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N
Classification of Problems

Decision problems

Search problems

- N Function problems

Optimisation problems Counting problems

Given arelation RC X x Y and x € X:
m Decision problems: decide membership in a language (yes/no).
o Isthere some y € Y s.t. R(x,y)?
m Function problems: generate some additional output.

e Search problems: Find any y € Y s.t. R(x, y).
¢ Optimisation problems: Find the best y € Y s.t. R(X, y).
e Counting problems: How many y € Y are there s.t. R(x,y)?
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Counting Problems

Definition (Counting problem)

Consider a relation R C X x Y and the decision problem Dg C X
st. x € Dgp < dy € Y.R(x,y). The counting problem associated
with R, #Dg, is defined as

#Dr(x) = {y € YIR(x,y)}| - )

Examples:
m #SAT: how many different assignments satisfy given formula?

m #CLIQUE: how many cliques of size k or larger are in a graph?
m #HAMILTONIAN PATH: how many different Hamiltonian paths are
in a graph?
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Example: Counting Perfect Matchings
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Definition (MATCHING)
Is there a perfect matching in the bipartite graph G = (U, V, E)?

Definition (#MATCHING)
How many perfect matchings are in the bipartite graph G = (U, V, E)?

v
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Example: Counting Perfect Matchings

Recall that MATCHING can be solved by checking whether the
determinant of the adjacency matrix A of G is not identically zero.

n
i=1

where

™

m 7 ranges over all permutation of n elements,
m o(w) = 1if 7 contains an even number of transpositions, else —1.
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-
Example: Counting Perfect Matchings

™

n
det A% =" <a(7r) 11 A,.ir(,.)>
i=1

m Note that the summation is done over all perfect matchings, but
including the undesirable o(7) element.
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-
Example: Counting Perfect Matchings

det AG = Z <0(7r HA, (i) )

T

m Note that the summation is done over all perfect matchings, but
including the undesirable o(7) element.

m If we get rid of the o(7) element, we arrive at a different
characteristic of a matrix called the permanent.

perm A% =" (H AC ) )

m The permanent of A€ is precisely the number of perfect matchings
in G, the problem is therefore known as PERMANENT.
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Example: Counting Perfect Matchings

m Further, the number of perfect matchings in G = (U, V, E) is equal
to the number of cycle covers in the directed graph

G =({1,.. U AG) (Ui v) € E}) .

1 2
‘V1 Vo V3 W
uy|1 0 1 0
A= |1 0 1 0
uz | 0 1 0 1
3 4 ul0 1 1 1
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Example: Counting Perfect Matchings

u v 1 2
1 1 ‘ Vi Vo V3 W
tp V2 uvy|1 0 1 0
U3 v AC = u|l1 0 1 0
us 0 1 0 1
“4 v 8 4 u |0 1 1 1
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|
Example: Graph Reliability

Counting is relevant to probability; consider the decision problem

Definition (REACHABILITY)
Given a graph G, is there a path from node u to node v? J

This gives rise to the following counting problem:

Definition (GRAPH RELIABILITY)

Given a graph G with m edges, how many of the 2™ subgraphs of G
contain a path from node v to node v?

The problem is called GRAPH RELIABILITY because it gives a precise
estimate of the probability that v and v will remain connected when all
edges fail independently with probability % each.
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#P

Definition (#P)
#P is the class of all counting problems associated with polynomially
balanced polynomial-time decidable relations.

m #P is pronounced “number P”, “sharp P”, or “pound P”.

m Polynomially balanced relation: if R(x, y), then |y| < p(|x]).
m Polynomial-time decidable relation:
e given x and y, it is checkable in polynomial time whether R(x, y).
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Reduction of Counting Problems

m All decision problems are easily reducible to their corresponding
counting problems.

m As with other function problems, a reduction between counting
problems A and B consists of two parts:

e part R mapping instances x of A to instances R(x) of B,
e part S recovering from the answer y of R(x) the answer S(y) of x.

m For counting problems, there is a convenient class of reductions:

Definition (Parsimonious Reduction)
A reduction is parsimonious when S = id. J
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#SAT is #P-complete

Theorem
#SAT is #P-complete.

Proof.
Parsimonious variant of Cook’s theorem (for CIRCUIT SAT):

m Each polynomially balanced and polynomial-time decidable binary
relation R C X x Y together with x € X can be in deterministic
polynomial time reduced to a CNF formula ¢g,) with input
variables | = {iy, ..., In}.

m Each satisfying truth assignment to / corresponds to a unique
y € Ys.t R(x,y). O

v
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PERMANENT is #P-complete.

Theorem (Valiant’s Theorem)
PERMANENT is #P-complete. J

m Interesting because MATCHING € P.

Proof. (idea) J

m By reduction from #SAT.

m For a 3SAT formula ¢, we construct a graph G, such that the cycle
covers of G, somehow correspond to satisfying assignments of ¢.

m The construction is very similar to the proof of NP-completeness
of HAMILTONIAN PATH.
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PERMANENT is #P-complete.

m For each Boolean variable x in ¢, we create a choice gadget.
m For each clause in ¢, we create a clause gadget:

e no cycle cover traverses all 3 external edges,

e for any proper subset S of external edges (including 0), there is
exactly one cycle cover traversing only external edges from S and
no other external edges.

x = true x = false

choice gadget clause gadget
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PERMANENT is #P-complete.

m External edges from clause gadgets are connected to
corresponding edges of choice gadgets using XOR gadgets:
o if exactly one of the edges (1,1) or (2,2') is traversed, the number

of cycle covers is multiplied by 4,

e there is no cycle cover in the graph if none or both are traversed.

1@

2 @

®

@ 2

XOR gadget

m For each satisfying assignment of ¢, there are 4™ cycle covers

e where mis the total number of literal occurrences in the formula.

m Details are rather technical and can be found in the literature:

e structure of the XOR gadget,
e reduction to PERMANENT MOD N.
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R
How Strong Is Counting?

m Counting is very powerful indeed!
m Is #P more powerful than PH?
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-
How Strong Is Counting?

m Counting is very powerful indeed!

m Is #P more powerful than PH?
m Note that we cannot directly compare #P to PH:

e #P ...aclass of functions,
e PH ...aclass of languages.

m However, recall the class PP:

e PP ...the class of languages L s.t. there is a poly. nondet. TM M,
x € L iff more than % computations of M on x end up accepting.

m There is a close relation between #P and PP:
e try looking at the MSB of the number of accepting computations.

Theorem (Toda’s Theorem)
PH C PPP J
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@GP

Definition (P)

@P is the class of languages L for which there is a polynomially
balanced polynomial-time decidable relation R such that x € L iff the
number of y’s such that R(x, y) is odd.

m @P is pronounced “odd P”, or “parity P”.
m &SAT and ®HAMILTONIAN PATH are @P-complete,
e a reduction similar to #SAT and #HAMILTONIAN PATH.
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@P = copP

Theorem
@®P is closed under complement, i.e.

@®P = codpP . )
Proof.
m The complement of &SAT is obviously coP-complete.
m This language reduces to &SAT of ¢(x1, ..., X,) as follows:

Add a new variable z to each clause of ¢.
Also add nclauses (z = x;)for1 <i<n.

m Any SAT assignment in the old formula is still SAT (z = false).
m We get a new all-true SAT assignment (z = true). O

v
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NP C RP®P

Theorem
NP C RP®P J

m RP ...the class of languages for which there exists a polynomial
Monte Carlo Turing machine.

Proof. (idea) J

m Construct a polynomial MC TM for SAT using an oracle for ©SAT.

m We are given formula ¢ over variables {xy, ..., Xn}.
m For S C {xq,...,Xn} a hyperplane ng is a Boolean expression in
CNF stating an even number among the variables in S are true.
o For variables yo, ..., Y, ns is the conjunction of clauses (yo), (¥n),

Vi = (Vim1ox)) ifxieS

lusforeach1 <i<n i
P - {(y,- = Yi_1) ifxi ¢ S
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NP C RP®P

m The algorithm:

$o = ¢
Fori=1,...,n+ 1 repeat the following:
© Generate a random subset S; C {x1,..., Xn}.

@ Set ¢ = ¢i1 A1,
® If ¢; € &SAT answer “¢ is satisfiable.”
@ Else continue.

Answer “¢ is probably unsatisfiable.”

m The probability of a false negative is no larger than %.
e becomes less than % by repeating the algorithm 6x. O
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