An Executable Sequential Specification for Spark Aggregation

Yu-Fang Chen¹, Chih-Duo Hong¹, **Ondřej Lengál**^{1,2}, Shin-Cheng Mu¹, Nishant Sinha³, Bow-Yaw Wang¹

¹Academia Sinica, Taiwan ²Brno University of Technology, Czech Republic ³IBM Research, India

19 May 2017 (NETYS'17)

Current Trends in CAV (Computer-Aided Verification)

Current Trends in CAV (Computer-Aided Verification):

verification of HW

Current Trends in CAV (Computer-Aided Verification)

Current Trends in CAV (Computer-Aided Verification):

- verification of HW
- verification of sequential programs:
 - w/ integers
 - w/ floats
 - w/ heap manipulation

Current Trends in CAV (Computer-Aided Verification)

Current Trends in CAV (Computer-Aided Verification):

- verification of HW
- verification of sequential programs:
 - w/ integers
 - w/ floats
 - w/ heap manipulation
- verification of concurrent programs
 - mutual exclusion protocols
 - concurrent data structures

Current Trends in Computer Science

Current Trends in Computer Science:

■ machine learning, deep neural networks, IoT, smart-*, ...

Current Trends in Computer Science

Current Trends in Computer Science:

- machine learning, deep neural networks, IoT, smart-*, . . .
- big data & cluster computing
 - sciences
 - Al
 - advertising analysis
 - data mining
 - biology
 - search engines
 - market value:
 - expected over \$50 billion by 2020

Current Trends in Computer Science

Current Trends in Computer Science:

- machine learning, deep neural networks, IoT, smart-*, . . .
- big data & cluster computing
 - sciences
 - Al
 - advertising analysis
 - data mining
 - biology
 - search engines
 - market value:
 - expected over \$50 billion by 2020
- Can verification be applied here, too?

- many repeating tasks
 - distribution of data on nodes

- many repeating tasks
 - distribution of data on nodes
 - collection of computed results

- many repeating tasks
 - distribution of data on nodes
 - collection of computed results
- → frameworks that create abstraction over the communication

- many repeating tasks
 - distribution of data on nodes
 - collection of computed results
- → frameworks that create abstraction over the communication
- web services providing easy-to-setup computation using these (Amazon, Microsoft, IBM, ...)

- many repeating tasks
 - distribution of data on nodes
 - collection of computed results
- frameworks that create abstraction over the communication
- web services providing easy-to-setup computation using these (Amazon, Microsoft, IBM, . . .)
- examples:
 - Hadoop MapReduce
 - PIG
 - ▶ HIVE
 - Apache SPARK

New verification problems:

New verification problems:

verification of correctness of the frameworks

New verification problems:

- verification of correctness of the frameworks
- verification of correctness of user programs
 - correctness: checking special properties

- successor of Hadoop MapReduce
 - ▶ claims to be up to 100× faster due to in-memory computation

- successor of Hadoop MapReduce
 - ▶ claims to be up to 100× faster due to in-memory computation
- a relaxed fault tolerant model
 - sub-results are recomputed upon faults

- successor of Hadoop MapReduce
 - ▶ claims to be up to 100× faster due to in-memory computation
- a relaxed fault tolerant model
 - sub-results are recomputed upon faults
- lazy evaluation semantics

Apache Spark

- successor of Hadoop MapReduce
 - claims to be up to 100× faster due to in-memory computation
- a relaxed fault tolerant model
 - sub-results are recomputed upon faults
- lazy evaluation semantics
- contains libraries for
 - processing graphs
 - streaming computation
 - machine learning
 - SQL-based database computation
 - **•** . . .

RDD—Resilient Distributed Dataset:

the principal data abstraction

RDD—Resilient Distributed Dataset:

the principal data abstraction

Computation in SPARK

Computation in SPARK

- map-style
 - ▶ map, filter

```
RDD rdd = ...
RDD newRdd = rdd.map(\lambda x . x * 2)
```

Computation in SPARK

Computation in SPARK

- map-style
 - map, filter

```
RDD rdd = ... RDD newRdd = rdd.map(\lambda x . x * 2)
```

- aggregation
 - aggregate, reduce
 - treeAggregate, treeReduce

```
RDD rdd = ... int sum = rdd.reduce(\lambda x y . x + y)
```

Computation in SPARK

Computation in SPARK

- map-style
 - map, filter

```
RDD rdd = ...

RDD newRdd = rdd.map(\lambda x . x * 2)
```

- aggregation
 - aggregate, reduce
 - treeAggregate, treeReduce

```
RDD rdd = ... int sum = rdd.reduce(\lambda x y . x + y)
```

- combined
 - aggregateByKey, reduceByKey

```
PairRDD rdd = ... PairRDD sum = rdd.reduceByKey(\lambda x y . x + y)
```

- SPARK is written in SCALA (bindings to Java, Python, ...)
 - multi-paradigm programming language
 - both imperative and functional code (side-effects)
 - unclear semantics

- Spark is written in Scala (bindings to Java, Python, ...)
 - multi-paradigm programming language
 - both imperative and functional code (side-effects)
 - unclear semantics
- documentation is not clear about requirements of functions

- SPARK is written in SCALA (bindings to Java, Python, ...)
 - multi-paradigm programming language
 - both imperative and functional code (side-effects)
 - unclear semantics
- documentation is not clear about requirements of functions
- our contribution:
 - PURESPARK: a specification of aggregation functions in HASKELL
 - · purely functional language
 - executable specification
 - suitable for formal reasoning (e.g. AGDA)

- SPARK is written in SCALA (bindings to Java, Python, ...)
 - multi-paradigm programming language
 - both imperative and functional code (side-effects)
 - unclear semantics
- documentation is not clear about requirements of functions
- our contribution:
 - ► PureSpark: a specification of aggregation functions in HASKELL
 - · purely functional language
 - executable specification
 - suitable for formal reasoning (e.g. AGDA)
 - correctness requirements on aggregation functions (next slide)

- SPARK is written in SCALA (bindings to Java, Python, ...)
 - multi-paradigm programming language
 - both imperative and functional code (side-effects)
 - unclear semantics
- documentation is not clear about requirements of functions
- our contribution:
 - PURESPARK: a specification of aggregation functions in HASKELL
 - · purely functional language
 - executable specification
 - suitable for formal reasoning (e.g. AGDA)
 - correctness requirements on aggregation functions (next slide)
 - analysis of case studies—finding numeric instability in ML library

Commutativity in SPARK aggregation

 $aggregate(seq, comb, \bot, rdd)$

d1 d2 d3 d4

d5 d6 d7 d8 d9 d10 d11

d12d13d14

Commutativity in SPARK aggregation

 $aggregate(seq, comb, \bot, rdd)$

Commu

$$\begin{array}{l} \texttt{fold1} :: (B \rightarrow A \rightarrow B) \rightarrow B \rightarrow [A] \rightarrow B \\ \texttt{fold1}(seq, \bot, [\]) = \bot \\ \texttt{fold1}(seq, \bot, x : xs) = \texttt{fold1}(seq, \underline{seq(\bot, x)}, xs) \end{array}$$

d12d13d14

0

fold1(
$$seq$$
, \perp , [d_1 , d_2 , d_3 , d_4])

$$\rightsquigarrow r_A$$

$$\mathtt{foldl}(\textit{seq}, \bot, [\textit{d}_5, \textit{d}_6, \textit{d}_7, \textit{d}_8, \textit{d}_9, \textit{d}_{10}, \textit{d}_{11}])$$

$$\leadsto r_B$$

$$\mathtt{foldl}(\textit{seq}, \bot, [\textit{d}_{12}, \textit{d}_{13}, \textit{d}_{14}])$$

$$\leadsto r_C$$

Commutativity in SPARK aggregation

 $aggregate(seg, comb, \perp, rdd)$

collected results:

Commutativity in SPARK aggregation

 $aggregate(seq, comb, \bot, rdd)$

d1 d2 d3 d4

d5 d6 d7 d8 d9 d10 d11

d12d13d14

collected results:

nondeterministic!

Commutativity in SPARK aggregation

 $aggregate(seq, comb, \bot, rdd)$

collected results:

nondeterministic!

$$foldl(comb, \perp, [r_C, r_A, r_B])$$

Two sources of nondeterminism:

Two sources of nondeterminism:

1. Partitioning into RDD

b)

Two sources of nondeterminism:

1. Partitioning into RDD

- 2. Order in which nodes send partial results
 - rC rA rB
 - rC rB rA
 - rA rB rC

Two sources of nondeterminism:

Partitioning into RDD

- 2. Order in which nodes send partial results
 - rC rA rB
 - rC rB rA
 - rA rB rC

aggregate can yield different results!!!

Example of a nondeterministic aggregation

 $aggregate(seq, comb, \bot, rdd)$

$$seq(acc, x) = acc + x$$

 $comb(lhs, rhs) = rhs + rhs$ (typo)
 $\bot = 0$

Example of a nondeterministic aggregation

 $aggregate(seq, comb, \bot, rdd)$

$$seq(acc, x) = acc + x$$

 $comb(lhs, rhs) = rhs + rhs$ (typo)
 $\bot = 0$

d1 d2 d3 d4

d5 d6 d7 d8 d9 d10 d11

d12d13d14

Example of a nondeterministic aggregation

 $aggregate(seq, comb, \bot, rdd)$

$$seq(acc, x) = acc + x$$

 $comb(lhs, rhs) = rhs + rhs$ (typo)
 $\bot = 0$

Example of a nondeterministic aggregation

$$aggregate(seq, comb, \bot, rdd)$$

$$seq(acc, x) = acc + x$$

 $comb(lhs, rhs) = rhs + rhs$ (typo)
 $\bot = 0$

Collecting results:

- **TO TA IB**: **foldl**(*comb*, 0, [r_C , r_A , r_B]) = $2r_B$
- rA rB rC: foldl(comb, 0, [r_A , r_B , r_C]) = $2r_C$

Example of a nondeterministic aggregation

$$aggregate(seq, comb, \bot, rdd)$$

$$seq(acc, x) = acc + x$$

 $comb(lhs, rhs) = rhs + rhs$ (typo)
 $\bot = 0$

Collecting results:

To rate
$$r$$
: fold1($comb$, 0, [r_C , r_A , r_B]) = $2r_B$

TA IB IC: foldl(comb, 0,
$$[r_A, r_B, r_C]$$
) = $2r_C$
 $2r_B \neq 2r_C$

Commutativity of aggregate

Definition

A call

$$aggregate(seq, comb, \bot, rdd)$$

is commutative iff

$$aggregate(seq, comb, \bot, rdd(L)) = foldl(seq, \bot, L)$$

for every partitioning rdd(L) of L.

Commutativity of aggregate

Definition

A call

$$aggregate(seq,comb, \bot, rdd)$$

is commutative iff

$$aggregate(seq, comb, \bot, rdd(L)) = foldl(seq, \bot, L)$$

for every partitioning rdd(L) of L.

■ i.e., aggregate is an implementation of foldl

Commutativity of aggregate

Definition

A call

$$aggregate(seq, comb, \bot, rdd)$$

is commutative iff

$$aggregate(seq, comb, \bot, rdd(L)) = foldl(seq, \bot, L)$$

for every partitioning rdd(L) of L.

- i.e., aggregate is an implementation of foldl
- if a call to aggregate is commutative:
 - the call is deterministic
 - when analyzing the program, we can assume one partitioning

Conditions for commutative aggregate

Theorem

Consider rdd of elements of type \mathbb{T} and $\bot \in \mathbb{R}$. A call $\mathbf{aggregate}(\mathbf{seq}, \mathbf{comb}, \bot, \mathbf{rdd})$

is commutative iff

- 1 $(img(fold1(seq, \bot)), comb, \bot)$ is a commutative monoid and
- for all $d \in \mathbb{T}$ and $e \in img(foldl(seq, \perp))$, it holds that seq(e, d) = comb(e, seq(z, d)).

Conditions for commutative aggregate

Theorem

Consider rdd of elements of type $\mathbb T$ and $\bot \in \mathbb R$. A call $extbf{aggregate}(extsf{seq}, extsf{comb}, \bot, extsf{rdd})$

is commutative iff

- 1 $(img(fold1(seq, \bot)), comb, \bot)$ is a commutative monoid and
- 2 for all $d \in \mathbb{T}$ and $e \in img(foldl(seq, \perp))$, it holds that seq(e, d) = comb(e, seq(z, d)).

Safe approximation:

- ... is commutative if
 - $(\mathbb{R}, comb, \bot)$ is a commutative monoid and
 - of all $d \in \mathbb{T}$ and $e \in \mathbb{R}$, it holds that seq(e, d) = comb(e, seq(z, d)).

SPARK reduce

SPARK reduce

d3 d4

reducel(
$$comb$$
, [d_1 , d_2 , d_3 , d_4])
reducel($comb$, [d_5 , d_6 , d_7 , d_8 , d_9 , d_{10} , d_{11}])
reducel($comb$, [d_{12} , d_{13} , d_{14}])

$$\rightsquigarrow r_A$$

$$^{\rightarrow}$$
 $^{\prime}A$

$$\leadsto r_B$$

$$\rightsquigarrow r_C$$

SPARK

$$\mathtt{reducel} :: (A \to A \to A) \to [A] \to A$$

 $\mathtt{reducel}(comb, x : xs) = \mathtt{foldl}(comb, x, xs)$

 d12d13d14

reducel(comb, [
$$d_1$$
, d_2 , d_3 , d_4]) $\rightsquigarrow r_A$
reducel(comb, [d_5 , d_6 , d_7 , d_8 , d_9 , d_{10} , d_{11}]) $\rightsquigarrow r_B$
reducel(comb, [d_{12} , d_{13} , d_{14}]) $\rightsquigarrow r_C$

SPARK reduce

d1 d2 d3 d4

d5 d6 d7 d8 d9 d10 d11

d12d13d14

reducel(
$$comb$$
, [d_1 , d_2 , d_3 , d_4])
reducel($comb$, [d_5 , d_6 , d_7 , d_8 , d_9 , d_{10} , d_{11}])
reducel($comb$, [d_{12} , d_{13} , d_{14}])

 $\rightsquigarrow r_A$

 $\leadsto r_B$

 $\rightsquigarrow r_C$

collected results:

SPARK reduce

d3

d5 d6 d7 d9 d10d11 d8

d12d13d14

$$\begin{array}{lll} \texttt{reducel}(comb, [d_1, d_2, d_3, d_4]) & & \leadsto r_A \\ \texttt{reducel}(comb, [d_5, d_6, d_7, d_8, d_9, d_{10}, d_{11}]) & & \leadsto r_B \\ \texttt{reducel}(comb, [d_{12}, d_{13}, d_{14}]) & & \leadsto r_C \end{array}$$

 $\rightsquigarrow r_{R}$

 $\rightsquigarrow r_C$

collected results:

nondeterministic!

SPARK reduce

d3

d5 d6 d7 d9 d10d11 d8

d12d13d14

$$\begin{array}{lll} \texttt{reducel}(comb, [d_1, d_2, d_3, d_4]) & & \leadsto r_A \\ \texttt{reducel}(comb, [d_5, d_6, d_7, d_8, d_9, d_{10}, d_{11}]) & & \leadsto r_B \\ \texttt{reducel}(comb, [d_{12}, d_{13}, d_{14}]) & & \leadsto r_C \end{array}$$

 $\rightsquigarrow r_{R}$

 $\rightsquigarrow r_C$

collected results:

nondeterministic!

 $reducel(comb, [r_C, r_A, r_B])$

~ result

Conditions for commutative reduce

reduce(comb, rdd)

Conditions for commutative reduce

reduce(comb, rdd)

via reduction to aggregate (using the Maybe monad):

 $aggregate(seq_2, comb_2, Nothing, rdd)$

```
seq_2(x, y) = case x of
Nothing \rightarrow Just y
Just v \rightarrow Just comb(v, y)
```

```
comb_2(x,y) = \mathbf{case}(x,y) \text{ of}

(\mathbf{Nothing}, y') \to y'

(x', \mathbf{Nothing}) \to x'

(\mathbf{Just}\ v_1, \mathbf{Just}\ v_2) \to \mathbf{Just}\ comb(v_1, v_2)
```

Conditions for commutative reduce

reduce(comb, rdd)

via reduction to aggregate (using the Maybe monad):

 $aggregate(seq_2, comb_2, Nothing, rdd)$

```
seq_2(x,y) = \mathbf{case}\ x \ \mathbf{of}

Nothing \to \mathbf{Just}\ y

\mathbf{Just}\ v \to \mathbf{Just}\ comb(v,y)
```

```
comb_2(x, y) = \mathbf{case}(x, y) \text{ of}

(\mathbf{Nothing}, y') \to y'

(x', \mathbf{Nothing}) \to x'

(\mathbf{Just}\ v_1, \mathbf{Just}\ v_2) \to \mathbf{Just}\ comb(v_1, v_2)
```

Theorem

Consider rdd of elements of type \mathbb{T} . A call

reduce(comb, rdd)

is commutative iff $(\mathbb{T}, comb)$ is a commutative semigroup.

SPARK treeAggregate and treeReduce

■ first stage same as aggregate and reduce

SPARK treeAggregate and treeReduce

- first stage same as aggregate and reduce
- second stage is peformed concurrently in a binary tree structure

SPARK treeAggregate and treeReduce

- first stage same as aggregate and reduce
- second stage is peformed concurrently in a binary tree structure

Theorem

- treeAggregate(seq, comb, ⊥, rdd) is commutative iff aggregate(seq, comb, ⊥, rdd) is commutative.
- treeReduce(comb, rdd) is commutative iff reduce(comb, rdd) is commutative.

SPARK aggregateByKey and reduceByKey

work on PairRDDs: elements are (k, v)

SPARK aggregateByKey and reduceByKey

- work on PairRDDs: elements are (k, v)
- produce (again) a PairRDD
 - for every k, at most one pair (k, result)
 - result = the output of aggregate on elements with the key k

SPARK aggregateByKey and reduceByKey

- work on PairRDDs: elements are (k, v)
- produce (again) a PairRDD
 - for every k, at most one pair (k, result)
 - result = the output of aggregate on elements with the key k

Theorem

- **aggregateByKey**(seq, comb, \perp , rdd) is commutative iff **aggregate**(seq, comb, \perp , rdd) is commutative.
- reduceByKey(comb, rdd) is commutative iff reduce(comb, rdd) is commutative.

Conditions for deterministic aggregation:

- 1 $(img(foldl(seq, \bot)), comb, \bot)$ is a commutative monoid and
- of or all $d \in \mathbb{T}$ and $e \in img(\mathtt{foldl}(seq, \perp))$, it holds that seq(e, d) = comb(e, seq(z, d)).

Conditions for deterministic aggregation:

- 1 $(img(foldl(seq, \bot)), comb, \bot)$ is a commutative monoid and
- of or all $d \in \mathbb{T}$ and $e \in img(\mathtt{foldl}(seq, \perp))$, it holds that seq(e, d) = comb(e, seq(z, d)).

are general:

apart from scalar data (e.g. integers), they also work for non-scalar (e.g. lists, sets)

Conditions for deterministic aggregation:

- 1 $(img(foldl(seq, \perp)), comb, \perp)$ is a commutative monoid and
- of all $d \in \mathbb{T}$ and $e \in img(\mathtt{foldl}(seq, \perp))$, it holds that seq(e, d) = comb(e, seq(z, d)).

are general:

apart from scalar data (e.g. integers), they also work for non-scalar (e.g. lists, sets)

issues:

■ $img(foldl(seq, \bot))$ can be infinite, in general not computable

Conditions for deterministic aggregation:

- 1 $(img(foldl(seq, \perp)), comb, \perp)$ is a commutative monoid and
- of all $d \in \mathbb{T}$ and $e \in img(\mathtt{foldl}(seq, \perp))$, it holds that seq(e, d) = comb(e, seq(z, d)).

are general:

apart from scalar data (e.g. integers), they also work for non-scalar (e.g. lists, sets)

issues:

- $img(foldl(seq, \bot))$ can be infinite, in general not computable
- seq and comb can be general functions → may not terminate

Conditions for deterministic aggregation:

- 1 $(img(foldl(seq, \bot)), comb, \bot)$ is a commutative monoid and
- 2 for all $d \in \mathbb{T}$ and $e \in img(\mathtt{foldl}(seq, \perp))$, it holds that seq(e, d) = comb(e, seq(z, d)).

are general:

apart from scalar data (e.g. integers), they also work for non-scalar (e.g. lists, sets)

issues:

- $img(foldl(seq, \bot))$ can be infinite, in general not computable
- seq and comb can be general functions → may not terminate
- testing the universal equality may be undecidable

Conditions for deterministic aggregation:

- 1 $(img(foldl(seq, \bot)), comb, \bot)$ is a commutative monoid and
- 2 for all $d \in \mathbb{T}$ and $e \in img(\mathtt{foldl}(seq, \perp))$, it holds that seq(e, d) = comb(e, seq(z, d)).

are general:

apart from scalar data (e.g. integers), they also work for non-scalar (e.g. lists, sets)

issues:

- $img(foldl(seq, \bot))$ can be infinite, in general not computable
- seq and comb can be general functions → may not terminate
- testing the universal equality may be undecidable
- result for MAPREDUCE [Chen, Hong, Sinha, Wang; TACAS'15]
 - \triangleright N, +, \times , control(loop-free): undecidable

Case studies:

manual evaluation of SPARK ML library

Case studies:

- manual evaluation of SPARK ML library
- many functions use floats

Case studies:

- manual evaluation of SPARK ML library
- many functions use floats
- found a redundancy in the SPARK Graph library

- PURESPARK: a specification of aggregation functions in HASKELL
 - purely functional language
 - executable specification
 - suitable for formal reasoning (e.g. AGDA)

- PURESPARK: a specification of aggregation functions in HASKELL
 - purely functional language
 - executable specification
 - suitable for formal reasoning (e.g. AGDA)
- correctness requirements on aggregation functions

- PURESPARK: a specification of aggregation functions in HASKELL
 - purely functional language
 - executable specification
 - suitable for formal reasoning (e.g. AGDA)
- correctness requirements on aggregation functions
- analysis of case studies—finding numeric instability and redundancy in ML library

- PURESPARK: a specification of aggregation functions in HASKELL
 - purely functional language
 - executable specification
 - suitable for formal reasoning (e.g. AGDA)
- correctness requirements on aggregation functions
- analysis of case studies—finding numeric instability and redundancy in ML library
- also extended to aggregate over graphs