
An Executable Sequential Specification
for SPARK Aggregation

Yu-Fang Chen1, Chih-Duo Hong1, Ondřej Lengál1,2,
Shin-Cheng Mu1, Nishant Sinha3, Bow-Yaw Wang1

1Academia Sinica, Taiwan
2Brno University of Technology, Czech Republic

3IBM Research, India

19 May 2017 (NETYS’17)

Current Trends in CAV (Computer-Aided Verification)

Current Trends in CAV (Computer-Aided Verification):
verification of HW

verification of sequential programs:
I w/ integers
I w/ floats
I w/ heap manipulation
I . . .

verification of concurrent programs
I mutual exclusion protocols
I concurrent data structures
I . . .

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 2 / 21

Current Trends in CAV (Computer-Aided Verification)

Current Trends in CAV (Computer-Aided Verification):
verification of HW
verification of sequential programs:

I w/ integers
I w/ floats
I w/ heap manipulation
I . . .

verification of concurrent programs
I mutual exclusion protocols
I concurrent data structures
I . . .

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 2 / 21

Current Trends in CAV (Computer-Aided Verification)

Current Trends in CAV (Computer-Aided Verification):
verification of HW
verification of sequential programs:

I w/ integers
I w/ floats
I w/ heap manipulation
I . . .

verification of concurrent programs
I mutual exclusion protocols
I concurrent data structures
I . . .

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 2 / 21

Current Trends in Computer Science

Current Trends in Computer Science:
machine learning, deep neural networks, IoT, smart-∗, . . .

big data & cluster computing
I sciences
I AI
I advertising analysis
I data mining
I biology
I search engines
I market value:

• expected over $50 billion by 2020

Can verification be applied here, too?

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 3 / 21

Current Trends in Computer Science

Current Trends in Computer Science:
machine learning, deep neural networks, IoT, smart-∗, . . .
big data & cluster computing

I sciences
I AI
I advertising analysis
I data mining
I biology
I search engines
I market value:

• expected over $50 billion by 2020

Can verification be applied here, too?

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 3 / 21

Current Trends in Computer Science

Current Trends in Computer Science:
machine learning, deep neural networks, IoT, smart-∗, . . .
big data & cluster computing

I sciences
I AI
I advertising analysis
I data mining
I biology
I search engines
I market value:

• expected over $50 billion by 2020

Can verification be applied here, too?

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 3 / 21

Frameworks for Big Data

Programming for Big Data:

many repeating tasks
I distribution of data on nodes
I collection of computed results

 frameworks that create abstraction over the communication
web services providing easy-to-setup computation using these
(Amazon, Microsoft, IBM, . . .)
examples:

I Hadoop MAPREDUCE
I PIG
I HIVE
I Apache SPARK

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 4 / 21

Frameworks for Big Data

Programming for Big Data:
many repeating tasks

I distribution of data on nodes

I collection of computed results

 frameworks that create abstraction over the communication
web services providing easy-to-setup computation using these
(Amazon, Microsoft, IBM, . . .)
examples:

I Hadoop MAPREDUCE
I PIG
I HIVE
I Apache SPARK

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 4 / 21

Frameworks for Big Data

Programming for Big Data:
many repeating tasks

I distribution of data on nodes
I collection of computed results

 frameworks that create abstraction over the communication
web services providing easy-to-setup computation using these
(Amazon, Microsoft, IBM, . . .)
examples:

I Hadoop MAPREDUCE
I PIG
I HIVE
I Apache SPARK

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 4 / 21

Frameworks for Big Data

Programming for Big Data:
many repeating tasks

I distribution of data on nodes
I collection of computed results

 frameworks that create abstraction over the communication

web services providing easy-to-setup computation using these
(Amazon, Microsoft, IBM, . . .)
examples:

I Hadoop MAPREDUCE
I PIG
I HIVE
I Apache SPARK

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 4 / 21

Frameworks for Big Data

Programming for Big Data:
many repeating tasks

I distribution of data on nodes
I collection of computed results

 frameworks that create abstraction over the communication
web services providing easy-to-setup computation using these
(Amazon, Microsoft, IBM, . . .)

examples:
I Hadoop MAPREDUCE
I PIG
I HIVE
I Apache SPARK

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 4 / 21

Frameworks for Big Data

Programming for Big Data:
many repeating tasks

I distribution of data on nodes
I collection of computed results

 frameworks that create abstraction over the communication
web services providing easy-to-setup computation using these
(Amazon, Microsoft, IBM, . . .)
examples:

I Hadoop MAPREDUCE
I PIG
I HIVE
I Apache SPARK

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 4 / 21

Frameworks for Big Data

New verification problems:

verification of correctness of the frameworks
verification of correctness of user programs

I correctness: checking special properties

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 5 / 21

Frameworks for Big Data

New verification problems:
verification of correctness of the frameworks

verification of correctness of user programs
I correctness: checking special properties

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 5 / 21

Frameworks for Big Data

New verification problems:
verification of correctness of the frameworks
verification of correctness of user programs

I correctness: checking special properties

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 5 / 21

Apache SPARK

Apache SPARK:
successor of Hadoop MAPREDUCE

I claims to be up to 100× faster due to in-memory computation

a relaxed fault tolerant model
I sub-results are recomputed upon faults

lazy evaluation semantics
contains libraries for

I processing graphs
I streaming computation
I machine learning
I SQL-based database computation
I . . .

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 6 / 21

Apache SPARK

Apache SPARK:
successor of Hadoop MAPREDUCE

I claims to be up to 100× faster due to in-memory computation
a relaxed fault tolerant model

I sub-results are recomputed upon faults

lazy evaluation semantics
contains libraries for

I processing graphs
I streaming computation
I machine learning
I SQL-based database computation
I . . .

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 6 / 21

Apache SPARK

Apache SPARK:
successor of Hadoop MAPREDUCE

I claims to be up to 100× faster due to in-memory computation
a relaxed fault tolerant model

I sub-results are recomputed upon faults

lazy evaluation semantics

contains libraries for
I processing graphs
I streaming computation
I machine learning
I SQL-based database computation
I . . .

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 6 / 21

Apache SPARK

Apache SPARK:
successor of Hadoop MAPREDUCE

I claims to be up to 100× faster due to in-memory computation
a relaxed fault tolerant model

I sub-results are recomputed upon faults

lazy evaluation semantics
contains libraries for

I processing graphs
I streaming computation
I machine learning
I SQL-based database computation
I . . .

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 6 / 21

Apache SPARK

RDD—Resilient Distributed Dataset:
the principal data abstraction

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

RDD

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 7 / 21

Apache SPARK

RDD—Resilient Distributed Dataset:
the principal data abstraction

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

RDD

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 7 / 21

Computation in SPARK

Computation in SPARK

map-style
I map, filter

RDD rdd = ...
RDD newRdd = rdd.map(λ x . x * 2)

aggregation
I aggregate, reduce
I treeAggregate, treeReduce

RDD rdd = ...
int sum = rdd.reduce(λ x y . x + y)

combined
I aggregateByKey, reduceByKey

PairRDD rdd = ...
PairRDD sum = rdd.reduceByKey(λ x y . x + y)

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 8 / 21

Computation in SPARK

Computation in SPARK

map-style
I map, filter

RDD rdd = ...
RDD newRdd = rdd.map(λ x . x * 2)

aggregation
I aggregate, reduce
I treeAggregate, treeReduce

RDD rdd = ...
int sum = rdd.reduce(λ x y . x + y)

combined
I aggregateByKey, reduceByKey

PairRDD rdd = ...
PairRDD sum = rdd.reduceByKey(λ x y . x + y)

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 8 / 21

Computation in SPARK

Computation in SPARK

map-style
I map, filter

RDD rdd = ...
RDD newRdd = rdd.map(λ x . x * 2)

aggregation
I aggregate, reduce
I treeAggregate, treeReduce

RDD rdd = ...
int sum = rdd.reduce(λ x y . x + y)

combined
I aggregateByKey, reduceByKey

PairRDD rdd = ...
PairRDD sum = rdd.reduceByKey(λ x y . x + y)

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 8 / 21

Formal specification of SPARK aggregation

Formal specification of SPARK aggregation
SPARK is written in SCALA (bindings to Java, Python, . . .)

I multi-paradigm programming language
I both imperative and functional code (side-effects)
I unclear semantics

documentation is not clear about requirements of functions
our contribution:

I PURESPARK: a specification of aggregation functions in HASKELL

• purely functional language
• executable specification
• suitable for formal reasoning (e.g. AGDA)

I correctness requirements on aggregation functions (next slide)
I analysis of case studies—finding numeric instability in ML library

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 9 / 21

Formal specification of SPARK aggregation

Formal specification of SPARK aggregation
SPARK is written in SCALA (bindings to Java, Python, . . .)

I multi-paradigm programming language
I both imperative and functional code (side-effects)
I unclear semantics

documentation is not clear about requirements of functions

our contribution:
I PURESPARK: a specification of aggregation functions in HASKELL

• purely functional language
• executable specification
• suitable for formal reasoning (e.g. AGDA)

I correctness requirements on aggregation functions (next slide)
I analysis of case studies—finding numeric instability in ML library

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 9 / 21

Formal specification of SPARK aggregation

Formal specification of SPARK aggregation
SPARK is written in SCALA (bindings to Java, Python, . . .)

I multi-paradigm programming language
I both imperative and functional code (side-effects)
I unclear semantics

documentation is not clear about requirements of functions
our contribution:

I PURESPARK: a specification of aggregation functions in HASKELL

• purely functional language
• executable specification
• suitable for formal reasoning (e.g. AGDA)

I correctness requirements on aggregation functions (next slide)
I analysis of case studies—finding numeric instability in ML library

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 9 / 21

Formal specification of SPARK aggregation

Formal specification of SPARK aggregation
SPARK is written in SCALA (bindings to Java, Python, . . .)

I multi-paradigm programming language
I both imperative and functional code (side-effects)
I unclear semantics

documentation is not clear about requirements of functions
our contribution:

I PURESPARK: a specification of aggregation functions in HASKELL

• purely functional language
• executable specification
• suitable for formal reasoning (e.g. AGDA)

I correctness requirements on aggregation functions (next slide)

I analysis of case studies—finding numeric instability in ML library

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 9 / 21

Formal specification of SPARK aggregation

Formal specification of SPARK aggregation
SPARK is written in SCALA (bindings to Java, Python, . . .)

I multi-paradigm programming language
I both imperative and functional code (side-effects)
I unclear semantics

documentation is not clear about requirements of functions
our contribution:

I PURESPARK: a specification of aggregation functions in HASKELL

• purely functional language
• executable specification
• suitable for formal reasoning (e.g. AGDA)

I correctness requirements on aggregation functions (next slide)
I analysis of case studies—finding numeric instability in ML library

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 9 / 21

Commutativity in SPARK aggregation

Commutativity in SPARK aggregation

aggregate(seq, comb,⊥, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,⊥, [d1,d2,d3,d4]) rA

foldl(seq,⊥, [d5,d6,d7,d8,d9,d10,d11]) rB

foldl(seq,⊥, [d12,d13,d14]) rC

collected results: rA rBrC nondeterministic!

foldl(comb,⊥, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 10 / 21

Commutativity in SPARK aggregation

Commutativity in SPARK aggregation

aggregate(seq, comb,⊥, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,⊥, [d1,d2,d3,d4]) rA

foldl(seq,⊥, [d5,d6,d7,d8,d9,d10,d11]) rB

foldl(seq,⊥, [d12,d13,d14]) rC

collected results: rA rBrC nondeterministic!

foldl(comb,⊥, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 10 / 21

Commutativity in SPARK aggregation

Commutativity in SPARK aggregation

aggregate(seq, comb,⊥, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,⊥, [d1,d2,d3,d4]) rA

foldl(seq,⊥, [d5,d6,d7,d8,d9,d10,d11]) rB

foldl(seq,⊥, [d12,d13,d14]) rC

foldl :: (B → A→ B)→ B → [A]→ B
foldl(seq,⊥, []) = ⊥
foldl(seq,⊥, x : xs) = foldl(seq, seq(⊥, x), xs)

collected results: rA rBrC nondeterministic!

foldl(comb,⊥, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 10 / 21

Commutativity in SPARK aggregation

Commutativity in SPARK aggregation

aggregate(seq, comb,⊥, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,⊥, [d1,d2,d3,d4]) rA

foldl(seq,⊥, [d5,d6,d7,d8,d9,d10,d11]) rB

foldl(seq,⊥, [d12,d13,d14]) rC

collected results: rA rBrC

nondeterministic!

foldl(comb,⊥, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 10 / 21

Commutativity in SPARK aggregation

Commutativity in SPARK aggregation

aggregate(seq, comb,⊥, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,⊥, [d1,d2,d3,d4]) rA

foldl(seq,⊥, [d5,d6,d7,d8,d9,d10,d11]) rB

foldl(seq,⊥, [d12,d13,d14]) rC

collected results: rA rBrC nondeterministic!

foldl(comb,⊥, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 10 / 21

Commutativity in SPARK aggregation

Commutativity in SPARK aggregation

aggregate(seq, comb,⊥, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,⊥, [d1,d2,d3,d4]) rA

foldl(seq,⊥, [d5,d6,d7,d8,d9,d10,d11]) rB

foldl(seq,⊥, [d12,d13,d14]) rC

collected results: rA rBrC nondeterministic!

foldl(comb,⊥, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 10 / 21

Commutativity in SPARK aggregation

Two sources of nondeterminism:

1. Partitioning into RDD
d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

a)

d1 d2 d3 d4 d12d13d14

d1 d2 d3 d4 d12d13d14

d10d11d7 d8 d9

d11d10d9d7 d8d5 d6

d5 d6

b)

2. Order in which nodes send partial results

I rA rBrC

I rC rB rA

I rA rB rC

aggregate can yield different results!!!

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 11 / 21

Commutativity in SPARK aggregation

Two sources of nondeterminism:
1. Partitioning into RDD
d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

a)

d1 d2 d3 d4 d12d13d14

d1 d2 d3 d4 d12d13d14

d10d11d7 d8 d9

d11d10d9d7 d8d5 d6

d5 d6

b)

2. Order in which nodes send partial results

I rA rBrC

I rC rB rA

I rA rB rC

aggregate can yield different results!!!

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 11 / 21

Commutativity in SPARK aggregation

Two sources of nondeterminism:
1. Partitioning into RDD
d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

a)

d1 d2 d3 d4 d12d13d14

d1 d2 d3 d4 d12d13d14

d10d11d7 d8 d9

d11d10d9d7 d8d5 d6

d5 d6

b)

2. Order in which nodes send partial results

I rA rBrC

I rC rB rA

I rA rB rC

aggregate can yield different results!!!

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 11 / 21

Commutativity in SPARK aggregation

Two sources of nondeterminism:
1. Partitioning into RDD
d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

a)

d1 d2 d3 d4 d12d13d14

d1 d2 d3 d4 d12d13d14

d10d11d7 d8 d9

d11d10d9d7 d8d5 d6

d5 d6

b)

2. Order in which nodes send partial results

I rA rBrC

I rC rB rA

I rA rB rC

aggregate can yield different results!!!

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 11 / 21

Commutativity in SPARK aggregation
Example of a nondeterministic aggregation

aggregate(seq, comb,⊥, rdd)

seq(acc, x) = acc + x
comb(lhs, rhs) = rhs + rhs (typo)

⊥ = 0

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,0, [d1,d2,d3,d4]) = (((0 + d1) + d2) + d3) + d4 rA

foldl(seq,0, [d5,d6,d7,d8,d9,d10,d11]) = . . . rB

foldl(seq,0, [d12,d13,d14]) = . . . rC

Collecting results:
rA rBrC : foldl(comb,0, [rC , rA, rB]) = 2rB

rA rB rC : foldl(comb,0, [rA, rB, rC]) = 2rC
2rB 6= 2rC

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 12 / 21

Commutativity in SPARK aggregation
Example of a nondeterministic aggregation

aggregate(seq, comb,⊥, rdd)

seq(acc, x) = acc + x
comb(lhs, rhs) = rhs + rhs (typo)

⊥ = 0

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,0, [d1,d2,d3,d4]) = (((0 + d1) + d2) + d3) + d4 rA

foldl(seq,0, [d5,d6,d7,d8,d9,d10,d11]) = . . . rB

foldl(seq,0, [d12,d13,d14]) = . . . rC

Collecting results:
rA rBrC : foldl(comb,0, [rC , rA, rB]) = 2rB

rA rB rC : foldl(comb,0, [rA, rB, rC]) = 2rC
2rB 6= 2rC

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 12 / 21

Commutativity in SPARK aggregation
Example of a nondeterministic aggregation

aggregate(seq, comb,⊥, rdd)

seq(acc, x) = acc + x
comb(lhs, rhs) = rhs + rhs (typo)

⊥ = 0

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,0, [d1,d2,d3,d4]) = (((0 + d1) + d2) + d3) + d4 rA

foldl(seq,0, [d5,d6,d7,d8,d9,d10,d11]) = . . . rB

foldl(seq,0, [d12,d13,d14]) = . . . rC

Collecting results:
rA rBrC : foldl(comb,0, [rC , rA, rB]) = 2rB

rA rB rC : foldl(comb,0, [rA, rB, rC]) = 2rC
2rB 6= 2rC

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 12 / 21

Commutativity in SPARK aggregation
Example of a nondeterministic aggregation

aggregate(seq, comb,⊥, rdd)

seq(acc, x) = acc + x
comb(lhs, rhs) = rhs + rhs (typo)

⊥ = 0

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,0, [d1,d2,d3,d4]) = (((0 + d1) + d2) + d3) + d4 rA

foldl(seq,0, [d5,d6,d7,d8,d9,d10,d11]) = . . . rB

foldl(seq,0, [d12,d13,d14]) = . . . rC

Collecting results:
rA rBrC : foldl(comb,0, [rC , rA, rB]) = 2rB

rA rB rC : foldl(comb,0, [rA, rB, rC]) = 2rC

2rB 6= 2rC

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 12 / 21

Commutativity in SPARK aggregation
Example of a nondeterministic aggregation

aggregate(seq, comb,⊥, rdd)

seq(acc, x) = acc + x
comb(lhs, rhs) = rhs + rhs (typo)

⊥ = 0

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

foldl(seq,0, [d1,d2,d3,d4]) = (((0 + d1) + d2) + d3) + d4 rA

foldl(seq,0, [d5,d6,d7,d8,d9,d10,d11]) = . . . rB

foldl(seq,0, [d12,d13,d14]) = . . . rC

Collecting results:
rA rBrC : foldl(comb,0, [rC , rA, rB]) = 2rB

rA rB rC : foldl(comb,0, [rA, rB, rC]) = 2rC
2rB 6= 2rC

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 12 / 21

Commutativity in SPARK aggregation

Commutativity of aggregate

Definition
A call

aggregate(seq, comb,⊥, rdd)

is commutative iff

aggregate(seq, comb,⊥, rdd(L)) = foldl(seq,⊥,L)

for every partitioning rdd(L) of L.

i.e., aggregate is an implementation of foldl
if a call to aggregate is commutative:

I the call is deterministic
I when analyzing the program, we can assume one partitioning

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 13 / 21

Commutativity in SPARK aggregation

Commutativity of aggregate

Definition
A call

aggregate(seq, comb,⊥, rdd)

is commutative iff

aggregate(seq, comb,⊥, rdd(L)) = foldl(seq,⊥,L)

for every partitioning rdd(L) of L.

i.e., aggregate is an implementation of foldl

if a call to aggregate is commutative:
I the call is deterministic
I when analyzing the program, we can assume one partitioning

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 13 / 21

Commutativity in SPARK aggregation

Commutativity of aggregate

Definition
A call

aggregate(seq, comb,⊥, rdd)

is commutative iff

aggregate(seq, comb,⊥, rdd(L)) = foldl(seq,⊥,L)

for every partitioning rdd(L) of L.

i.e., aggregate is an implementation of foldl
if a call to aggregate is commutative:

I the call is deterministic
I when analyzing the program, we can assume one partitioning

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 13 / 21

Commutativity in SPARK aggregation

Conditions for commutative aggregate

Theorem
Consider rdd of elements of type T and ⊥ ∈ R. A call

aggregate(seq, comb,⊥, rdd)
is commutative iff

1 (img(foldl(seq,⊥)), comb,⊥) is a commutative monoid and
2 for all d ∈ T and e ∈ img(foldl(seq,⊥)), it holds that

seq(e,d) = comb(e, seq(z,d)).

Safe approximation:

. . . is commutative if
1 (R, comb,⊥) is a commutative monoid and
2 for all d ∈ T and e ∈ R, it holds that

seq(e,d) = comb(e, seq(z,d)).

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 14 / 21

Commutativity in SPARK aggregation

Conditions for commutative aggregate

Theorem
Consider rdd of elements of type T and ⊥ ∈ R. A call

aggregate(seq, comb,⊥, rdd)
is commutative iff

1 (img(foldl(seq,⊥)), comb,⊥) is a commutative monoid and
2 for all d ∈ T and e ∈ img(foldl(seq,⊥)), it holds that

seq(e,d) = comb(e, seq(z,d)).

Safe approximation:

. . . is commutative if
1 (R, comb,⊥) is a commutative monoid and
2 for all d ∈ T and e ∈ R, it holds that

seq(e,d) = comb(e, seq(z,d)).

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 14 / 21

Commutativity in SPARK aggregation

SPARK reduce
reduce(comb, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

reducel(comb, [d1,d2,d3,d4]) rA

reducel(comb, [d5,d6,d7,d8,d9,d10,d11]) rB

reducel(comb, [d12,d13,d14]) rC

collected results: rA rBrC nondeterministic!

reducel(comb, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 15 / 21

Commutativity in SPARK aggregation

SPARK reduce
reduce(comb, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

reducel(comb, [d1,d2,d3,d4]) rA

reducel(comb, [d5,d6,d7,d8,d9,d10,d11]) rB

reducel(comb, [d12,d13,d14]) rC

collected results: rA rBrC nondeterministic!

reducel(comb, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 15 / 21

Commutativity in SPARK aggregation

SPARK reduce
reduce(comb, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

reducel(comb, [d1,d2,d3,d4]) rA

reducel(comb, [d5,d6,d7,d8,d9,d10,d11]) rB

reducel(comb, [d12,d13,d14]) rC

reducel :: (A→ A→ A)→ [A]→ A
reducel(comb, x : xs) = foldl(comb, x , xs)

collected results: rA rBrC nondeterministic!

reducel(comb, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 15 / 21

Commutativity in SPARK aggregation

SPARK reduce
reduce(comb, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

reducel(comb, [d1,d2,d3,d4]) rA

reducel(comb, [d5,d6,d7,d8,d9,d10,d11]) rB

reducel(comb, [d12,d13,d14]) rC

collected results: rA rBrC

nondeterministic!

reducel(comb, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 15 / 21

Commutativity in SPARK aggregation

SPARK reduce
reduce(comb, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

reducel(comb, [d1,d2,d3,d4]) rA

reducel(comb, [d5,d6,d7,d8,d9,d10,d11]) rB

reducel(comb, [d12,d13,d14]) rC

collected results: rA rBrC nondeterministic!

reducel(comb, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 15 / 21

Commutativity in SPARK aggregation

SPARK reduce
reduce(comb, rdd)

d1 d2 d3 d4 d7 d9 d10d11d8d5 d6 d12d13d14

reducel(comb, [d1,d2,d3,d4]) rA

reducel(comb, [d5,d6,d7,d8,d9,d10,d11]) rB

reducel(comb, [d12,d13,d14]) rC

collected results: rA rBrC nondeterministic!

reducel(comb, [rC , rA, rB]) result

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 15 / 21

Commutativity in SPARK aggregation

Conditions for commutative reduce

reduce(comb, rdd)

via reduction to aggregate (using the Maybe monad):

aggregate(seq2, comb2,Nothing, rdd)

seq2(x , y) = case x of
Nothing→ Just y
Just v → Just comb(v , y)

comb2(x , y) = case (x , y) of
(Nothing, y ′)→ y ′

(x ′,Nothing)→ x ′

(Just v1,Just v2)→ Just comb(v1, v2)

Theorem
Consider rdd of elements of type T. A call

reduce(comb, rdd)
is commutative iff (T, comb) is a commutative semigroup.

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 16 / 21

Commutativity in SPARK aggregation

Conditions for commutative reduce

reduce(comb, rdd)

via reduction to aggregate (using the Maybe monad):

aggregate(seq2, comb2,Nothing, rdd)

seq2(x , y) = case x of
Nothing→ Just y
Just v → Just comb(v , y)

comb2(x , y) = case (x , y) of
(Nothing, y ′)→ y ′

(x ′,Nothing)→ x ′

(Just v1,Just v2)→ Just comb(v1, v2)

Theorem
Consider rdd of elements of type T. A call

reduce(comb, rdd)
is commutative iff (T, comb) is a commutative semigroup.

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 16 / 21

Commutativity in SPARK aggregation

Conditions for commutative reduce

reduce(comb, rdd)

via reduction to aggregate (using the Maybe monad):

aggregate(seq2, comb2,Nothing, rdd)

seq2(x , y) = case x of
Nothing→ Just y
Just v → Just comb(v , y)

comb2(x , y) = case (x , y) of
(Nothing, y ′)→ y ′

(x ′,Nothing)→ x ′

(Just v1,Just v2)→ Just comb(v1, v2)

Theorem
Consider rdd of elements of type T. A call

reduce(comb, rdd)
is commutative iff (T, comb) is a commutative semigroup.

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 16 / 21

Commutativity in SPARK aggregation

SPARK treeAggregate and treeReduce

first stage same as aggregate and reduce

second stage is peformed concurrently in a binary tree structure

Theorem
treeAggregate(seq, comb,⊥, rdd) is commutative iff
aggregate(seq, comb,⊥, rdd) is commutative.
treeReduce(comb, rdd) is commutative iff reduce(comb, rdd)
is commutative.

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 17 / 21

Commutativity in SPARK aggregation

SPARK treeAggregate and treeReduce

first stage same as aggregate and reduce

second stage is peformed concurrently in a binary tree structure

Theorem
treeAggregate(seq, comb,⊥, rdd) is commutative iff
aggregate(seq, comb,⊥, rdd) is commutative.
treeReduce(comb, rdd) is commutative iff reduce(comb, rdd)
is commutative.

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 17 / 21

Commutativity in SPARK aggregation

SPARK treeAggregate and treeReduce

first stage same as aggregate and reduce

second stage is peformed concurrently in a binary tree structure

Theorem
treeAggregate(seq, comb,⊥, rdd) is commutative iff
aggregate(seq, comb,⊥, rdd) is commutative.
treeReduce(comb, rdd) is commutative iff reduce(comb, rdd)
is commutative.

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 17 / 21

Commutativity in SPARK aggregation

SPARK aggregateByKey and reduceByKey

work on PairRDDs: elements are (k , v)

produce (again) a PairRDD
I for every k , at most one pair (k , result)
I result = the output of aggregate on elements with the key k

Theorem
aggregateByKey(seq, comb,⊥, rdd) is commutative iff
aggregate(seq, comb,⊥, rdd) is commutative.
reduceByKey(comb, rdd) is commutative iff reduce(comb, rdd)
is commutative.

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 18 / 21

Commutativity in SPARK aggregation

SPARK aggregateByKey and reduceByKey

work on PairRDDs: elements are (k , v)
produce (again) a PairRDD

I for every k , at most one pair (k , result)
I result = the output of aggregate on elements with the key k

Theorem
aggregateByKey(seq, comb,⊥, rdd) is commutative iff
aggregate(seq, comb,⊥, rdd) is commutative.
reduceByKey(comb, rdd) is commutative iff reduce(comb, rdd)
is commutative.

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 18 / 21

Commutativity in SPARK aggregation

SPARK aggregateByKey and reduceByKey

work on PairRDDs: elements are (k , v)
produce (again) a PairRDD

I for every k , at most one pair (k , result)
I result = the output of aggregate on elements with the key k

Theorem
aggregateByKey(seq, comb,⊥, rdd) is commutative iff
aggregate(seq, comb,⊥, rdd) is commutative.
reduceByKey(comb, rdd) is commutative iff reduce(comb, rdd)
is commutative.

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 18 / 21

Discussion

Conditions for deterministic aggregation:

1 (img(foldl(seq,⊥)), comb,⊥) is a commutative monoid and
2 for all d ∈ T and e ∈ img(foldl(seq,⊥)), it holds that

seq(e,d) = comb(e, seq(z,d)).

are general:
apart from scalar data (e.g. integers), they also work for
non-scalar (e.g. lists, sets)

issues:
img(foldl(seq,⊥)) can be infinite, in general not computable
seq and comb can be general functions may not terminate
testing the universal equality may be undecidable
result for MAPREDUCE [Chen, Hong, Sinha, Wang; TACAS’15]

I N,+,×, control(loop-free): undecidable

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 19 / 21

Discussion

Conditions for deterministic aggregation:

1 (img(foldl(seq,⊥)), comb,⊥) is a commutative monoid and
2 for all d ∈ T and e ∈ img(foldl(seq,⊥)), it holds that

seq(e,d) = comb(e, seq(z,d)).

are general:
apart from scalar data (e.g. integers), they also work for
non-scalar (e.g. lists, sets)

issues:
img(foldl(seq,⊥)) can be infinite, in general not computable
seq and comb can be general functions may not terminate
testing the universal equality may be undecidable
result for MAPREDUCE [Chen, Hong, Sinha, Wang; TACAS’15]

I N,+,×, control(loop-free): undecidable

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 19 / 21

Discussion

Conditions for deterministic aggregation:

1 (img(foldl(seq,⊥)), comb,⊥) is a commutative monoid and
2 for all d ∈ T and e ∈ img(foldl(seq,⊥)), it holds that

seq(e,d) = comb(e, seq(z,d)).

are general:
apart from scalar data (e.g. integers), they also work for
non-scalar (e.g. lists, sets)

issues:
img(foldl(seq,⊥)) can be infinite, in general not computable

seq and comb can be general functions may not terminate
testing the universal equality may be undecidable
result for MAPREDUCE [Chen, Hong, Sinha, Wang; TACAS’15]

I N,+,×, control(loop-free): undecidable

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 19 / 21

Discussion

Conditions for deterministic aggregation:

1 (img(foldl(seq,⊥)), comb,⊥) is a commutative monoid and
2 for all d ∈ T and e ∈ img(foldl(seq,⊥)), it holds that

seq(e,d) = comb(e, seq(z,d)).

are general:
apart from scalar data (e.g. integers), they also work for
non-scalar (e.g. lists, sets)

issues:
img(foldl(seq,⊥)) can be infinite, in general not computable
seq and comb can be general functions may not terminate

testing the universal equality may be undecidable
result for MAPREDUCE [Chen, Hong, Sinha, Wang; TACAS’15]

I N,+,×, control(loop-free): undecidable

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 19 / 21

Discussion

Conditions for deterministic aggregation:

1 (img(foldl(seq,⊥)), comb,⊥) is a commutative monoid and
2 for all d ∈ T and e ∈ img(foldl(seq,⊥)), it holds that

seq(e,d) = comb(e, seq(z,d)).

are general:
apart from scalar data (e.g. integers), they also work for
non-scalar (e.g. lists, sets)

issues:
img(foldl(seq,⊥)) can be infinite, in general not computable
seq and comb can be general functions may not terminate
testing the universal equality may be undecidable

result for MAPREDUCE [Chen, Hong, Sinha, Wang; TACAS’15]
I N,+,×, control(loop-free): undecidable

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 19 / 21

Discussion

Conditions for deterministic aggregation:

1 (img(foldl(seq,⊥)), comb,⊥) is a commutative monoid and
2 for all d ∈ T and e ∈ img(foldl(seq,⊥)), it holds that

seq(e,d) = comb(e, seq(z,d)).

are general:
apart from scalar data (e.g. integers), they also work for
non-scalar (e.g. lists, sets)

issues:
img(foldl(seq,⊥)) can be infinite, in general not computable
seq and comb can be general functions may not terminate
testing the universal equality may be undecidable
result for MAPREDUCE [Chen, Hong, Sinha, Wang; TACAS’15]

I N,+,×, control(loop-free): undecidable

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 19 / 21

Commutativity in SPARK aggregation

Case studies:
manual evaluation of SPARK ML library

many functions use floats
found a redundancy in the SPARK Graph library

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 20 / 21

Commutativity in SPARK aggregation

Case studies:
manual evaluation of SPARK ML library
many functions use floats

found a redundancy in the SPARK Graph library

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 20 / 21

Commutativity in SPARK aggregation

Case studies:
manual evaluation of SPARK ML library
many functions use floats
found a redundancy in the SPARK Graph library

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 20 / 21

Commutativity in SPARK aggregation

Our contribution:
PURESPARK: a specification of aggregation functions in HASKELL

I purely functional language
I executable specification
I suitable for formal reasoning (e.g. AGDA)

correctness requirements on aggregation functions
analysis of case studies—finding numeric instability and
redundancy in ML library
also extended to aggregate over graphs

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 21 / 21

Commutativity in SPARK aggregation

Our contribution:
PURESPARK: a specification of aggregation functions in HASKELL

I purely functional language
I executable specification
I suitable for formal reasoning (e.g. AGDA)

correctness requirements on aggregation functions

analysis of case studies—finding numeric instability and
redundancy in ML library
also extended to aggregate over graphs

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 21 / 21

Commutativity in SPARK aggregation

Our contribution:
PURESPARK: a specification of aggregation functions in HASKELL

I purely functional language
I executable specification
I suitable for formal reasoning (e.g. AGDA)

correctness requirements on aggregation functions
analysis of case studies—finding numeric instability and
redundancy in ML library

also extended to aggregate over graphs

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 21 / 21

Commutativity in SPARK aggregation

Our contribution:
PURESPARK: a specification of aggregation functions in HASKELL

I purely functional language
I executable specification
I suitable for formal reasoning (e.g. AGDA)

correctness requirements on aggregation functions
analysis of case studies—finding numeric instability and
redundancy in ML library
also extended to aggregate over graphs

Chen, Hong, Lengál, Mu, Sinha, Wang Specification for SPARK Aggregation NETYS’17 21 / 21

	Frameworks for Big Data
	Apache Spark
	Commutativity in Spark aggregation

