
Awesome Automata
Algorithms and Applications

Ondřej Lengál

Brno University of Technology, Czech Republic

Habilitation (Scientific Council)

Automata in Computer Science

(finite) automata one of the cornerstones of computer science
▶ regex matching, parsing, state space representation, decision proc., . . .

90 V. Havlena et al.

2.2 Emerson-Lei Automata

! 𝑀

#

𝑂

𝑃, 𝑄, 𝑅

0
𝑅

𝑃

2 𝑃

𝑃

𝑃, 𝑄

1
𝑃

Inf(0) → Inf(1)
Fig. 1: Aex

A (nondeterministic) transition-based1 Emerson-Lei automaton
(TELA) over Σ is a tuple A = (Q, 𝑆,), Γ, p,Acc), where Q is
a finite set of states (we often use 𝑈 to denote |Q|), 𝑆 ⊆ Q×Σ×Q is
a set of transitions2,) ⊆ Q is the set of initial states, Γ is the set of
colours, p : 𝑆→ 2Γ is a colouring of transitions, and Acc ∈ EL(Γ).
We use 𝑉

!→ ! to denote that (𝑉, 𝑃, !) ∈ 𝑆 and sometimes treat 𝑆
as a function 𝑆 : Q × Σ → 2Q . Moreover, we extend 𝑆 to sets of
states , ⊆ Q as 𝑆(,, 𝑃) = ⋃

𝑀∈# 𝑆(𝑉, 𝑃). See Fig. 1 for an example
TELA Aex over Σ = {𝑃, 𝑄, 𝑅} with 3 colours Γ = { 0 , 1 , 2 } and
the acceptance condition Inf(0) → Inf(1). We define |A| = |Q|.

A run of A from ! ∈ Q on an input word - is an infinite sequence . : / → Q that
starts in ! and respects 𝑆, i.e., .(0) = ! and∀𝑎 ≥ 0: .(𝑎) 𝑂!→ .(𝑎+1) ∈ 𝑆. Let inf (.) ⊆ 𝑆
denote the set of transitions occurring in . infinitely often and infΓ (.) =

⋃{p(𝑏) | 𝑏 ∈
inf (.)} be the set of infinitely often occurring colours. A run . is accepting wrt an
acceptance condition 𝑐, written as . |= 𝑐, iff infΓ (.) |= 𝑐 and . is accepting in A iff
. |= Acc. The language of A, denoted as L(A), is defined as the set of words - ∈ Σ𝑃

for which there exists an accepting run in A starting with some state in). Classical
acceptance conditions can be in this more general framework described as follows (we
only provide those used later in the paper and include their abbreviations):

– Büchi (BA): Acc = Inf(0),
– co-Büchi (CBA): Acc = Fin(0),
– Generalized Büchi (GBA): Acc =

∧
0⇐ &<' Inf(3),

– Generalized co-Büchi (GCBA): Acc =
∨

0⇐ &<' Fin(3),
– Rabin:

∨
0⇐ &<' Fin(𝑒 &) → Inf(𝑓 &),

– Generalized Rabin:
∨

0⇐ &<' (Fin(𝑒 &) →
∧

0⇐ℓ<) "
Inf(𝑓 & ,ℓ)), and

– Parity3: Fin(0) → (Inf(1) ⇒ (Fin(2) → (Inf(3) ⇒ (Fin(4) → . . .)))),
where 𝑒 & ,𝑓 & ,𝑓 & ,ℓ ∈ Γ for all 3 , 𝑔. Further, we use Inf-TELA to denote a TELA where
the acceptance condition contains no Fin atoms. We also use the syntactic sugar A =
(Q, 𝑆,), 7) to denote a (transition-based) BA that would be defined using the TELA
definition above as (Q, 𝑆,), { 0 }, {𝑂 ↦→ ∅ | 𝑂 ∈ 𝑆 \ 7} ∪ {𝑂 ↦→ { 0 } | 𝑂 ∈ 7}, Inf (0)).

2.3 Run DAGs
In this section, we recall the terminology from [19] (which is a minor modification of the
terminology from [26] and [38]) used heavily in the paper. Let A = (Q, 𝑆,), Γ, p,Acc)
be a TELA. We fix the definition of the run DAG of A over a word - to be a DAG
(directed acyclic graph) G𝑂 = (𝑖 , 𝑗) of vertices 𝑖 and edges 𝑗 where

1 We only consider transition-based acceptance in order to avoid cluttering the paper by dealing
with accepting states and accepting transitions. Extending our approach to state/transition-
based (or just state-based) automata is straightforward.

2 Note that there is also a more general definition of TELAs with 𝑆 ⊆ Q × Σ × 2Γ × Q; in this
paper, we use the simpler one.

3 We consider the so-called parity min odd condition; any parity condition from the set
{min,max} × {even, odd} can be easily translated to it.

I am addressing two questions:
Q1: How to effectively use automata in applications?

How can various automata be used for modelling different concepts?
▶ memory states, system configurations, . . .

Which automata model to use?
▶ automata over finite/infinite words/trees/graphs/. . .

Q2: How to handle automata efficiently?
many operations are hard (e.g., inclusion/equivalence)
▶ PSPACE/EXPTIME/UNDEC for finite-state word/tree/weighted automata
▶ ; practical algorithms

how to achieve a compact representation?
▶ e.g., adding bounded counters, registers, colours, synchronization, . . .

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 2 / 9

Automata in Computer Science

(finite) automata one of the cornerstones of computer science
▶ regex matching, parsing, state space representation, decision proc., . . .

90 V. Havlena et al.

2.2 Emerson-Lei Automata

! 𝑀

#

𝑂

𝑃, 𝑄, 𝑅

0
𝑅

𝑃

2 𝑃

𝑃

𝑃, 𝑄

1
𝑃

Inf(0) → Inf(1)
Fig. 1: Aex

A (nondeterministic) transition-based1 Emerson-Lei automaton
(TELA) over Σ is a tuple A = (Q, 𝑆,), Γ, p,Acc), where Q is
a finite set of states (we often use 𝑈 to denote |Q|), 𝑆 ⊆ Q×Σ×Q is
a set of transitions2,) ⊆ Q is the set of initial states, Γ is the set of
colours, p : 𝑆→ 2Γ is a colouring of transitions, and Acc ∈ EL(Γ).
We use 𝑉

!→ ! to denote that (𝑉, 𝑃, !) ∈ 𝑆 and sometimes treat 𝑆
as a function 𝑆 : Q × Σ → 2Q . Moreover, we extend 𝑆 to sets of
states , ⊆ Q as 𝑆(,, 𝑃) = ⋃

𝑀∈# 𝑆(𝑉, 𝑃). See Fig. 1 for an example
TELA Aex over Σ = {𝑃, 𝑄, 𝑅} with 3 colours Γ = { 0 , 1 , 2 } and
the acceptance condition Inf(0) → Inf(1). We define |A| = |Q|.

A run of A from ! ∈ Q on an input word - is an infinite sequence . : / → Q that
starts in ! and respects 𝑆, i.e., .(0) = ! and∀𝑎 ≥ 0: .(𝑎) 𝑂!→ .(𝑎+1) ∈ 𝑆. Let inf (.) ⊆ 𝑆
denote the set of transitions occurring in . infinitely often and infΓ (.) =

⋃{p(𝑏) | 𝑏 ∈
inf (.)} be the set of infinitely often occurring colours. A run . is accepting wrt an
acceptance condition 𝑐, written as . |= 𝑐, iff infΓ (.) |= 𝑐 and . is accepting in A iff
. |= Acc. The language of A, denoted as L(A), is defined as the set of words - ∈ Σ𝑃

for which there exists an accepting run in A starting with some state in). Classical
acceptance conditions can be in this more general framework described as follows (we
only provide those used later in the paper and include their abbreviations):

– Büchi (BA): Acc = Inf(0),
– co-Büchi (CBA): Acc = Fin(0),
– Generalized Büchi (GBA): Acc =

∧
0⇐ &<' Inf(3),

– Generalized co-Büchi (GCBA): Acc =
∨

0⇐ &<' Fin(3),
– Rabin:

∨
0⇐ &<' Fin(𝑒 &) → Inf(𝑓 &),

– Generalized Rabin:
∨

0⇐ &<' (Fin(𝑒 &) →
∧

0⇐ℓ<) "
Inf(𝑓 & ,ℓ)), and

– Parity3: Fin(0) → (Inf(1) ⇒ (Fin(2) → (Inf(3) ⇒ (Fin(4) → . . .)))),
where 𝑒 & ,𝑓 & ,𝑓 & ,ℓ ∈ Γ for all 3 , 𝑔. Further, we use Inf-TELA to denote a TELA where
the acceptance condition contains no Fin atoms. We also use the syntactic sugar A =
(Q, 𝑆,), 7) to denote a (transition-based) BA that would be defined using the TELA
definition above as (Q, 𝑆,), { 0 }, {𝑂 ↦→ ∅ | 𝑂 ∈ 𝑆 \ 7} ∪ {𝑂 ↦→ { 0 } | 𝑂 ∈ 7}, Inf (0)).

2.3 Run DAGs
In this section, we recall the terminology from [19] (which is a minor modification of the
terminology from [26] and [38]) used heavily in the paper. Let A = (Q, 𝑆,), Γ, p,Acc)
be a TELA. We fix the definition of the run DAG of A over a word - to be a DAG
(directed acyclic graph) G𝑂 = (𝑖 , 𝑗) of vertices 𝑖 and edges 𝑗 where

1 We only consider transition-based acceptance in order to avoid cluttering the paper by dealing
with accepting states and accepting transitions. Extending our approach to state/transition-
based (or just state-based) automata is straightforward.

2 Note that there is also a more general definition of TELAs with 𝑆 ⊆ Q × Σ × 2Γ × Q; in this
paper, we use the simpler one.

3 We consider the so-called parity min odd condition; any parity condition from the set
{min,max} × {even, odd} can be easily translated to it.

I am addressing two questions:
Q1: How to effectively use automata in applications?

How can various automata be used for modelling different concepts?
▶ memory states, system configurations, . . .

Which automata model to use?
▶ automata over finite/infinite words/trees/graphs/. . .

Q2: How to handle automata efficiently?
many operations are hard (e.g., inclusion/equivalence)
▶ PSPACE/EXPTIME/UNDEC for finite-state word/tree/weighted automata
▶ ; practical algorithms

how to achieve a compact representation?
▶ e.g., adding bounded counters, registers, colours, synchronization, . . .

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 2 / 9

Automata in Computer Science

(finite) automata one of the cornerstones of computer science
▶ regex matching, parsing, state space representation, decision proc., . . .

90 V. Havlena et al.

2.2 Emerson-Lei Automata

! 𝑀

#

𝑂

𝑃, 𝑄, 𝑅

0
𝑅

𝑃

2 𝑃

𝑃

𝑃, 𝑄

1
𝑃

Inf(0) → Inf(1)
Fig. 1: Aex

A (nondeterministic) transition-based1 Emerson-Lei automaton
(TELA) over Σ is a tuple A = (Q, 𝑆,), Γ, p,Acc), where Q is
a finite set of states (we often use 𝑈 to denote |Q|), 𝑆 ⊆ Q×Σ×Q is
a set of transitions2,) ⊆ Q is the set of initial states, Γ is the set of
colours, p : 𝑆→ 2Γ is a colouring of transitions, and Acc ∈ EL(Γ).
We use 𝑉

!→ ! to denote that (𝑉, 𝑃, !) ∈ 𝑆 and sometimes treat 𝑆
as a function 𝑆 : Q × Σ → 2Q . Moreover, we extend 𝑆 to sets of
states , ⊆ Q as 𝑆(,, 𝑃) = ⋃

𝑀∈# 𝑆(𝑉, 𝑃). See Fig. 1 for an example
TELA Aex over Σ = {𝑃, 𝑄, 𝑅} with 3 colours Γ = { 0 , 1 , 2 } and
the acceptance condition Inf(0) → Inf(1). We define |A| = |Q|.

A run of A from ! ∈ Q on an input word - is an infinite sequence . : / → Q that
starts in ! and respects 𝑆, i.e., .(0) = ! and∀𝑎 ≥ 0: .(𝑎) 𝑂!→ .(𝑎+1) ∈ 𝑆. Let inf (.) ⊆ 𝑆
denote the set of transitions occurring in . infinitely often and infΓ (.) =

⋃{p(𝑏) | 𝑏 ∈
inf (.)} be the set of infinitely often occurring colours. A run . is accepting wrt an
acceptance condition 𝑐, written as . |= 𝑐, iff infΓ (.) |= 𝑐 and . is accepting in A iff
. |= Acc. The language of A, denoted as L(A), is defined as the set of words - ∈ Σ𝑃

for which there exists an accepting run in A starting with some state in). Classical
acceptance conditions can be in this more general framework described as follows (we
only provide those used later in the paper and include their abbreviations):

– Büchi (BA): Acc = Inf(0),
– co-Büchi (CBA): Acc = Fin(0),
– Generalized Büchi (GBA): Acc =

∧
0⇐ &<' Inf(3),

– Generalized co-Büchi (GCBA): Acc =
∨

0⇐ &<' Fin(3),
– Rabin:

∨
0⇐ &<' Fin(𝑒 &) → Inf(𝑓 &),

– Generalized Rabin:
∨

0⇐ &<' (Fin(𝑒 &) →
∧

0⇐ℓ<) "
Inf(𝑓 & ,ℓ)), and

– Parity3: Fin(0) → (Inf(1) ⇒ (Fin(2) → (Inf(3) ⇒ (Fin(4) → . . .)))),
where 𝑒 & ,𝑓 & ,𝑓 & ,ℓ ∈ Γ for all 3 , 𝑔. Further, we use Inf-TELA to denote a TELA where
the acceptance condition contains no Fin atoms. We also use the syntactic sugar A =
(Q, 𝑆,), 7) to denote a (transition-based) BA that would be defined using the TELA
definition above as (Q, 𝑆,), { 0 }, {𝑂 ↦→ ∅ | 𝑂 ∈ 𝑆 \ 7} ∪ {𝑂 ↦→ { 0 } | 𝑂 ∈ 7}, Inf (0)).

2.3 Run DAGs
In this section, we recall the terminology from [19] (which is a minor modification of the
terminology from [26] and [38]) used heavily in the paper. Let A = (Q, 𝑆,), Γ, p,Acc)
be a TELA. We fix the definition of the run DAG of A over a word - to be a DAG
(directed acyclic graph) G𝑂 = (𝑖 , 𝑗) of vertices 𝑖 and edges 𝑗 where

1 We only consider transition-based acceptance in order to avoid cluttering the paper by dealing
with accepting states and accepting transitions. Extending our approach to state/transition-
based (or just state-based) automata is straightforward.

2 Note that there is also a more general definition of TELAs with 𝑆 ⊆ Q × Σ × 2Γ × Q; in this
paper, we use the simpler one.

3 We consider the so-called parity min odd condition; any parity condition from the set
{min,max} × {even, odd} can be easily translated to it.

I am addressing two questions:
Q1: How to effectively use automata in applications?

How can various automata be used for modelling different concepts?
▶ memory states, system configurations, . . .

Which automata model to use?
▶ automata over finite/infinite words/trees/graphs/. . .

Q2: How to handle automata efficiently?
many operations are hard (e.g., inclusion/equivalence)
▶ PSPACE/EXPTIME/UNDEC for finite-state word/tree/weighted automata
▶ ; practical algorithms

how to achieve a compact representation?
▶ e.g., adding bounded counters, registers, colours, synchronization, . . .

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 2 / 9

Büchi Automata Complementation

Büchi automata — finite-state automata over infinite words

Initial Deterministic Partition Blocks

Block is deterministic and can be reached only deterministically
Based on complementation of deterministic BAs into co-BAs
Fin acceptance condition

p q

P0 P1
a•

b

a

b•
p p →, → p + q p q, q0 1

a

1
b b

10
a

Fin(0) ↑ Inf(1)

Havlena, Lengál, Li, Šmahlı́ková, Turrini Modular BA Complementation TACAS’23 11 / 19

often used in formal methods:
▶ modelling/model checking of reactive systems, deciding logics, program termination, . . .

complementation: basic operation
▶ implementation of negation in decision procedures and model checking
▶ removal of traces in program verification
▶ underlying operation for inclusion checking
▶ complexity: O((0.76n)n)

significantly improved the SOTA in Büchi complementation
▶ rank-based [APLAS’19,CONCUR’21,TACAS’22,CAV’22]
▶ elevator automata [TACAS’22,TACAS’23]
▶ mix-and-match complementation algorithm [TACAS’23]
▶ complementation of Emerson-Lei automata [FoSSaCS’25]

(a) Ranker vs Schewe (b) Ranker vs RankerOld

Fig. 10: Comparison of the state space generated by our optimizations and other rank-
based procedures (horizontal and vertical dashed lines represent timeouts). Blue data
points are from random and red data points are from LTL. Axes are logarithmic.

generated via the Tabakov-Vardi approach [39], starting from 15 states and with var-
ious different parameters; (ii) LTL with 1,721 BAs over larger alphabets (up to 128
symbols) used in [4], which were obtained from LTL formulae from literature (221) or
randomly generated (1,500). We preprocessed the automata usingRabi- [30] and Sp/-’s
autfilt (using the --high simplification level), transformed them to state-based ac-
ceptance BAs (if they were not already), and converted to the HOA format [2]. From
this set, we removed automata that were (i) semi-deterministic, (ii) inherently weak,
(iii) unambiguous, or (iv) have an empty language, since for these automata types there
exist more efficient complementation procedures than for unrestricted BAs [5,4,6,28].
In the end, we were left with 2,592 (random) and 414 (LTL) hard automata. We use all
to denote their union (3,006 BAs). Of these hard automata, 458 were elevator automata.

6.1 Generated State Space

In our first experiment, we evaluated the effectiveness of our heuristics for pruning the
generated state space by comparing the sizes of complemented BAs without postprocess-
ing. This use case is directed towards applications where postprocessing is irrelevant,
such as inclusion or equivalence checking of BAs.

We focused on a comparison with two less optimized versions of the rank-based com-
plementation procedure: Schewe (the version “Reduced Average Outdegree” from [37]
implemented in G/al under -m rank -tr -ro) and its optimization RankerOld. The
scatter plots in Fig. 10 compare the numbers of states of automata generated by Ranker
and the other algorithms and the upper part of Table 1 gives summary statistics. Observe
that our optimizations from this paper drastically reduced the generated search space
compared with both Schewe and RankerOld (the mean for Schewe is lower than for
RankerOld due to its much higher number of timeouts); from Fig. 10b we can see that
the improvement was in many cases exponential even when compared with our previous
optimizations in RankerOld. The median (which is a more meaningful indicator with
the presence of timeouts) decreased by 44 % w.r.t. RankerOld, and we also reduced the

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 131

together with V. Havlena, B. Šmahlı́ková, Y. Li, A. Turrini, O. Alexaj, Y. Chen

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 3 / 9

Büchi Automata Complementation

Büchi automata — finite-state automata over infinite words

Initial Deterministic Partition Blocks

Block is deterministic and can be reached only deterministically
Based on complementation of deterministic BAs into co-BAs
Fin acceptance condition

p q

P0 P1
a•

b

a

b•
p p →, → p + q p q, q0 1

a

1
b b

10
a

Fin(0) ↑ Inf(1)

Havlena, Lengál, Li, Šmahlı́ková, Turrini Modular BA Complementation TACAS’23 11 / 19

often used in formal methods:
▶ modelling/model checking of reactive systems, deciding logics, program termination, . . .

complementation: basic operation
▶ implementation of negation in decision procedures and model checking
▶ removal of traces in program verification
▶ underlying operation for inclusion checking
▶ complexity: O((0.76n)n)

significantly improved the SOTA in Büchi complementation
▶ rank-based [APLAS’19,CONCUR’21,TACAS’22,CAV’22]
▶ elevator automata [TACAS’22,TACAS’23]
▶ mix-and-match complementation algorithm [TACAS’23]
▶ complementation of Emerson-Lei automata [FoSSaCS’25]

(a) Ranker vs Schewe (b) Ranker vs RankerOld

Fig. 10: Comparison of the state space generated by our optimizations and other rank-
based procedures (horizontal and vertical dashed lines represent timeouts). Blue data
points are from random and red data points are from LTL. Axes are logarithmic.

generated via the Tabakov-Vardi approach [39], starting from 15 states and with var-
ious different parameters; (ii) LTL with 1,721 BAs over larger alphabets (up to 128
symbols) used in [4], which were obtained from LTL formulae from literature (221) or
randomly generated (1,500). We preprocessed the automata usingRabi- [30] and Sp/-’s
autfilt (using the --high simplification level), transformed them to state-based ac-
ceptance BAs (if they were not already), and converted to the HOA format [2]. From
this set, we removed automata that were (i) semi-deterministic, (ii) inherently weak,
(iii) unambiguous, or (iv) have an empty language, since for these automata types there
exist more efficient complementation procedures than for unrestricted BAs [5,4,6,28].
In the end, we were left with 2,592 (random) and 414 (LTL) hard automata. We use all
to denote their union (3,006 BAs). Of these hard automata, 458 were elevator automata.

6.1 Generated State Space

In our first experiment, we evaluated the effectiveness of our heuristics for pruning the
generated state space by comparing the sizes of complemented BAs without postprocess-
ing. This use case is directed towards applications where postprocessing is irrelevant,
such as inclusion or equivalence checking of BAs.

We focused on a comparison with two less optimized versions of the rank-based com-
plementation procedure: Schewe (the version “Reduced Average Outdegree” from [37]
implemented in G/al under -m rank -tr -ro) and its optimization RankerOld. The
scatter plots in Fig. 10 compare the numbers of states of automata generated by Ranker
and the other algorithms and the upper part of Table 1 gives summary statistics. Observe
that our optimizations from this paper drastically reduced the generated search space
compared with both Schewe and RankerOld (the mean for Schewe is lower than for
RankerOld due to its much higher number of timeouts); from Fig. 10b we can see that
the improvement was in many cases exponential even when compared with our previous
optimizations in RankerOld. The median (which is a more meaningful indicator with
the presence of timeouts) decreased by 44 % w.r.t. RankerOld, and we also reduced the

Sky Is Not the Limit: Tighter Rank Bounds in Büchi Automata Complementation 131

together with V. Havlena, B. Šmahlı́ková, Y. Li, A. Turrini, O. Alexaj, Y. Chen
Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 3 / 9

Automata-Logic Connection

finite word/tree automata used for deciding certain logics
▶ monadic second-order logics over finite/infinite words/trees
▶ first/second-order logics over automatic structures
▶ first-order Presburger arithmetic (linear integer arithmetic)

Automata Terms in a Lazy WSkS Decision Procedure 975

(a) Positions assigned to the variable X (b) Encoding of ν into a tree τν ; a node at a position p has
the value x y where x = 1 if and only if τν (p) maps X
to 1 and y = 1 if and only if τν (p) maps Y to 1.

Fig. 2 An example of an assignment ν to a pair of variables {X , Y } such that ν(X) = {LR,R,RLR,RR} and
ν(Y) = {ε,L,LL,R,RR} and its encoding into a tree

from Y shifted to their right child. Formulae are constructed from atoms using the logical
connectives ∧,∨,¬, and the quantifier ∃X where X is a finite set of variables (we write ∃X
when X is the singleton set {X}). Other connectives (such as⇒ or ∀) and predicates (such
as the predicate Sing(X) for the singleton set X) can be obtained as syntactic sugar (e.g., we
can define the emptiness predicate X = ∅ as ∀Y . X ⊆ Y and the singleton predicate Sing(X)
as ∀Y . Y ⊆ X ⇒ (Y = X ∨ Y = ∅)).

A valuation of a set of variables X is an assignment ν : X → 2{L,R}
∗
of X to finite subsets

of {L,R}∗. We use ν * {X +→ S} to denote a valuation obtained from ν by changing the
assignment of X to S. A model of a WS2S formula ϕ(X) with the set of free variables X is
a valuation of X for which the formula is satisfied, written ν |, ϕ. Satisfaction of formulae
is defined as follows:

(i) ν |, X ⊆ Y if and only if ν(X) is a subset of ν(Y),
(ii) ν |, X = SL(Y) if and only if ν(X) is {p.L | p ∈ ν(Y)},
(iii) ν |, X = SR(Y) if and only if ν(X) is {p.R | p ∈ ν(Y)},
(iv) ν |, ¬ϕ if and only if not ν |, ϕ,
(v) ν |, ϕ ∧ ψ if and only if ν |, ϕ and ν |, ψ ,
(vi) ν |, ϕ ∨ ψ if and only if ν |, ϕ or ν |, ψ , and
(vii) ν |, ∃X . ϕ if and only if there is a finite S ⊆ {L,R}∗ such that ν * {X +→ S} |, ϕ.

A formula ϕ is valid, written |, ϕ, if and only if all assignments of its free variables are its
models, and satisfiable if it has a model. Without loss of generality, we assume that each
variable in a formula either has only free occurrences or is quantified exactly once; we denote
the set of (free and quantified) variables occurring in a formula ϕ as Vars(ϕ).

2.3 RepresentingModels as Trees

We fix a formula ϕ with variables Vars(ϕ) = X. A symbol ξ over X is a (total) function
ξ : X → {0, 1}, e.g., ξ = {X +→ 0, Y +→ 1} is a symbol over X = {X , Y }. We use ΣX to
denote the set of all symbols over X and 0 to denote the symbol mapping all variables in X
to 0, i.e., 0 = {X +→ 0 | X ∈ X}.

A finite assignment ν : X → 2{L,R}
∗
of ϕ’s variables can be encoded as a finite tree τν

of symbols over X where every position p ∈ {L,R}∗ satisfies the following conditions:
(a) if p ∈ ν(X), then τν(p) contains {X +→ 1}, and (b) if p /∈ ν(X), then either τν(p)

123

complexity: 2-NEXP-hard, TOWER-complete, UNDEC

; powerful heuristics necessary

new techniques of symbolic reasoning over automata-based representation
▶ nested antichains for weak monadic second-order logic WS1S [TACAS’15]
▶ lazy automata techniques for WS1S/WSkS [TACAS’17,Acta’19,CADE’19,JAR’21]
▶ algebraic reasoning with automata for Presburger arithmetic [CAV’24]

• solver Amaya (several medals in NIA category of SMT-COMP’24)

together with L. Holı́k, V. Havlena, M. Hečko, T. Fiedor, T. Vojnar, P. Habermehl

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 4 / 9

Automata-Logic Connection

finite word/tree automata used for deciding certain logics
▶ monadic second-order logics over finite/infinite words/trees
▶ first/second-order logics over automatic structures
▶ first-order Presburger arithmetic (linear integer arithmetic)

Automata Terms in a Lazy WSkS Decision Procedure 975

(a) Positions assigned to the variable X (b) Encoding of ν into a tree τν ; a node at a position p has
the value x y where x = 1 if and only if τν (p) maps X
to 1 and y = 1 if and only if τν (p) maps Y to 1.

Fig. 2 An example of an assignment ν to a pair of variables {X , Y } such that ν(X) = {LR,R,RLR,RR} and
ν(Y) = {ε,L,LL,R,RR} and its encoding into a tree

from Y shifted to their right child. Formulae are constructed from atoms using the logical
connectives ∧,∨,¬, and the quantifier ∃X where X is a finite set of variables (we write ∃X
when X is the singleton set {X}). Other connectives (such as⇒ or ∀) and predicates (such
as the predicate Sing(X) for the singleton set X) can be obtained as syntactic sugar (e.g., we
can define the emptiness predicate X = ∅ as ∀Y . X ⊆ Y and the singleton predicate Sing(X)
as ∀Y . Y ⊆ X ⇒ (Y = X ∨ Y = ∅)).

A valuation of a set of variables X is an assignment ν : X → 2{L,R}
∗
of X to finite subsets

of {L,R}∗. We use ν * {X +→ S} to denote a valuation obtained from ν by changing the
assignment of X to S. A model of a WS2S formula ϕ(X) with the set of free variables X is
a valuation of X for which the formula is satisfied, written ν |, ϕ. Satisfaction of formulae
is defined as follows:

(i) ν |, X ⊆ Y if and only if ν(X) is a subset of ν(Y),
(ii) ν |, X = SL(Y) if and only if ν(X) is {p.L | p ∈ ν(Y)},
(iii) ν |, X = SR(Y) if and only if ν(X) is {p.R | p ∈ ν(Y)},
(iv) ν |, ¬ϕ if and only if not ν |, ϕ,
(v) ν |, ϕ ∧ ψ if and only if ν |, ϕ and ν |, ψ ,
(vi) ν |, ϕ ∨ ψ if and only if ν |, ϕ or ν |, ψ , and
(vii) ν |, ∃X . ϕ if and only if there is a finite S ⊆ {L,R}∗ such that ν * {X +→ S} |, ϕ.

A formula ϕ is valid, written |, ϕ, if and only if all assignments of its free variables are its
models, and satisfiable if it has a model. Without loss of generality, we assume that each
variable in a formula either has only free occurrences or is quantified exactly once; we denote
the set of (free and quantified) variables occurring in a formula ϕ as Vars(ϕ).

2.3 RepresentingModels as Trees

We fix a formula ϕ with variables Vars(ϕ) = X. A symbol ξ over X is a (total) function
ξ : X → {0, 1}, e.g., ξ = {X +→ 0, Y +→ 1} is a symbol over X = {X , Y }. We use ΣX to
denote the set of all symbols over X and 0 to denote the symbol mapping all variables in X
to 0, i.e., 0 = {X +→ 0 | X ∈ X}.

A finite assignment ν : X → 2{L,R}
∗
of ϕ’s variables can be encoded as a finite tree τν

of symbols over X where every position p ∈ {L,R}∗ satisfies the following conditions:
(a) if p ∈ ν(X), then τν(p) contains {X +→ 1}, and (b) if p /∈ ν(X), then either τν(p)

123

complexity: 2-NEXP-hard, TOWER-complete, UNDEC

; powerful heuristics necessary
new techniques of symbolic reasoning over automata-based representation
▶ nested antichains for weak monadic second-order logic WS1S [TACAS’15]
▶ lazy automata techniques for WS1S/WSkS [TACAS’17,Acta’19,CADE’19,JAR’21]
▶ algebraic reasoning with automata for Presburger arithmetic [CAV’24]

• solver Amaya (several medals in NIA category of SMT-COMP’24)

together with L. Holı́k, V. Havlena, M. Hečko, T. Fiedor, T. Vojnar, P. Habermehl
Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 4 / 9

Theory of Strings
Satisfiability of formulae over string constraints such as:

x = yz︸ ︷︷ ︸
equations

∧
disequalities︷ ︸︸ ︷
yz ̸= ua ∧ x ∈ (ab)∗a+(b|c)︸ ︷︷ ︸

regular constraints

∧
length constraints︷ ︸︸ ︷

|xy | = 2|uv |+ 1 ∧ ¬contains(uxz, zbcx)︸ ︷︷ ︸
more complex operations

Reasoning about string manipulation in programs
▶ detecting security vulnerabilities, analysis of scripting languages, . . .

automata-based string solving
▶ compact encoding of constraints obtained in solving [APLAS’20,JSS’23]
▶ stabilization-based string solving [FM’23,OOPSLA’23,TACAS’24,SAT’24,TACAS’25]

• solver Z3-Noodler (winner of Strings category of SMT-COMP’24 under all scoring schemes)
▶ automata-based handling of position constraints [PLDI’25]

together with L. Holı́k, V. Havlena, J. Sı́č, D. Chocholatý, M. Hečko, F. Blahoudek, Y. Chen

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 5 / 9

Theory of Strings
Satisfiability of formulae over string constraints such as:

x = yz︸ ︷︷ ︸
equations

∧
disequalities︷ ︸︸ ︷
yz ̸= ua ∧ x ∈ (ab)∗a+(b|c)︸ ︷︷ ︸

regular constraints

∧
length constraints︷ ︸︸ ︷

|xy | = 2|uv |+ 1 ∧ ¬contains(uxz, zbcx)︸ ︷︷ ︸
more complex operations

Reasoning about string manipulation in programs
▶ detecting security vulnerabilities, analysis of scripting languages, . . .

automata-based string solving
▶ compact encoding of constraints obtained in solving [APLAS’20,JSS’23]
▶ stabilization-based string solving [FM’23,OOPSLA’23,TACAS’24,SAT’24,TACAS’25]

• solver Z3-Noodler (winner of Strings category of SMT-COMP’24 under all scoring schemes)
▶ automata-based handling of position constraints [PLDI’25]

together with L. Holı́k, V. Havlena, J. Sı́č, D. Chocholatý, M. Hečko, F. Blahoudek, Y. Chen

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 5 / 9

Analysis of Quantum Circuits
quantum computation getting more traction
quantum circuits notoriously hard to reason about
current techniques: imprecise, highly manual, or do not scale

Classical vs. Quantum Circuits — State
Classical

x(0) x →

y(1)
y →

z(1)
z →

x → y → z → ω

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Quantum
x(0) H x →

y(0) y →

z(0) H S z →

x → y → z → amp

0 0 0 !
0 0 1 0
0 1 0 0
0 1 1 !
1 0 0 ! i
1 0 1 0
1 1 0 0
1 1 1 ! i

amp(εx) → C

Pr(εx) = |x |2

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 5 / 37

new tree automata-based analysis framework [PLDI’23]
▶ uses tree automata (TAs) for encoding sets of quantum states
▶ efficient fully automated verification of a significant class of

quantum circuits
▶ stimulated development of novel formal models and algorithms

• level-synchronized TAs: more compact encoding, parameterized
verification of circuits with bounded superpositions [POPL’25]

• symbolic (LS)TAs: verification for any amplitude values, while
loops, simulation acceleration [CAV’23,ICCAD’24,TACAS’25]

• weighted synchronized TAs: parameterized verification of circuits
with unbounded superposition degree [WIP]

Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!
tree automata
↭ finite-state automata representing sets of finite trees
↭ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set





•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1





Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 15 / 37

Commun. ACM Research Highlight (June 2025)
▶ “An Automata-Based Framework for Verification and Bug Hunting in Quantum Circuits”

together with Y. Chen, S. Jobranová, W. Tsai, K. Chung, R. Jiang, T. Chen, J. Lin, L. Holı́k, P. Abdulla . . .

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 6 / 9

Analysis of Quantum Circuits
quantum computation getting more traction
quantum circuits notoriously hard to reason about
current techniques: imprecise, highly manual, or do not scale

Classical vs. Quantum Circuits — State
Classical

x(0) x →

y(1)
y →

z(1)
z →

x → y → z → ω

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Quantum
x(0) H x →

y(0) y →

z(0) H S z →

x → y → z → amp

0 0 0 !
0 0 1 0
0 1 0 0
0 1 1 !
1 0 0 ! i
1 0 1 0
1 1 0 0
1 1 1 ! i

amp(εx) → C

Pr(εx) = |x |2

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 5 / 37

new tree automata-based analysis framework [PLDI’23]
▶ uses tree automata (TAs) for encoding sets of quantum states
▶ efficient fully automated verification of a significant class of

quantum circuits
▶ stimulated development of novel formal models and algorithms

• level-synchronized TAs: more compact encoding, parameterized
verification of circuits with bounded superpositions [POPL’25]

• symbolic (LS)TAs: verification for any amplitude values, while
loops, simulation acceleration [CAV’23,ICCAD’24,TACAS’25]

• weighted synchronized TAs: parameterized verification of circuits
with unbounded superposition degree [WIP]

Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!
tree automata
↭ finite-state automata representing sets of finite trees
↭ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set





•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1





Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 15 / 37

Commun. ACM Research Highlight (June 2025)
▶ “An Automata-Based Framework for Verification and Bug Hunting in Quantum Circuits”

together with Y. Chen, S. Jobranová, W. Tsai, K. Chung, R. Jiang, T. Chen, J. Lin, L. Holı́k, P. Abdulla . . .

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 6 / 9

Analysis of Quantum Circuits
quantum computation getting more traction
quantum circuits notoriously hard to reason about
current techniques: imprecise, highly manual, or do not scale

Classical vs. Quantum Circuits — State
Classical

x(0) x →

y(1)
y →

z(1)
z →

x → y → z → ω

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Quantum
x(0) H x →

y(0) y →

z(0) H S z →

x → y → z → amp

0 0 0 !
0 0 1 0
0 1 0 0
0 1 1 !
1 0 0 ! i
1 0 1 0
1 1 0 0
1 1 1 ! i

amp(εx) → C

Pr(εx) = |x |2

Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 5 / 37

new tree automata-based analysis framework [PLDI’23]
▶ uses tree automata (TAs) for encoding sets of quantum states
▶ efficient fully automated verification of a significant class of

quantum circuits
▶ stimulated development of novel formal models and algorithms

• level-synchronized TAs: more compact encoding, parameterized
verification of circuits with bounded superpositions [POPL’25]

• symbolic (LS)TAs: verification for any amplitude values, while
loops, simulation acceleration [CAV’23,ICCAD’24,TACAS’25]

• weighted synchronized TAs: parameterized verification of circuits
with unbounded superposition degree [WIP]

Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!
tree automata
↭ finite-state automata representing sets of finite trees
↭ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set





•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1





Ondřej Lengál Simulation and Analysis of Quantum Circuits FIT BUT 15 / 37

Commun. ACM Research Highlight (June 2025)
▶ “An Automata-Based Framework for Verification and Bug Hunting in Quantum Circuits”

together with Y. Chen, S. Jobranová, W. Tsai, K. Chung, R. Jiang, T. Chen, J. Lin, L. Holı́k, P. Abdulla . . .
Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 6 / 9

Finite Automata in Network Intrusion Detection

regexes used to describe network intrusions ; automata
> 100 Gbps networks: HW acceleration needed ; FPGAs
limited resources!

exact automata reductions insufficient
; approximate automata reduction
▶ automata reduction w.r.t. network traffic model [TACAS’18,STTT’20]

• reduction by 50 % states with 8.7 × 10−8 error
▶ automata reduction w.r.t. network traffic sample and multi-stage architecture [FCCM’19]

• 17 Gbps ; 200 Gbps (0 % Err) ; 400 Gbps (4 % Err)

V. Havlena, T. Vojnar, L. Holı́k, M. Češka, J. Semrič, J. Kořenek, D. Matoušek, J. Matoušek

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 7 / 9

Finite Automata in Network Intrusion Detection

regexes used to describe network intrusions ; automata
> 100 Gbps networks: HW acceleration needed ; FPGAs
limited resources!

exact automata reductions insufficient
; approximate automata reduction
▶ automata reduction w.r.t. network traffic model [TACAS’18,STTT’20]

• reduction by 50 % states with 8.7 × 10−8 error
▶ automata reduction w.r.t. network traffic sample and multi-stage architecture [FCCM’19]

• 17 Gbps ; 200 Gbps (0 % Err) ; 400 Gbps (4 % Err)

V. Havlena, T. Vojnar, L. Holı́k, M. Češka, J. Semrič, J. Kořenek, D. Matoušek, J. Matoušek

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 7 / 9

Main Numerical Indicators (1/2)

54 publications at international conferences and journals
▶ CORE A*: 12, CORE A: 27, CORE B: 5, unranked: 3
▶ SJR Q1: 2, SJR Q2: 5

256 citations (SCOPUS w/o self-citations from all authors)
h-index 11 (SCOPUS)
26× PC member of conferences/workshops
▶ e.g. CAV’25, DATE’24, ATVA’19/20/23, SPIN’24/25, . . .

124 paper reviews
3× (co-)charing artifact evaluation committees
▶ TACAS’19, ATVA’19, ESOP/FASE/FoSSaCS’25

1× PC co-chair (VMCAI’26)

Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 8 / 9

Main Numerical Indicators (2/2)
4 best/distinguished papers at A/A* conferences
▶ [CADE’19,FM’23,PLDI’23,OOPSLA’23]

Commun. ACM Research Highlight (June 2025)
▶ “An Automata-Based Framework for Verification and Bug Hunting in Quantum Circuits”

[PLDI’23]
participation in the development of tools in competitions
▶ Z3-Noodler (winner of Strings @ SMT-COMP’24),
▶ Amaya (multiple medals in NIA @ SMT-COMP’24),
▶ SPEN (multiple medals at SL-COMP’14 and SL-COMP’18)

PI of 2 GAČR grants, team member of 23 other grants
Teaching:
▶ Introduction to Logic for Computer Science (IZLO),

Operating Systems (IOS), Advanced Mathematics (IAM),
Static Analysis and Verification (SAV), Complexity Theory (SLOa), Theoretical Computer
Science (TIN), Discrete Mathematics (IDM), Mathematical Seminar (SMT), Software
Engineering (IUS)

▶ 33 finished BSc/MSc theses, 1 finished PhD thesis
Ondřej Lengál A5: Awesome Automata: Algs. and Apps. FIT BUT 9 / 9

