLOURING of
a graph G = (V ,E). Suppose Alice knows the colouring
χ : V → {00,11,01} and wants to persuade Bob of the fact, without
revealing χ to him.

A multiple round protocol, where in each step
1 Alice generates a random permutation π of the 3 colours.
2 Then she generates an RSA key pair (pi ,qi ,di ,ei) for each i ∈ V .
3 For every i ∈ V she computes the probabilistic encoding (yi , y ′i),

according to the i-th RSA system, of i ’s new colour bib′i = π(χ(i))

4 For every i ∈ V she sends (ei ,piqi , yi , y ′i) to Bob.
5 Now, Bob picks a random edge (k , l) ∈ E and Alice reveals the

secret keys dk and dl of the endpoints.
6 Bob computes bkb′k and blb′l and checks that indeed bkb′k 6= blb′l .

Complexity Theory (FIT VUT) Cryptography 16 / 17

Protocols

Protocols

Zero Knowledge Example: consider the problem of 3-COLOURING of
a graph G = (V ,E). Suppose Alice knows the colouring
χ : V → {00,11,01} and wants to persuade Bob of the fact, without
revealing χ to him.
A multiple round protocol, where in each step

1 Alice generates a random permutation π of the 3 colours.
2 Then she generates an RSA key pair (pi ,qi ,di ,ei) for each i ∈ V .
3 For every i ∈ V she computes the probabilistic encoding (yi , y ′i),

according to the i-th RSA system, of i ’s new colour bib′i = π(χ(i))

4 For every i ∈ V she sends (ei ,piqi , yi , y ′i) to Bob.
5 Now, Bob picks a random edge (k , l) ∈ E and Alice reveals the

secret keys dk and dl of the endpoints.
6 Bob computes bkb′k and blb′l and checks that indeed bkb′k 6= blb′l .

Complexity Theory (FIT VUT) Cryptography 16 / 17

Protocols

Protocols

If Alice does not have a legal colouring, then the probability of
finding an edge (k , l) ∈ E , s.t. bkb′k = blb′l , is at least 1

|E | .

After n|E | rounds, the probability of Bob finding out Alice has no
legal colouring is at least 1− e−n.
But if Alice has a legal colouring, Bob has not learned anything
about it.

Complexity Theory (FIT VUT) Cryptography 17 / 17

	Protocols

