
Counting Classes

Complexity Theory

Classification of Problems

Decision problems

Search problems

Optimisation problems Counting problems

Function problems

Given a relation R ⊆ X × Y and x ∈ X :
Decision problems: decide membership in a language (yes/no).
• Is there some y ∈ Y s.t. R(x , y)?

Function problems: generate some additional output.
• Search problems: Find any y ∈ Y s.t. R(x , y).
• Optimisation problems: Find the best y ∈ Y s.t. R(x , y).
• Counting problems: How many y ∈ Y are there s.t. R(x , y)?

Complexity Theory () Counting Classes 2 / 20

Counting Problems

Definition (Counting problem)

Consider a relation R ⊆ X × Y and the decision problem DR ⊆ X
s.t. x ∈ DR ⇐⇒ ∃y ∈ Y .R(x , y). The counting problem associated
with R, #DR, is defined as

#DR(x) = |{y ∈ Y |R(x , y)}| .

Examples:
#SAT: how many different assignments satisfy given formula?
#CLIQUE: how many cliques of size k or larger are in a graph?
#HAMILTONIAN PATH: how many different Hamiltonian paths are
in a graph?

Complexity Theory () Counting Classes 3 / 20

Example: Counting Perfect Matchings

u1

u2

u3

u4

v1

v2

v3

v4

Definition (MATCHING)

Is there a perfect matching in the bipartite graph G = (U,V ,E)?

Definition (#MATCHING)

How many perfect matchings are in the bipartite graph G = (U,V ,E)?

Complexity Theory () Counting Classes 4 / 20

Example: Counting Perfect Matchings

Recall that MATCHING can be solved by checking whether the
determinant of the adjacency matrix AG of G is not identically zero.

det AG =
∑
π

(
σ(π)

n∏
i=1

AG
i,π(i)

)
where

π ranges over all permutation of n elements,
σ(π) = 1 if π contains an even number of transpositions, else −1.

u1

u2

u3

u4

v1

v2

v3

v4

AG =

v1 v2 v3 v4
u1 1 0 1 0
u2 1 0 1 0
u3 0 1 0 1
u4 0 1 1 1

Complexity Theory () Counting Classes 5 / 20

Example: Counting Perfect Matchings

det AG =
∑
π

(
σ(π)

n∏
i=1

AG
i,π(i)

)

Note that the summation is done over all perfect matchings, but
including the undesirable σ(π) element.

If we get rid of the σ(π) element, we arrive at a different
characteristic of a matrix called the permanent.

perm AG =
∑
π

(
n∏

i=1

AG
i,π(i)

)

The permanent of AG is precisely the number of perfect matchings
in G, the problem is therefore known as PERMANENT.

Complexity Theory () Counting Classes 6 / 20

Example: Counting Perfect Matchings

det AG =
∑
π

(
σ(π)

n∏
i=1

AG
i,π(i)

)

Note that the summation is done over all perfect matchings, but
including the undesirable σ(π) element.
If we get rid of the σ(π) element, we arrive at a different
characteristic of a matrix called the permanent.

perm AG =
∑
π

(
n∏

i=1

AG
i,π(i)

)

The permanent of AG is precisely the number of perfect matchings
in G, the problem is therefore known as PERMANENT.

Complexity Theory () Counting Classes 6 / 20

Example: Counting Perfect Matchings

Further, the number of perfect matchings in G = (U,V ,E) is equal
to the number of cycle covers in the directed graph

G′ = ({1, . . . , |U|}, {(i , j) | (ui , vj) ∈ E}) .

1

4

2

3

AG =

v1 v2 v3 v4
u1 1 0 1 0
u2 1 0 1 0
u3 0 1 0 1
u4 0 1 1 1

Complexity Theory () Counting Classes 7 / 20

Example: Counting Perfect Matchings

u1

u2

u3

u4

v1

v2

v3

v4

1

4

2

3

AG =

v1 v2 v3 v4
u1 1 0 1 0
u2 1 0 1 0
u3 0 1 0 1
u4 0 1 1 1

Complexity Theory () Counting Classes 8 / 20

Example: Counting Perfect Matchings

u1

u2

u3

u4

v1

v2

v3

v4

1

4

2

3

AG =

v1 v2 v3 v4
u1 1 0 1 0
u2 1 0 1 0
u3 0 1 0 1
u4 0 1 1 1

perm AG =
∑
π

(
n∏

i=1

AG
i,π(i)

)
= ?

Complexity Theory () Counting Classes 8 / 20

Example: Counting Perfect Matchings

u1

u2

u3

u4

v1

v2

v3

v4

1

4

2

3

AG =

v1 v2 v3 v4
u1 1 0 1 0
u2 1 0 1 0
u3 0 1 0 1
u4 0 1 1 1

perm AG =
∑
π

(
n∏

i=1

AG
i,π(i)

)
= 4

Complexity Theory () Counting Classes 8 / 20

Example: Graph Reliability

Counting is relevant to probability; consider the decision problem

Definition (REACHABILITY)
Given a graph G, is there a path from node u to node v?

This gives rise to the following counting problem:

Definition (GRAPH RELIABILITY)

Given a graph G with m edges, how many of the 2m subgraphs of G
contain a path from node u to node v?

The problem is called GRAPH RELIABILITY because it gives a precise
estimate of the probability that u and v will remain connected when all
edges fail independently with probability 1

2 each.

Complexity Theory () Counting Classes 9 / 20

#P

Definition (#P)
#P is the class of all counting problems associated with polynomially
balanced polynomial-time decidable relations.

#P is pronounced “number P”, “sharp P”, or “pound P”.
Polynomially balanced relation: if R(x , y), then |y | ≤ p(|x |).
Polynomial-time decidable relation:
• given x and y , it is checkable in polynomial time whether R(x , y).

Complexity Theory () Counting Classes 10 / 20

Reduction of Counting Problems

All decision problems are easily reducible to their corresponding
counting problems.

As with other function problems, a reduction between counting
problems A and B consists of two parts:
• part R mapping instances x of A to instances R(x) of B,
• part S recovering from the answer y of R(x) the answer S(y) of x .

For counting problems, there is a convenient class of reductions:

Definition (Parsimonious Reduction)
A reduction is parsimonious when S = id.

Complexity Theory () Counting Classes 11 / 20

#SAT is #P-complete

Theorem
#SAT is #P-complete.

Proof.
Parsimonious variant of Cook’s theorem (for CIRCUIT SAT):

Each polynomially balanced and polynomial-time decidable binary
relation R ⊆ X × Y together with x ∈ X can be in deterministic
polynomial time reduced to a CNF formula φR(x) with input
variables I = {i1, . . . , in}.
Each satisfying truth assignment to I corresponds to a unique
y ∈ Y s.t. R(x , y).

Complexity Theory () Counting Classes 12 / 20

PERMANENT is #P-complete.

Theorem (Valiant’s Theorem)
PERMANENT is #P-complete.

Interesting because MATCHING ∈ P.

Proof. (idea)

By reduction from #SAT.
For a 3SAT formula φ, we construct a graph Gφ such that the cycle
covers of Gφ somehow correspond to satisfying assignments of φ.
The construction is very similar to the proof of NP-completeness
of HAMILTONIAN PATH.

Complexity Theory () Counting Classes 13 / 20

PERMANENT is #P-complete.

For each Boolean variable x in φ, we create a choice gadget.
For each clause in φ, we create a clause gadget:
• no cycle cover traverses all 3 external edges,
• for any proper subset S of external edges (including ∅), there is

exactly one cycle cover traversing only external edges from S and
no other external edges.

x = true x = false

choice gadget clause gadget

Complexity Theory () Counting Classes 14 / 20

PERMANENT is #P-complete.

External edges from clause gadgets are connected to
corresponding edges of choice gadgets using XOR gadgets:
• if exactly one of the edges (1,1′) or (2,2′) is traversed, the number

of cycle covers is multiplied by 4,
• there is no cycle cover in the graph if none or both are traversed.

1

2′

1′

2

XOR gadget

For each satisfying assignment of φ, there are 4m cycle covers
• where m is the total number of literal occurrences in the formula.

Details are rather technical and can be found in the literature:
• structure of the XOR gadget,
• reduction to PERMANENT MOD N.

Complexity Theory () Counting Classes 15 / 20

How Strong Is Counting?

Counting is very powerful indeed!
Is #P more powerful than PH?

Note that we cannot directly compare #P to PH:
• #P . . . a class of functions,
• PH . . . a class of languages.

However, recall the class PP:
• PP . . . the class of languages L s.t. there is a poly. nondet. TM M,

x ∈ L iff more than 1
2 computations of M on x end up accepting.

There is a close relation between #P and PP:
• try looking at the MSB of the number of accepting computations.

Theorem (Toda’s Theorem)

PH ⊆ PPP

Complexity Theory () Counting Classes 16 / 20

How Strong Is Counting?

Counting is very powerful indeed!
Is #P more powerful than PH?
Note that we cannot directly compare #P to PH:
• #P . . . a class of functions,
• PH . . . a class of languages.

However, recall the class PP:
• PP . . . the class of languages L s.t. there is a poly. nondet. TM M,

x ∈ L iff more than 1
2 computations of M on x end up accepting.

There is a close relation between #P and PP:
• try looking at the MSB of the number of accepting computations.

Theorem (Toda’s Theorem)

PH ⊆ PPP

Complexity Theory () Counting Classes 16 / 20

⊕P

Definition (⊕P)
⊕P is the class of languages L for which there is a polynomially
balanced polynomial-time decidable relation R such that x ∈ L iff the
number of y ’s such that R(x , y) is odd.

⊕P is pronounced “odd P”, or “parity P”.
⊕SAT and ⊕HAMILTONIAN PATH are ⊕P-complete,
• a reduction similar to #SAT and #HAMILTONIAN PATH.

Complexity Theory () Counting Classes 17 / 20

⊕P = co⊕P

Theorem
⊕P is closed under complement, i.e.

⊕P = co⊕P .

Proof.
The complement of ⊕SAT is obviously co⊕P-complete.
This language reduces to ⊕SAT of φ(x1, . . . , xn) as follows:

1 Add a new variable z to each clause of φ.
2 Also add n clauses (z =⇒ xi) for 1 ≤ i ≤ n.

Any SAT assignment in the old formula is still SAT (z = false).
We get a new all-true SAT assignment (z = true).

Complexity Theory () Counting Classes 18 / 20

NP ⊆ RP⊕P

Theorem

NP ⊆ RP⊕P

RP . . . the class of languages for which there exists a polynomial
Monte Carlo Turing machine.

Proof. (idea)

Construct a polynomial MC TM for SAT using an oracle for ⊕SAT.
We are given formula φ over variables {x1, . . . , xn}.
For S ⊆ {x1, . . . , xn} a hyperplane ηS is a Boolean expression in
CNF stating an even number among the variables in S are true.
• For variables y0, . . . , yn, ηS is the conjunction of clauses (y0), (yn),

plus for each 1 ≤ i ≤ n

{
(yi ⇐⇒ (yi−1 ⊕ xi)) if xi ∈ S
(yi ⇐⇒ yi−1) if xi /∈ S

Complexity Theory () Counting Classes 19 / 20

NP ⊆ RP⊕P

The algorithm:
1 φ0 := φ
2 For i = 1, . . . ,n + 1 repeat the following:

1 Generate a random subset Si ⊆ {x1, . . . , xn}.
2 Set φi = φi−1 ∧ ηSi .
3 If φi ∈ ⊕SAT answer “φ is satisfiable.”
4 Else continue.

3 Answer “φ is probably unsatisfiable.”

The probability of a false negative is no larger than 7
8 .

• becomes less than 1
2 by repeating the algorithm 6×.

Complexity Theory () Counting Classes 20 / 20

