Cryptography

Complexity Theory

Faculty of Information Technology Brno University of Technology Brno, Czech Republic

Ondřej Lengál

Motivation

- Hardness of problems is not always bad . . .
- ... sometimes, it is a resource to be exploited!
- We wish to find problems that are quickly solvable with a partial knowledge of the solution, but very hard without it (including approximation/probabilistic algorithms).
- We will look at cryptography from the complexity's point of view. For history, side channel attacks, etc., refer to the KRY class.

Note: in this lecture we fix $\Sigma = \{0, 1\}$.

- 1 x = D(d, E(e, x))
- Eavesdropper not able to compute x from y without knowing d

Example (one-time pad):

■ let e = d be a string $w \in \Sigma^*$ of length |x| and

$$D = E = \lambda \ a \ b \cdot a \oplus b$$

Example (one-time pad):

■ let e = d be a string $w \in \Sigma^*$ of length |x| and

$$D = E = \lambda \ a \ b \cdot a \oplus b$$

The requirements hold:

- $\mathbf{v} = \mathbf{E}(\mathbf{w}, \mathbf{x}) = \mathbf{w} \oplus \mathbf{x}$
 - $D(w, y) = w \oplus (w \oplus x) = (w \oplus w) \oplus x = 0^{|x|} \oplus x = x$

Example (one-time pad):

■ let e = d be a string $w \in \Sigma^*$ of length |x| and

$$D = E = \lambda \ a \ b \cdot a \oplus b$$

The requirements hold:

- 1
- $y = E(w, x) = w \oplus x$
 - $D(w,y) = w \oplus (w \oplus x) = (w \oplus w) \oplus x = 0^{|x|} \oplus x = x$
- If Eavesdropper could derive x from y, then she knows $d = x \oplus y$.

Example (one-time pad):

■ let e = d be a string $w \in \Sigma^*$ of length |x| and

$$D = E = \lambda \ a \ b \cdot a \oplus b$$

The requirements hold:

- $\mathbf{v} = \mathbf{E}(\mathbf{w}, \mathbf{x}) = \mathbf{w} \oplus \mathbf{x}$
 - $D(w, y) = w \oplus (w \oplus x) = (w \oplus w) \oplus x = 0^{|x|} \oplus x = x$
- 2 If Eavesdropper could derive x from y, then she knows $d = x \oplus y$.

Example (one-time pad):

■ let e = d be a string $w \in \Sigma^*$ of length |x| and

$$D = E = \lambda \ a \ b \cdot a \oplus b$$

The requirements hold:

- $\mathbf{v} = \mathbf{E}(\mathbf{w}, \mathbf{x}) = \mathbf{w} \oplus \mathbf{x}$
 - $D(w, y) = w \oplus (w \oplus x) = (w \oplus w) \oplus x = 0^{|x|} \oplus x = x$
- If Eavesdropper could derive x from y, then she knows $d = x \oplus y$.

- w is usable only once
 - suppose $y_1 = E(w, x_1), y_2 = E(w, x_2)$
 - then Eavesdropper may obtain $y_1 \oplus y_2$ (and use it for an attack)

Example (one-time pad):

■ let e = d be a string $w \in \Sigma^*$ of length |x| and

$$D = E = \lambda \ a \ b \cdot a \oplus b$$

The requirements hold:

- $y = E(w, x) = w \oplus x$
 - $D(w,y) = w \oplus (w \oplus x) = (w \oplus w) \oplus x = 0^{|x|} \oplus x = x$
- 2 If Eavesdropper could derive x from y, then she knows $d = x \oplus y$.

- 1 w is usable only once
 - suppose $y_1 = E(w, x_1), y_2 = E(w, x_2)$
 - then Eavesdropper may obtain y₁ ⊕ y₂ (and use it for an attack)
- distribution of keys to the parties

Public-Key Cryptography

Public-key Cryptosystem

- d secret and private for Bob,
- e public,
- it is computationally infeasible to deduce *d* from *e*, and *x* from *y* without knowing *d*

- when guessing x, it is easy to check whether $x \stackrel{?}{=} D(d, y)$ by checking whether y = E(e, x)
- and since $|x| \le |y|^k$ for some k > 0, compromising it is in **FNP**,
- ightharpoonup public-key cryptosystems exist only if $\mathbf{P} \neq \mathbf{NP}$.
- ... one-way functions (inhabitants of **FNP** \ **FP**)

One-way Functions

A function $f: \Sigma^* \to \Sigma^*$ is one-way if:

- 1 f is injective and $\forall x \in \Sigma^*, |x|^{\frac{1}{k}} \leq |f(x)| \leq |x|^k$ for some k > 0,
- $f \in \mathsf{FP}$,
- **3** $f^{-1} \notin FP$ (and therefore $f^{-1} \in FNP \setminus FP$).

If there exist one-way functions, then $P \neq NP$.

RSA

The RSA function:

- Proposed by Ron Rivest, Adi Shamir, and Leonard Adleman.
- Uses integer multiplication and exponentiation modulo a prime.
- $p, q \dots$ two large primes (private), their product pq (public)
- 1 < $e < \phi(pq)$... an integer coprime with $\phi(pq)$ (public)
 - $\phi(pq) = pq(1 \frac{1}{p})(1 \frac{1}{q}) = pq p q + 1$ Euler's totient function
- **d** ... an integer s.t. $e \cdot d \equiv 1 \mod \phi(pq)$ (private)
- \blacksquare $E = \lambda x . x^e \mod pq$
- - if $1 \le x < pq$ and x and pq are coprime, then $x^{\phi(pq)} = 1 \mod pq$ Euler's totient theorem (generalization of Fermat's little theorem)
- fast factoring can break RSA (p, q, and e can be used to get d)

Definition (**UP**)

UP is the class of languages accepted by unambiguous polynomial-time bounded nondeterministic Turing machines.

- Unambiguous NTM: for any input there is at most 1 accepting run.
- Obviously, $P \subseteq UP \subseteq NP$.
- It is believed that $\mathbf{UP} \neq \mathbf{NP}$.

Theorem

 $\mathbf{UP} \neq \mathbf{P}$ if and only if there exist one-way functions.

Theorem

 $\mathbf{UP} \neq \mathbf{P}$ if and only if there exist one-way functions.

Proof (idea).

```
"⇐":
```

- Suppose there is a one-way function f.
- Consider the language $L_f = \{(x, y) \mid \exists z \in \Sigma^* : f(z) = y \land z \leq x\}$. (words over Σ ordered first by length and then lexicographically)

Theorem

 $\mathbf{UP} \neq \mathbf{P}$ if and only if there exist one-way functions.

Proof (idea).

- "⇐":
 - Suppose there is a one-way function *f*.
 - Consider the language $L_f = \{(x,y) \mid \exists z \in \Sigma^* : f(z) = y \land z \leq x\}$. (words over Σ ordered first by length and then lexicographically)
 - $L_f \in \mathbf{UP}$: a TM M for the input (x,y) guesses z and computes whether y = f(z); if yes and $z \le x$, M accepts, otherwise rejects
 - f being injective implies this happens at most once

Theorem

 $\mathbf{UP} \neq \mathbf{P}$ if and only if there exist one-way functions.

Proof (idea).

- "⇐":
 - Suppose there is a one-way function *f*.
 - Consider the language $L_f = \{(x,y) \mid \exists z \in \Sigma^* : f(z) = y \land z \leq x\}.$ (words over Σ ordered first by length and then lexicographically)
 - $L_f \in \mathbf{UP}$: a TM M for the input (x, y) guesses z and computes whether y = f(z); if yes and $z \le x$, M accepts, otherwise rejects f being injective implies this happens at most once
 - $L_f \notin \mathbf{P}$: if there were a **PTIME** algorithm for L_f , we could invert f in **PTIME** using binary search $\implies f$ would not be one-way
 - **therefore**, $P \subset UP$ (because $L_f \in UP \setminus P$)

```
"⇒":
```

- Suppose there is a language $L \in \mathbf{UP} \setminus \mathbf{P}$.
- Let *U* be an unambiguous TM accepting *L*.
- Let x be an encoding of an accepting computation of U on input y.
- Define $f_U(x) = 1y$ and $f_U(z) = 0z$ if z is not such an encoding.
- \blacksquare f_{U} is one-way, because
 - f_U is well-defined (y can be "read off" x in **PTIME**),
 - lengths of x and $f_U(x)$ are polynomially related,
 - f_U is injective $(f(x) = f(x') \implies x = x')$,
 - inverting f_U in PTIME would imply L ∈ P.

One-way Functions Revisited

Worst-case performance of algorithms

- not a good concept for cryptography!
- hard problems need to be densely populating the problem space,
- we need to refine the requirement for one-way functions:
 - 3 $f^{-1} \notin \mathbf{FP}$ (and therefore $f^{-1} \in \mathbf{FNP} \setminus \mathbf{FP}$).

to a stronger requirement:

- there is no $k \in \mathbb{N}$, and no algorithm which, for large enough n, in time $\mathcal{O}(n^k)$ successfully computes $f^{-1}(y)$ for at least $\frac{2^n}{n^k}$ strings of length n.
 - i.e. there is no **PTIME** algorithm that successfully inverts *f* on a polynomial fraction of the inputs of length *n*.

Suppose Alice needs repeatedly to send Bob a single bit b ∈ {0,1}.

- Suppose Alice needs repeatedly to send Bob a single bit b ∈ {0,1}.
- Issue: $b^e = b$ for $b \in \{0, 1\}!$

- Suppose Alice needs repeatedly to send Bob a single bit b ∈ {0,1}.
- Issue: $b^e = b$ for $b \in \{0, 1\}!$
- Remedy: Alice generates a random integer $0 \le x \le \frac{pq}{2}$ and transmits to Bob $y = (2x + b)^e \mod pq$.

- Suppose Alice needs repeatedly to send Bob a single bit b ∈ {0,1}.
- Issue: $b^e = b$ for $b \in \{0, 1\}!$
- Remedy: Alice generates a random integer $0 \le x \le \frac{pq}{2}$ and transmits to Bob $y = (2x + b)^e \mod pq$.
- Note: any message can be split into bits and send using this scheme. This avoids the problems of repetition, guessing messages, etc.

Signature

- modification of a document that unmistakably identifies the sender,
- commutative public-key cryptosystems can be exploited:
- Alice sends a signed message $E(e) \circ D(d) = D(d) \circ E(e) = id$

$$S_{Alice}(x) = (x, D(d_{Alice}, \underline{x}))$$
 private

- i.e. Alice sends the original message with its decoded counterpart
- \blacksquare given a signed message (x, s) anyone can check whether

$$E(e_{Alice}, s) = x$$
 public

- i.e. check that the signature is valid
- the RSA cryptosystem can be used.

Mental Poker

- 3 n-bit numbers a < b < c (cards)
- Alice and Bob to randomly choose one card each, such that:
 - 1 their cards are different,
 - 2 all 6 allowed outcomes have the same probability,
 - 3 Alice's (B's) card is known only to Alice (B) until she announces it,
 - 4 the outcome is indisputable.
- The person with the highest number wins.

Mental Poker — a solution:

- 1 The players agree on a single large prime number p.
- Each player generates two secret keys:
 - an encryption key e_{Alice}, e_{Bob},
 - a decryption key d_{Alice}, d_{Bob},
 - such that $e_{Alice}d_{Alice} = e_{Bob}d_{Bob} = 1 \mod p 1$.
- 3 Alice encrypts and sends to Bob $a^{e_{Alice}}$, $b^{e_{Alice}}$, $c^{e_{Alice}}$ (mod p).
- Bob randomly chooses one message, say $b^{e_{Alice}}$, and returns it to Alice to be her card (Alice decodes it with d_{Alice} to obtain b).
- **5** Bob encrypts and sends to Alice $a^{e_{Alice}e_{Bob}}$, $c^{e_{Alice}e_{Bob}}$ (mod p).
- 6 Alice randomly chooses one message, say $a^{e_{Alice}e_{Bob}}$, decodes it with d_{Alice} and sends $a^{e_{Bob}} \mod p$ to Bob as his card.

Zero Knowledge Example: consider the problem of 3-COLOURING of a graph G = (V, E). Suppose Alice knows the colouring $\chi: V \to \{00, 11, 01\}$ and wants to persuade Bob of the fact, without revealing χ to him.

Zero Knowledge Example: consider the problem of 3-COLOURING of a graph G = (V, E). Suppose Alice knows the colouring $\chi: V \to \{00, 11, 01\}$ and wants to persuade Bob of the fact, without revealing χ to him.

A multiple round protocol, where in each step

- 1 Alice generates a random permutation π of the 3 colours.
- **2** Then she generates an RSA key pair (p_i, q_i, d_i, e_i) for each $i \in V$.
- For every $i \in V$ she computes the probabilistic encoding (y_i, y_i') , according to the i-th RSA system, of i's new colour $b_i b_i' = \pi(\chi(i))$
- 4 For every $i \in V$ she sends $(e_i, p_i q_i, y_i, y_i')$ to Bob.
- Now, Bob picks a random edge $(k, l) \in E$ and Alice reveals the secret keys d_k and d_l of the endpoints.
- 6 Bob computes $b_k b'_k$ and $b_l b'_l$ and checks that indeed $b_k b'_k \neq b_l b'_l$.

- If Alice does not have a legal colouring, then the probability of finding an edge $(k, l) \in E$, s.t. $b_k b'_k = b_l b'_l$, is at least $\frac{1}{|E|}$.
- After n|E| rounds, the probability of Bob finding out Alice has no legal colouring is at least $1 e^{-n}$.
- But if Alice has a legal colouring, Bob has not learned anything about it.