
Automata-based decision procedures
IAM, Lecture 4

Lukáš Hoĺık

Automata-based decision procedures 1 / 31

Reminder: Presburger arithmetic

Is interpreted over N, has the signature

{0,S ,+,=}

Automata-based decision procedures 2 / 31

Part I

Formulae as automata

Formulae as automata Automata-based decision procedures 3 / 31

Numbers as words

I in last significant bit first encoding (LSBF)

0 is encoded as 0
1 is encoded as 1
2 is encoded as 01

10 is encoded as 0101
. . .

I also, every word from w0∗ denotes the same number as w

010
0100
01000
01000000000
. . .

all encode 2.

Formulae as automata Automata-based decision procedures 4 / 31

Numbers as words

I in last significant bit first encoding (LSBF)

0 is encoded as 0
1 is encoded as 1
2 is encoded as 01

10 is encoded as 0101
. . .

I also, every word from w0∗ denotes the same number as w

010
0100
01000
01000000000
. . .

all encode 2.

Formulae as automata Automata-based decision procedures 4 / 31

Assignments as words

I assignments seen as k-tuples of numbers
(+ an ordering on its k free variables)

J2x = yK = {(0, 0), (1, 2), (2, 4), . . .}

I encoded as words over the alphabet {0, 1}k

I for k = 2, the alphabet is
{

0
0 ,

0
1 ,

1
0 ,

1
1

}
I and the assignment {x 7→ 2, y 7→ 4}, i.e. (2, 4), is encoded as

010
001

I and all the other words in w(02)∗

010 0
001 0 ,

010 00
001 00 ,

010 000
001 000 , · · ·

I L(ϕ) denotes all encodings of all satisfying assignments of ϕ

Formulae as automata Automata-based decision procedures 5 / 31

Assignments as words

I assignments seen as k-tuples of numbers
(+ an ordering on its k free variables)

J2x = yK = {(0, 0), (1, 2), (2, 4), . . .}

I encoded as words over the alphabet {0, 1}k

I for k = 2, the alphabet is
{

0
0 ,

0
1 ,

1
0 ,

1
1

}
I and the assignment {x 7→ 2, y 7→ 4}, i.e. (2, 4), is encoded as

010
001

I and all the other words in w(02)∗

010 0
001 0 ,

010 00
001 00 ,

010 000
001 000 , · · ·

I L(ϕ) denotes all encodings of all satisfying assignments of ϕ

Formulae as automata Automata-based decision procedures 5 / 31

Assignments as words

I assignments seen as k-tuples of numbers
(+ an ordering on its k free variables)

J2x = yK = {(0, 0), (1, 2), (2, 4), . . .}

I encoded as words over the alphabet {0, 1}k

I for k = 2, the alphabet is
{

0
0 ,

0
1 ,

1
0 ,

1
1

}

I and the assignment {x 7→ 2, y 7→ 4}, i.e. (2, 4), is encoded as

010
001

I and all the other words in w(02)∗

010 0
001 0 ,

010 00
001 00 ,

010 000
001 000 , · · ·

I L(ϕ) denotes all encodings of all satisfying assignments of ϕ

Formulae as automata Automata-based decision procedures 5 / 31

Assignments as words

I assignments seen as k-tuples of numbers
(+ an ordering on its k free variables)

J2x = yK = {(0, 0), (1, 2), (2, 4), . . .}

I encoded as words over the alphabet {0, 1}k

I for k = 2, the alphabet is
{

0
0 ,

0
1 ,

1
0 ,

1
1

}
I and the assignment {x 7→ 2, y 7→ 4}, i.e. (2, 4), is encoded as

010
001

I and all the other words in w(02)∗

010 0
001 0 ,

010 00
001 00 ,

010 000
001 000 , · · ·

I L(ϕ) denotes all encodings of all satisfying assignments of ϕ

Formulae as automata Automata-based decision procedures 5 / 31

Assignments as words

I assignments seen as k-tuples of numbers
(+ an ordering on its k free variables)

J2x = yK = {(0, 0), (1, 2), (2, 4), . . .}

I encoded as words over the alphabet {0, 1}k

I for k = 2, the alphabet is
{

0
0 ,

0
1 ,

1
0 ,

1
1

}
I and the assignment {x 7→ 2, y 7→ 4}, i.e. (2, 4), is encoded as

010
001

I and all the other words in w(02)∗

010 0
001 0 ,

010 00
001 00 ,

010 000
001 000 , · · ·

I L(ϕ) denotes all encodings of all satisfying assignments of ϕ

Formulae as automata Automata-based decision procedures 5 / 31

Assignments as words

I assignments seen as k-tuples of numbers
(+ an ordering on its k free variables)

J2x = yK = {(0, 0), (1, 2), (2, 4), . . .}

I encoded as words over the alphabet {0, 1}k

I for k = 2, the alphabet is
{

0
0 ,

0
1 ,

1
0 ,

1
1

}
I and the assignment {x 7→ 2, y 7→ 4}, i.e. (2, 4), is encoded as

010
001

I and all the other words in w(02)∗

010 0
001 0 ,

010 00
001 00 ,

010 000
001 000 , · · ·

I L(ϕ) denotes all encodings of all satisfying assignments of ϕ

Formulae as automata Automata-based decision procedures 5 / 31

Formulae as automata

I Presburger formulae can be translated to automata that
accept exactly all encodings of their satisfying assignments.

tl

br

2

y = 2x − 2

1

0

−1

0
0

1
0

1
1

0
1

1
0

0
0

0
1

1
1

I To decide satisfiability of a formula ϕ

I construct an automaton A with L(A) = L(ϕ)
I and test emptiness of its language.

Formulae as automata Automata-based decision procedures 6 / 31

Formulae as automata

I Presburger formulae can be translated to automata that
accept exactly all encodings of their satisfying assignments.

tl

br

2

y = 2x − 2

1

0

−1

0
0

1
0

1
1

0
1

1
0

0
0

0
1

1
1

I To decide satisfiability of a formula ϕ

I construct an automaton A with L(A) = L(ϕ)
I and test emptiness of its language.

Formulae as automata Automata-based decision procedures 6 / 31

Formulae as automata

I Presburger formulae can be translated to automata that
accept exactly all encodings of their satisfying assignments.

tl

br

2

y = 2x − 2

1

0

−1

0
0

1
0

1
1

0
1

1
0

0
0

0
1

1
1

I To decide satisfiability of a formula ϕ

I construct an automaton A with L(A) = L(ϕ)
I and test emptiness of its language.

Formulae as automata Automata-based decision procedures 6 / 31

Deciding Presburger using automata

I Build the FA with L(A) = L(ϕ) inductively to ϕ’s structure.

¬ (x ≥ y) ∧ ∃z . (z≤x+4 ∨ ∃w .x < w < y)

A1

project w

A2 ∪ A4

A2

project z

A6 ∩ A7

A3

complementA6

A7

A4

I Then check language emptiness of A = A6 ∩ A7.

Formulae as automata Automata-based decision procedures 7 / 31

Deciding Presburger using automata

I Build the FA with L(A) = L(ϕ) inductively to ϕ’s structure.

¬ (x ≥ y) ∧ ∃z . (z≤x+4 ∨ ∃w .x < w < y)

A1

project w

A2 ∪ A4

A2

project z

A6 ∩ A7

A3

complementA6

A7

A4

I Then check language emptiness of A = A6 ∩ A7.

Formulae as automata Automata-based decision procedures 7 / 31

Deciding Presburger using automata

I Build the FA with L(A) = L(ϕ) inductively to ϕ’s structure.

¬ (x ≥ y) ∧ ∃z . (z≤x+4 ∨ ∃w .x < w < y)

A1

project w

A2 ∪ A4

A2

project z

A6 ∩ A7

A3

complementA6

A7

A4

I Then check language emptiness of A = A6 ∩ A7.

Formulae as automata Automata-based decision procedures 7 / 31

Deciding Presburger using automata

I Build the FA with L(A) = L(ϕ) inductively to ϕ’s structure.

¬ (x ≥ y) ∧ ∃z . (z≤x+4 ∨ ∃w .x < w < y)

A1

project w

A2 ∪ A4

A2

project z

A6 ∩ A7

A3

complementA6

A7

A4

I Then check language emptiness of A = A6 ∩ A7.

Formulae as automata Automata-based decision procedures 7 / 31

Deciding Presburger using automata

I Build the FA with L(A) = L(ϕ) inductively to ϕ’s structure.

¬ (x ≥ y) ∧ ∃z . (z≤x+4 ∨ ∃w .x < w < y)

A1

project w

A2 ∪ A4

A2

project z

A6 ∩ A7

A3

complementA6

A7

A4

I Then check language emptiness of A = A6 ∩ A7.

Formulae as automata Automata-based decision procedures 7 / 31

Deciding Presburger using automata

I Build the FA with L(A) = L(ϕ) inductively to ϕ’s structure.

¬ (x ≥ y) ∧ ∃z . (z≤x+4 ∨ ∃w .x < w < y)

A1

project w

A2 ∪ A4

A2

project z

A6 ∩ A7

A3

complementA6

A7

A4

I Then check language emptiness of A = A6 ∩ A7.

Formulae as automata Automata-based decision procedures 7 / 31

Deciding Presburger using automata

I Build the FA with L(A) = L(ϕ) inductively to ϕ’s structure.

¬ (x ≥ y) ∧ ∃z . (z≤x+4 ∨ ∃w .x < w < y)

A1

project w

A2 ∪ A4

A2

project z

A6 ∩ A7

A3

complementA6

A7

A4

I Then check language emptiness of A = A6 ∩ A7.

Formulae as automata Automata-based decision procedures 7 / 31

Deciding Presburger using automata

I Build the FA with L(A) = L(ϕ) inductively to ϕ’s structure.

¬ (x ≥ y) ∧ ∃z . (z≤x+4 ∨ ∃w .x < w < y)

A1

project w

A2 ∪ A4

A2

project z

A6 ∩ A7

A3

complementA6

A7

A4

I Then check language emptiness of A = A6 ∩ A7.

Formulae as automata Automata-based decision procedures 7 / 31

Ingredients

1. automata for atomic predicates

2. automata constructions for ∪,∩,¬,∃
3. automata language emptiness test

Formulae as automata Automata-based decision procedures 8 / 31

Part II

Automata crash course

Automata crash course Automata-based decision procedures 9 / 31

Finite automaton A = (Σ,Q, I , δ,F)

p q r

s t u

a

b

a

a

b

b b

I finite sets: alphabet Σ, states Q, initial states I ⊆ Q,
final/accepting states F ⊆ Q

I transition function δ : Q × Σ→ 2Q .

I a word is read in a run, which can be accepting or rejecting

I accepts a word if it has some accepting run over it

I language L(A) is the set of all accepted words

I can be deterministic or nondeterministic

I deterministic has at most one run for every word

Automata crash course Automata-based decision procedures 10 / 31

Finite automaton A = (Σ,Q, I , δ,F)

p q r

s t u

a

b

a

a

b

b b

I finite sets: alphabet Σ, states Q, initial states I ⊆ Q,
final/accepting states F ⊆ Q

I transition function δ : Q × Σ→ 2Q .

I a word is read in a run, which can be accepting or rejecting

I accepts a word if it has some accepting run over it

I language L(A) is the set of all accepted words

I can be deterministic or nondeterministic

I deterministic has at most one run for every word

Automata crash course Automata-based decision procedures 10 / 31

Finite automaton A = (Σ,Q, I , δ,F)

p q r

s t u

a

b

a

a

b

b b

I finite sets: alphabet Σ, states Q, initial states I ⊆ Q,
final/accepting states F ⊆ Q

I transition function δ : Q × Σ→ 2Q .

I a word is read in a run, which can be accepting or rejecting

I accepts a word if it has some accepting run over it

I language L(A) is the set of all accepted words

I can be deterministic or nondeterministic

I deterministic has at most one run for every word

Automata crash course Automata-based decision procedures 10 / 31

Finite automaton A = (Σ,Q, I , δ,F)

p q r

s t u

a

b

a

a

b

b b

I finite sets: alphabet Σ, states Q, initial states I ⊆ Q,
final/accepting states F ⊆ Q

I transition function δ : Q × Σ→ 2Q .

I a word is read in a run, which can be accepting or rejecting

I accepts a word if it has some accepting run over it

I language L(A) is the set of all accepted words

I can be deterministic or nondeterministic

I deterministic has at most one run for every word

Automata crash course Automata-based decision procedures 10 / 31

Finite automaton A = (Σ,Q, I , δ,F)

p q r

s t u

a

b

a

a

b

b b

I finite sets: alphabet Σ, states Q, initial states I ⊆ Q,
final/accepting states F ⊆ Q

I transition function δ : Q × Σ→ 2Q .

I a word is read in a run, which can be accepting or rejecting

I accepts a word if it has some accepting run over it

I language L(A) is the set of all accepted words

I can be deterministic or nondeterministic

I deterministic has at most one run for every word

Automata crash course Automata-based decision procedures 10 / 31

Finite automaton A = (Σ,Q, I , δ,F)

p q r

s t u

a

b

a

a

b

b b

I finite sets: alphabet Σ, states Q, initial states I ⊆ Q,
final/accepting states F ⊆ Q

I transition function δ : Q × Σ→ 2Q .

I a word is read in a run, which can be accepting or rejecting

I accepts a word if it has some accepting run over it

I language L(A) is the set of all accepted words

I can be deterministic or nondeterministic

I deterministic has at most one run for every word

Automata crash course Automata-based decision procedures 10 / 31

Finite automaton A = (Σ,Q, I , δ,F)

p q r

s t u

a

b

a

a

b

b b

I finite sets: alphabet Σ, states Q, initial states I ⊆ Q,
final/accepting states F ⊆ Q

I transition function δ : Q × Σ→ 2Q .

I a word is read in a run, which can be accepting or rejecting

I accepts a word if it has some accepting run over it

I language L(A) is the set of all accepted words

I can be deterministic or nondeterministic

I deterministic has at most one run for every word

Automata crash course Automata-based decision procedures 10 / 31

Finite automaton A = (Σ,Q, I , δ,F)

p q r

s t u

a

b

a

a

b

b b

I finite sets: alphabet Σ, states Q, initial states I ⊆ Q,
final/accepting states F ⊆ Q

I transition function δ : Q × Σ→ 2Q .

I a word is read in a run, which can be accepting or rejecting

I accepts a word if it has some accepting run over it

I language L(A) is the set of all accepted words

I can be deterministic or nondeterministic

I deterministic has at most one run for every word

Automata crash course Automata-based decision procedures 10 / 31

Automata union, ∪

I We need L(A1) ∪ L(A2) = L(A1 ∪ A2)

I Simply unite the automata.

Assume Q1 ∩ Q2 = ∅.
Q′ = Q1 ∪ Q2
I ′ = I1 ∪ I2
F ′ = F1 ∪ F2
δ′ = δ1 ∪ δ2

p q r

a

b a

b

s t u
b b

c

A2

A1

Automata crash course Automata-based decision procedures 11 / 31

Automata union, ∪

I We need L(A1) ∪ L(A2) = L(A1 ∪ A2)

I Simply unite the automata.

Assume Q1 ∩ Q2 = ∅.
Q′ = Q1 ∪ Q2
I ′ = I1 ∪ I2
F ′ = F1 ∪ F2
δ′ = δ1 ∪ δ2

p q r

a

b a

b

s t u
b b

c

A1 ∪ A2

Automata crash course Automata-based decision procedures 11 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2 t, 2

b
a

a

t, 1 u, 1

a

u, 2
a

bb A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a) s t u

b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2 t, 2

b
a

a

t, 1 u, 1

a

u, 2
a

bb A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a)

s t u
b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2 t, 2

b
a

a

t, 1 u, 1

a

u, 2
a

bb A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a)

s t u
b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2

t, 2

b

a

a

t, 1 u, 1

a

u, 2
a

bb A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a)

s t u
b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2

t, 2

b
a

a

t, 1 u, 1

a

u, 2
a

bb A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a)

s t u
b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2 t, 2

b
a

a

t, 1 u, 1

a

u, 2
a

bb A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a)

s t u
b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2 t, 2

b
a

a

t, 1

u, 1

a

u, 2
a

bb A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a)

s t u
b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2 t, 2

b
a

a

t, 1

u, 1

a

u, 2
a

bb A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a)

s t u
b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2 t, 2

b
a

a

t, 1

u, 1

a

u, 2
a

bb

A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a)

s t u
b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2 t, 2

b
a

a

t, 1

u, 1

a

u, 2
a

bb A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a) s t u

b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata intersection, ∩

I We need L(A1) ∩ L(A2) = L(A1 ∩ A2).

I Use product construction.

s, 1

s, 2 t, 2

b
a

a

t, 1 u, 1

a

u, 2
a

bb A1 ∩ A2

Q′ = Q1 × Q2
I ′ = I1 × I2
F ′ = F1 × F2
δ′((q, r), a) = δ(q, a)× δ(r, a) s t u

b a

a

b

b

A1

1

2

ba

a

A2

Automata crash course Automata-based decision procedures 12 / 31

Automata complement, ¬

I We need Σ∗ \ L(A) = L(¬A)

I If deterministic, complete and negate acceptance.

Assume A determ. complete.
Q′ = Q
I ′ = I
F ′ = Q \ F
δ′ = δ

s t u

sink

s t u

sink

a a

b b

b
a

a,b

A

A completed¬A

Automata crash course Automata-based decision procedures 13 / 31

Automata complement, ¬

I We need Σ∗ \ L(A) = L(¬A)

I If deterministic, complete and negate acceptance.

Assume A determ. complete.
Q′ = Q
I ′ = I
F ′ = Q \ F
δ′ = δ

s t u

sink

s t u

sink

a a

b b

b
a

a,b

A

A completed

¬A

Automata crash course Automata-based decision procedures 13 / 31

Automata complement, ¬

I We need Σ∗ \ L(A) = L(¬A)

I If deterministic, complete and negate acceptance.

Assume A determ. complete.
Q′ = Q
I ′ = I
F ′ = Q \ F
δ′ = δ

s t u

sink

s t u

sink

a a

b b

b
a

a,b

AA completed

¬A

Automata crash course Automata-based decision procedures 13 / 31

Complement has a problem with nondeterminism

p q r

s t u

a

b

a

a

a

a b

b

b a
a

I accepting as well as rejecting runs over aba

I hence aba is in L(A) and stays after negating acceptance

I determinisation is needed

Automata crash course Automata-based decision procedures 14 / 31

Determinization

I We need a deterministic A′ with L(A′) = L(A).

I Subset construction.

p q r

s t u

a

b

a

a

a

a b

b

b aa

A

p, s

p, t

a

q

b

q, ra

∅

b

a q, t, ub

a

b

b

a

a,b

A′ = determinized A

Q′ = 2Q F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
I ′ = {I} δ′(S, a) =

⋃
s∈S δ(s, a)

Automata crash course Automata-based decision procedures 15 / 31

Determinization

I We need a deterministic A′ with L(A′) = L(A).

I Subset construction.

p q r

s t u

a

b

a

a

a

a b

b

b aa

A

p, s

p, t

a

q

b

q, ra

∅

b

a q, t, ub

a

b

b

a

a,b

A′ = determinized A

Q′ = 2Q F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
I ′ = {I} δ′(S, a) =

⋃
s∈S δ(s, a)

Automata crash course Automata-based decision procedures 15 / 31

Determinization

I We need a deterministic A′ with L(A′) = L(A).

I Subset construction.

p q r

s t u

a

b

a

a

a

a b

b

b aa

A

p, s

p, t

a

q

b

q, ra

∅

b

a q, t, ub

a

b

b

a

a,b

A′ = determinized A

Q′ = 2Q F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
I ′ = {I} δ′(S, a) =

⋃
s∈S δ(s, a)

Automata crash course Automata-based decision procedures 15 / 31

Determinization

I We need a deterministic A′ with L(A′) = L(A).

I Subset construction.

p q r

s t u

a

b

a

a

a

a b

b

b aa

A

p, s

p, t

a

q

b

q, ra

∅

b

a q, t, ub

a

b

b

a

a,b

A′ = determinized A

Q′ = 2Q F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
I ′ = {I} δ′(S, a) =

⋃
s∈S δ(s, a)

Automata crash course Automata-based decision procedures 15 / 31

Determinization

I We need a deterministic A′ with L(A′) = L(A).

I Subset construction.

p q r

s t u

a

b

a

a

a

a b

b

b aa

A

p, s

p, t

a

q

b

q, ra

∅

b

a q, t, ub

a

b

b

a

a,b

A′ = determinized A

Q′ = 2Q F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
I ′ = {I} δ′(S, a) =

⋃
s∈S δ(s, a)

Automata crash course Automata-based decision procedures 15 / 31

Determinization

I We need a deterministic A′ with L(A′) = L(A).

I Subset construction.

p q r

s t u

a

b

a

a

a

a b

b

b aa

A

p, s

p, t

a

q

b

q, ra

∅

b

a q, t, ub

a

b

b

a

a,b

A′ = determinized A

Q′ = 2Q F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
I ′ = {I} δ′(S, a) =

⋃
s∈S δ(s, a)

Automata crash course Automata-based decision procedures 15 / 31

Determinization

I We need a deterministic A′ with L(A′) = L(A).

I Subset construction.

p q r

s t u

a

b

a

a

a

a b

b

b aa

A

p, s

p, t

a

q

b

q, ra

∅

b

a q, t, ub

a

b

b

a

a,b

A′ = determinized A

Q′ = 2Q F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
I ′ = {I} δ′(S, a) =

⋃
s∈S δ(s, a)

Automata crash course Automata-based decision procedures 15 / 31

Determinization

I We need a deterministic A′ with L(A′) = L(A).

I Subset construction.

p q r

s t u

a

b

a

a

a

a b

b

b aa

A

p, s

p, t

a

q

b

q, ra

∅

b

a q, t, ub

a

b

b

a

a,b

A′ = determinized A

Q′ = 2Q F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
I ′ = {I} δ′(S, a) =

⋃
s∈S δ(s, a)

Automata crash course Automata-based decision procedures 15 / 31

Determinization

I We need a deterministic A′ with L(A′) = L(A).

I Subset construction.

p q r

s t u

a

b

a

a

a

a b

b

b aa

A

p, s

p, t

a

q

b

q, ra

∅

b

a q, t, ub

a

b

b

a

a,b

A′ = determinized A

Q′ = 2Q F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
I ′ = {I} δ′(S, a) =

⋃
s∈S δ(s, a)

Automata crash course Automata-based decision procedures 15 / 31

Determinization

I We need a deterministic A′ with L(A′) = L(A).

I Subset construction.

p q r

s t u

a

b

a

a

a

a b

b

b aa

A

p, s

p, t

a

q

b

q, ra

∅

b

a q, t, ub

a

b

b

a

a,b

A′ = determinized A

Q′ = 2Q F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
I ′ = {I} δ′(S, a) =

⋃
s∈S δ(s, a)

Automata crash course Automata-based decision procedures 15 / 31

Automata projection, ∃x

I Remove the x track (project on the y track).

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

A

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection on X

I Careful, does it accept all encodings of sat. assignments?

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

10, 010, 0010, . . . are accepted,
1, 01, 001, . . . should be accepted too

I Saturation acceptance: everything reaching final state by zero
vectors becomes also accepting.

Automata crash course Automata-based decision procedures 16 / 31

Automata projection, ∃x

I Remove the x track (project on the y track).

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

A

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection on X

I Careful, does it accept all encodings of sat. assignments?

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

10, 010, 0010, . . . are accepted,
1, 01, 001, . . . should be accepted too

I Saturation acceptance: everything reaching final state by zero
vectors becomes also accepting.

Automata crash course Automata-based decision procedures 16 / 31

Automata projection, ∃x

I Remove the x track (project on the y track).

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

A

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection on X

I Careful, does it accept all encodings of sat. assignments?

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

10, 010, 0010, . . . are accepted,
1, 01, 001, . . . should be accepted too

I Saturation acceptance: everything reaching final state by zero
vectors becomes also accepting.

Automata crash course Automata-based decision procedures 16 / 31

Automata projection, ∃x

I Remove the x track (project on the y track).

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

A

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection on X

I Careful, does it accept all encodings of sat. assignments?

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

10, 010, 0010, . . . are accepted,
1, 01, 001, . . . should be accepted too

I Saturation acceptance: everything reaching final state by zero
vectors becomes also accepting.

Automata crash course Automata-based decision procedures 16 / 31

Automata projection, ∃x

I Remove the x track (project on the y track).

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

A

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection on X

I Careful, does it accept all encodings of sat. assignments?

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

10, 010, 0010, . . . are accepted,
1, 01, 001, . . . should be accepted too

I Saturation acceptance: everything reaching final state by zero
vectors becomes also accepting.

Automata crash course Automata-based decision procedures 16 / 31

Automata projection, ∃x

I Remove the x track (project on the y track).

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

A

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection on X

I Careful, does it accept all encodings of sat. assignments?

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

10, 010, 0010, . . . are accepted,
1, 01, 001, . . . should be accepted too

I Saturation acceptance: everything reaching final state by zero
vectors becomes also accepting.

Automata crash course Automata-based decision procedures 16 / 31

Part III

Automata for Atomic Presburger

Predicates

Automata for Atomic Presburger Predicates Automata-based decision procedures 17 / 31

Atomic predicates

I Assume that atomic predicates were transformed into the form

a1x1 + a2x2 + · · ·+ anxn = b

where a1, . . . , an, b ∈ Z.

I We write
ā · x̄ = b

where ā = (a1, . . . , an), x̄ = (x1, . . . , xn), and ā · x̄ denotes the
scalar product.

Automata for Atomic Presburger Predicates Automata-based decision procedures 18 / 31

Atomic predicates

I Assume that atomic predicates were transformed into the form

a1x1 + a2x2 + · · ·+ anxn = b

where a1, . . . , an, b ∈ Z.

I We write
ā · x̄ = b

where ā = (a1, . . . , an), x̄ = (x1, . . . , xn), and ā · x̄ denotes the
scalar product.

Automata for Atomic Presburger Predicates Automata-based decision procedures 18 / 31

States of atomic predicates

Example: 2x − y = 2

Idea:

I The states of the automaton are numbers q ∈ Z.

I From q will be read those assignment to x and y under which
2x − y equals q.

From state q ∈ Z are read encodings of c̄ ∈ Nn such that
ā · c̄ = q.

Automata for Atomic Presburger Predicates Automata-based decision procedures 19 / 31

States of atomic predicates

Example: 2x − y = 2

Idea:

I The states of the automaton are numbers q ∈ Z.

I From q will be read those assignment to x and y under which
2x − y equals q.

From state q ∈ Z are read encodings of c̄ ∈ Nn such that
ā · c̄ = q.

Automata for Atomic Presburger Predicates Automata-based decision procedures 19 / 31

States of atomic predicates

Example: 2x − y = 2

Idea:

I The states of the automaton are numbers q ∈ Z.

I From q will be read those assignment to x and y under which
2x − y equals q.

From state q ∈ Z are read encodings of c̄ ∈ Nn such that
ā · c̄ = q.

Automata for Atomic Presburger Predicates Automata-based decision procedures 19 / 31

Initial states of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I The whole assignment is
read from the initial state.

I So 2 must be initial.

tl

br

2

2 is the only initial state

Automata for Atomic Presburger Predicates Automata-based decision procedures 20 / 31

Initial states of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I The whole assignment is
read from the initial state.

I So 2 must be initial.

tl

br

2

2 is the only initial state

Automata for Atomic Presburger Predicates Automata-based decision procedures 20 / 31

Initial states of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I The whole assignment is
read from the initial state.

I So 2 must be initial.

tl

br

2

2 is the only initial state

Automata for Atomic Presburger Predicates Automata-based decision procedures 20 / 31

Initial states of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I The whole assignment is
read from the initial state.

I So 2 must be initial.

tl

br

2

2 is the only initial state

Automata for Atomic Presburger Predicates Automata-based decision procedures 20 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

δ(q, ζ) =

{
{12(q − ā · ζ)} if q − ā · ζ is even

∅ otherwise

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

δ(q, ζ) =

{
{12(q − ā · ζ)} if q − ā · ζ is even

∅ otherwise

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

δ(q, ζ) =

{
{12(q − ā · ζ)} if q − ā · ζ is even

∅ otherwise

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

δ(q, ζ) =

{
{12(q − ā · ζ)} if q − ā · ζ is even

∅ otherwise

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

δ(q, ζ) =

{
{12(q − ā · ζ)} if q − ā · ζ is even

∅ otherwise

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

δ(q, ζ) =

{
{12(q − ā · ζ)} if q − ā · ζ is even

∅ otherwise

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Transitions of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I If q
ζ−→ q′ then:

I c̄ ′ is read from q′

I iff 2c̄ ′ + ζ read from q

I iff ā · (2c̄ ′ + ζ) = q

I iff ā · c̄ ′ = 1
2(q − ā · ζ)

tl

br

2

1
0
0

0
1

0

1
1

1
0

0
0

−1
1
0

0
1

1
1

δ(q, ζ) =

{
{12(q − ā · ζ)} if q − ā · ζ is even

∅ otherwise

Automata for Atomic Presburger Predicates Automata-based decision procedures 21 / 31

Accepting states of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I Accepting are those where
nothing (i.e. ε) needs to be
read to satisfy ā · c̄ = q.

I This is only 0.

tl

br

2

1

0

−1

0
0

1
0

1
1

0
1

1
0

0
0

0
1

1
1

0 is the only accepting state

Automata for Atomic Presburger Predicates Automata-based decision procedures 22 / 31

Accepting states of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I Accepting are those where
nothing (i.e. ε) needs to be
read to satisfy ā · c̄ = q.

I This is only 0.

tl

br

2

1

0

−1

0
0

1
0

1
1

0
1

1
0

0
0

0
1

1
1

0 is the only accepting state

Automata for Atomic Presburger Predicates Automata-based decision procedures 22 / 31

Accepting states of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I Accepting are those where
nothing (i.e. ε) needs to be
read to satisfy ā · c̄ = q.

I This is only 0.

tl

br

2

1

0

−1

0
0

1
0

1
1

0
1

1
0

0
0

0
1

1
1

0 is the only accepting state

Automata for Atomic Presburger Predicates Automata-based decision procedures 22 / 31

Accepting states of atomic predicates 2x − y = 2
Reminder:
from q read c̄ s.t. ā · c̄ = q

I Accepting are those where
nothing (i.e. ε) needs to be
read to satisfy ā · c̄ = q.

I This is only 0.

tl

br

2

1

0

−1

0
0

1
0

1
1

0
1

1
0

0
0

0
1

1
1

0 is the only accepting state

Automata for Atomic Presburger Predicates Automata-based decision procedures 22 / 31

Atomic predicates: algorithm

Automata for Atomic Presburger Predicates Automata-based decision procedures 23 / 31

Remarks

I We have seen a procedure quite different from the ones based
on quantifier elimination.

I It can be optimized, extended to Z.

I It shows how diverse solutions of a problem can be,

I and a surprising connection between arithmetic and automata.

I Integer/Presburger arithmetic are somewhat “regular”.

Automata for Atomic Presburger Predicates Automata-based decision procedures 24 / 31

Part IV

Weak Monadic Second Order Logic of

One Successor (WS1S)

Weak Monadic Second Order Logic of One Successor (WS1S)Automata-based decision procedures 25 / 31

WS1S

I Minimalistic syntax

ϕ→ X ⊆ X | succ(X) | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

I interpreted over finite subsets of N.

I X = ∅ : ∀Y .Y ⊆ X → Y = X

I sing(X) : X 6= ∅ ∧ (Y ⊆ X → (Y = ∅ ∨ X = Y))

I gives us first order vars.: ∃x , x ∈ Y , x < y , x = y . . .

I X =
⋃n

i=1 Xi :
∧n

i=1 Xi ⊆ X ∧ ∀x .(x ∈ X →
∨n

i=1 x ∈ Xi)

I Partition(X ,X1, . . . ,Xn) :
X =

⋃n
i=1 Xi ∧

∧n−1
i=1

∧n
j=i+1 Xi ∩ Xj = ∅

I properties of linked data structures: transitive closure of a
relation, a graph does not contain cycles, x is reachable from
y , . . .

I Also Presburger arithmetic!

WS1S Automata-based decision procedures 26 / 31

WS1S

I Minimalistic syntax

ϕ→ X ⊆ X | succ(X) | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

I interpreted over finite subsets of N.

I X = ∅ : ∀Y .Y ⊆ X → Y = X

I sing(X) : X 6= ∅ ∧ (Y ⊆ X → (Y = ∅ ∨ X = Y))

I gives us first order vars.: ∃x , x ∈ Y , x < y , x = y . . .

I X =
⋃n

i=1 Xi :
∧n

i=1 Xi ⊆ X ∧ ∀x .(x ∈ X →
∨n

i=1 x ∈ Xi)

I Partition(X ,X1, . . . ,Xn) :
X =

⋃n
i=1 Xi ∧

∧n−1
i=1

∧n
j=i+1 Xi ∩ Xj = ∅

I properties of linked data structures: transitive closure of a
relation, a graph does not contain cycles, x is reachable from
y , . . .

I Also Presburger arithmetic!

WS1S Automata-based decision procedures 26 / 31

WS1S

I Minimalistic syntax

ϕ→ X ⊆ X | succ(X) | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

I interpreted over finite subsets of N.

I X = ∅ : ∀Y .Y ⊆ X → Y = X

I sing(X) : X 6= ∅ ∧ (Y ⊆ X → (Y = ∅ ∨ X = Y))

I gives us first order vars.: ∃x , x ∈ Y , x < y , x = y . . .

I X =
⋃n

i=1 Xi :
∧n

i=1 Xi ⊆ X ∧ ∀x .(x ∈ X →
∨n

i=1 x ∈ Xi)

I Partition(X ,X1, . . . ,Xn) :
X =

⋃n
i=1 Xi ∧

∧n−1
i=1

∧n
j=i+1 Xi ∩ Xj = ∅

I properties of linked data structures: transitive closure of a
relation, a graph does not contain cycles, x is reachable from
y , . . .

I Also Presburger arithmetic!

WS1S Automata-based decision procedures 26 / 31

WS1S

I Minimalistic syntax

ϕ→ X ⊆ X | succ(X) | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

I interpreted over finite subsets of N.

I X = ∅ : ∀Y .Y ⊆ X → Y = X

I sing(X) : X 6= ∅ ∧ (Y ⊆ X → (Y = ∅ ∨ X = Y))

I gives us first order vars.: ∃x , x ∈ Y , x < y , x = y . . .

I X =
⋃n

i=1 Xi :
∧n

i=1 Xi ⊆ X ∧ ∀x .(x ∈ X →
∨n

i=1 x ∈ Xi)

I Partition(X ,X1, . . . ,Xn) :
X =

⋃n
i=1 Xi ∧

∧n−1
i=1

∧n
j=i+1 Xi ∩ Xj = ∅

I properties of linked data structures: transitive closure of a
relation, a graph does not contain cycles, x is reachable from
y , . . .

I Also Presburger arithmetic!

WS1S Automata-based decision procedures 26 / 31

WS1S

I Minimalistic syntax

ϕ→ X ⊆ X | succ(X) | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

I interpreted over finite subsets of N.

I X = ∅ : ∀Y .Y ⊆ X → Y = X

I sing(X) : X 6= ∅ ∧ (Y ⊆ X → (Y = ∅ ∨ X = Y))

I gives us first order vars.: ∃x , x ∈ Y , x < y , x = y . . .

I X =
⋃n

i=1 Xi :
∧n

i=1 Xi ⊆ X ∧ ∀x .(x ∈ X →
∨n

i=1 x ∈ Xi)

I Partition(X ,X1, . . . ,Xn) :
X =

⋃n
i=1 Xi ∧

∧n−1
i=1

∧n
j=i+1 Xi ∩ Xj = ∅

I properties of linked data structures: transitive closure of a
relation, a graph does not contain cycles, x is reachable from
y , . . .

I Also Presburger arithmetic!

WS1S Automata-based decision procedures 26 / 31

WS1S

I Minimalistic syntax

ϕ→ X ⊆ X | succ(X) | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

I interpreted over finite subsets of N.

I X = ∅ : ∀Y .Y ⊆ X → Y = X

I sing(X) : X 6= ∅ ∧ (Y ⊆ X → (Y = ∅ ∨ X = Y))

I gives us first order vars.: ∃x , x ∈ Y , x < y , x = y . . .

I X =
⋃n

i=1 Xi :
∧n

i=1 Xi ⊆ X ∧ ∀x .(x ∈ X →
∨n

i=1 x ∈ Xi)

I Partition(X ,X1, . . . ,Xn) :
X =

⋃n
i=1 Xi ∧

∧n−1
i=1

∧n
j=i+1 Xi ∩ Xj = ∅

I properties of linked data structures: transitive closure of a
relation, a graph does not contain cycles, x is reachable from
y , . . .

I Also Presburger arithmetic!

WS1S Automata-based decision procedures 26 / 31

WS1S

I Minimalistic syntax

ϕ→ X ⊆ X | succ(X) | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

I interpreted over finite subsets of N.

I X = ∅ : ∀Y .Y ⊆ X → Y = X

I sing(X) : X 6= ∅ ∧ (Y ⊆ X → (Y = ∅ ∨ X = Y))

I gives us first order vars.: ∃x , x ∈ Y , x < y , x = y . . .

I X =
⋃n

i=1 Xi :
∧n

i=1 Xi ⊆ X ∧ ∀x .(x ∈ X →
∨n

i=1 x ∈ Xi)

I Partition(X ,X1, . . . ,Xn) :
X =

⋃n
i=1 Xi ∧

∧n−1
i=1

∧n
j=i+1 Xi ∩ Xj = ∅

I properties of linked data structures: transitive closure of a
relation, a graph does not contain cycles, x is reachable from
y , . . .

I Also Presburger arithmetic!

WS1S Automata-based decision procedures 26 / 31

WS1S

I Minimalistic syntax

ϕ→ X ⊆ X | succ(X) | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

I interpreted over finite subsets of N.

I X = ∅ : ∀Y .Y ⊆ X → Y = X

I sing(X) : X 6= ∅ ∧ (Y ⊆ X → (Y = ∅ ∨ X = Y))

I gives us first order vars.: ∃x , x ∈ Y , x < y , x = y . . .

I X =
⋃n

i=1 Xi :
∧n

i=1 Xi ⊆ X ∧ ∀x .(x ∈ X →
∨n

i=1 x ∈ Xi)

I Partition(X ,X1, . . . ,Xn) :
X =

⋃n
i=1 Xi ∧

∧n−1
i=1

∧n
j=i+1 Xi ∩ Xj = ∅

I properties of linked data structures: transitive closure of a
relation, a graph does not contain cycles, x is reachable from
y , . . .

I Also Presburger arithmetic!

WS1S Automata-based decision procedures 26 / 31

The name

Weak monadic second order logic of one successor.

I second order = can quantify over sets

I weak = the sets can be finite only

I monadic = only sets numbers, not relations

I one successor = the succ function

WS1S Automata-based decision procedures 27 / 31

The name

Weak monadic second order logic of one successor.

I second order = can quantify over sets

I weak = the sets can be finite only

I monadic = only sets numbers, not relations

I one successor = the succ function

WS1S Automata-based decision procedures 27 / 31

The name

Weak monadic second order logic of one successor.

I second order = can quantify over sets

I weak = the sets can be finite only

I monadic = only sets numbers, not relations

I one successor = the succ function

WS1S Automata-based decision procedures 27 / 31

The name

Weak monadic second order logic of one successor.

I second order = can quantify over sets

I weak = the sets can be finite only

I monadic = only sets numbers, not relations

I one successor = the succ function

WS1S Automata-based decision procedures 27 / 31

The name

Weak monadic second order logic of one successor.

I second order = can quantify over sets

I weak = the sets can be finite only

I monadic = only sets numbers, not relations

I one successor = the succ function

WS1S Automata-based decision procedures 27 / 31

Why

I Looks different, but is surprisingly close to Automata,
Presburger, regularity.

I It is The basic automata logic. Starting point for many other
interesting automata-related logics.

I Exciting research!

WS1S Automata-based decision procedures 28 / 31

Assignments as words

I X ⊆ N is encoded as a binary vector

{1, 3, 5} . . .w = 010101.

plus all in w0∗

I An assignment, n-tuple of sets, becomes a word over {0, 1}n.
X = {1, 3, 4}, Y = {2}, Z = ∅

01011
00100
00000

,
01011 0
00100 0
00000 0

,
01011 00
00100 00
00000 00

,
01011 000
00100 000
00000 000

, · · ·

WS1S Automata-based decision procedures 29 / 31

Assignments as words

I X ⊆ N is encoded as a binary vector

{1, 3, 5} . . .w = 010101.

plus all in w0∗

I An assignment, n-tuple of sets, becomes a word over {0, 1}n.
X = {1, 3, 4}, Y = {2}, Z = ∅

01011
00100
00000

,
01011 0
00100 0
00000 0

,
01011 00
00100 00
00000 00

,
01011 000
00100 000
00000 000

, · · ·

WS1S Automata-based decision procedures 29 / 31

Assignments as words

I X ⊆ N is encoded as a binary vector

{1, 3, 5} . . .w = 010101.

plus all in w0∗

I An assignment, n-tuple of sets, becomes a word over {0, 1}n.
X = {1, 3, 4}, Y = {2}, Z = ∅

01011
00100
00000

,
01011 0
00100 0
00000 0

,
01011 00
00100 00
00000 00

,
01011 000
00100 000
00000 000

, · · ·

WS1S Automata-based decision procedures 29 / 31

WS1S to automata

I automata for X ⊆ Y and Y = succ(X)

0
0,

0
1,

1
1

0
0

1
1

0
1

1
0

I and everything else is the same as for Presburger!

WS1S Automata-based decision procedures 30 / 31

WS1S to automata

I automata for X ⊆ Y and Y = succ(X)

0
0,

0
1,

1
1

0
0

1
1

0
1

1
0

I and everything else is the same as for Presburger!

WS1S Automata-based decision procedures 30 / 31

WS1S to automata

I automata for X ⊆ Y and Y = succ(X)

0
0,

0
1,

1
1

0
0

1
1

0
1

1
0

I and everything else is the same as for Presburger!

WS1S Automata-based decision procedures 30 / 31

WS1S to automata

I automata for X ⊆ Y and Y = succ(X)

0
0,

0
1,

1
1

0
0

1
1

0
1

1
0

I and everything else is the same as for Presburger!

WS1S Automata-based decision procedures 30 / 31

Remarks

I WS1S can encode Presburger, not the other way around.
Presburger would need the bit-subset operator.

I Other similar logics

I S1S for reasoning about arbitrary sets (automata over
infinite words)

I (W)SkS allows many successors — reasoning about tress
and general graphs (tree automata)

I Regularity for words: WS1S = automata [Büchi 1960] =
regular expressions = Presburger with bit-subset

I Complexity

I Presburger with automata (a bit different algo.): O(22
2n

)

I WS1S: non-elementary complexity O(22
··
·2
n

︸ ︷︷ ︸
alternations

)

WS1S Automata-based decision procedures 31 / 31

Remarks

I WS1S can encode Presburger, not the other way around.
Presburger would need the bit-subset operator.

I Other similar logics

I S1S for reasoning about arbitrary sets (automata over
infinite words)

I (W)SkS allows many successors — reasoning about tress
and general graphs (tree automata)

I Regularity for words: WS1S = automata [Büchi 1960] =
regular expressions = Presburger with bit-subset

I Complexity

I Presburger with automata (a bit different algo.): O(22
2n

)

I WS1S: non-elementary complexity O(22
··
·2
n

︸ ︷︷ ︸
alternations

)

WS1S Automata-based decision procedures 31 / 31

Remarks

I WS1S can encode Presburger, not the other way around.
Presburger would need the bit-subset operator.

I Other similar logics

I S1S for reasoning about arbitrary sets (automata over
infinite words)

I (W)SkS allows many successors — reasoning about tress
and general graphs (tree automata)

I Regularity for words: WS1S = automata [Büchi 1960] =
regular expressions = Presburger with bit-subset

I Complexity

I Presburger with automata (a bit different algo.): O(22
2n

)

I WS1S: non-elementary complexity O(22
··
·2
n

︸ ︷︷ ︸
alternations

)

WS1S Automata-based decision procedures 31 / 31

Remarks

I WS1S can encode Presburger, not the other way around.
Presburger would need the bit-subset operator.

I Other similar logics

I S1S for reasoning about arbitrary sets (automata over
infinite words)

I (W)SkS allows many successors — reasoning about tress
and general graphs (tree automata)

I Regularity for words: WS1S = automata [Büchi 1960] =
regular expressions = Presburger with bit-subset

I Complexity

I Presburger with automata (a bit different algo.): O(22
2n

)

I WS1S: non-elementary complexity O(22
··
·2
n

︸ ︷︷ ︸
alternations

)

WS1S Automata-based decision procedures 31 / 31

	Formulae as automata
	Automata crash course
	Automata for Atomic Presburger Predicates
	Weak Monadic Second Order Logic of One Successor (WS1S)
	WS1S

