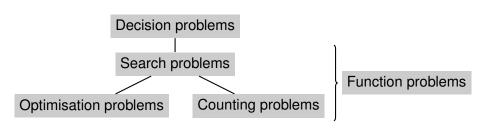
Counting Classes

Complexity Theory

Classification of Problems



Given a relation $R \subseteq X \times Y$ and $x \in X$:

- Decision problems: decide membership in a language (yes/no).
 - Is there some $y \in Y$ s.t. R(x, y)?
- Function problems: generate some additional output.
 - Search problems: Find any $y \in Y$ s.t. R(x, y).
 - Optimisation problems: Find the best $y \in Y$ s.t. R(x, y).
 - Counting problems: How many $y \in Y$ are there s.t. R(x, y)?

Counting Problems

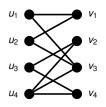
Definition (Counting problem)

Consider a relation $R \subseteq X \times Y$ and the decision problem $D_R \subseteq X$ s.t. $x \in D_R \iff \exists y \in Y . R(x, y)$. The counting problem associated with R, $\#D_R$, is defined as

$$\#D_R(x) = |\{y \in Y \mid R(x,y)\}|$$
.

Examples:

- #SAT: how many different assignments satisfy given formula?
- **\blacksquare** #CLIQUE: how many cliques of size k or larger are in a graph?
- #HAMILTONIAN PATH: how many different Hamiltonian paths are in a graph?



Definition (MATCHING)

Is there a perfect matching in the bipartite graph G = (U, V, E)?

Definition (#MATCHING)

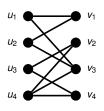
How many perfect matchings are in the bipartite graph G = (U, V, E)?

Recall that MATCHING can be solved by checking whether the determinant of the adjacency matrix A^G of G is not identically zero.

$$\det m{A}^{m{G}} = \sum_{\pi} \left(\sigma(\pi) \prod_{i=1}^n m{A}_{i,\pi(i)}^{m{G}}
ight)$$

where

- \blacksquare π ranges over all permutation of n elements,
- $\sigma(\pi) = 1$ if π contains an even number of transpositions, else -1.



$$\det m{A}^{m{G}} = \sum_{\pi} \left(\sigma(\pi) \prod_{i=1}^n m{A}_{i,\pi(i)}^{m{G}}
ight)$$

Note that the summation is done over all perfect matchings, but including the undesirable $\sigma(\pi)$ element.

$$\det m{A}^{m{G}} = \sum_{\pi} \left(\sigma(\pi) \prod_{i=1}^n m{A}_{i,\pi(i)}^{m{G}}
ight)$$

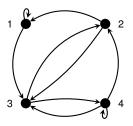
- Note that the summation is done over all perfect matchings, but including the undesirable $\sigma(\pi)$ element.
- If we get rid of the $\sigma(\pi)$ element, we arrive at a different characteristic of a matrix called the permanent.

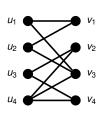
$$\operatorname{\mathsf{perm}} \boldsymbol{A}^{\boldsymbol{G}} = \sum_{\pi} \left(\prod_{i=1}^n \boldsymbol{A}_{i,\pi(i)}^{\boldsymbol{G}} \right)$$

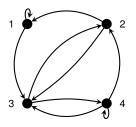
■ The permanent of A^G is precisely the number of perfect matchings in G, the problem is therefore known as PERMANENT.

■ Further, the number of perfect matchings in G = (U, V, E) is equal to the number of cycle covers in the directed graph

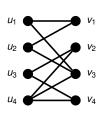
$$G' = (\{1,\ldots,|U|\},\{(i,j)\,|\,(u_i,v_j)\in E\})$$
.

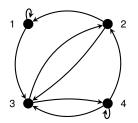






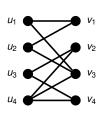
		<i>V</i> ₁	<i>V</i> ₂	<i>V</i> 3	V_4
	<i>u</i> ₁	1	0	1	0
$A^G =$	и ₁ и ₂	1	0	1	0
	и ₃ И ₄	0	1	0	1
	U_4	0	1	1	1

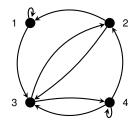




$$m{A^G} = egin{array}{c|ccccc} V_1 & V_2 & V_3 & V_4 \\ \hline u_1 & 1 & 0 & 1 & 0 \\ u_2 & 1 & 0 & 1 & 0 \\ u_3 & 0 & 1 & 0 & 1 \\ u_4 & 0 & 1 & 1 & 1 \end{array}$$

perm
$$\mathbf{A}^{\mathbf{G}} = \sum_{\pi} \left(\prod_{i=1}^{n} \mathbf{A}_{i,\pi(i)}^{\mathbf{G}} \right) = ?$$





$$m{A^G} = egin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ \hline u_1 & 1 & 0 & 1 & 0 \\ u_2 & 1 & 0 & 1 & 0 \\ u_3 & 0 & 1 & 0 & 1 \\ u_4 & 0 & 1 & 1 & 1 \end{array}$$

perm
$$\mathbf{A}^{\mathbf{G}} = \sum_{\pi} \left(\prod_{i=1}^{n} \mathbf{A}_{i,\pi(i)}^{\mathbf{G}} \right) = 4$$

Example: Graph Reliability

Counting is relevant to probability; consider the decision problem

Definition (REACHABILITY)

Given a graph G, is there a path from node u to node v?

This gives rise to the following counting problem:

Definition (GRAPH RELIABILITY)

Given a graph G with m edges, how many of the 2^m subgraphs of G contain a path from node u to node v?

The problem is called GRAPH RELIABILITY because it gives a precise estimate of the probability that u and v will remain connected when all edges fail independently with probability $\frac{1}{2}$ each.

Definition (#P)

#P is the class of all counting problems associated with polynomially balanced polynomial-time decidable relations.

- #P is pronounced "number P", "sharp P", or "pound P".
- Polynomially balanced relation: if R(x, y), then $|y| \le p(|x|)$.
- Polynomial-time decidable relation:
 - given x and y, it is checkable in polynomial time whether R(x, y).

Reduction of Counting Problems

- All decision problems are easily reducible to their corresponding counting problems.
- As with other function problems, a reduction between counting problems *A* and *B* consists of two parts:
 - part R mapping instances x of A to instances R(x) of B,
 - part S recovering from the answer y of R(x) the answer S(y) of x.
- For counting problems, there is a convenient class of reductions:

Definition (Parsimonious Reduction)

A reduction is parsimonious when S = id.

#SAT is **#P**-complete

Theorem

#SAT is **#P**-complete.

Proof.

Parsimonious variant of Cook's theorem (for CIRCUIT SAT):

- Each polynomially balanced and polynomial-time decidable binary relation $R \subseteq X \times Y$ together with $x \in X$ can be in deterministic polynomial time reduced to a CNF formula $\phi_{R(x)}$ with *input* variables $I = \{i_1, \dots, i_n\}$.
- Each satisfying truth assignment to *I* corresponds to a unique $y \in Y$ s.t. R(x, y).

PERMANENT is #P-complete.

Theorem (Valiant's Theorem)

PERMANENT is #P-complete.

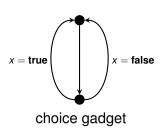
■ Interesting because MATCHING \in **P**.

Proof. (idea)

- By reduction from #SAT.
- For a 3SAT formula ϕ , we construct a graph G_{ϕ} such that the cycle covers of G_{ϕ} somehow correspond to satisfying assignments of ϕ .
- The construction is very similar to the proof of **NP**-completeness of HAMILTONIAN PATH.

PERMANENT is #P-complete.

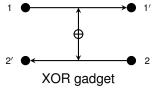
- For each Boolean variable x in ϕ , we create a choice gadget.
- For each clause in ϕ , we create a clause gadget:
 - no cycle cover traverses all 3 external edges,
 - for any proper subset S of external edges (including ∅), there is exactly one cycle cover traversing only external edges from S and no other external edges.



clause gadget

PERMANENT is #P-complete.

- External edges from clause gadgets are connected to corresponding edges of choice gadgets using XOR gadgets:
 - if exactly one of the edges (1, 1') or (2, 2') is traversed, the number of cycle covers is multiplied by 4,
 - there is no cycle cover in the graph if none or both are traversed.



- For each satisfying assignment of ϕ , there are 4^m cycle covers
 - where *m* is the total number of literal occurrences in the formula.
- Details are rather technical and can be found in the literature:
 - · structure of the XOR gadget,
 - reduction to PERMANENT MOD N.

How Strong Is Counting?

- Counting is very powerful indeed!
- Is #P more powerful than PH?

How Strong Is Counting?

- Counting is very powerful indeed!
- Is #P more powerful than PH?
- Note that we cannot directly compare #P to PH:
 - #P ... a class of functions,
 - PH . . . a class of languages.
- However, recall the class PP:
 - **PP** ... the class of languages L s.t. there is a poly. nondet. TM M, $x \in L$ iff more than $\frac{1}{2}$ computations of M on x end up accepting.
- There is a close relation between #P and PP:
 - try looking at the MSB of the number of accepting computations.

Theorem (Toda's Theorem)

 $\mathbf{PH} \subseteq \mathbf{P^{PP}}$

Definition (⊕P)

 \oplus **P** is the class of languages L for which there is a polynomially balanced polynomial-time decidable relation R such that $x \in L$ iff the number of y's such that R(x, y) is odd.

- $\blacksquare \oplus P$ is pronounced "odd P", or "parity P".
- \oplus SAT and \oplus HAMILTONIAN PATH are \oplus **P**-complete,
 - a reduction similar to #SAT and #HAMILTONIAN PATH.

$$\oplus P = co \oplus P$$

Theorem

⊕P is closed under complement, i.e.

$$\oplus P = co \oplus P$$
.

Proof.

- The complement of \oplus SAT is obviously $\mathbf{co} \oplus \mathbf{P}$ -complete.
- This language reduces to \oplus SAT of $\phi(x_1, ..., x_n)$ as follows:
 - 11 Add a new variable z to each clause of ϕ .
 - 2 Also add *n* clauses $(z \implies x_i)$ for $1 \le i \le n$.
- Any SAT assignment in the old formula is still SAT (z = false).
- We get a new all-true SAT assignment (z = true).

$\mathsf{NP}\subseteq \mathsf{RP}^{\oplus \mathsf{P}}$

Theorem

$$NP \subseteq RP^{\oplus P}$$

■ **RP** ... the class of languages for which there exists a polynomial Monte Carlo Turing machine.

Proof. (idea)

- Construct a polynomial MC TM for SAT using an oracle for ⊕SAT.
- We are given formula ϕ over variables $\{x_1, \ldots, x_n\}$.
- For $S \subseteq \{x_1, \dots, x_n\}$ a hyperplane η_S is a Boolean expression in CNF stating an even number among the variables in S are **true**.
 - For variables y_0, \ldots, y_n, η_S is the conjunction of clauses $(y_0), (y_n),$

$$\text{plus for each 1} \leq i \leq n \ \begin{cases} (y_i \iff (y_{i-1} \oplus x_i)) & \text{if } x_i \in S \\ (y_i \iff y_{i-1}) & \text{if } x_i \notin S \end{cases}$$

$\mathsf{NP}\subseteq \mathsf{RP}^{\oplus \mathsf{P}}$

- The algorithm:
 - $\phi_0 := \phi$
 - For i = 1, ..., n + 1 repeat the following:
 - **1** Generate a random subset $S_i \subseteq \{x_1, \ldots, x_n\}$.
 - 2 Set $\phi_i = \phi_{i-1} \wedge \eta_{S_i}$.
 - **3** If $\phi_i \in \oplus SAT$ answer " ϕ is satisfiable."
 - 4 Else continue.
 - 3 Answer " ϕ is probably unsatisfiable."
- The probability of a false negative is no larger than $\frac{7}{8}$.
 - becomes less than $\frac{1}{2}$ by repeating the algorithm $6 \times$.