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Faculty of Information Technology
Brno University of Technology
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Introduction

Scope of the Thesis

Formal verification of programs with complex dynamic data structures,
e.g. lists, trees, skip lists, . . .
used in OS kernels, standard libraries, . . .

decision procedures of logics:
WS1S, separation logic,

using the theory of automata,
 development of efficient automata manipulation techniques.

Ondřej Lengál (FIT BUT) Automata in Infinite-State Formal Verification July 2, 2015 2 / 29



Forest Automata-based Verification of Heap Programs Introduction

Forest Automata-based Verification

Verification of memory-safety of heap-manipulating programs,

infinitely many heap configurations symbolic representation,

representation mostly based on logics, graphs, automata.
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Forest Automata-based Verification of Heap Programs Introduction

Forest Automata-based Verification

Our approach:
decompose heap into cutpoint-free tree components (a forest)
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a) a graph, and b) its forest representation

sets of heaps:
• collect 1st, 2nd, . . . trees from all forests into sets of trees,
• represent each set of trees by a tree automaton,
• tuple of tree automata a forest automaton: FA = (TA1, . . . ,TAn).
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Ondřej Lengál (FIT BUT) Automata in Infinite-State Formal Verification July 2, 2015 4 / 29



Forest Automata-based Verification of Heap Programs Introduction

Forest Automata-based Verification

The analysis:

based on abstract interpretation:

for every line of code, compute forest automata representing
reachable heap configurations at this line, until fixpoint,

program statements are substituted by abstract transformers
performing the corresponding operation on forest automata,

at loop points, do widening (over-approximation).
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Forest Automata-based Verification of Heap Programs Introduction

Forest Automata-based Verification

Hierarchical Forest Automata
• deal with families of graphs with unbounded number of cutpoints,

I doubly linked lists, skip lists, red-black trees, . . .
• FAs are symbols (boxes) of FAs of a higher level
• a hierarchy of FAs
• intuition: replace repeated subgraphs by a symbol, hide cut-points

doubly linked segment

Example: a box DLS : L( DLS ) =

 1 2
in out

next

prev


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Forest Automata-based Verification of Heap Programs Introduction
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Forest Automata-based Verification of Heap Programs Fully Automated Shape Analysis with Forest Automata

Result 1

Fully Automated Shape Analysis with Forest Automata
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Forest Automata-based Verification of Heap Programs Fully Automated Shape Analysis with Forest Automata

Fully Automated Shape Analysis with Forest Automata

The need to construct automatically a good hierarchy of boxes;
finding the right boxes is hard,

Contribution:
an algorithm that finds suitable subgraphs to fold into boxes,
works for a large class of data structures
• (nested) lists, trees, skip lists, . . .

Suitable subgraphs: a compromise:
smaller subgraphs are better,
• can be reused,

bigger subgraphs are better,
• can hide cutpoints,

 find small enough subgraphs that effectively hide cutpoints.

Ondřej Lengál (FIT BUT) Automata in Infinite-State Formal Verification July 2, 2015 8 / 29



Forest Automata-based Verification of Heap Programs Fully Automated Shape Analysis with Forest Automata

Fully Automated Shape Analysis with Forest Automata

The need to construct automatically a good hierarchy of boxes;
finding the right boxes is hard,

Contribution:
an algorithm that finds suitable subgraphs to fold into boxes,
works for a large class of data structures
• (nested) lists, trees, skip lists, . . .

Suitable subgraphs: a compromise:
smaller subgraphs are better,
• can be reused,

bigger subgraphs are better,
• can hide cutpoints,

 find small enough subgraphs that effectively hide cutpoints.
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Forest Automata-based Verification of Heap Programs Fully Automated Shape Analysis with Forest Automata

Fully Automated Shape Analysis with FAs—Results
implemented in Forester tool

Table: comparison with Predator (many SV-COMP medals) [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

Holı́k, Lengál, Rogalewicz, Šimáček, and Vojnar. Fully Automated Shape Analysis Based
on Forest Automata. In Proc. of CAV’13, LNCS 8044.
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Forest Automata-based Verification of Heap Programs Verification of Heap Programs with Ordered Data

Result 2

Verification of Heap Programs with Ordered Data
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Forest Automata-based Verification of Heap Programs Verification of Heap Programs with Ordered Data

Verification of Heap Programs with Ordered Data

Sometimes, correctness of programs manipulating heap depends on
relations among data values stored inside,

verification of sorting algorithms, search trees, skip lists, . . .

Contribution:
extension of the formalism of FAs with ordering constraints,
extension of the FA-based shape analysis for the extended FAs.
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Forest Automata-based Verification of Heap Programs Verification of Heap Programs with Ordered Data

Verification of Heap Programs with Ordered Data

2 types of constraints:
Local: • stored in symbols of tree automata,

• encode relations between neighbouring nodes.

q → a(r , s) : 0 ≺ 1

Global: • stored separately,
• encode relations between distant nodes.

TA1 ≺ TA2

2 scopes of constraints:
root-root ≺rr : relation between 2 nodes,
root-all ≺ra: relation between node and all nodes in a (sub)tree.

Modification of analysis loop, abstraction, equivalence checking.
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Forest Automata-based Verification of Heap Programs Verification of Heap Programs with Ordered Data

Verif. of Heap Programs with Ordered Data—Results

Table: Results of the experiments with the data extension of Forester
Example time [s]
SLL insert 0.06
SLL delete 0.08
SLL reverse 0.07
SLL bubblesort 0.13
SLL insertsort 0.10
DLL insert 0.14
DLL delete 0.38
DLL reverse 0.16
DLL bubblesort 0.39
DLL insertsort 0.43

Example time [s]
SL2 insert 9.65
SL2 delete 10.14
SL3 insert 56.99
SL3 delete 57.35

BST insert 6.87
BST delete 15.00
BST left rotate 7.35
BST right rotate 6.25

Abdulla, Holı́k, Jonsson, Lengál, Trinh, and Vojnar. Verification of Heap Manipulating
Programs with Ordered Data by Extended FAs. In Proc. of ATVA’13, LNCS 8172.
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Decision Procedures for Logics Separation Logic

Result 3

Separation Logic
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Decision Procedures for Logics Separation Logic

Decision Procedure for Separation Logic

Separation Logic:
alternative way to reason about programs with dynamic memory.

Formulae: ϕ = Π ∧ Σ

Π: pure part (aliasing of variables: X = Y ,X 6= Y , ∧),
Σ: shape part (structure of heap: X 7→ {n : Y ,p : Z},P(X ,Y ), ∗).

Entailment checking ψ
?

|= ϕ:
resolving verification conditions in deductive verification,
fixpoint checking in abstract interpretation-based approaches,
in general undecidable.

Contribution:
a decision procedure for a practical fragment:
• lists (singly/doubly linked, nested, cyclic, skip lists, . . . ),

transforms the problem to checking TA membership.
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Decision Procedures for Logics Separation Logic

Decision Procedure for Separation Logic

∃
−→
X .Πϕ ∧ Σϕ︸ ︷︷ ︸

ϕ

?

|= Πψ ∧ Σψ︸ ︷︷ ︸
ψ

1 Test entailment of pure parts (is Πϕ ⇒ Πψ SAT?)

2 Test entailment of points-to X 7→ {. . . } in Σψ and Σϕ

3 Reduce the rest of Σϕ and Σψ to

ϕ1
?

|= P1 ∧ ϕ2
?

|= P2 ∧ ϕ3
?

|= P3 ∧ . . .

1 Transform ϕi  tree Tϕi

I spanning tree + routing expressions
2 Transform Pi  tree automaton APi

I all unfoldings of Pi

3 Test

Tϕi

?
∈ L(APi )
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Decision Procedures for Logics Separation Logic

Decision Procedure for Separation Logic—Results

Table: Results of SL-COMP’14

a) Results for extended acyclic lists (43 tasks)
Solver Errors Solved Time
SPEN 0 43 0.61
Cyclist-SL 0 19 141.78
SLIDE 0 0 0.00
SLEEK-06 1 31 43.65

b) Results for singly linked lists

Solver sll0a entl (292 tasks) sll0a sat (110 tasks)
Errors Solved Time Errors Solved Time

Asterix 0 292 2.98 0 110 1.06
SPEN 0 292 7.58 0 110 3.27
SLEEK-06 0 292 14.13 0 110 4.99
Cyclist-SL 0 55 11.78 55 55 0.55

Enea, Lengál, Sighireanu, Vojnar. Compositional Entailment Checking for a Fragment of
Separation Logic. In Proc. of APLAS’14, LNCS 8858.
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Decision Procedures for Logics WS1S

Result 4

WS1S
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Decision Procedures for Logics WS1S

Decision Procedure for WS1S

WS1S:
2nd-order monadic logic over N with successor relation,
a natural means for describing regular languages [Büchi’59],
• logical connectives and ∃ quantif. 7→ set operations + projection,

powerful, yet still decidable (out of ELEMENTARY though!),

state-of-the-art approach (MONA tool):
decision procedure translating formulae to deterministic automata,
every quantifier alternation yields complementation,
projection yields nondeterminism→ determinisation,
 exponential blow-up.
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Decision Procedures for Logics WS1S

Decision Procedure for WS1S

Contribution:
a decision procedure based on nondeterministic automata,
• avoids full-scale determinisation,

optimises evaluation of quantifier alternations,
• the source of state explosion,

uses symbolic terms to represent nested sets of states,
• similar to the Antichains algorithm for testing NFA universality,

new insights into the used NFA framework,
•  future work: exploration of more general structure of terms.
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Decision Procedures for Logics WS1S

Decision Procedure for WS1S—Results (1/2)

Table: Results for practical formulae

Benchmark Time [s] Space [states]
MONA dWiNA MONA dWiNA

reverse-before-loop 0.01 0.01 179 47
insert-in-loop 0.01 0.01 463 110
bubblesort-else 0.01 0.01 1 285 271
reverse-in-loop 0.02 0.02 1 311 274
bubblesort-if-else 0.02 0.23 4 260 1 040
bubblesort-if-if 0.12 1.14 8 390 2 065

obtained from the decision procedure of STRAND
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Decision Procedures for Logics WS1S

Decision Procedure for WS1S—Results (2/2)

Table: Results for generated formulae

Time [s] Space [states]
k MONA dWiNA MONA dWiNA

1 0.11 0.01 10 718 39
2 0.20 0.01 25 517 44
3 0.57 0.01 60 924 50
4 1.79 0.02 145 765 58
5 4.98 0.02 349 314 70
6 ∞ 0.47 ∞ 90

based on a formula expressing existence of an ascending chain of
n sets ordered w.r.t. ⊂,
k — the number of quantifier alternations.

Fiedor, Holı́k, Lengál, and Vojnar. Nested Antichains for WS1S. In Proc. of
TACAS’15, LNCS 9035.
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Efficient Algorithms for Manipulating Automata Tree Automata Downward Inclusion Checking

Result 5

Tree Automata Downward Inclusion Checking
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Efficient Algorithms for Manipulating Automata Tree Automata Downward Inclusion Checking

Downward Inclusion Checking of TAs

The need to efficiently manipulate nondeterministic tree automata:

including checking language inclusion,

current approach: upward inclusion checking,
• based on constructing deterministic bottom-up automaton,
• uses the principle of Antichains to prune the searched space,
• compatible with upward simulation (yet more pruning),
• incompatible with (usually richer) downward simulation.

Contribution:
downward inclusion checking algorithm,
traverses the automata downwards,
uses ideas from Antichains to prune searched space
can use downward simulation,
later extended with another antichain optimisation,
in many cases superior.
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Efficient Algorithms for Manipulating Automata Tree Automata Downward Inclusion Checking

Downward Inclusion Checking of TAs—Results

Table: Results of the experiments with downward inclusion checking

Algorithm All pairs L(A) 6⊆ L(B) L(A) ⊆ L(B)
Winner Timeouts Winner Timeouts Winner Timeouts

down 36.35 % 32.51 % 39.85 % 26.01 % 0.00 % 90.80 %
down+s 4.15 % 18.27 % 0.00 % 20.31 % 47.28 % 0.00 %
down-op 32.20 % 32.51 % 35.30 % 26.01 % 0.00 % 90.80 %
down-op+s 3.15 % 18.27 % 0.00 % 20.31 % 35.87 % 0.00 %
up 24.14 % 0.00 % 24.84 % 0.00 % 16.85 % 0.00 %
up+s 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Holı́k, Lengál, Šimáček, and Vojnar. Efficient Inclusion Checking on Explicit and
Semi-Symbolic TAs. In Proc. of ATVA’11, LNCS 6996.
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Efficient Algorithms for Manipulating Automata An Efficient Library for Nondeterministic Automata

Result 6

An Efficient Library for Nondeterministic Automata
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Efficient Algorithms for Manipulating Automata An Efficient Library for Nondeterministic Automata

An Efficient Library for Nondeterministic Automata

Contribution:
VATA: A highly efficient library for nondeterministic automata,
word automata, tree automata,
implementation of state-of-the-art algorithms,
• inclusion checking, simulation computation, . . .

explicit/semi-symbolic representation,
• semi-symbolic uses BDDs,

open & free: being used by a number of researchers.

Lengál, Šimáček, and Vojnar. VATA: A Library for Efficient Manipulation of
Non-Deterministic TAs. In Proc. of TACAS’12, LNCS 7214.
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Possible Directions for Future Research

Possible Directions for Future Research

Forest automata-based shape analysis:
refinable abstraction (WIP),
support for analysis of incomplete programs.

Separation logic:
extend the procedure to tree data structures.

WS1S:
extension to generalized symbolic terms (WIP),
extension to WSkS (WIP).

Efficient techniques for manipulating automata:
manipulation of symbolically represented automata (WIP),
finding new techniques for checking language inclusion.
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support for analysis of incomplete programs.

Separation logic:
extend the procedure to tree data structures.

WS1S:
extension to generalized symbolic terms (WIP),
extension to WSkS (WIP).
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Summary

Publications

Journal:
Abdulla, Holı́k, Jonsson, Lengál, Trinh, and Vojnar. Verification of Heap Manipulating
Programs with Ordered Data by Extended FAs. Acta Informatica. 2015.

Conference:
Fiedor, Holı́k, Lengál, and Vojnar. Nested Antichains for WS1S. In Proc. of TACAS’15,
LNCS 9035.

Abdulla, Holı́k, Jonsson, Lengál, Trinh, and Vojnar. Verification of Heap Manipulating
Programs with Ordered Data by Extended FAs. In Proc. of ATVA’13, LNCS 8172.

Holı́k, Lengál, Rogalewicz, Šimáček, and Vojnar. Fully Automated Shape Analysis Based
on Forest Automata. In Proc. of CAV’13, LNCS 8044.

Enea, Lengál, Sighireanu, and Vojnar. Compositional Entailment Checking for a Fragment
of Separation Logic. In Proc. of APLAS’14, LNCS 8858.

Lengál, Šimáček, and Vojnar. VATA: A Library for Efficient Manipulation of
Non-Deterministic Tree Automata. In Proc. of TACAS’12, LNCS 7214.

Holı́k, Lengál, Šimáček, and Vojnar. Efficient Inclusion Checking on Explicit and
Semi-Symbolic Tree Automata. In Proc. of ATVA’11, LNCS 6996,

Other:
5 conference papers, 6 technical reports, 1 monography, 5 software tools
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