Fully Automated Shape Analysis Based on Forest Automata[†]

Lukáš Holík **Ondřej Lengál** Adam Rogalewicz Jiří Šimáček Tomáš Vojnar

Brno University of Technology, Czech Republic

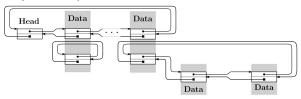
@LIAFA, Université Paris Diderot - Paris 7

July 1, 2013

[†]To appear in *Proc. of CAV'13*.

Shape Analysis

- Precise shape analysis:
 - a notoriously difficult problem

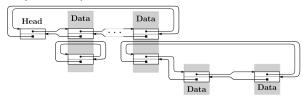


- specialized solutions (lists)
- help from the outside (loop invariants, inductive predicates)

Shape Analysis

Precise shape analysis:

a notoriously difficult problem



- specialized solutions (lists)
- help from the outside (loop invariants, inductive predicates)

Classes of errors:

- error line reachability
- invalid pointer dereference
- occurrence of garbage

Inspiration

- Separation Logic
 - local reasoning, well scalable
 - g fixed abstraction

Inspiration

- Separation Logic
 - local reasoning, well scalable
 - g fixed abstraction
- Abstract Regular Tree Model Checking (ARTMC)
 - uses tree automata (TA), flexible and refinable abstraction
 - monolithic encoding of the heap, not very scalable

Introduced at CAV'11.

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMC

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMC
 with
 - local reasoning of SL

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMC
 with
 - local reasoning of SL

by

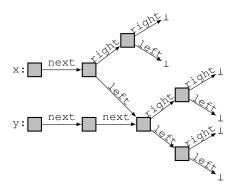
splitting the heap into tree components

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMC
 with
 - local reasoning of SL

by

- splitting the heap into tree components and
 - TA-based representation of sets of heaps

■ Forest decomposition of a heap



Forest decomposition of a heap

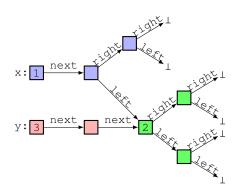
Identify cut-points

- nodes referenced:

 by variables, or
 multiple times

- Forest decomposition of a heap
- nodes referenced:

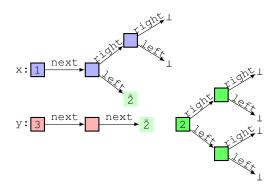
 by variables, or
 multiple times
- Identify cut-points
 Split the heap into tree components



- Forest decomposition of a heap
- nodes referenced:

 by variables, or
 multiple times
- Split the heap into tree components
- References are explicit

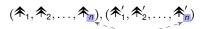
Identify cut-points «



■ a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees



- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order

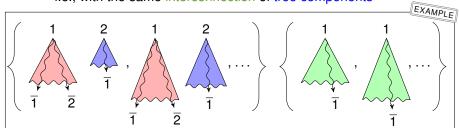
- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - the same number of trees
 - 2 having the same references
 - 3 in the same order
 - i.e., with the same interconnection of tree components

 $(\updownarrow_1, \diamondsuit_2, \dots, \diamondsuit_n), (\diamondsuit'_1, \diamondsuit'_2, \dots, \diamondsuit'_n)$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order

 $({\color{red} \bigstar_1, \bigstar_2, \ldots, \bigstar_n}), ({\color{red} \bigstar_1', \bigstar_2', \ldots, \bigstar_n'})$

• i.e., with the same interconnection of tree components

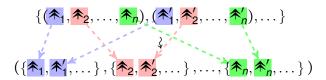


- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order

- $(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$
- i.e., with the same interconnection of tree components
- Cartesian representation of classes of \mathcal{H} :

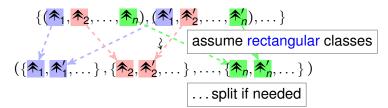
$$\{(\bigstar_1,\bigstar_2,\ldots,\bigstar_n),(\bigstar_1',\bigstar_2',\ldots,\bigstar_n'),\ldots\}$$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order
 - ▶ i.e., with the same interconnection of tree components
- Cartesian representation of classes of H:

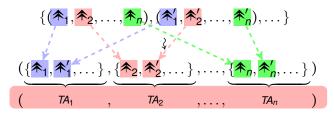


 $(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees $(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_n')$
 - 2 having the same references
 - 3 in the same order
 - i.e., with the same interconnection of tree components
- Cartesian representation of classes of \mathcal{H} :

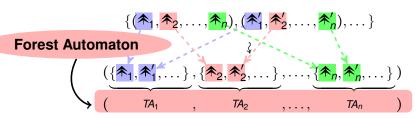


- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order
 - i.e., with the same interconnection of tree components
- Cartesian representation of classes of \mathcal{H} :



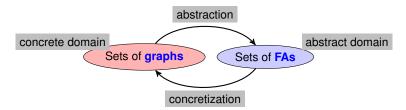
 $(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_n')$

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order
 - i.e., with the same interconnection of tree components
- Cartesian representation of classes of \mathcal{H} :

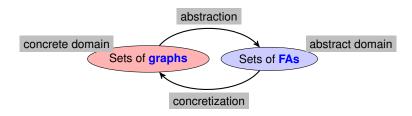


 $(\updownarrow_1, \updownarrow_2, \dots, \updownarrow_n), (\updownarrow'_1, \bigstar'_2, \dots, \bigstar'_n)$

Abstract Interpretation



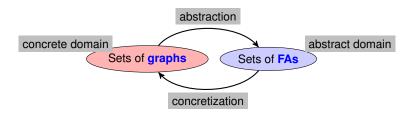
Abstract Interpretation



Statements

- \blacksquare x := new T()
- delete(x)
- x := null
- x := y
- x := y.next
- x.next := y
- if/while (x == y)

Abstract Interpretation

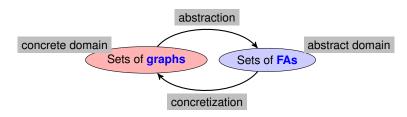


Statements

Abstract Transformers

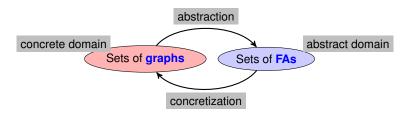
- x := new T()
- delete(x)
- x := null
- x := y
- x := y.next
- x.next := y
- if/while (x == y)

Abstract Interpretation



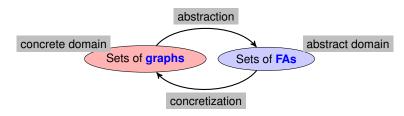
Statements Abstract Transformers x := new T() delete(x) x := null x := y x := y.next x.next := y if/while (x == y)

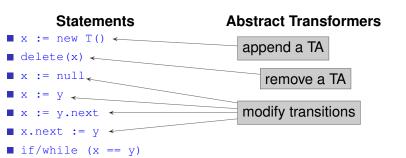
Abstract Interpretation



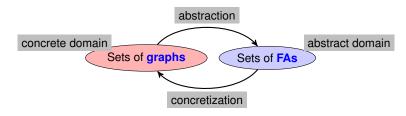
Statements Abstract Transformers x := new T() append a TA delete(x) x := null x := y x := y.next x.next := y if/while (x == y)

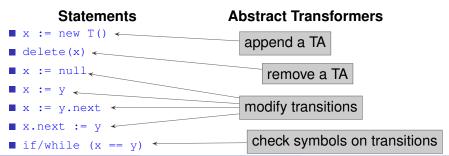
Abstract Interpretation





Abstract Interpretation





Acceleration

abstraction on forest automaton $(TA_1, ..., TA_n)$

Acceleration

- **abstraction** on forest automaton $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$

Acceleration

- **abstraction** on forest automaton $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

Acceleration

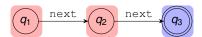
- **abstraction** on forest automaton $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

TΑ

Acceleration

- **abstraction** on forest automaton $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

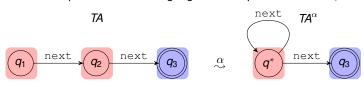
TΑ



k = 1

Acceleration

- **abstraction** on forest automaton $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k



k = 1

The so-far-presented:

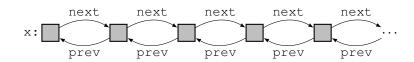
works well for singly linked lists (SLLs), trees

 $(\updownarrow_1, \updownarrow_2, \dots, \updownarrow_{\overline{n}}) \approx (\updownarrow'_1, \updownarrow'_2, \dots, \updownarrow'_{\overline{n}})$

- works well for singly linked lists (SLLs), trees
- fails for more complex data structures
 - unbounded number of cut-points $\sim \infty$ classes of $\mathcal H$

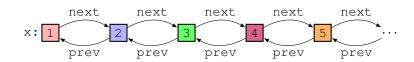
$$(\bigstar_1, \bigstar_2, \dots, \bigstar_n) \approx (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$$

- works well for singly linked lists (SLLs), trees
- fails for more complex data structures
 - unbounded number of cut-points $\sim \infty$ classes of $\mathcal H$



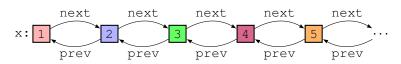
$$(\bigstar_1, \bigstar_2, \dots, \bigstar_n) \approx (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$$

- works well for singly linked lists (SLLs), trees
- fails for more complex data structures
 - unbounded number of cut-points $\sim \infty$ classes of $\mathcal H$



$$(\bigstar_1, \bigstar_2, \dots, \bigstar_{\stackrel{\bullet}{\mathbf{n}}}) \approx (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_{\stackrel{\bullet}{\mathbf{n}}})$$

- (9) works well for singly linked lists (SLLs), trees
- fails for more complex data structures
 - unbounded number of cut-points → ∞ classes of H



- · doubly linked lists (DLLs), circular lists, nested lists,
- trees with parent pointers,
- skip lists

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs

- Hierarchical Forest Automata
 - ► FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

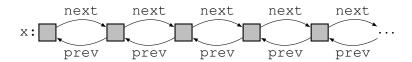
doubly linked segment

Example: a box DLS: $\mathcal{L}(DLS) = \begin{cases} in & \text{next} \\ 1 & \text{prev} \end{cases}$

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

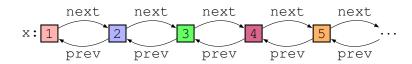
doubly linked segment

Example: a box DLS: $\mathcal{L}(DLS) = \begin{cases} in & \text{next} \\ prev \end{cases}$

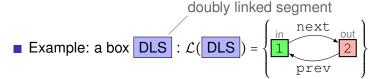


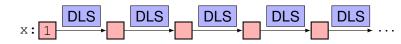
- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

doubly linked segment | Example: a box | DLS | : $\mathcal{L}(DLS) = \begin{cases} in & \text{next} \\ 1 & \text{out} \end{cases}$



- Hierarchical Forest Automata
 - ► FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

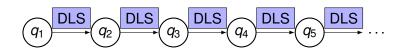




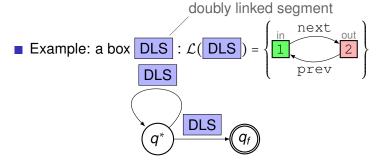
- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol

doubly linked segment

Example: a box DLS: $\mathcal{L}(DLS) = \begin{cases} in & \text{next} \\ 1 & \text{prev} \end{cases}$



- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - Intuition: replace repeated subgraphs with a single symbol



The Challenge

How to find "the right" boxes?

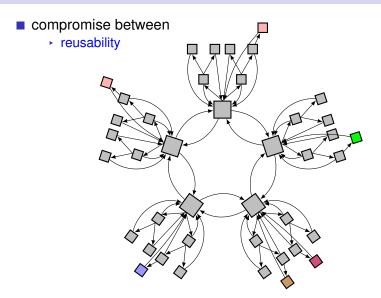
The Challenge

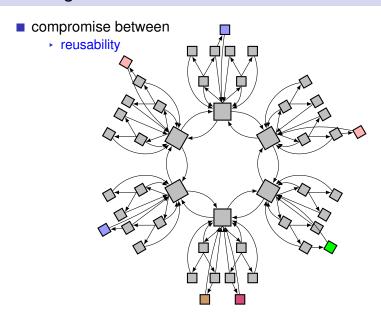
How to find "the right" boxes?

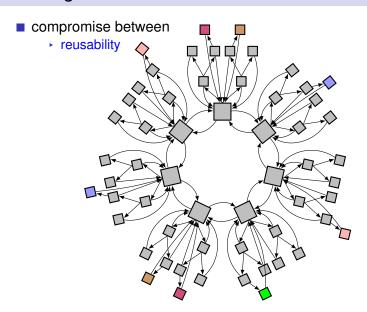
- CAV'11 database of boxes
- CAV'13 automatic discovery

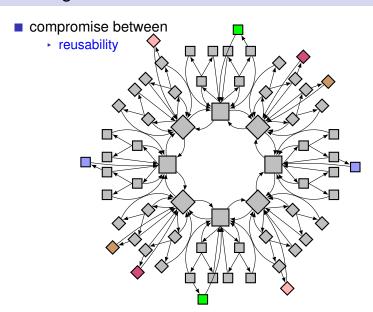
compromise between

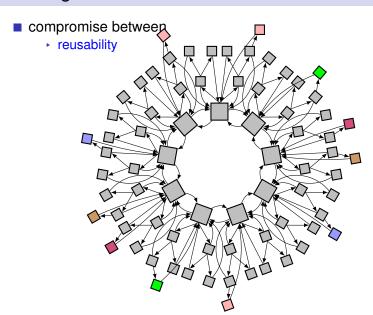
- compromise between
 - reusability







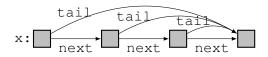




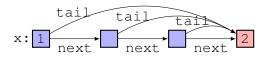
- compromise between
 - reusability

- compromise between
 - reusability
 - ability to hide cut-points

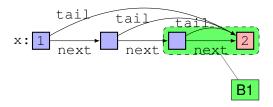
- compromise between
 - reusability
 - ability to hide cut-points



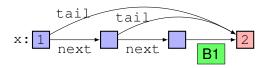
- compromise between
 - reusability
 - ability to hide cut-points



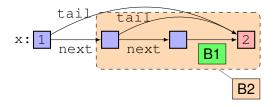
- compromise between
 - reusability
 - ability to hide cut-points



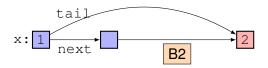
- compromise between
 - reusability
 - ability to hide cut-points



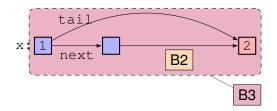
- compromise between
 - reusability
 - ability to hide cut-points



- compromise between
 - reusability
 - ability to hide cut-points

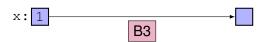


- compromise between
 - reusability
 - ability to hide cut-points



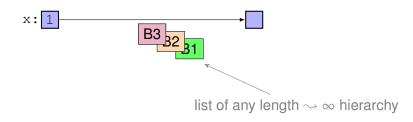
Learning of Boxes

- compromise between
 - reusability
 - ability to hide cut-points



Learning of Boxes

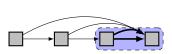
- compromise between
 - reusability
 - ability to hide cut-points

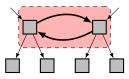


Knots

Knots

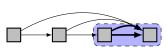
1 smallest subgraphs meaningful to be folded:

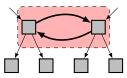




Knots

1 smallest subgraphs meaningful to be folded:





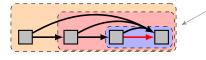
2 handle interface

Knots

1 smallest subgraphs meaningful to be folded:

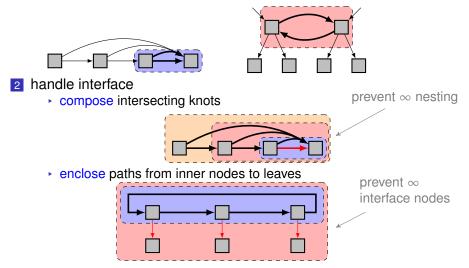
- 2 handle interface
 - compose intersecting knots

prevent ∞ nesting



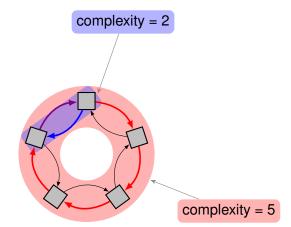
Knots

1 smallest subgraphs meaningful to be folded:

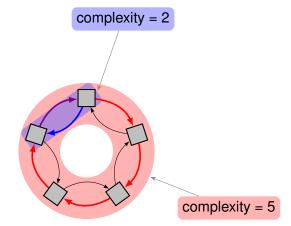


3 complexity

3 complexity



3 complexity



find basic knots with 1,2,... cut-points

Acceleration Revisited

learning and folding of boxes in the abstraction loop

Acceleration Revisited

learning and folding of boxes in the abstraction loop

The Goal

Fold boxes that will, after abstraction, appear on cycles of automata.

 \Rightarrow hide unboundedly many cut-points

Acceleration Revisited

learning and folding of boxes in the abstraction loop

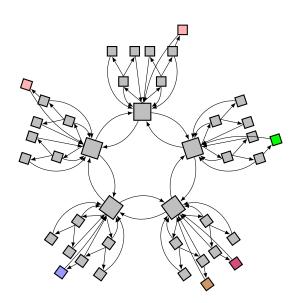
The Goal

Fold boxes that will, after abstraction, appear on cycles of automata.

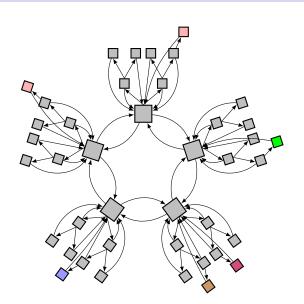
⇒ hide unboundedly many cut-points

- 1 Algorithm: Abstraction Loop
- 2 Unfold solo boxes
- 3 repeat
- 4 Abstract
- 5 Fold
- 6 until fixpoint

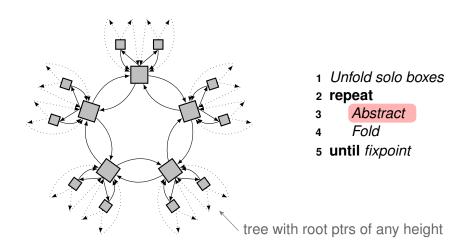
not on a cycle

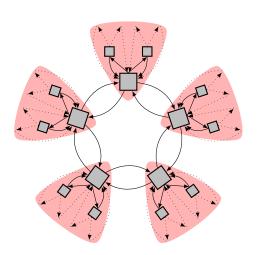


- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

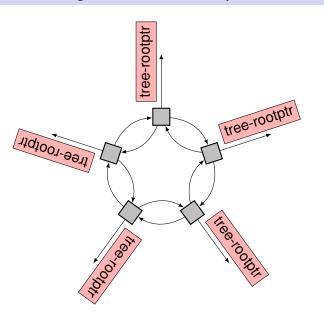


- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint





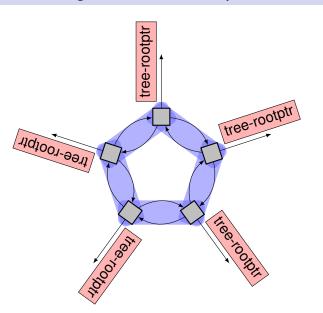
- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint



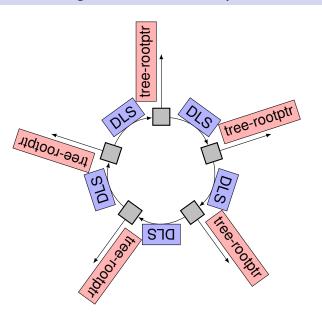
- Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint



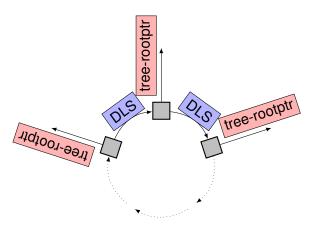
- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint



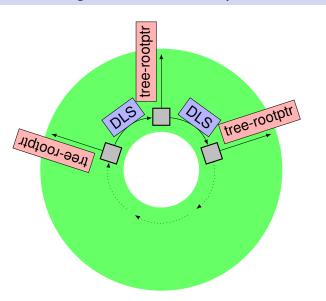
- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 **until** fixpoint



- Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint



- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint



- Unfold solo boxes
- 2 repeat
- 3 Abstract
 - Fold
- 5 until fixpoint

circular-DLL-of -trees-rootptr

- 1 Unfold solo boxes
- 2 repeat
 - 3 Abstract
 - Fold
- 5 until fixpoint

Experimental Results

■ implemented in Forester tool

Experimental Results

- implemented in Forester tool
- comparison with Predator (state-of-the-art tool for lists)
 - winner of HeapManipulation and MemorySafety of SV-COMP'13

Experimental Results

- implemented in Forester tool
- comparison with Predator (state-of-the-art tool for lists)
 - winner of HeapManipulation and MemorySafety of SV-COMP'13

Table: Results of the experiments [s]

Example	FA	Predator	Example	FA	Predator
SLL (delete)	0.04	0.04	DLL (reverse)	0.06	0.03
SLL (bubblesort)	0.04	0.03	DLL (insert)	0.07	0.05
SLL (mergesort)	0.15	0.10	DLL (insertsort ₁)	0.40	0.11
SLL (insertsort)	0.05	0.04	DLL (insertsort ₂)	0.12	0.05
SLL (reverse)	0.03	0.03	DLL of CDLLs	1.25	0.22
SLL+head	0.05	0.03	DLL+subdata	0.09	Т
SLL of 0/1 SLLs	0.03	0.11	CDLL	0.03	0.03
SLL _{Linux}	0.03	0.03	tree	0.14	Err
SLL of CSLLs	0.73	0.12	tree+parents	0.21	Т
SLL of 2CDLLs _{Linux}	0.17	0.25	tree+stack	0.08	Err
skip list ₂	0.42	Т	tree (DSW) Deutsch- Schorr-Waite	0.40	Err
skip list ₃	9.14	T	tree of CSLLs	0.42	_/ Err

Shape Analysis with Forest Automata

timeout

false positive

17/19

Shape analysis with forest automata:

fully automated

- fully automated
- very flexible framework

- fully automated
- very flexible framework
- Forester tool

- fully automated
- very flexible framework
- Forester tool
- successfully verified:
 - (singly/doubly linked (circular)) lists (of (...) lists)
 - trees
 - skip lists

- fully automated
- very flexible framework
- Forester tool
- successfully verified:
 - (singly/doubly linked (circular)) lists (of (...) lists)
 - ▶ trees
 - skip lists
- not covered here:
 - support for pointer arithmetic
 - tracking ordering relations
 - P. Abdulla, L. Holík, B. Jonsson, O. Lengál, C.Q. Tring, and T. Vojnar.
 Verification of Heap Manipulating Programs with Ordered Data by Extended Forest Automata. To appear in *Proc. of ATVA'13*.

Future work

- **CEGAR** loop
 - ▶ red-black trees, . . .

Future work

- CEGAR loop
 - red-black trees, . . .
- concurrent data structures
 - lockless skip lists, . . .

Future work

- CEGAR loop
 - red-black trees, . . .
- concurrent data structures
 - ▶ lockless skip lists, ...
- recursive boxes
 - ▶ B+ trees, ...

