

AN AUTOMATA-BASED APPROACH FOR SCALABLE VERIFICATION OF QUANTUM CIRCUITS

Yu-Fang Chen¹, Kai-Min Chung¹, Ondrej Lengal², Jyun-Ao Lin¹, Wei-Lun Tsai¹, Di-De Yen¹

Academia Sinica, Taiwan¹ Brno University of Technology, Czech Republic²

Do not be scared!

 We assume no background in quantum and minimal background in automata theory.

Outline

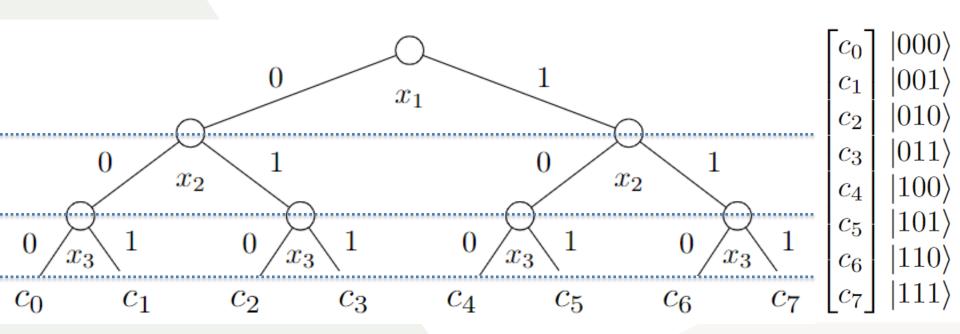
- ▶ Minimal Quantum Background and Motivation
- Quantum Circuit Verification
- ▶ Evaluation

A 3-Bit Classical State

A 3-Qubit Quantum State

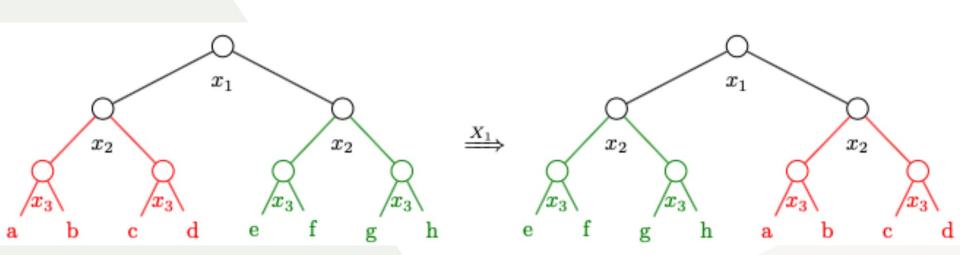
Tree as a Quantum State

► A 3-bit quantum state



Quantum Gate and Tree Transformation

An example of apply X gate (negation) on qubit x₁.



Quantum Circuit

A sequence of quantum gates viewed as tree

transformations

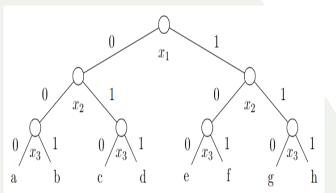
```
x q[0];
x q[1];
h q[3];
cx q[2],q[3];
t q[0];
t q[1];
t q[2];
tdg q[3];
cx q[0],q[1];
cx q[2],q[3];
cx q[3],q[0];
```

```
cx q[1],q[2];
cx q[0],q[1];
cx q[2],q[3];
tdg q[0];
tdg q[1];
tdg q[2];
t q[3];
cx q[0],q[1];
cx q[2],q[3];
s q[3];
cx q[3],q[0];
h q[3];
```

```
cx q[2],q[3];
t q[0];
t q[1];
t q[2];
tdg q[3];
cx q[0],q[1];
cx q[2],q[3];
cx q[3],q[0];
cx q[1],q[2];
cx q[0],q[1];
cx q[2],q[3];
```


Why Quantum Circuit Verification?

- Increasing complexity of circuits
- Infeasibility of testing due to the probabilistic features



```
x q[0];
x q[1];
h q[3];
cx q[2],q[3];
t q[0];
t q[1];
t q[2];
tdg q[3];
cx q[0],q[1];
cx q[2],q[3];
cx q[3],q[0];
```

```
cx q[1],q[2];
cx q[0],q[1];
cx q[2],q[3];
tdg q[0];
tdg q[1];
tdg q[2];
t q[3];
cx q[0],q[1];
cx q[2],q[3];
s q[3];
cx q[3],q[0];
h q[3];
```

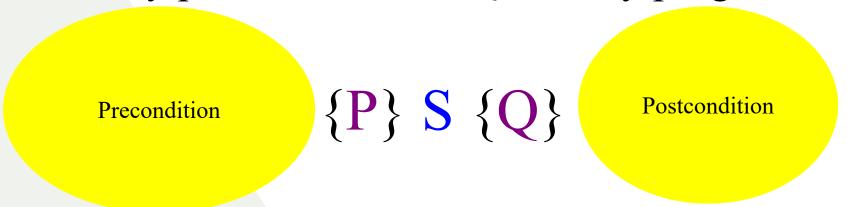
```
cx q[2],q[3];
t q[0];
t q[1];
t q[2];
tdg q[3];
cx q[0],q[1];
cx q[2],q[3];
cx q[3],q[0];
cx q[1],q[2];
cx q[0],q[1];
cx q[0],q[1];
```


Outline

- ▶ Minimal Quantum Background and Motivation
- Quantum Circuit Verification
- ▶ Evaluation

Classical Hoare triple

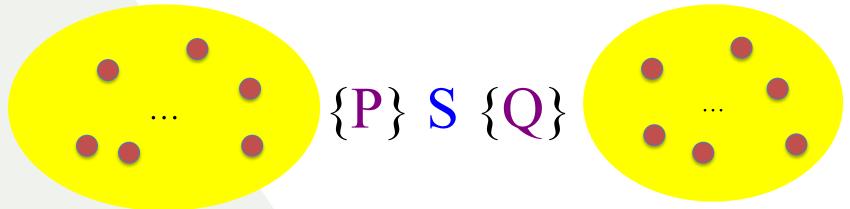
For any predicates P and Q and any program S,



says that if S is started in (a state satisfying) P, then it terminates in Q.

Classical Hoare triple

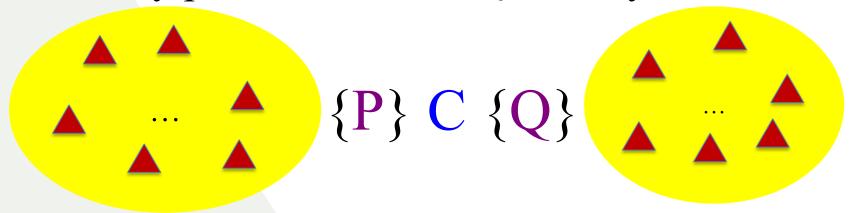
For any predicates P and Q and any program S,



says that if S is started in (a state satisfying) P, then it terminates in Q.

Quantum Circuit Verification

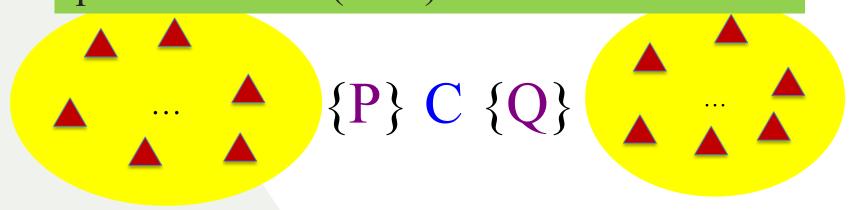
For any predicates P and Q and any circuit C,



says that if C is started in (a state satisfying) P, then it terminates in Q.

Quantum Circuit Verification

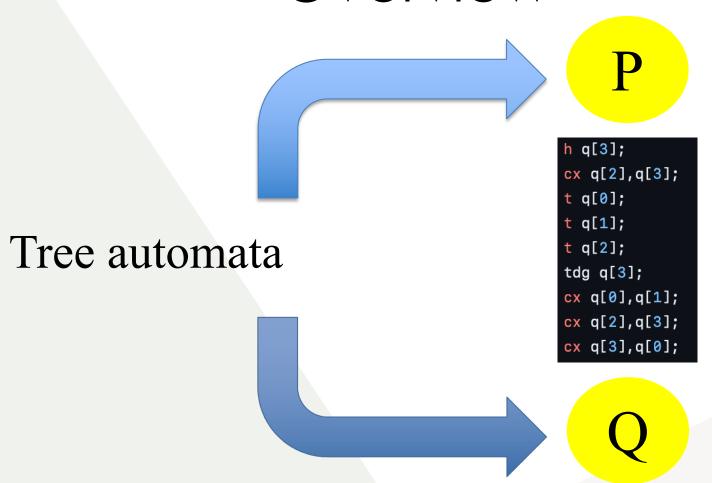
Need a symbolic representation of a set of quantum states (trees).

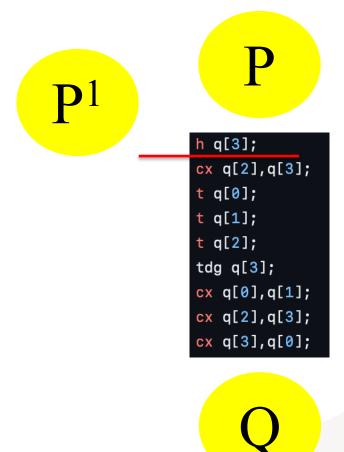


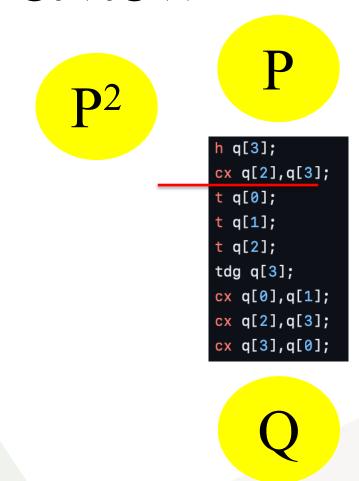
From automata theory:

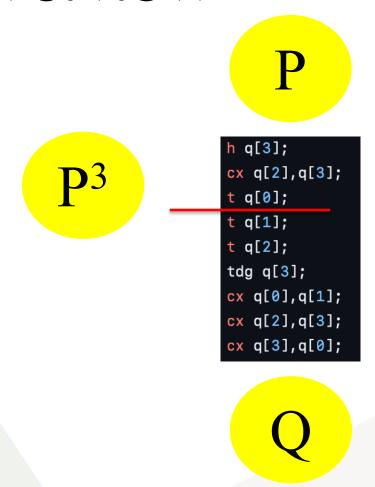
Set of words
Regular language (Finite automata)

Set of trees \rightarrow Regular tree language (Tree automata)









P

```
h q[3];

cx q[2],q[3];

t q[0];

t q[1];

t q[2];

tdg q[3];

cx q[0],q[1];

cx q[2],q[3];

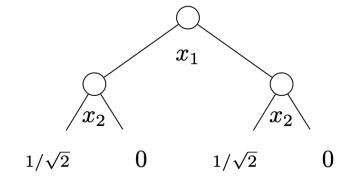
cx q[3],q[0];
```

P¹⁰ ⊆

(via standard TA algorithms)

Examples: Tree Automata of Only One Quantum State

▶ This TA of the quantum state



Probability =
$$|1/\sqrt{2}|^2 = 1/2$$

$$egin{aligned} q - & x_1 > (q_0, q_0) \ q_0 - & x_2 > (q_1, q_2) \end{aligned}$$

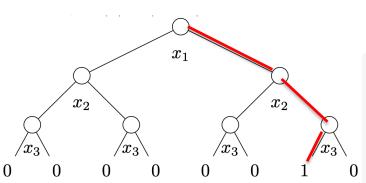
$$q_1 - 1/\sqrt{2} \rightarrow ()$$
 $q_2 - 0 \rightarrow ()$

Examples: Tree Automata Encoding of Quantum States

▶ This TA accepts all 3-qubit basis quantum states

$$egin{aligned} q - & x_1
ightarrow (r_0, r_1) & r_1 - & x_2
ightarrow (s_0, s_1) & s_1 - & x_3
ightarrow (q_0, q_1) & q_0 - & 0
ightarrow () \ q - & x_1
ightarrow (r_1, r_0) & r_1 - & x_2
ightarrow (s_1, s_0) & s_1 - & x_3
ightarrow (q_1, q_0) & q_1 - & 1
ightarrow () \ & r_0 - & x_2
ightarrow (s_0, s_0) & s_0 - & x_3
ightarrow (q_0, q_0) \end{aligned}$$

▶ {|000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, |111⟩}



TA as Compact Representation of Quantum States

This TA accepts all 2ⁿ basis states.

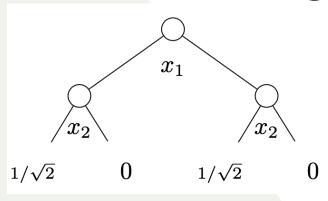
of transitions: 3n+1

$$egin{aligned} q - & x_1
ightarrow (r_0, r_1) & r_1 - & x_2
ightarrow (s_0, s_1) & \ldots & z_1 - & x_n
ightarrow (q_0, q_1) & q_0 - & 0
ightarrow (0, q_1) & q_0 - & 0
ightarrow (0, q_1) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) & q_1 - & 0
ightarrow (0, q_1, q_0) &$$

Why it can be some compact? Merge shared structures.

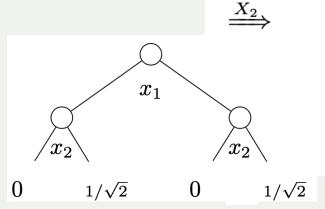
Examples of Gate Operations:

X gate on qubit 2.



$$q - x_1 \rightarrow (q_0, q_0)$$
 $q_0 - x_2 \rightarrow (q_1, q_2)$

$$q_1 - \overbrace{1/\sqrt{2}} \rightarrow ()$$
 $q_2 - \overbrace{0} \rightarrow ()$



$$q \xrightarrow{x_1} (q_0, q_0)$$
 $q_0 \xrightarrow{x_2} (q_2, q_1)$

$$q_1 - \overbrace{1/\sqrt{2}} \rightarrow ()$$
 $q_2 - \overbrace{0} \rightarrow ()$

Example of Gate Operations:

Z, S, T gates on qubit 1.

Multiply the right subtree of x₁ with some constant c.

Example of Gate Operations:

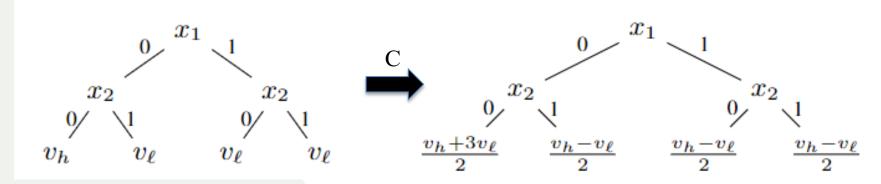
Z, S, T gates on qubit 1.

Multiply the right subtree of x₁ with some constant c

Other gates? In the paper.

Our framework allows all quantum gates supported in conventional quantum computers.

Extension: Symbolic Tree



A Symbolic Tree (State), s

The state after executing C, C(s)

Outline

- Minimal Quantum Background and Motivation
- Quantum Circuit Verification in the Hoare-Style
- **Evaluation**

Experiment - Verification

- ▶ BV, Grover-Sing: |P| = 1
- MCToffoli, Grover-All: $|P| \gg 1$

				AutoQ-Hybri				
	n	#q	#G	analysis	=			
	95	96	241	6.0s	0.0s			
	96	97	243	5.9s	0.0s			
BV	97	98	246	6.3s	0.0s			
-	98	99	248	6.5s	0.0s			
	99	100	251	6.7s	0.0s			
g	12	24	5,215	11s	0.0s			
SIN	14	28	12,217	31s	0.0s			
E. E.	16	32	28,159	1m29s	0.0s			
0	18	36	63,537	4m1s	0.0s			
GROVER-SING	20	40	141,527	10m56s	0.0s			
	8	16	15	0.0s	0.0s			
TO	10	20	19	0.0s	0.0s			
MCTOFFOLI	12	24	23	0.0s	0.0s			
E	14	28	27	0.1s	0.0s			
Z	16	32	31	0.2s	0.0s			
1	6	18	357	3.3s	0.0s			
AL	7	21	552	10s	0.0s			
GROVER-ALL	8	24	939	39s	0.1s			
0	9	27	1,492	2m17s	0.4s			
85	10	30	2,433	9m48s	2.1s			

Experiment – Bug Hunting

- reate C_{bug} by appending one random gate at a random qubit to C_{ori} .
- ▶ Check if $C_{bug} \neq C_{ori}$ by testing them with different initial state sets P.
- Useful in compiler validation

Experiment – Bug Hunting

		-		Auto	οQ	FEYN	MAN	QCEC					Auto	АитоQ		FEYNMAN		QCEC	
	circuit	#q	#G	time	bug?	time	bug?	time	bug?	circuit	#q	#G	time	bug?	time	bug?	time	bug?	
FEYNMANBENCH	csum_mux_9	30	141	0.5s	T	6.0s	_	1m1s	F	hwb10	16	31,765	1m49s	T	timeout		50.6s	T	
	gf2^10_mult	30	348	1.5s	T	0.5s	_	1.6s	_	hwb11	15	87,790	4m31s	T	time	out	48.8s	T	
	gf2^16_mult	48	876	9.3s	T	3.6s	_	1m25s	T	hwb12	20	171,483	13m43s	T	time	out	1m30s	T	
	gf2^32_mult	96	3,323	2m0s	T	51s	_	2m52s	T	hwb8	12	6,447	16s	T	time	out	43.6s	T	
	ham15-high	20	1,799	7.5s	T	3m50s	_	56.8s	T	qcla_adder_10	36	182	1.7s	T	1.0s	_	1m5s	F	
FE	mod_adder_1024	28	1,436	10s	T	8.7s	_	1m2s	T	qcla_mod_7	26	295	2.0s	T	1m28s	_	59.0s	F	
RANDOM	35a	35	106	2.6s	T	0.2s	_	1m4s	F	70a	70	211	21s	T	1.3s	_	1m 42s	T	
	35b	35	106	1.3s	T	0.1s	T	1m5s	F	70b	70	211	15s	T	0.7s	T	1m41s	T	
	35c	35	106	1.1s	T	0.1s	T	1m7s	T	70c	70	211	10s	T	0.8s	_	1m37s	T	
	35d	35	106	1.1s	T	0.1s	T	1m5s	T	70d	70	211	time	out	0.9s	T	1m39s	T	
	35e	35	106	1.0s	T	0.1s	_	1m4s	T	70e	70	211	24s	T	0.8s	_	1m36s	T	
	35f	35	106	2.0s	T	0.2s	T	1m5s	F	70f	70	211	31s	T	0.8s	T	1m34s	F	
	35g	35	106	1.0s	T	0.2s	_	1m7s	T	70g	70	211	16m8s	T	1.2s	_	1m47s	T	
	35h	35	106	1.2s	T	0.2s	_	2.0s	_	70h	70	211	15s	T	1.3s	_	1m42s	T	
	35i	35	106	1.2s	T	0.3s	T	1m6s	T	70i	70	211	18s	T	1.0s	_	1m47s	T	
	35j	35	106	1.4s	T	0.2s	_	1m6s	F	70j	70	211	1m37s	T	1.2s	_	1m49s	T	
	add16_174	49	65	3.1s	T	timeout		1m16s	T	urf1_149	9	11,555	40s	T	timeout		45.2s	T	
	add32_183	97	129	25s	T	time	out	2m2s	T	urf2_152	8	5,031	14s	T	21m39s	T	36.4s	T	
REVLIB	add64_184	193	257	2m8s	T	timeout		2.0s	_	urf3_155	10	26,469	1m29s	T	time	out	45.1s	T	
	avg8_325	320	1,758	22m42s	T	time	out	2.2s	_	urf4_187	11	32,005	2m10s	T	time	out	46.6s	T	
	bw_291	87	308	11s	T	15s	T	2m10s	T	urf5_158	9	10,277	26s	T	time	out	38.2s	T	
	cycle10_293	39	79	0.5s	T	0.5s	T	1m10s	T	urf6_160	15	10,741	1m6s	T	time	out	48.4s	T	
RE	e64-bdd_295	195	388	50s	T	time		1.5s	_	hwb6_301	46	160	2.5s	T	2.7s	T	1m13s	T	
	ex5p_296	206	648	2m5s	T	1m36s	T	2.0s	_	hwb7_302	73	282	10s	T	15s	T	1m39s	T	
	ham15_298	45	154	1.3s	T	0.9s	T	1m15s	T	hwb8_303	112	450	34s	T	43s	T	2m25s	T	
	mod5adder_306	32	97	0.8s	T	1.1s	T	1m2s	T	hwb9_304	170	700	1m48s	T	2m29s	T	2.0s	_	
	rd84_313	34	105	0.9s	T	1.5s	T	1m5s	T										

https://github.com/meamy/feynman https://github.com/cda-tum/qcec

Summary:

- Interesting link between automata and quantum states.
- So far only basic TA has been tried, there are many more possibilities.
- The main reason for efficiency, the compact structure of TA.
- Welcome for more discussions!

State-of-the-Art

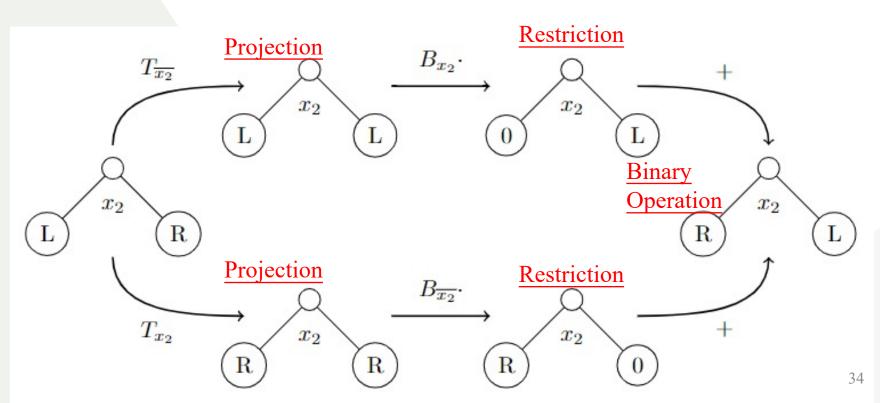
We focus on fully automatic approaches:

- **▶ Quantum Simulation**
 - low coverage
- **▶ Quantum Abstraction Interpretation**
 - over approximation and cannot catch bugs
- Quantum Model Checking
 - only work for small examples
- Circuit Equivalence Checking
 - inflexible for user custom properties

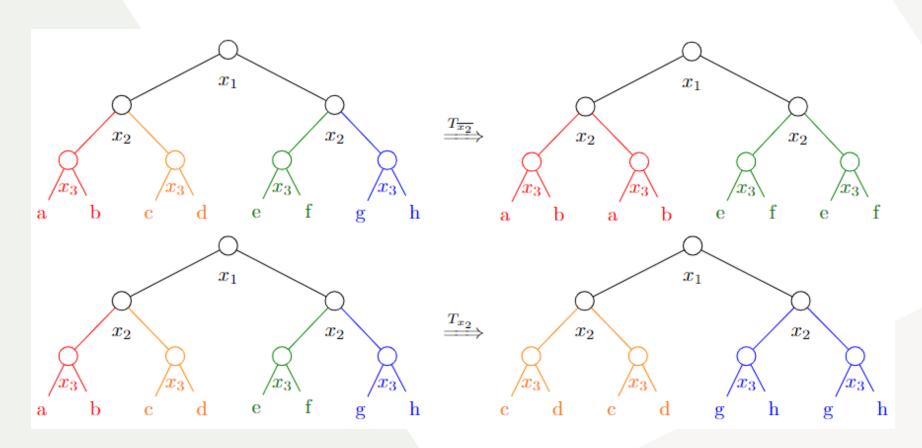
Two Approaches for TA Gate Operations

- Permutation-based approach:
 - Faster, but works for a smaller set of gates.
 - Done by directly modifying TA transitions.
- Composition-based approach
 - Slower, but complete for universal quantum computing.

X gate operating on qubit 2

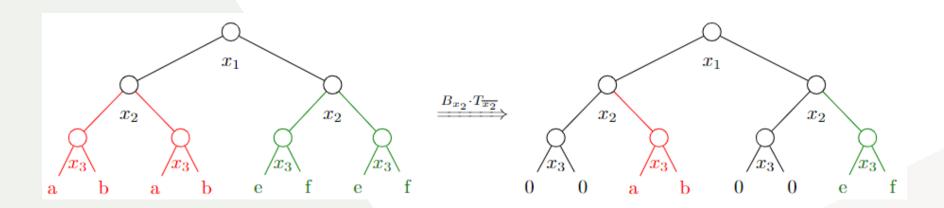


1. Projection $(T_{\overline{x_2}} \& T_{x_2})$

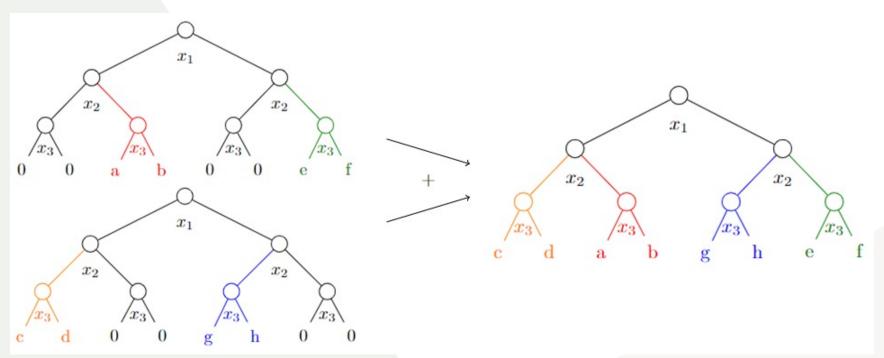


2. Restriction $(B_{x_2} \cdot \& B_{\overline{x_2}} \cdot)$

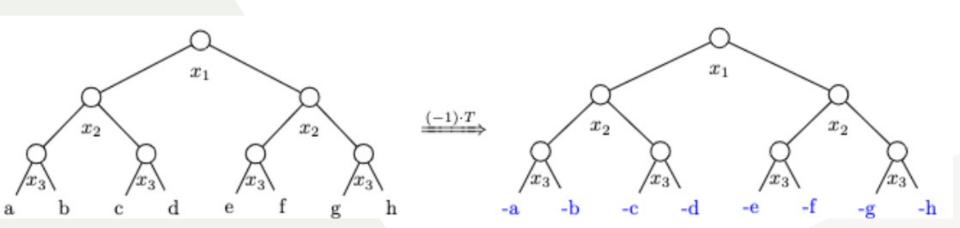
$$\triangleright B_{x_2} \cdot T_{\overline{x_2}}$$



3. Binary Operation (+ & -)



4. Constant Multiplication (c·)



Tree Operations

Table 1. Symbolic update formulae for the considered quantum gates. Notice that in all cases x_c and x'_c denote the two control bits, and x_t and x'_t denote the two target bits, if they exist.

Gate	Update
X_t	$B_{x_t} \cdot T_{\overline{x_t}} + B_{\overline{x_t}} \cdot T_{x_t}$
\mathbf{Y}_t	$\omega^2 \cdot (B_{x_t} \cdot T_{\overline{x_t}} - B_{\overline{x_t}} \cdot T_{x_t})$
Z_t	$B_{\overline{x_t}} \cdot T - B_{x_t} \cdot T$
H_t	$(T_{\overline{X_t}} + B_{\overline{X_t}} \cdot T_{x_t} - B_{x_t} \cdot T)/\sqrt{2}$
S_t	$B_{\overline{x_t}} \cdot T + \omega^2 \cdot B_{x_t} \cdot T$
T_t	$B_{\overline{x_t}} \cdot T + \omega \cdot B_{x_t} \cdot T$
$\operatorname{Rx}(\frac{\pi}{2})_t$	$(T - \omega^2 \cdot (B_{x_t} \cdot T_{\overline{x_t}} + B_{\overline{x_t}} \cdot T_{x_t}))/\sqrt{2}$
$\text{Ry}(\frac{\pi}{2})_t$	$(T_{\overline{X_t}} + B_{X_t} \cdot T - B_{\overline{X_t}} \cdot T_{X_t})/\sqrt{2}$
$CNOT_t^c$	$B_{\overline{x_c}} \cdot T + B_{x_c} \cdot B_{\overline{x_t}} \cdot T_{x_t} + B_{x_c} \cdot B_{x_t} \cdot T_{\overline{x_t}}$
CZ_t^c	$B_{\overline{x_c}} \cdot T + B_{\overline{x_t}} \cdot T - B_{\overline{x_c}} \cdot B_{\overline{x_t}} \cdot T - B_{x_c} \cdot B_{x_t} \cdot T$
$Toffoli_t^{c,c'}$	$B_{\overline{x_c}} \cdot T + B_{\overline{x_{c'}}} \cdot T - B_{\overline{x_c}} \cdot B_{\overline{x_{c'}}} \cdot T + B_{x_t} \cdot B_{x_c} \cdot B_{x_{c'}} \cdot T_{\overline{x_t}} + B_{\overline{x_t}} \cdot B_{x_c} \cdot B_{x_{c'}} \cdot T_{x_t}$
$\operatorname{Fredkin}_{t,t'}^c$	$B_{\overline{x_c}} \cdot T + B_{x_t} \cdot B_{x_{t'}} \cdot B_{x_c} \cdot T + B_{\overline{x_t}} \cdot B_{\overline{x_{t'}}} \cdot B_{x_c} \cdot T + B_{x_t} \cdot B_{\overline{x_{t'}}} \cdot B_{x_c} \cdot T_{\overline{x_t}x_{t'}} + B_{\overline{x_t}} \cdot B_{x_{t'}} \cdot B_{x_c} \cdot T_{x_t\overline{x_{t'}}}$

Lift these operations to TA

- ▶ Constant Multiplication
- Restriction
- Binary Operation
- Projection
 - need to say the same left and right subtrees.

