Efficient Inclusion Checking over Tree Automata J

Lukas Holik'2 Ondrej Lengal' Jifi Simagek'® Tomas Vojnar’

1Brno University of Technology, Czech Republic
2Uppsala University, Sweden
SVERIMAG, UJF/CNRS/INPG, Giéres, France

October 28, 2012

Holik, Lengal, Sima&ek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 1/18

Outline

Tree Automata
TA Downward Universality Checking

Conclusion

Holik, Lengal, Simagek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 2/18

Trees

Very popular in computer science:
m data structures, ./’ \
m computer network topologies,)lk)lk
m distributed protocols, ...

In formal verification:
m e.g. encoding of complex data structures
e doubly linked lists, ...

dll

dil p
a
next next next
o [“a” [b [“c’ 1
prev prev

Holik, Lengal, Simacek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 3/18

Tree Automata
Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:

e Q.. .finite set of states,
e 3 ...finite alphabet of symbols with arity,

.. set of transitions in the form of p LN (91,---,an),

.. set of root states.
e @ @ @

LN
25 (q,9),
LN

) @& (@ (@ @

il

Q =~ n

Holik, Lengal, Simagek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012

4/18

Tree Automata
Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:

e Q.. .finite set of states,
e 3 ...finite alphabet of symbols with arity,

e A ...set of transitions in the form of p LN (91,---,an),
o F...

set of root states.
(]

Leen @ @ @

s
r%(q,q),
q—

) (@ @ (@ @

Holik, Lengal, Simacek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 4/18

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e (@ ...finite set of states,
e > ...finite alphabet of symbols with arity,

e A ...set of transitions in the form of p LN (91,---,an),
e F ...set of root states.

Example:
A = |
s (r.q.r),
r%(9,9),
q—=>
}

Holik, Lengal, Simagek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012

4/18

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e (@ ...finite set of states,
e > ...finite alphabet of symbols with arity,

e A ...set of transitions in the form of p LN (91,---,an),
o F...

set of root states.

Holik, Lengal, Simagek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012

4/18

Tree Automata

Finite Tree Automaton (TA): A = (Q, X, A, F)
m extension of finite automaton to trees:
e (@ ...finite set of states,
e > ...finite alphabet of symbols with arity,

.. set of transitions in the form of p LN (91,---,an),

A .
F ...set of root states.
Example
A = |

§$ (r q’)5
r-%(q,9),
q 2,

}

Holik, Lengal, Simacek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 4/18

Tree Automata

Tree Automata
m can represent (infinite) sets of trees with regular structure,
m used in XML DBs, language processing, ...,

m ...formal verification, decision procedures of logics (WSKS), ...

Tree automata in FV:

m often large due to determinisation

e often advantageous to use non-deterministic tree automata,
e manipulate them without determinisation,
e even for operations such as language inclusion (ARTMC, ...).

Holik, Lengal, Simagek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012

5/18

Checking Universality and Language Inclusion of TA

Universality of Tree Automata: L(.A) L Ts

Language inclusion of TA: L(A) é L(B).
m EXPTIME-complete,
m Textbook approach: e universality: check £(AD) = 0.
« language inclusion: check £(.A) N £(BP) < ¢
m More efficient approaches:
e upward (bottom-up determinisation),

> On-the-fly,

» Antichains [Bouajjani, Habermehl, Holik, Touili, Vojnar. CIAA’08.],

» Antichains+Simulation [Abdulla, Chen, Holik, Mayr, Vojnar.
TACAS’10.].

e downward.

Holik, Lengal, Sima&ek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 6/18

TA Downward Universality Checking

m TA Downward Universality Checking: [Holik, et al. ATVA'11]

m inspired by XML Schema containment checking:
e [Hosoya, Vouillon, Pierce. ACM Trans. Program. Lang. Sys., 2005],

m does not follow the classic schema of universality algorithms:

e can’t determinise: top-down DTA are strictly less powerful than TA.
e however, there exists a complementation procedure.

Holik, Lengal, Sima&ek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 7/18

TA Downward Universality Checking

(r.,r) r-%

N
gL (ss) s (P (>
a- O © 6 G Tasb

b, a a |b b

Y = {f,ao, bo}
L(q) = Tx if and only if
(L(r) x L(r))U(L(s) x L(8))=Ts x Ts

(universality of tuples!)

Holik, Lengal, Simacek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 8/18

TA Downward Universality Checking

Note that in general

(L£(v1)xL(v2)) U (L(wi)x L(wo)) # (L(v1) U L(wr))x(L(vz) U L(W2))

Holik, Lengal, Simacek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 9/18

TA Downward Universality Checking

Note that in general

(L£(v1)xL(v2)) U (L(wi)x L(wo)) # (L(v1) U L(wr))x(L(vz) U L(W2))

However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(letd = Tx ...all trees over ¥)

Holik, Lengal, Simacek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 9/18

TA Downward Universality Checking

Note that in general

(L£(v1)xL(v2)) U (L(wi)x L(wo)) # (L(v1) U L(wr))x(L(vz) U L(W2))

However, for universe i/ and G, H C U: u U

GxH=(GxU)NU x H) X

(letd = Tx ...all trees over ¥)

(L(v1) x L(wv2)) U (L(w1) x L(wz)) =

(Lvi)xTg) N (TexL(v2))) U ((Lwi)xTsg) N (TexL(we)))

Holik, Lengal, Simacek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 9/18

TA Downward Universality Checking

m Using distributive laws and some further adjustments, we get

(ﬁ(V1)><£(V2)) U (,C(W1)><[,(W2)) =Ty x Ty <—

(L({vi,wi}) = Tx) A
(LH{wn}) = Tx) (L{w})=Tx)) A
(L{m}) = Tx) (L{ve=T5) A
(L({ve,w2}) = Tx)
~——

macrostate

<<

Holik, Lengal, Simagek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012

10/18

TA Downward Universality Checking

m Using distributive laws and some further adjustments, we get

(ﬁ(V1)X£(V2)) U (,C(W1)><[,(W2)) =Ty x Ty <—

(L({vi,wi}) = Tx) A
(LH{wn}) = Tx) (L{w})=Tx)) A
(L{m}) = Tx) (L{ve=T5) A
(L({ve,w2}) = Tx)
~——

macrostate

<<

m Can be generalised to arbitrary arity
e using the notion of choice functions.

Holik, Lengal, Simagek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012

10/18

Basic Downward Universality Algorithm

The On-the-fly algorithm:
m DFS, maintain workset of macrostates.
m Start the algorithm from macrostate F,

m Alternating structure:

e forall clauses ...
e exists a position such that universality holds.

Holik, Lengal, Simagek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012

11/18

Basic Downward Universality Algorithm

The On-the-fly algorithm:
m DFS, maintain workset of macrostates.
m Start the algorithm from macrostate F,

m Alternating structure:
e forall clauses ...
e exists a position such that universality holds.

m Cut the DFS when

e there is no transition for a symbol, or
e macrostate is already in workset.

Holik, Lengal, Simagek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 11/18

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains

Cut the DFS on macrostate S’ when
e a smaller macrostate S, S C S/, is already in workset,
» if Sis universal, S’ will also be universal.

w P o
- T =< N\
’ - > S 4 A
, \
/ S/ = \ ! P \
1 i N \ I - N \
I // \ 7 ® \ |
vy \l i | I \ I
‘' 8 [
Y ;7 \ [
\ \ A 7
N 7 N S
= S _==~
Holik, Lengal, Sima&ek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 12/18

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains
If a macrostate P is found to be non-universal, cache it;
e do not expand any new macrostate P’ C P,
> surely L(P') # Ts.

Holik, Lengal, Sima&ek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 13/18

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains + Simulation
m Downward simulation

e implies inclusion of (downward) tree languages of states,
e usually quite rich.

Downward simulation <p

m In Antichains, instead of C use <.
m further, minimise macrostates w.r.t. <p: {q,r,x} = { r,x}

Holik, Lengal, Simagek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 14/18

Experiments

m Comparison of different inclusion checking algorithms
e down — downward, up — upward,
e +s — using upward/downward simulation.
e implemented in the VATA library.

[“ down [down+s [up [up+s]
Winner 68.55 % 7.30% | 24.14% | 0.00%
Timeouts || 32.51% | 18.27% 0.00% | 0.00%

Holik, Lengal, Simacek, Vojnar (Brno UT)

Efficient Inclusion Checking over Tree Aut.

October 28, 2012

15/18

Conclusion

m A new class of efficient algorithms for downward checking of
universality and language inclusion of tree automata.

m Process automata downwards, making it possible to exploit
downward simulation.

Holik, Lengal, Sima&ek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 16/18

Future work

m Further develop TA universality & inclusion checking algorithms
e e.g. by the up-to congruence technique [Bonchi, Pous. POPL13.].

m Develop algorithms for computations of simulations for both
o explicitly, and
e semi-symbolically represented TA.

Holik, Lengal, Sima&ek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 17/18

Thank you for your attention.

Questions?

Holik, Lengal, Simacek, Vojnar (Brno UT) Efficient Inclusion Checking over Tree Aut. October 28, 2012 18/18

	Tree Automata
	TA Downward Universality Checking
	Optimisations of Downward TA Universality Algorithm

	Conclusion

