Automata-based decision procedures
IAM, Lecture 4

Lukas Holik
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Reminder: Presburger arithmetic

Is interpreted over N, has the signature

{07 S’ +’ :}
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Formulae as automata
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Numbers as words

» in last significant bit first encoding (LSBF)

0 isencoded as 0
1 isencoded as 1
2 is encoded as 01
10 is encoded as 0101
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Numbers as words

» in last significant bit first encoding (LSBF)

0 isencoded as 0
1 isencoded as 1
2 is encoded as 01
10 is encoded as 0101

» also, every word from w0* denotes the same number as w

010

0100

01000 all encode 2.
01000000000
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Assignments as words

P> assignments seen as k-tuples of numbers
(4 an ordering on its k free variables)

[2x = y] ={(0,0),(1,2),(2,4),...}
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Assignments as words

P> assignments seen as k-tuples of numbers
(4 an ordering on its k free variables)

[2x = y] ={(0,0),(1,2),(2,4),...

» encoded as words over the alphabet {0, 1}

B . 0 0 1 1
> fork_2,thea|phabet|s{0, 1°0° 1}
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Assignments as words

P> assignments seen as k-tuples of numbers
(4 an ordering on its k free variables)

[2x = y] ={(0,0),(1,2),(2,4),...}

» encoded as words over the alphabet {0, 1}
> fork:2,thea|phabetis{8, (lJ, (1), % }
» and the assignment {x — 2,y — 4}, i.e. (2,4), is encoded as

010
001
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Assignments as words

P> assignments seen as k-tuples of numbers
(4 an ordering on its k free variables)

[2x = y] ={(0,0),(1,2),(2,4),...}

» encoded as words over the alphabet {0, 1}
> fork:2,thea|phabetis{8, (lJ, (1), % }
» and the assignment {x — 2,y — 4}, i.e. (2,4), is encoded as

010
001

» and all the other words in w(0?)*

0100 01000 010000
0010 > 00100 > 001000 °
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Assignments as words

P> assignments seen as k-tuples of numbers
(4 an ordering on its k free variables)

[2x = y] ={(0,0),(1,2),(2,4),...}

» encoded as words over the alphabet {0, 1}
> fork:2,thea|phabetis{8, (lJ, (1), % }
» and the assignment {x — 2,y — 4}, i.e. (2,4), is encoded as

010
001

» and all the other words in w(0?)*

0100 01000 010000
0010 > 00100 > 001000 °

» L(y) denotes all encodings of all satisfying assignments of ¢
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Formulae as automata

» Presburger formulae can be translated to automata that
accept exactly all encodings of their satisfying assignments.
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Formulae as automata

» Presburger formulae can be translated to automata that
accept exactly all encodings of their satisfying assignments.

y=2x-2 [1)

oo

o
o
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Formulae as automata

» Presburger formulae can be translated to automata that
accept exactly all encodings of their satisfying assignments.

y=2x-2 ?

oo

o
o

» To decide satisfiability of a formula ¢

» construct an automaton A with L(A) = L(y)
P and test emptiness of its language.
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Deciding Presburger using automata

» Build the FA with L(A) = L(¢) inductively to ¢'s structure.
—~(x>y) ATz (zZx+4V Tw.x < w < y)
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Deciding Presburger using automata

» Build the FA with L(A) = L(¢) inductively to ¢'s structure.
~(x>y) ATz, (zZx+4V Fw.x < w < y)

| | |
Az A, A
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Deciding Presburger using automata

» Build the FA with L(A) = L(¢) inductively to ¢'s structure.

- (x>y) AN Jz. (z<x4+4V Iw.x < w < y)
\ | ! \
A3 A2 Y Al
.«
project w —» A,
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Deciding Presburger using automata

» Build the FA with L(A) = L(¢) inductively to ¢'s structure.
- (x>y) A3z (z<x+4V Tw.x < w < y)
| . |
As A " A

project w —» A,
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Deciding Presburger using automata

» Build the FA with L(A) = L(¢) inductively to ¢'s structure.

- (x>y) ATz (z<x+4V Iw.x < w < y)
| A I |

A3 : A2 1 Y Al
! boa S
' ' project w —» Ay
. v
N A U Ay
4 e

project z —» A;
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Deciding Presburger using automata

» Build the FA with L(A) = L(¢) inductively to ¢'s structure.
—(x>y) A3z (z<x+4V Iw.x < w < y)

P e |

'\‘ A3 : A2 1 \\ Al
\\ ‘\ 1 \A /
‘4 ‘ ' ' project w —» Ay
As < complement . v
N A, U Ay
4 e

project z —» A;
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Deciding Presburger using automata

» Build the FA with L(A) = L(¢) inductively to ¢'s structure.

- (x>y) A Bz (z<x+H4V Fw.x < w < y)

A I I |

'\‘ A3 : A2 1 \\ Al
\ ‘\ ! \A /
‘4 ‘ ' ' project w —» Ay
As 4 complement " v

\‘\ A, U Ay
2 -

project z —» A;
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Deciding Presburger using automata

» Build the FA with L(A) = L(¢) inductively to ¢'s structure.

- (x>y) A3z (z<x+4V Iw.x < w < y)

A I I |

'\‘ A3 : A2 1 \\ Al
\ ‘\ ! \A /
‘4 ‘ ' ' project w —» Ay
As 4 complement " v

\‘\ A, U Ay
2 -

project z —» A;

> Then check language emptiness of A = Ag N A7.

Formulae as automata Automata-based decision procedures 7/31



Ingredients

1. automata for atomic predicates
2. automata constructions for U,N, =, 3

3. automata language emptiness test
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Part |l

Automata crash course
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Finite automaton A= (X, Q,/,4, F)

&<@~3

OO0
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Finite automaton A = (Z Q, 1,9, F)

@0

> finite sets: alphabet ¥, states @, initial states | C Q,
final /accepting states F C Q
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Finite automaton A = (X, Q, 1,0, F)
b

> finite sets: alphabet ¥, states @, initial states | C Q,
final /accepting states F C Q

» transition function § : Q x ¥ — 29,
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Finite automaton A = (Z Q, 1,9, F)

@0

> finite sets: alphabet ¥, states @, initial states | C Q,
final /accepting states F C Q

» transition function § : Q x ¥ — 29,

» a word is read in a run, which can be accepting or rejecting
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Finite automaton A = (Z Q, 1,9, F)

@0

> finite sets: alphabet ¥, states @, initial states | C Q,
final /accepting states F C Q

» transition function § : Q x ¥ — 29,
» a word is read in a run, which can be accepting or rejecting

» accepts a word if it has some accepting run over it
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Finite automaton A = (Z Q, 1,9, F)
»@_M@_b,

> finite sets: alphabet ¥, states @, initial states | C Q,
final /accepting states F C Q

transition function § : Q x ¥ — 29,
a word is read in a run, which can be accepting or rejecting

accepts a word if it has some accepting run over it

vvyyypy

language L(A) is the set of all accepted words
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Finite automaton A = (Z Q, 1,9, F)

@0

finite sets: alphabet ¥, states @, initial states | C Q,
final /accepting states F C Q

v

transition function § : Q x ¥ — 29,
a word is read in a run, which can be accepting or rejecting
accepts a word if it has some accepting run over it

language L(A) is the set of all accepted words

vVvYyyvyy

can be deterministic or nondeterministic
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Finite automaton A = (Z Q, 1,9, F)

@0

finite sets: alphabet ¥, states @, initial states | C Q,
final /accepting states F C Q

v

transition function § : Q x ¥ — 29,
a word is read in a run, which can be accepting or rejecting
accepts a word if it has some accepting run over it

language L(A) is the set of all accepted words

vVvYyyvyy

can be deterministic or nondeterministic
P deterministic has at most one run for every word
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Automata union, U

» We need L(Al) U L(Az) = L(Al U Ag)
» Simply unite the automata.
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Automata union, U

» We need L(Al) U L(Az) = L(Al U Ag)
» Simply unite the automata.

C

/»@L@L\

Automata crash course Automata-based decision procedures

Assume Q1 N @ = 0.
QA =QqU&
"'=KLUb
Fl=FRUF

§ =6, U6

A1 U A
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Automata intersection, N

> We need L(Al) N L(Az) = L(Al N AQ).
» Use product construction.
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Automata intersection, N

> We need L(Al) N L(Az) = L(A1 N A2).

» Use product construction.
Al
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Automata intersection, N

> We need L(Al) N L(Az) = L(A1 N A2).

» Use product construction.
Al

OO
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Automata intersection, N

> We need L(Al) N L(Az) = L(A1 N A2).

» Use product construction.
Al

b

Q=@ xQ

I"'=h x b

F'=F X P b a
8((a,r), ) = 8(q, a) x 8(r, a) -

a b
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Automata intersection, N

> We need L(Al) N L(Az) = L(A1 N A2).

» Use product construction.
Al

b

Q=@ xQ

I"'=h x b

F'=F X P b a
8((a,r), ) = 8(q, a) x 8(r, a) -

a b
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Automata complement, —

> We need £*\ L(A) = L(—A)

> If deterministic, complete and negate acceptance.

a . s )
OE= 0 =0
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Automata complement, —

> We need £*\ L(A) = L(—A)

> If deterministic, complete and negate acceptance.

\_

a

a,b

a
-~

b

/

~
)

/
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Automata complement, —

> We need £*\

> If deterministic, complete and negate acceptance.

Assume A determ. complete.

Q' =Q
=1
F'=Q\F
5 =94

Automata crash course

L(A) = L(~A)

k a,b

a

o R
ROy 2

/
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Complement has a problem with nondeterminism

P accepting as well as rejecting runs over aba
» hence aba is in L(A) and stays after negating acceptance

» determinisation is needed
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Determinization

> We need a deterministic A" with L(A’) = L(A).

» Subset construction.
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Determinization

> We need a deterministic A" with L(A’) = L(A).

» Subset construction.
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Determinization

> We need a deterministic A" with L(A’) = L(A).

» Subset construction.

NG
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Determinization

> We need a deterministic A" with L(A’) = L(A).
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Determinization

> We need a deterministic A" with L(A’) = L(A).

» Subset construction.
A’ = determinized A

g o
~ b&—a’ b b b

©

S " b
a b, t q,t,u b
Q=22 F ={seQ|SNF#0} k Qg/

=1y 8(5,3) = Uses 5(s. a)
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Automata projection, dx

» Remove the x track (project on the y track).

I
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Automata projection, dx

» Remove the x track (project on the y track).
X é:[o] X: {0]
5%@%@ 5%(%@

— Projection on X
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Automata projection, dx

» Remove the x track (project on the y track).
x é:m *: [e]
5%@%@ 5%(%@

— Projection on X
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Automata projection, dx

» Remove the x track (project on the y track).
x- é:m *: [e]
5%@%@ 5%(%@

— Projection on X

» Careful, does it accept all encodings of sat. assignments?

Y: [0]

10,010, 0010, . . . are accepted,
1,01,001, ... should be accepted too
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Automata projection, dx

» Remove the x track (project on the y track).
x- é:m *: [e]
8%(%@ 8%(%@

— Projection on X

» Careful, does it accept all encodings of sat. assignments?

Y: [0]

10,010, 0010, . . . are accepted,
1,01,001, ... should be accepted too

» Saturation acceptance: everything reaching final state by zero
vectors becomes also accepting.
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Automata projection, dx

» Remove the x track (project on the y track).
x- é:m *: [e]
8%(%@ 8%(%@

— Projection on X

» Careful, does it accept all encodings of sat. assignments?

10,010, 0010, . . . are accepted,
1,01,001, ... should be accepted too

» Saturation acceptance: everything reaching final state by zero
vectors becomes also accepting.
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Part IlI

Automata for Atomic Presburger
Predicates
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Atomic predicates

» Assume that atomic predicates were transformed into the form
aix1+axo+---+apxp=>b

where a1,...,ap, b € Z.
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Atomic predicates

» Assume that atomic predicates were transformed into the form

aixy + axxo + -+ apxp = b

where a1,...,ap, b € Z.
> We write
3-x=»>b
where 3= (a1,...,an), X = (x1,...,Xn), and 3- X denotes the

scalar product.
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States of atomic predicates

Example: 2x —y =2
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States of atomic predicates

Example: 2x —y =2
Idea:

» The states of the automaton are numbers g € Z.

> From g will be read those assignment to x and y under which
2x — y equals q.
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States of atomic predicates

Example: 2x —y =2
Idea:

» The states of the automaton are numbers g € Z.

> From g will be read those assignment to x and y under which
2x — y equals q.

From state g € Z are read encodings of ¢ € N” such that
a-c=aq.
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Initial states of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

» The whole assignment is
read from the initial state.
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Initial states of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

» The whole assignment is
read from the initial state.

» So 2 must be initial.
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Initial states of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

» The whole assignment is
read from the initial state. ->@

» So 2 must be initial.
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Initial states of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

» The whole assignment is
read from the initial state. ->@

» So 2 must be initial.

( 2 is the only initial state )
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Transitions of atomic predicates

Reminder:
fromgread cst. a-C=gq

> If g LN g’ then:

Automata for Atomic Presburger Predicates Automata-based decision procedures

2x —y =2
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Transitions of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

> If g LN g’ then:

» ¢ is read from ¢’

4O
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Transitions of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

> If g LN g’ then:

\4

¢ is read from ¢’
» iff 2¢’ + ¢ read from g —>@
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Transitions of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

If g LN g’ then:
¢ is read from ¢’

iff 2¢ + ¢ read from g —>@
iffa- (28 +¢)=gq

vVvyyvyy
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Transitions of atomic predicates

Reminder:
fromgread cst. a-C=gq

If g LN g’ then:

¢ is read from ¢’

iff 2¢ + ¢ read from g —>@
iffa- (28 +¢)=gq
iffa-c=2%4(g—3-¢)

vVvyVvyyvyy

Automata for Atomic Presburger Predicates Automata-based decision procedures
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Transitions of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

> If g AN g’ then:
» &’ is read from ¢’
» iff 2¢’ + ( read from g ->@
> iff 5. (28 +¢) =g
> i3 =1(q—30)
[ {3(g—3-¢)} ifg—a-(iseven
2a:¢) = { 1] otherwise
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Transitions of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

®

> If g LN g’ then: 8
» ¢ is read from ¢’
» iff 2¢’ + ¢ read from g >
> iff3-(28+()=gq
[ {3(g—3-¢)} ifg—a-(iseven
2(a,¢) = { U] otherwise
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Transitions of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

> If g LN g’ then: 8
» ¢ is read from ¢’
» iff 2¢’ + ¢ read from g >
> iff3-(28+()=gq
[ {3(g—3-¢)} ifg—a-(iseven
2(a,¢) = { U] otherwise
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Transitions of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

0
1
&

> If g LN g’ then: 8
» ¢ is read from ¢’
» iff 2¢’ + ¢ read from g > %
> iff3-(28+()=gq
| ®
[ {3(g—3-¢)} ifg—a-(iseven
2(a,¢) = { U] otherwise
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Transitions of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

0
1
&

> If g LN g’ then: 8

» &’ is read from ¢’

» iff 2¢’ + ¢ read from g > %

> iff3-(2¢+¢)=g¢q

> iffa-d=2%1(g—3-() 5 O

0

1 - . - .

LR ey
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Transitions of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

0
1
&

> If g AN g’ then: 8
» ¢’ is read from ¢
» iff 2¢’ + ¢ read from g > %
> iff3-(28+()=gq
> iff3-&=1qg—-3-Q) 5
0
%
0
[ {3(g—3-¢)} ifg—a-(iseven
2(a,¢) = { U] otherwise
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Transitions of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

> If g LN g’ then: 8
» &’ is read from ¢’ %
» iff 2¢’ + ¢ read from g > % )
> iffa-(2d+¢)=gq 0
> iffa-d=2%1(g—3-() 5 0
0 1
0

1 - . - .

LR ey
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Accepting states of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

0
. 0
» Accepting are those where %
nothing (i.e. €) needs to be . 1
read to satisfy a- ¢ = q. 1l 4
0
1
0 0
0 1
0
0
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Accepting states of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

» Accepting are those where
nothing (i.e. €) needs to be
read to satisfy a- ¢ = q. 1

» This is only 0.

[
R

o=
—=O

()]
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Accepting states of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

()]

» Accepting are those where

=

nothing (i.e. €) needs to be 1
read to satisfy a- ¢ = q. LIy
- 0
» This is only 0. 1
NG
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Accepting states of atomic predicates 2x —y =2

Reminder:
fromgread cst. a-C=gq

()]

» Accepting are those where
nothing (i.e. €) needs to be
read to satisfy a- ¢ = q. 1

» This is only 0.

=
R

()
=Oo

( 0 is the only accepting state )
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Atomic predicates: algorithm

EqtoDFA(p)

Input: Equationp = a-x=»>

Output: DFA A = (Q, %, 06, qo, F) such that L(A) = L(¢)
(without trap state)

1 Q,6,F < 0;q9 < sp

2 W {sp}

3 while W # 0 do

4 pick s; from W

5 add s, to QO

6 if K = 0 then add s; to F

7 for all £ € {0,1}" do

8 if (k —a - ) is even then

9

1

J < E(k—a[)
10 if s; ¢ O then add s; to W
11 add (si, 4, s/) too
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Remarks

v

We have seen a procedure quite different from the ones based
on quantifier elimination.

It can be optimized, extended to Z.
It shows how diverse solutions of a problem can be,

and a surprising connection between arithmetic and automata.

vvyyy

Integer/Presburger arithmetic are somewhat “regular”.
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Part IV

Weak Monadic Second Order Logic of
One Successor (WS1S)
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WS1S

» Minimalistic syntax
o= X C X |suce(X)|oVe|p|IXp

» interpreted over finite subsets of N.
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WS1S

» Minimalistic syntax
o —= X C X |succ(X)|eVel|p|IXp

» interpreted over finite subsets of N.
X=0:VY.YCX—=>Y=X
> sing(X) X #ZOAN(YCX = (Y=0VvX=Y))

P gives us first order vars.: dx, x € Y, x <y, x=y ...
> X =UL; Xi : N1 Xi SXAVx.(xe X = Vi_;x€X))
» Partition(X, X1, ..., Xn) :

X =ULy Xi AN NZia Xin X =0

v
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WS1S

v

Minimalistic syntax
o —= X C X |succ(X)|eVel|p|IXp

interpreted over finite subsets of N.
X=0:VYYCX—=>Y=X
sing(X) : X #ZDAN(YC X = (Y=0VX=Y))

P gives us first order vars.: dx, x € Y, x <y, x=y ...
X=UL  Xi: N1 Xi CXAVx.(x e X = Vi x€X)
Partition(X, X1,...,Xp) :

X =ULy Xi AN NZia Xin X =0

properties of linked data structures: transitive closure of a
relation, a graph does not contain cycles, x is reachable from
V...

WS1S Automata-based decision procedures 26 /31



WS1S

v

Minimalistic syntax
o —= X C X |succ(X)|eVel|p|IXp

interpreted over finite subsets of N.
X=0:VY.YCX—=>Y=X
sing(X) : X #ZDAN(YC X = (Y=0VX=Y))

P gives us first order vars.: dx, x € Y, x <y, x=y ...
X=UL  Xi: N1 Xi CXAVx.(x e X = Vi x€X)
Partition(X, X1,...,Xp) :

X =ULy Xi AN NZia Xin X =0

properties of linked data structures: transitive closure of a
relation, a graph does not contain cycles, x is reachable from
V...

Also Presburger arithmetic!
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The name

Weak monadic second order logic of one successor.
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The name

vvvyYyy

Weak monadic second order logic of one successor.

second order = can quantify over sets
weak = the sets can be finite only
monadic = only sets numbers, not relations

one successor = the succ function

WS1S Automata-based decision procedures 27 /31



Why

>

>

| 4

Looks different, but is surprisingly close to Automata,
Presburger, regularity.

It is The basic automata logic. Starting point for many other
interesting automata-related logics.

Exciting research!

WS1S Automata-based decision procedures 28 /31



Assignments as words

> X C N is encoded as a binary vector

{1,3,5}...w = 010101.
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Assignments as words

> X C N is encoded as a binary vector

{1,3,5}...w = 010101.
plus all in wO*

» An assignment, n-tuple of sets, becomes a word over {0,1}".
X={1,3,4},Y={2},Z2=10

01011 010110 0101100 01011000
00100 , 001000 , 0010000 , 00100000 ,---
00000 000000 0000000 00000000
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WS1S to automata

» automata for X C Y and Y = succ(X)
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WS1S to automata

» automata for X C Y and Y = succ(X)

00
011

-0



WS1S to automata

» automata for X C Y and Y = succ(X)

001 0 1

011 0 1 1
0

e fcrﬁ
0
1
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WS1S to automata

» automata for X C Y and Y = succ(X)

001 0 1

011 0 1 1
0

e aéfﬁ
0
1

P> and everything else is the same as for Presburger!
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Remarks

» WSIS can encode Presburger, not the other way around.
Presburger would need the bit-subset operator.
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Remarks

>

WSI1S can encode Presburger, not the other way around.
Presburger would need the bit-subset operator.

Other similar logics

» SIS for reasoning about arbitrary sets (automata over
infinite words)
» (W)SKS allows many successors — reasoning about tress
and general graphs (tree automata)
Regularity for words: WS1S = automata [Biichi 1960] =
regular expressions = Presburger with bit-subset

Complexity
» Presburger with automata (a bit different algo.): (’)(222n)

2"
> WS1S: non-elementary complexity O( 22 )

alternations
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