Automata-based decision procedures IAM, Lecture 4

Lukáš Holík

Reminder: Presburger arithmetic

Is interpreted over \mathbb{N} , has the signature

$$\{0,\mathcal{S},+,=\}$$

Part I

Formulae as automata

Numbers as words

▶ in last significant bit first encoding (LSBF)

```
0 is encoded as 0
1 is encoded as 1
2 is encoded as 01
10 is encoded as 0101
```

Numbers as words

▶ in last significant bit first encoding (LSBF)

```
0 is encoded as 0
1 is encoded as 1
2 is encoded as 01
10 is encoded as 0101
```

ightharpoonup also, every word from $w0^*$ denotes the same number as w

```
010
0100
01000 all encode 2.
01000000000
```

assignments seen as k-tuples of numbers
 (+ an ordering on its k free variables)

$$[2x = y] = \{(0,0), (1,2), (2,4), \ldots\}$$

assignments seen as k-tuples of numbers
 (+ an ordering on its k free variables)

$$[2x = y] = \{(0,0), (1,2), (2,4), \ldots\}$$

• encoded as words over the alphabet $\{0,1\}^k$

assignments seen as k-tuples of numbers
 (+ an ordering on its k free variables)

$$[2x = y] = \{(0,0), (1,2), (2,4), \ldots\}$$

- encoded as words over the alphabet $\{0,1\}^k$

assignments seen as k-tuples of numbers
 (+ an ordering on its k free variables)

$$[2x = y] = \{(0,0), (1,2), (2,4), \ldots\}$$

- encoded as words over the alphabet $\{0,1\}^k$
- ▶ for k = 2, the alphabet is $\left\{ \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}, \begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} \right\}$
- ▶ and the assignment $\{x \mapsto 2, y \mapsto 4\}$, i.e. (2,4), is encoded as

010 001

assignments seen as k-tuples of numbers
 (+ an ordering on its k free variables)

$$[2x = y] = \{(0,0), (1,2), (2,4), \ldots\}$$

- encoded as words over the alphabet $\{0,1\}^k$
- ▶ for k = 2, the alphabet is $\left\{ \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}, \begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array} \right\}$
- ▶ and the assignment $\{x \mapsto 2, y \mapsto 4\}$, i.e. (2,4), is encoded as

▶ and all the other words in $w(0^2)^*$

assignments seen as k-tuples of numbers
 (+ an ordering on its k free variables)

$$[2x = y] = \{(0,0), (1,2), (2,4), \ldots\}$$

- encoded as words over the alphabet $\{0,1\}^k$
- ▶ for k = 2, the alphabet is $\left\{ \begin{array}{ccc} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array} \right\}$
- ▶ and the assignment $\{x \mapsto 2, y \mapsto 4\}$, i.e. (2,4), is encoded as

▶ and all the other words in $w(0^2)^*$

$$0100$$
, 01000 , 010000 , 010000 , ...

 \blacktriangleright $L(\varphi)$ denotes all encodings of all satisfying assignments of φ

Formulae as automata

► Presburger formulae can be translated to automata that accept exactly all encodings of their satisfying assignments.

Formulae as automata

Presburger formulae can be translated to automata that accept exactly all encodings of their satisfying assignments.

Formulae as automata

Presburger formulae can be translated to automata that accept exactly all encodings of their satisfying assignments.

- ightharpoonup To decide satisfiability of a formula φ
 - ightharpoonup construct an automaton A with $L(A) = L(\varphi)$
 - and test emptiness of its language.

$$\neg (x \ge y) \land \exists z. (z \le x+4 \lor \exists w. x < w < y)$$

▶ Build the FA with $L(A) = L(\varphi)$ inductively to φ 's structure.

▶ Then check language emptiness of $A = A_6 \cap A_7$.

Ingredients

- 1. automata for atomic predicates
- 2. automata constructions for \cup , \cap , \neg , \exists
- 3. automata language emptiness test

Part II

Automata crash course

▶ finite sets: alphabet Σ , states Q, initial states $I \subseteq Q$, final/accepting states $F \subseteq Q$

- ▶ finite sets: alphabet Σ , states Q, initial states $I \subseteq Q$, final/accepting states $F \subseteq Q$
- ▶ transition function $\delta: Q \times \Sigma \to 2^Q$.

- ▶ finite sets: alphabet Σ , states Q, initial states $I \subseteq Q$, final/accepting states $F \subseteq Q$
- ▶ transition function $\delta: Q \times \Sigma \to 2^Q$.
- ▶ a word is read in a run, which can be accepting or rejecting

- ▶ finite sets: alphabet Σ , states Q, initial states $I \subseteq Q$, final/accepting states $F \subseteq Q$
- ▶ transition function $\delta: Q \times \Sigma \to 2^Q$.
- ▶ a word is read in a run, which can be accepting or rejecting
- accepts a word if it has some accepting run over it

- ▶ finite sets: alphabet Σ , states Q, initial states $I \subseteq Q$, final/accepting states $F \subseteq Q$
- ▶ transition function $\delta: Q \times \Sigma \to 2^Q$.
- ▶ a word is read in a run, which can be accepting or rejecting
- > accepts a word if it has some accepting run over it
- language L(A) is the set of all accepted words

- ▶ finite sets: alphabet Σ , states Q, initial states $I \subseteq Q$, final/accepting states $F \subseteq Q$
- ▶ transition function $\delta: Q \times \Sigma \to 2^Q$.
- ▶ a word is read in a run, which can be accepting or rejecting
- accepts a word if it has some accepting run over it
- language L(A) is the set of all accepted words
- can be deterministic or nondeterministic

- ▶ finite sets: alphabet Σ , states Q, initial states $I \subseteq Q$, final/accepting states $F \subseteq Q$
- ▶ transition function $\delta: Q \times \Sigma \to 2^Q$.
- ▶ a word is read in a run, which can be accepting or rejecting
- accepts a word if it has some accepting run over it
- language L(A) is the set of all accepted words
- ► can be deterministic or nondeterministic
 - deterministic has at most one run for every word

Automata union, ∪

- ▶ We need $L(A_1) \cup L(A_2) = L(A_1 \cup A_2)$
- Simply unite the automata.

Automata union, ∪

- ▶ We need $L(A_1) \cup L(A_2) = L(A_1 \cup A_2)$
- Simply unite the automata.

Automata intersection, ∩

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

Automata intersection, ∩

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

 $Q' = Q_1 \times Q_2$ $l' = l_1 \times l_2$ $F' = F_1 \times F_2$ $\delta'((q, r), a) = \delta(q, a) \times \delta(r, a)$

 $A_1 \cap A_2$

- ▶ We need $L(A_1) \cap L(A_2) = L(A_1 \cap A_2)$.
- ▶ Use product construction.

$$\begin{aligned} Q' &= Q_1 \times Q_2 \\ l' &= l_1 \times l_2 \\ F' &= F_1 \times F_2 \\ \delta'((q,r),a) &= \delta(q,a) \times \delta(r,a) \end{aligned}$$

Automata complement, ¬

- ▶ We need $\Sigma^* \setminus L(A) = L(\neg A)$
- ▶ If deterministic, complete and negate acceptance.

Automata complement, ¬

- ▶ We need $\Sigma^* \setminus L(A) = L(\neg A)$
- ▶ If deterministic, complete and negate acceptance.

Automata complement, ¬

- ▶ We need $\Sigma^* \setminus L(A) = L(\neg A)$
- ▶ If deterministic, complete and negate acceptance.

Assume A determ. complete. Q'=Q I'=I I'=I $F'=Q\setminus F$ $\delta'=\delta$

Complement has a problem with nondeterminism

- accepting as well as rejecting runs over aba
- \blacktriangleright hence aba is in L(A) and stays after negating acceptance
- determinisation is needed

- ▶ We need a deterministic A' with L(A') = L(A).
- Subset construction.

- ▶ We need a deterministic A' with L(A') = L(A).
- Subset construction.

- ▶ We need a deterministic A' with L(A') = L(A).
- Subset construction.

- ▶ We need a deterministic A' with L(A') = L(A).
- Subset construction.

- ▶ We need a deterministic A' with L(A') = L(A).
- Subset construction.

- ▶ We need a deterministic A' with L(A') = L(A).
- Subset construction.

- ▶ We need a deterministic A' with L(A') = L(A).
- Subset construction.

- ▶ We need a deterministic A' with L(A') = L(A).
- Subset construction.

- ▶ We need a deterministic A' with L(A') = L(A).
- Subset construction.

- ▶ We need a deterministic A' with L(A') = L(A).
- Subset construction.

$$\begin{array}{ll} Q'=2^Q & \quad F'=\{S\in Q'\mid S\cap F\neq\emptyset\}\\ I'=\{I\} & \quad \delta'(S,a)=\bigcup_{s\in S}\delta(s,a) \end{array}$$

▶ Remove the *x* track (project on the *y* track).

▶ Remove the *x* track (project on the *y* track).

Remove the x track (project on the y track).

▶ Remove the *x* track (project on the *y* track).

► Careful, does it accept all encodings of sat. assignments?

Remove the x track (project on the y track).

Careful, does it accept all encodings of sat. assignments?

Saturation acceptance: everything reaching final state by zero vectors becomes also accepting.

Remove the x track (project on the y track).

► Careful, does it accept all encodings of sat. assignments?

Saturation acceptance: everything reaching final state by zero vectors becomes also accepting.

Part III

Automata for Atomic Presburger Predicates

Atomic predicates

▶ Assume that atomic predicates were transformed into the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

where $a_1, \ldots, a_n, b \in \mathbb{Z}$.

Atomic predicates

Assume that atomic predicates were transformed into the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

where $a_1, \ldots, a_n, b \in \mathbb{Z}$.

► We write

$$\bar{a} \cdot \bar{x} = b$$

where $\bar{a}=(a_1,\ldots,a_n)$, $\bar{x}=(x_1,\ldots,x_n)$, and $\bar{a}\cdot\bar{x}$ denotes the scalar product.

States of atomic predicates

Example: 2x - y = 2

States of atomic predicates

Example:
$$2x - y = 2$$

Idea:

- ▶ The states of the automaton are numbers $q \in \mathbb{Z}$.
- From q will be read those assignment to x and y under which 2x y equals q.

States of atomic predicates

Example:
$$2x - y = 2$$

Idea:

- ▶ The states of the automaton are numbers $q \in \mathbb{Z}$.
- From q will be read those assignment to x and y under which 2x y equals q.

From state $q\in\mathbb{Z}$ are read encodings of $ar c\in\mathbb{N}^n$ such that $ar a\cdotar c=q.$

Initial states of atomic predicates

2x - y = 2

Reminder: from q read \bar{c} s.t. $\bar{a} \cdot \bar{c} = q$

► The whole assignment is read from the initial state.

Initial states of atomic predicates

2x - y = 2

Reminder:

- ► The whole assignment is read from the initial state.
- So 2 must be initial.

Initial states of atomic predicates

2x - y = 2

Reminder:

from q read \bar{c} s.t. $\bar{a} \cdot \bar{c} = q$

► The whole assignment is read from the initial state.

So 2 must be initial.

Initial states of atomic predicates

2x - y = 2

Reminder:

from q read \bar{c} s.t. $\bar{a} \cdot \bar{c} = q$

► The whole assignment is read from the initial state.

► So 2 must be initial.

2 is the only initial state

2x - y = 2

Reminder:

from q read \bar{c} s.t. $\bar{a} \cdot \bar{c} = q$

▶ If $q \xrightarrow{\zeta} q'$ then:

2x - y = 2

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from q'

2x - y = 2

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from q'
- ▶ iff $2\bar{c}' + \zeta$ read from q

2x - y = 2

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from q'
- ▶ iff $2\bar{c}' + \zeta$ read from q

2x - y = 2

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from q'
- ▶ iff $2\bar{c}' + \zeta$ read from q

2x - y = 2

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from q'
- ▶ iff $2\bar{c}' + \zeta$ read from q

$$\delta(q,\zeta) = \left\{ \begin{array}{ll} \{\frac{1}{2}(q - \bar{a} \cdot \zeta)\} & \text{if } q - \bar{a} \cdot \zeta \text{ is even} \\ \emptyset & \textit{otherwise} \end{array} \right.$$

2x - y = 2

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from g'
- ▶ iff $2\bar{c}' + \zeta$ read from q

$$\delta(q,\zeta) = \left\{ \begin{array}{ll} \{\frac{1}{2}(q - \bar{a} \cdot \zeta)\} & \text{if } q - \bar{a} \cdot \zeta \text{ is even} \\ \emptyset & \textit{otherwise} \end{array} \right.$$

$$2x - y = 2$$

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from g'
- ▶ iff $2\bar{c}' + \zeta$ read from q

$$\delta(q,\zeta) = \left\{ \begin{array}{cc} \{\frac{1}{2}(q-\bar{a}\cdot\zeta)\} & \text{if } q-\bar{a}\cdot\zeta \text{ is even} \\ \emptyset & \textit{otherwise} \end{array} \right.$$

2x - y = 2

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from g'
- ▶ iff $2\bar{c}' + \zeta$ read from q

$$\delta(q,\zeta) = \left\{ \begin{array}{cc} \{\frac{1}{2}(q - \bar{a} \cdot \zeta)\} & \text{if } q - \bar{a} \cdot \zeta \text{ is even} \\ \emptyset & \textit{otherwise} \end{array} \right.$$

$$2x - y = 2$$

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from g'
- ▶ iff $2\bar{c}' + \zeta$ read from q

$$\delta(q,\zeta) = \left\{ \begin{array}{ll} \{\frac{1}{2}(q - \bar{a} \cdot \zeta)\} & \text{if } q - \bar{a} \cdot \zeta \text{ is even} \\ \emptyset & \textit{otherwise} \end{array} \right.$$

2x - y = 2

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from g'
- ▶ iff $2\bar{c}' + \zeta$ read from q

$$\delta(q,\zeta) = \left\{ \begin{array}{ll} \{\frac{1}{2}(q - \bar{a} \cdot \zeta)\} & \text{if } q - \bar{a} \cdot \zeta \text{ is even} \\ \emptyset & \textit{otherwise} \end{array} \right.$$

2x - y = 2

Reminder:

- ▶ If $q \xrightarrow{\zeta} q'$ then:
- $ightharpoonup \bar{c}'$ is read from g'
- ▶ iff $2\bar{c}' + \zeta$ read from q

$$\delta(q,\zeta) = \left\{ \begin{array}{ll} \{\frac{1}{2}(q - \bar{a} \cdot \zeta)\} & \text{if } q - \bar{a} \cdot \zeta \text{ is even} \\ \emptyset & \textit{otherwise} \end{array} \right.$$

Reminder:

from q read \bar{c} s.t. $\bar{a} \cdot \bar{c} = q$

Accepting are those where nothing (i.e. ϵ) needs to be read to satisfy $\bar{a} \cdot \bar{c} = q$.

Reminder:

- Accepting are those where nothing (i.e. ϵ) needs to be read to satisfy $\bar{a} \cdot \bar{c} = q$.
- ► This is only 0.

Reminder:

- Accepting are those where nothing (i.e. ϵ) needs to be read to satisfy $\bar{a} \cdot \bar{c} = q$.
- ► This is only 0.

Reminder:

from q read \bar{c} s.t. $\bar{a} \cdot \bar{c} = q$

- Accepting are those where nothing (i.e. ϵ) needs to be read to satisfy $\bar{a} \cdot \bar{c} = q$.
- ► This is only 0.

0 is the only accepting state

Atomic predicates: algorithm

```
EqtoDFA(\varphi)
Input: Equation \varphi = a \cdot x = b
Output: DFA A = (Q, \Sigma, \delta, q_0, F) such that L(A) = L(\varphi)
               (without trap state)
  1 Q, \delta, F \leftarrow \emptyset; q_0 \leftarrow s_h
  2 W \leftarrow \{s_b\}
       while W \neq \emptyset do
          pick s_k from W
  5
          add s_k to Q
  6
          if k = 0 then add s_k to F
          for all \zeta \in \{0, 1\}^n do
  8
              if (k - a \cdot \zeta) is even then
                 j \leftarrow \frac{1}{2}(k - a \cdot \zeta)
  9
                 if s_i \notin Q then add s_i to W
10
11
                 add (s_k, \zeta, s_i) to \delta
```

- ▶ We have seen a procedure quite different from the ones based on quantifier elimination.
- lt can be optimized, extended to \mathbb{Z} .
- It shows how diverse solutions of a problem can be,
- and a surprising connection between arithmetic and automata.
- Integer/Presburger arithmetic are somewhat "regular".

Part IV

Weak Monadic Second Order Logic of One Successor (WS1S)

Minimalistic syntax

$$\varphi \to X \subseteq X \mid succ(X) \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$$

ightharpoonup interpreted over finite subsets of \mathbb{N} .

$$\varphi \to X \subseteq X \mid succ(X) \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$$

- ightharpoonup interpreted over finite subsets of \mathbb{N} .
- $X = \emptyset : \forall Y.Y \subseteq X \to Y = X$

$$\varphi \to X \subseteq X \mid succ(X) \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$$

- ightharpoonup interpreted over finite subsets of \mathbb{N} .
- \triangleright $X = \emptyset : \forall Y.Y \subseteq X \rightarrow Y = X$
- ▶ $sing(X): X \neq \emptyset \land (Y \subseteq X \rightarrow (Y = \emptyset \lor X = Y))$

$$\varphi \to X \subseteq X \mid succ(X) \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$$

- ▶ interpreted over finite subsets of \mathbb{N} .
- $ightharpoonup X = \emptyset : \forall Y.Y \subseteq X \rightarrow Y = X$
- $ightharpoonup sing(X): X \neq \emptyset \land (Y \subseteq X \rightarrow (Y = \emptyset \lor X = Y))$
 - ▶ gives us first order vars.: $\exists x, x \in Y, x < y, x = y \dots$

$$\varphi \to X \subseteq X \mid succ(X) \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$$

- ▶ interpreted over finite subsets of \mathbb{N} .
- \triangleright $X = \emptyset : \forall Y.Y \subseteq X \rightarrow Y = X$
- ▶ $sing(X): X \neq \emptyset \land (Y \subseteq X \rightarrow (Y = \emptyset \lor X = Y))$
 - **b** gives us first order vars.: $\exists x, x \in Y, x < y, x = y \dots$

$$\varphi \to X \subseteq X \mid succ(X) \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$$

- ▶ interpreted over finite subsets of N.
- $ightharpoonup X = \emptyset : \forall Y.Y \subseteq X \rightarrow Y = X$
- - **•** gives us first order vars.: $\exists x, x \in Y, x < y, x = y \dots$
- Partition($X, X_1, ..., X_n$): $X = \bigcup_{i=1}^n X_i \wedge \bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^n X_i \cap X_j = \emptyset$

$$\varphi \to X \subseteq X \mid succ(X) \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$$

- ▶ interpreted over finite subsets of N.
- \triangleright $X = \emptyset : \forall Y.Y \subseteq X \rightarrow Y = X$
- ▶ $sing(X): X \neq \emptyset \land (Y \subseteq X \rightarrow (Y = \emptyset \lor X = Y))$
 - **•** gives us first order vars.: $\exists x, x \in Y, x < y, x = y \dots$
- $X = \bigcup_{i=1}^n X_i : \bigwedge_{i=1}^n X_i \subseteq X \land \forall x. (x \in X \to \bigvee_{i=1}^n x \in X_i)$
- Partition $(X, X_1, ..., X_n)$: $X = \bigcup_{i=1}^n X_i \wedge \bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^n X_i \cap X_j = \emptyset$
- properties of linked data structures: transitive closure of a relation, a graph does not contain cycles, x is reachable from y, ...

$$\varphi \to X \subseteq X \mid succ(X) \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$$

- ▶ interpreted over finite subsets of N.
- \triangleright $X = \emptyset : \forall Y.Y \subseteq X \rightarrow Y = X$
- ▶ $sing(X): X \neq \emptyset \land (Y \subseteq X \rightarrow (Y = \emptyset \lor X = Y))$
 - **•** gives us first order vars.: $\exists x, x \in Y, x < y, x = y \dots$
- Partition $(X, X_1, ..., X_n)$: $X = \bigcup_{i=1}^n X_i \wedge \bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^n X_i \cap X_j = \emptyset$
- properties of linked data structures: transitive closure of a relation, a graph does not contain cycles, x is reachable from y, ...
- Also Presburger arithmetic!

Weak monadic second order logic of one successor.

▶ second order = can quantify over sets

- second order = can quantify over sets
- weak = the sets can be finite only

- second order = can quantify over sets
- ▶ weak = the sets can be finite only
- monadic = only sets numbers, not relations

- second order = can quantify over sets
- weak = the sets can be finite only
- monadic = only sets numbers, not relations
- **one successor** = the *succ* function

Why

- ► Looks different, but is surprisingly close to Automata, Presburger, regularity.
- ▶ It is The basic automata logic. Starting point for many other interesting automata-related logics.
- Exciting research!

Assignments as words

 $ightharpoonup X \subseteq \mathbb{N}$ is encoded as a binary vector

$$\{1,3,5\}\dots w=010101.$$

Assignments as words

 $ightharpoonup X \subseteq \mathbb{N}$ is encoded as a binary vector

$$\{1,3,5\}\ldots w=010101.$$

plus all in w0*

Assignments as words

 $ightharpoonup X \subseteq \mathbb{N}$ is encoded as a binary vector

$$\{1,3,5\}\ldots w=010101.$$

plus all in w0*

An assignment, *n*-tuple of sets, becomes a word over $\{0,1\}^n$. $X = \{1,3,4\}, Y = \{2\}, Z = \emptyset$

▶ automata for $X \subseteq Y$ and Y = succ(X)

▶ automata for $X \subseteq Y$ and Y = succ(X)

▶ automata for $X \subseteq Y$ and Y = succ(X)

▶ automata for $X \subseteq Y$ and Y = succ(X)

▶ and everything else is the same as for Presburger!

▶ WS1S can encode Presburger, not the other way around. Presburger would need the bit-subset operator.

- ▶ WS1S can encode Presburger, not the other way around. Presburger would need the bit-subset operator.
- Other similar logics
 - ► S1S for reasoning about arbitrary sets (automata over infinite words)
 - ► (W)SkS allows many successors reasoning about tress and general graphs (tree automata)

- ▶ WS1S can encode Presburger, not the other way around. Presburger would need the bit-subset operator.
- Other similar logics
 - ► S1S for reasoning about arbitrary sets (automata over infinite words)
 - ► (W)SkS allows many successors reasoning about tress and general graphs (tree automata)
- ▶ Regularity for words: WS1S = automata [Büchi 1960] = regular expressions = Presburger with bit-subset

- ► WS1S can encode Presburger, not the other way around. Presburger would need the bit-subset operator.
- ▶ Other similar logics
 - S1S for reasoning about arbitrary sets (automata over infinite words)
 - ► (W)SkS allows many successors reasoning about tress and general graphs (tree automata)
- ▶ Regularity for words: WS1S = automata [Büchi 1960] = regular expressions = Presburger with bit-subset
- Complexity
 - ▶ Presburger with automata (a bit different algo.): $\mathcal{O}(2^{2^{2^n}})$
 - ► WS1S: non-elementary complexity $\mathcal{O}(\underbrace{2^{2^{n}}}_{\text{alternations}})$