Efficient Inclusion Checking over Tree Automata

Lukáš Holík^{1,2} Ondřej Lengál¹ Jiří Šimáček^{1,3} Tomáš Vojnar¹

¹Brno University of Technology, Czech Republic ²Uppsala University, Sweden ³VERIMAG, UJF/CNRS/INPG, Gières, France

October 28, 2012

Outline

- Tree Automata
- TA Downward Universality Checking
- 3 Conclusion

Trees

Very popular in computer science:

- data structures,
- computer network topologies,
- distributed protocols, . . .

In formal verification:

- e.g. encoding of complex data structures
 - doubly linked lists, . . .

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{b}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of root states.

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{b}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of root states.

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q...finite set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{b}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of root states.

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q...finite set of states,
 - Σ . . . finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{b}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of root states.

Example: $\Delta = \{ \underbrace{s \xrightarrow{f} (r, q, r),}_{r \xrightarrow{g} (q, q),} q \xrightarrow{a} \}$

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{b}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of root states.

Example: $\Delta = \{ \frac{\underline{s} \xrightarrow{f} (r, q, r),}{r \xrightarrow{g} (q, q),} q \xrightarrow{a} \}$

Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ...formal verification, decision procedures of logics (WSkS), ...

Tree automata in FV:

- often large due to determinisation
 - often advantageous to use non-deterministic tree automata,
 - manipulate them without determinisation,
 - even for operations such as language inclusion (ARTMC, ...).

Checking Universality and Language Inclusion of TA

Universality of Tree Automata: $\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \mathcal{T}_{\Sigma}$.

Language inclusion of TA: $\mathcal{L}(\mathcal{A}) \stackrel{?}{\subseteq} \mathcal{L}(\mathcal{B})$.

- **EXPTIME-complete**,
- Textbook approach: universality: check $\overline{\mathcal{L}(\mathcal{A}^D)} \stackrel{?}{=} \emptyset$.
 - language inclusion: check $\mathcal{L}(\mathcal{A}) \cap \overline{\mathcal{L}(\mathcal{B}^D)} \stackrel{?}{=} \emptyset$
- More efficient approaches:
 - upward (bottom-up determinisation),
 - ► On-the-fly,
 - Antichains [Bouajjani, Habermehl, Holík, Touili, Vojnar. CIAA'08.],
 - Antichains+Simulation [Abdulla, Chen, Holík, Mayr, Vojnar. TACAS'10.].
 - downward.

- TA Downward Universality Checking: [Holík, et al. ATVA'11]
- inspired by XML Schema containment checking:
 - [Hosoya, Vouillon, Pierce. ACM Trans. Program. Lang. Sys., 2005],
- does not follow the classic schema of universality algorithms:
 - can't determinise: top-down DTA are strictly less powerful than TA.
 - however, there exists a complementation procedure.

$$\mathcal{L}(q) = \mathcal{T}_{\Sigma}$$
 if and only if

$$(\mathcal{L}(r) \times \mathcal{L}(r)) \cup (\mathcal{L}(s) \times \mathcal{L}(s)) = T_{\Sigma} \times T_{\Sigma}$$

(universality of tuples!)

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G \times H = (G \times \mathcal{U}) \cap (\mathcal{U} \times H)$$

(let $\mathcal{U} = T_{\Sigma} \dots$ all trees over Σ)

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe $\mathcal U$ and $G, H \subseteq \mathcal U$:

$$G \times H = (G \times \mathcal{U}) \cap (\mathcal{U} \times H)$$

(let $\mathcal{U} = T_{\Sigma}$... all trees over Σ)

$$\mathcal{U}$$
 \times \mathcal{H}

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \qquad \qquad (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) =$$

$$((\mathcal{L}(v_1) \times T_{\Sigma}) \cap (T_{\Sigma} \times \mathcal{L}(v_2))) \cup ((\mathcal{L}(w_1) \times T_{\Sigma}) \cap (T_{\Sigma} \times \mathcal{L}(w_2)))$$

Using distributive laws and some further adjustments, we get

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) = T_{\Sigma} \times T_{\Sigma} \iff$$

$$(\mathcal{L}(\{v_1, w_1\}) = T_{\Sigma}) \qquad \land \qquad (\mathcal{L}(\{v_1\}) = T_{\Sigma}) \qquad \land \qquad \land$$

$$((\mathcal{L}(\{v_1\}) = T_{\Sigma}) \qquad \lor \qquad (\mathcal{L}(\{w_2\}) = T_{\Sigma})) \qquad \land$$

$$(\mathcal{L}(\{w_1\}) = T_{\Sigma}) \qquad \lor \qquad (\mathcal{L}(\{v_2\}) = T_{\Sigma}) \qquad \land$$

$$\mathcal{L}(\{v_2, w_2\}) = T_{\Sigma}) \qquad \text{macrostate}$$

Using distributive laws and some further adjustments, we get

- Can be generalised to arbitrary arity
 - using the notion of choice functions.

Basic Downward Universality Algorithm

The **On-the-fly** algorithm:

- DFS, maintain workset of macrostates.
- Start the algorithm from macrostate F,
- Alternating structure:
 - for all clauses . . .
 - exists a position such that universality holds.

Basic Downward Universality Algorithm

The On-the-fly algorithm:

- DFS, maintain workset of macrostates.
- Start the algorithm from macrostate F,
- Alternating structure:
 - for all clauses . . .
 - exists a position such that universality holds.
- Cut the DFS when
 - · there is no transition for a symbol, or
 - macrostate is already in workset.

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains

- 1 Cut the DFS on macrostate S' when
 - a smaller macrostate S, $S \subseteq S'$, is already in *workset*,
 - ightharpoonup if S is universal, S' will also be universal.

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains

- 2 If a macrostate *P* is found to be non-universal, cache it;
 - do not expand any new macrostate $P' \subseteq P$,
 - ▶ surely $\mathcal{L}(P') \neq T_{\Sigma}$.

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains + Simulation

- Downward simulation
 - implies inclusion of (downward) tree languages of states,
 - · usually quite rich.

- In **Antichains**, instead of \subseteq use $\preceq_{\mathcal{D}}^{\forall \exists}$.
- further, minimise macrostates w.r.t. \leq_D : $\{q, r, x\} \Rightarrow \{r, x\}$

Experiments

- Comparison of different inclusion checking algorithms
 - down downward, up upward,
 - +s using upward/downward simulation.
 - implemented in the VATA library.

	down	down+s	up	up+s
Winner	68.55%	7.30 %	24.14%	0.00%
Timeouts	32.51 %	18.27%	0.00%	0.00%

Conclusion

- A new class of efficient algorithms for downward checking of universality and language inclusion of tree automata.
- Process automata downwards, making it possible to exploit downward simulation.

Future work

- Further develop TA universality & inclusion checking algorithms
 - e.g. by the up-to congruence technique [Bonchi, Pous. POPL'13.].

- Develop algorithms for computations of simulations for both
 - explicitly, and
 - semi-symbolically represented TA.

Thank you for your attention.

Questions?